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Modes of coupled photonic crystal waveguides
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‘We consider the modes of coupled photonic crystal waveguides.

We find that the fundamental modes of these

structures can be either even or odd, in contrast with the behavior in coupled conventional waveguides, in
which the fundamental mode is always even. We explain this finding using an asymptotic model that is valid

for long wavelengths.
OCIS codes: 130.2790, 230.7370, 050.1960.

Coupled waveguides (CWs) occur in many optical
devices. For example, the key element of directional
couplers consists of two waveguides that are closely
spaced to allow energy exchange. CWs have been
studied both in conventional guided wave structures’
and in photonic crystals.>”* The latter have received
much recent attention with the claim that short
coupling lengths, the length over which energy couples
between the guides, can be achieved, providing the
promise of compact devices.

An issue that has arisen is that of the bound
modes of CWs. In symmetric conventional pla-
nar structures, the fundamental mode is even and
the second mode is odd.! The equivalent issue for
photonic crystal waveguides, which does not affect
their operation as a directional coupler, is not so
well understood. Boscolo et al.® argued that the
fundamental coupled waveguide mode (CWM) is even,
as in planar structures. However, here we show
that for some structures the fundamental CWM is
even or odd, depending on the guides’ spacing. To
illustrate the features of different geometries we use
three examples, shown in Fig. 1. In all three cases
we consider the polarization in which the electric
field is orthogonal to the figure. The first [Fig. 1(a)]
is conventional planar CWs. The second geometry
[Fig. 1(b)] is CWs in a layered Bragg structure (pe-
riod d). Finally [Fig. 1(c)] we consider CWs in two-
dimensional photonic crystals with a square lattice of
period d. The last two structures act only as wave-
guides and thus support only CWMs for frequencies
within a bandgap of the periodic structure.

The analysis of the three structures initially
proceeds in a common way. The key outcome of
this analysis is Eq. (8) for all three structures; the
reader mainly interested in results can proceed to
this equation. We start the analysis by considering
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the downward (—) propagating field at the top of the
upper waveguide, indicated by fi1 (see Fig. 1). For
the planar and layered structures, f;~ gives the single
electric field component. For the two-dimensional
photonic crystal f1~ is a vector of numbers f,” cor-
responding to the amplitudes of the field’s diffracted
orders p, allowing the field to be written as

Ex,y)= > xp Y21, expl—ixp(y — y) + ifpal.
=N
(1)

Here B, = Bo + 27 p/d are the direction sines of these
orders, x, = (k* — B,?)"/2, where % is the wave num-
ber, are the associated direction cosines, and y; is a
reference plane, taken to be the top dashed line in

Fig. 1. Schematics of the geometries considered: (a) pla-
nar waveguide, (b) layered structures, (c) two-dimensional
photonic crystal with square lattice. For each geometry,
the electric field is orthogonal to the plane, and the mode
propagates in the plane.
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Fig. 1. Although in principle all orders, both propa-
gating (|| = k) and evanescent (|8, > k), need to be
included, in practice the summation is truncated. R,
representing the reflection off the semi-infinite struc-
tures surrounding the guides, is a scalar for the planar
and the layered geometries and a square matrix for the
two-dimensional photonic crystal. The same is true
for Ry and Ty, indicating the reflection and transmis-
sion, respectively, of the barrier between the guides,
which consists of N layers.

Given these definitions, we continue the analysis by
relating the fields in Fig. 1:

fi=R.PH*, fi* =RyPAH~ + TnPfH",
fo- =TnPfi" + RyPf2*, fi' =R.PFy . (2)

Here P is the operator that propagates the field be-
tween the dashed lines in Fig. 1 over guide width A.
Since the guides are uniform, the field can be writ-
ten as a plane wave for the planar and the layered
geometries and as a plane-wave superposition for the
two-dimensional photonic crystal. In that case P is
a diagonal matrix with elements exp(ix,%). By com-
bining Eqs. (2) it is straightforward to show that f;~ =
Ufy* and fot = Uf,~, where

U= (I - R.PRyP) 'R.PTyP, 3)

and I is the unit operator. Therefore (I — U2)f,~ =
0, and thus (I — ¢U)f1” = 0, where o = *1, and
f2* = of1”. Thus, for this symmetric structure, the
modes are either even (o = 1) or odd (o = —1).! Using
Eq. (3), we find

I - oU =(I - R.PRyP) [ — R.P(Ry + oTy)P].
(4)
From the results of Botten et al.,® it is found that
Ry = (R= — @¥R.Q")(I - R-Q¥R.Q")"!,
Ty = (I - R:HQ( — R-QVR.Q")™, 5

where @ expresses how the Bloch functions of the
periodic structure transfer through a layer. Since the
Bloch functions are the eigenfunctions of the structure,
@ depends on u;, the eigenvalues of the translation
operator. For propagating Bloch functions g lies on
the unit circle, whereas for evanescent modes |u| < 1.5
The correctness of Egs. (5) for planar structures can
be ascertained by comparison with the results for a
Fabry—Perot interferometer that were presented in
Ref. 6. For a mode to exist, we require I — oU to be
singular, which by Egs. (4) and (5) is equivalent to

det[] — ReP(Rx + aQY)(I + ¢R.QVN) 'P]=0.
(6)

From here on, the exact treatments of the three
geometries differ, as the different natures of the fields
become important. However, we use an approxima-
tion for the two-dimensional photonic crystal that lets

us consider all three geometries on the same footing.
This approximation is valid for long wavelengths,
where only a single propagating diffraction order
exists and all other orders are evanescent. The key
physics is then dominated by the single propagating
order (p = 0), so all evanescent orders (p # 0) can
be dropped. Since this approximation, in which all
vectors and matrices reduce to scalars, works for only
long wavelengths, it is valid for frequencies up to
and including most of the first bandgap of the two-
dimensional photonic crystal. In the long-wavelength
approximation all quantities commute, and Eq. (6)
reduces to

21+ op”/R. _

2
R°P 1+ ouNR.

1, (7N

where u, which is now real, represents the decay of the
field over a lattice period. If u < 0, the field changes
sign after a period, similar to the behavior at the edge
of the Brillouin zone, whereas if 4 > 0, the sign of the
field over a period is unchanged, as in the Brillouin
zone center. The planar structure in Fig. 1(a), which
has no periodicity, can be associated with u > 0, since
evanescent fields do not change sign. Now in a gap
|R«| = 1, and since |P| = 1, Eq. (7) can, for all three
geometries, be written as

xoh + arg(R.. + ou®) =mm. (8)

Here m is an integer, and o is the direction sine of the
propagating order. The ou® term characterizes the
barrier between the guides, since, when the guides are
widely spaced (N — «), the term disappears and the
equation for a single guide results.

The key to the analysis of Eq. (8) is the sign of
ou™: when u > 0, its sign is determined by that
of o, and when u < 0, the sign also depends on the
number of periods separating the guides, N. Consider
first the planar geometry in Fig. 1(a), for which « > 0
and, since it relies on total internal reflection, — 7 <
arg(R«) < 0.5 Then, compared with the parameters
for a single guide, arg(R. + ou®) increases for o > 0
(even mode), and thus for Eq. (8) to be satisfied xo
must decrease and propagation constant By must in-
crease. In contrast, when o <0, By decreases. Since
the fundamental mode is that with the largest propa-
gation constant at fixed frequency, the fundamental
mode is even and the second mode is odd for a planar
structure.!

For the layered structure in Fig. 1(b) the sign of
# is not fixed. In the fundamental gap, and all
odd-numbered gaps, u < 0, and in the even-numbered
gaps u > 0. Briefly, this is because the odd gaps are
narrowest at the edge of the Brillouin zone, where the
fields change sign after a period, while the even gaps
are narrowest at the Brillouin zone center, where the
sign is unchanged. If, for the structure in Fig. 1(b),
—m < arg(R.) < 0, in the even gaps the behavior is
as in the planar structure: the fundamental CWM
is always even. But in the odd gaps the fundamen-
tal CWM can either be even (N even) or odd (N
odd). We have found that at long wavelengths the
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Fig. 2. Projected band structure for a two-dimensional
bulk photonic crystal with parameters given in the text.
The dark-shaded regions indicate bands, the white regions
indicate gaps with u < 0, and the light-shaded regions
indicate gaps with 4 > 0. CWM dispersion relations are
also given for (solid curves) even and (dashed curves) odd
modes.

Fig. 3. Electric field in a two-dimensional photonic
crystal with two coupled waveguides. (a), (b) odd CWM;
(c), (d) even CWM. (a), (c) electric field contours;
(b) and (d) field profiles through vertical lines in (a) and
(c), respectively. The dark regions indicate the cylinders.

two-dimensional geometry in Fig. 1(c) behaves simi-
larly to layered structures: in much of the lowest gap,
where our approximation is valid, u > 0, as illustrated
in Fig. 2. This figure, calculated numerically without
approximations,® shows the projected band structure
of a two-dimensional photonic crystal with a square
lattice and cylindrical inclusions with radius a = 0.3d
and refractive index n = 3 in a background of n = 1.
Also indicated are dispersion curves for the CWMs for
two waveguides of width A =d, and N = 1, 2, 3; for
N =1 and N = 3 the fundamental mode is odd, and
for N = 2 it is even, consistent with our discussion.
Figures 3 show the field of the structure in Fig. 2
and N = 3 at wavelength A = 3.05d. In the bright
regions in Figs. 3(a) and 3(c), the electric field has a
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positive phase, and in the dark regions it is negative.
Thus Figs. 3(a) and 3(b) refer to the odd CWM, for
which u = —0.465, Figs. 3(c) and 3(d) refer to the even
CWM, for which u = —0.487. Note from Figs. 3(a)
and 3(b) that the latter has a shorter period, and the
odd CWM therefore has the largest propagation con-
stant and is thus the fundamental CWM. Indeed, the
propagation constants of the odd and even CWMs are
Bod = 1.353 and B.d = 1.239, respectively.

It is well known that, for structures in which the
refractive index varies in one direction [Figs. 1(a) and
1(b)], the oscillation theorem applies, according to
which the nth eigenfunction has n — 1 nodes.” This
is consistent with the results for the planar structure
{Fig. 1(a)], since an odd mode has at least one node
and thus cannot be fundamental. The argument
for the layered structure [Fig. 1(b)] is more subtle
gsince we are interested only in CWMs, whereas the
oscillation theorem applies to all modes, at frequencies
in the gaps and in the bands. The fundamental mode
in this structure is at the bottom of the lowest band.
Thus, although the fundamental CWM can be either
even or odd and has many nodes, it has one fewer node
than the second CWM. For two-dimensional periodic
structures, the oscillation theorem does not strictly
apply, although for the long wavelengths considered
here it behaves approximately as a layered structure.
This is consistent with Figs. 3(c) and 3(d), which show
that the fundamental, odd CWM has one fewer node
than the even CWM.

In conclusion, the fundamental CWM in the lowest
gap of a photonic crystal can be either even or odd,
depending on the phase change on reflection off the
bulk photonic crystal and the separation of the guides.
This does not affect the operation of directional
couplers for which only the beat length of the CWMs
2m/|Be — B,| enters. Although the results here refer
to a specific polarization, we have found quantitatively
similar results for the other polarization.

This work was produced with the assistance of the
Australian Research Council under the ARC Centres of
Excellence program. C. M. de Sterke’s e-mail address
is desterke@physics.usyd.edu.au.
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