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Abstract Skyline operator is a useful tool in multi-criteria decision making in various appli-
cations. Uncertainty is inherent in real applications due to various reasons. In this paper, we
consider the problem of efficiently computing probabilistic skylines against the most recent
N uncertain elements in a data stream seen so far. Specifically, we study the problem in the
n-of-N model; that is, computing the probabilistic skyline for the most recent n (∀n ≤ N )
elements, where an element is a probabilistic skyline element if its skyline probability is not
below a given probability threshold q. Firstly, an effective pruning technique to minimize
the number of uncertain elements to be kept is developed. It can be shown that on average
storing only O(logd N) uncertain elements from the most recent N elements is sufficient to
support the precise computation of all probabilistic n-of-N skyline queries in a d-dimension
space if the data distribution on each dimension is independent. A novel encoding scheme
is then proposed together with efficient update techniques so that computing a probabilistic
n-of-N skyline query in a d-dimension space is reduced to O(d log logN+s) if the data dis-
tribution is independent, where s is the number of skyline points. A trigger based technique
is provided to process continuous n-of-N skyline queries. Extensive experiments demon-
strate that the new techniques on uncertain data streams can support on-line probabilistic
skyline query computation over rapid data streams.

1 Introduction

Skyline analysis has been shown as a useful tool in multi-criterion decision making. Given
a certain data set D, an element s1 ∈ D dominates another element s2 ∈ D if s1 is better
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than s2 in at least one aspect and not worse than s2 in all other aspects. The skyline on D

comprises of elements in D that are not dominated by any other element from D.
Uncertain data analysis is an important issue in many emerging important applications,

such as sensor networks, trend prediction, moving object management, data cleaning and
integration, economic decision making, and market surveillance. Uncertainty is inherent
in such applications due to various factors such as data randomness and incompleteness,
limitation of equipment, and delay or loss in data transfer. In many scenarios, uncertain
data is collected in a streaming fashion. Uncertain streaming data computation has attracted
significant research attention and the existing work mainly focuses on aggregations, top-k
queries [1–3], etc.

Skyline computation over uncertain streaming data has many applications and has been
studied in [4,5]. For instance, in an on-line shopping system products are evaluated in var-
ious aspects such as price, condition (e.g., brand new, excellent, good, average, etc), and
brand. A customer may want to select a product, say laptops, based on the multiple criteria
such as low price, good condition, and brand preference. In the application, each seller is
also associated with a “trustability” value which is derived from customers’ feedback on
the seller’s product quality, delivery handling, etc; the trustability value may be regarded
as the “occurrence” probability of the product since it represents the probability that the
product occurs exactly as described in the advertisement in terms of delivery and quality.
For simplicity, we assume that a customer only prefers a particular brand and remove the
brand dimension from ranking. Table 1 lists four qualified results. Both L1 and L4 are sky-
line points regarding (price, condition), L1 is better than (dominates) L2, and L4 is better
than L3. Nevertheless, L1 is posted long time ago, and the trustability of L4 is quite low. In
such applications, customers may want to continuously monitor on-line advertisements by
selecting the candidates for the best deal - skyline points. Clearly, we need to “discount” the
dominating ability from offers with too low trustability. Moreover, too old offers may not be
quite relevant. We model such an on-line selection problem as probabilistic skyline against
sliding windows by treating on-line advertisements as an uncertain data stream (see Section
2 for details) such that each data element (advertisement) has an occurrence probability.
Moreover, different users may have different favorite thresholds of the number N of most
recent elements to monitor. Therefore, it is important for an information provider (system)
to organize the most recent N elements in an effective way, so that any “n-of-N skyline”
queries (the computation of the skyline of the most recent n (∀n ≤ N ) elements) can be
processed efficiently.

Table 1 Laptop Advertisements.

Product ID Time Price Condition Trustability
L1 107 days ago $ 550 excellent 0.80
L2 5 days ago $ 680 excellent 0.90
L3 2 days ago $ 530 good 1.00
L4 today $ 200 good 0.48

[6,7] are the first attempts to investigate skyline computation on certain sliding windows
while [6] is the first paper to tackle such a problem in the n-of-N model. To the best of our
knowledge, this paper is the first work to study skyline queries in context of n-of-N model
over uncertain data streams. Our contribution can be summarized as follows.
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1. We formally define the problem of probabilistic skyline computation over uncertain data
streams regarding the n-of-N model.

2. An efficient pruning technique has been developed to minimize the number N (N ≤
N ) of uncertain elements to be kept in the most recent N elements for processing all
probabilistic n-of-N queries. We showed that in a d-dimensional spaceN = O(logd N)

if the data distribution on each dimension is independent.
3. A novel encoding scheme with linear size O(N ) on the stored elements is developed,

together with the efficient update algorithms based R-tree and interval tree techniques.
This encoding scheme effectively reduces the time complexity for processing a prob-
abilistic n-of-N skyline query to O(logN + s) from O(n logn) for d = 2, 3 and
O(n logd−2 n) for d ≥ 4, where s is the number of skyline points.

4. A trigger based technique for continuously processing probabilistic skyline query fol-
lowing the n-of-N model is developed. Upon the arrival of a new data element, it guar-
antees O(log δ) time to update the current query result where δ is the number of element
changing from the current result to the new result. It takes O(log s) time to update the
triggers list per result change.

5. Extensive experiments indicated that the new techniques can accommodate on-line com-
putation against very rapid data streams.

The rest of the paper is organized as follows. In section 2, we formally define probabilis-
tic skyline queries over uncertain data streams regarding the n-of-N model and provide nec-
essary preliminaries. Section 3 presents the minimum candidate set to process probabilistic
n-of-N skyline queries and the encoding scheme. Section 4 provides the techniques for con-
tinuously maintaining the indexing structures for the candidate set. Continuous probabilistic
n-of-N skylines queries techniques are presented in Section 5. Results of comprehensive
performance studies are discussed in section 6. Some extensions of the problem studied in
the paper are discussed in Section 7. Related works are summarized in Section 8 and section
9 concludes the paper.

2 Background

We present problem definition and necessary preliminaries in this section.

2.1 Problem Definition

For two exact d-dimensional elements u and v, u dominates v, denoted by u ≺ v, if u.i ≤ v.i

for every 1 ≤ i ≤ d, and there exists a dimension j with u.j < v.j. Given a set of elements,
the skyline consists of all elements which are not dominated by any other elements. In many
applications, a data stream is append-only; that is, there is no deletion of data elements
involved. In this paper, we study the skyline computation problem restricted to the append-
only data stream model. In a data stream, elements are positioned according to their relative
arrival ordering and labeled by integers. Note that the position/label κ(a) means that the
element a arrives κ(a)-th in the data stream.

In an uncertain data stream DS, each element a ∈ DS has a probability P (a) (0 <

P (a) ≤ 1) to occur where a.i (for 1 ≤ i ≤ d) denotes the i-th dimension value. Given a
sequence DS of uncertain data elements, a possible world W is a subsequence of DS. The
probability of W to appear is P (W ) = Πa∈WP (a)×Πa ̸∈W (1− P (a)). Let ω be the set of
all possible worlds, then

∑
W∈ω P (W ) = 1. We use SKY (W ) to denote the set of elements
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in W that form the skyline of W . The probability that an element a appears in the skylines
of the possible worlds is Psky(a) =

∑
a∈SKY (W ),W∈ω P (W ). Psky(a) is called the skyline

probability of a. Equation 1 below can be immediately verified.

Psky(a) = P (a)×Πa′∈DS,a′≺a(1− P (a′)) (1)

Denote N as the size of the sliding window, namely we only keep the recent N elements
in the data stream. In the rest of the paper, we abuse Psky(a) to denote the skyline probability
for a to be a skyline element within the recent N elements. Note that a is also within the
most recent N elements PN . Namely,

Psky(a) = P (a)×Πa′∈PN ,a′≺a(1− P (a′)) (2)

In n-of-N model, skyline computation is supported for any window length n with n ≤
N . Suppose an element a is within the most recent n (n ≤ N ) elements, we denote Psky,n(a)

as the skyline probability of a computed regarding the most recent n elements only. Namely,

Psky,n(a) = P (a)×Πκ(a),κ(a′)≥M−n+1,a′≺a(1− P (a′)) (3)

where M is the totaly number of elements in the data stream so far and κ(a), κ(a′) ≥
M − n + 1 implicates that a and a′ are within the most recent n elements. Clearly we
have Psky,n(a) ≥ Psky(a), which implies that even a is not a skyline element in the sliding
window with size N , it may still be a skyline element in the most recent n elements for some
n ≤ N . We denote Pn-of-N query as the query to retrieve probabilistic skyline elements
against any most recent n (n ≤ N ) elements in the data stream regarding a given probability
threshold.

Problem Statement. Given a data stream DS in which each uncertain element a ∈ DS is
associated with an occurrence probability P (a) (0 < P (a) ≤ 1) indicating the likelihood
that a exists in DS. We say an element a is a probabilistic skyline element within the most
recent n elements if Psky,n(a) ≥ q. A Pn-of-N query retrieves the probabilistic skyline
elements within the most recent n (∀n ≤ N ) data elements in the data stream DS.

2.2 Preliminaries

n-of-N model. As an important method to support query processing over different thresh-
olds of window size, n-of-N model is firstly proposed in [8] to efficiently maintain quantile
summaries. We will investigate the problem of effectively organising the most recent N ele-
ments in an uncertain data stream seen so far, so that the computation of probabilistic skyline
against any most recent n (n ≤ N ) elements can be processed efficiently. Note that a sliding
window model [9] is a special case of the n-of-N model where n = N .

Stabbing queries. Given a set of m intervals and a stabbing point p in the 1-dimensional
space, the stabbing query is to find all intervals which contain p. By the interval tree tech-
niques in [10], a stabbing query can be processed in O(logm+ l) where l is the number of
intervals in the result. By storing an interval only in the tree node that is the lowest common
ancestor (LCA) of the two end points of the interval, the space complexity of the interval
tree is O(m). It has been also shown that the time complexity of an update (insertion or
deletion) to an interval tree is amortized to O(logm) per deletion or insertion. Note that the
intervals here can be closed, half closed, or open at both ends.
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n-of-N Skyline Query over Exact Data Streams. [6] studies skyline computation over ex-
act sliding windows following the n-of-N model. It is observed that over exact data streams,
if an element a is dominated by a newer element a′, then a will never be a skyline for any
recent n (n ∈ N ) elements since a′ expires later than a. It is also proved that in such a case
removing a from the data stream will not affect computation of n-of-N skyline queries pro-
cessing. Thus, minimum candidate set RN comprises of elements in the data stream which
are not dominated by newer elements.

b
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Fig. 1 Dominance Graph

Example 1 As shown Figure 1 (a), assume the elements a, b, ..., h arrive at time 1, 2, ..., 7,
respectively. Since a and b are both dominated by elements newer than them, the candidate
set is {c, e, f, g, h}.

In Figure 1 (a), g is dominated by c and e. It is noticed that if the dominance relation
e → g is released due to the expiration of e then the dominance c → g has already been
released since c expires earlier than e. Therefore, it is only necessary to keep e→ g to hold
a “lock” on g. In RN , a dominance relation e′ → e is critical if and only if e′ is the youngest
one (but older than e) in RN , which dominates e; that is, κ(e′) is maximized among all the
elements (other than e), in RN , dominating e. A dominance graph GRN

is constructed where
the edge set consists of all critical dominance relations. Figure 1 (b) depicts the dominance
graph of Figure 1(a). The encoding scheme is as follows: 1) every edge e′ → e in GRN

is
represented by the interval (κ(e′), κ(e)], and 2) each root e in GRN

is represented by the
interval (0, κ(e)]. Thus, an element e ∈ RN is in the answer of an n-of-N query (n ≤ N )
if and only if κ(e) is the right end of an interval (a, κ(e)] that contains M − n + 1. Based
on such a scheme, the problem of computing an n-of-N query is converted to the stabbing
query problem with the stabbing point M −n+1. Namely, stab the intervals by M −n+1,
and then return the data elements e such that each κ(e) is the right end of a stabbed interval.

Example 2 Regarding the example in Figure 1, the dominant graph can be encoded by the
following intervals: (0, 3], (0, 4], (3, 7], (4, 5], and (4, 6]. When n = 6, M − n + 1 = 2 as
M = 7. Clearly, the intervals (0, 3] and (0, 4] are the results of stabbing query; consequently,
c and e are the skyline elements for the most recent 6 elements among the 7 already arrived
elements.

Various Dominating Probabilities in Uncertain Data Streams. For each element a in the
sliding window DS, we use Pnew(a) to denote the probability that none of the elements in
the sliding window which are newer than a (i.e., arrives later than a) dominates a; that is,

Pnew(a) = Πa′∈DS,a′≺a,κ(a′)>κ(a)(1− P (a′)) (4)
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Note that κ(a′) > κ(a) means that a′ arrives after a. We use Pold(a) to denote the proba-

bility that none of the elements which are older than a (i.e., arrives earlier than a) dominates
a; that is,

Pold(a) = Πa′∈PN ,a′≺a,κ(a′)<κ(a)(1− P (a′)) (5)

The following equation (6) can be immediately verified.

Psky(a) = P (a)× Pold(a)× Pnew(a). (6)
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Fig. 2 A Sequence of Data Elements

Example 3 Regarding the example in Figure 2(a) where the occurrence probability of each
element is as depicted, assume that N = 5, and elements arrive according to the element
subindex order; that is, a1 arrives first, a2 arrives second, ..., and a5 arrives last. Pnew(a4) =

1 − P (a5) = 0.9 and Pold(a4) = (1 − P (a2))(1 − P (a3))(1 − P (a1)) = 0.042, and
Psky(a4) = P (a4)Pnew(a4)Pold(a4) = 0.034. If N = 4, a1 expires once a5 arrives as
shown in Figure 2 (b). Then Pold(a4) = (1 − P (a2))(1 − P (a3)) = 0.42 and Psky(a4) =
0.34.

3 Minimizing the Number of Uncertain Elements and the Encoding Scheme

In this section, we first minimize the number of uncertain elements to be kept for processing
all Pn-of-N queries. Then, we present an effective encoding scheme on the stored elements
to support efficient Pn-of-N query processing.

3.1 Minimizing the Number of Elements

As introduced in Section 2.2, in an exact data stream, an element e is “redundant” if it is
dominated by a newer element e′. In an uncertain data stream DS, if an uncertain element
e is dominated by a newer uncertain element e′, e could still be a probabilistic skyline point
regarding a given probability threshold q.

Example 4 In Figure 3, there are 7 uncertain elements a, b, c, d, f , g, and h. The order
of the elements in the stream is the alphabetic order. The occurrence probability of each
element and the probability threshold q are as illustrated in the figure. As shown, element
c is dominated by a newer element h, however, as Pnew(c) = 1 - P (h) = 0.9, Pold(c) = 1,
Psky(c) = 0.63 > q. Thus, g is a probabilistic skyline in the sliding window within the most
recent 7 elements.
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Fig. 3 Uncertain Data Stream

Example 4 shows that modeling redundant elements in an uncertain data stream requires
further analysis on the probabilities associated with each element. Remind that Pnew(e)

refers to the probability that uncertain element e is not dominated by any elements newer
than it. Let PN denote the most recent N elements, and RN,q denote the set of elements in
the most recent N elements with Pnew values not smaller than q; that is,

RN,q = {e|e ∈ PN , Pnew(e) ≥ q} (7)

In [5], RN,q is proved to be the minimum set of elements to be maintained to correctly
answer probabilistic skyline queries over the most recent N elements in the data stream.

Theorem 1 RN,q is the minimum set of elements to be maintained to correctly compute
probabilistic skyline queries for sliding window size of N regarding probability threshold q.

The proofs of Theorem 1 can be found in [5] based on the following properties of RN,q .

– Processing skyline query based on RN,q only will not miss any skyline points.
– For a skyline point, its skyline probability computed based on RN,q only is equal to that

computed based on all most recent N elements.
– RN,q is the minimum set of points to guarantee correct retrieval of skylines within the

most recent N elements.

The following theorem states that RN,q is also the minimum set of elements to be main-
tained to correctly compute skyline queries for any recent n elements where n ≤ N , namely,
to correctly retrieve results for Pn-of-N queries.

Theorem 2 RN,q is the minimum set of elements to be maintained to correctly compute
Pn-of-N queries regarding probability threshold q.

Proof When n = N , the n-of-N skyline query equals to skylines over the entire sliding
window, namely the case in [5]. Since Pn-of-N queries also support the case when n = N ,
RN,q is the minimum set of elements to maintain forPn-of-N queries. Furthermore, for ∀n <

N , let Rn denote the most recent n elements and Rn,q denote element sets in Rn with Pnew

values not smaller than the probability threshold q, namely, Rn,q = {e|e ∈ Pn, Pnew,n(e) ≥
q}. Based on Theorem 1, Rn,q is the minimum set of elements for correct computation of
skylines elements within the most recent n elements. Noticing that Rn,q is equal to retrieve
elements from RN,q which are the within most recent n elements, Rn,q ⊆ RN,q . Thus using
RN,q we can correctly retrieve results for Pn-of-N queries. Thus the theorem holds.
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Size of RN,q . Elements in the candidate set RN,q can be regarded as the skyline points in
the d + 1 dimensional space by including time as an additional dimension. This is because
Pnew can be regarded as the non-dominance probability in such a d + 1 space. Thus, with
the assumption that all points follow uniform distribution, the expected size of RN,q is
lnd(N)/(d+ 1)!.

3.2 Encoding RN,q for Pn-of-N Queries

As introduced in Section 2.2, in the candidate set RN of an exact data stream, we say an
element e′ dominates e is a critical dominance relation if e′ is the youngest element (yet
older than e) that dominates e. For a value n (n ≤ N ), if e′ is not within the most recent n
elements (i.e., κ(e′) < M − n+ 1 where M is the total number of element seen so far), e is
a skyline element.

Similar to the philosophy in encoding the candidate set RN for n-of-N queries over
exact data streams, we aim to identify the most critical dominance relationship for elements
inside the candidate set RN,q for uncertain sliding windows. Remind that the skyline prob-
ability of an element e within the most recent N elements consists of two parts besides its
own occurrence probability, Pold(e) representing the probability that e is not dominated by
any element older than e and Pnew(e) representing the probability that e is not dominated
by any elements newer than it. Furthermore, similar to Psky,n(a) which refers to the skyline
probability of an element a computed regarding the most recent n elements in Equation 3,
Pold value of an element could also be defined for the most recent n (n ≤ N ) elements as
follows, given that κ(a) ≥M − n+ 1, namely a is also within the most recent n elements.

Pold,n(a) = Πa′∈DS,κ(a)≥M−n+1,κ(a′)≥M−n+1,κ(a)>κ(a′),a′≺a(1− P (a′)) (8)

The following equation is immediate since all elements newer than a are within the most
recent n elements if a is within the most recent n elements. Hereafter, if discussing Psky,n

or Pold,n values for an element a it is assumed that a is within the most recent n elements

Psky,n(a) = P (a)× Pold,n(a)× Pnew(a). (9)

Example 5 Continue with the example in Figure 2, assume N = 5 and n = 3, namely we
are interested in only the most recent three elements a3, a4 and a5. Pold,3(a4) = 1− P (a3)

= 0.7, Pnew(a4) = 1− P (a5) = 0.9, so Psky,3 = 0.567.

Consider an increase in the value n (n ≤ N ). Pold,n(e) is non-increasing with the increase
of value n since more elements older than e may be included in the most recent n elements
and contribute to the Pold value. On the other hand, Pnew(e) does not change with the value
of n because elements which contribute to Pnew(e) are all newer than e. Thus, to determine
the critical dominance relation for e in an uncertain data stream is to locate the element
ec with κ(ec) = M − nc + 1 making Psky,nc

(e) ≥ q invalid, where nc is minimized (or
κ(ec) is maximized). We use ec

c→
q

e to denote that ec probabilistically critically dominates

e regarding the probability threshold q. Namely,

nc = argmin
n

Psky,n(e) < q

Clearly, for any value n < nc, e is a probabilistic skyline element within the most recent n
elements.
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Example 6 In Figure 3, for element g, Pnew(g) = 1 - P (h) = 0.9. When n = 5, namely, within
the most recent 5 elements, Pold,5(g) = (1 − P (f)) × (1 − P (d)) = 0.63, and Psky,5(f) =
0.5103 > q; When n = 6, Pold,6(g) = (1−P (f))×(1−P (d))×(1−P (b)) = 0.063 < q. Thus,
nc = 6 is the minimum number of elements in the sliding window to make f unqualified
to be a probabilistic skyline element. Equally speaking, b is the youngest element in the
sliding window which dominates g and after the expiration of which g is a probabilistic
skyline element. Element b probabilistically critically dominates g, namely b

c→
q

g, as κ(b) =

M − nc + 1 = 2.

Once the critical dominance relation is determined for an uncertain element e, we can have
the dominance graph GRN,q

which is an edge set consisting all probabilistic critical domi-
nance relations. Note that for an element e in the candidate set RN,q , if P (e)×Pnew(e) < q,
e does not have a critical dominance relation available since e is not a skyline element for
any value of n (n ≤ N ). However, we still need to keep e in RN,q as shown in Theorem 2
because deleting e will affect the skyline probability calculation for other elements in RN,q .
Based on GRN,q

, given a value of n (n ≤ N ), e is a skyline element for n if either of the
following two conditions hold.

– e is a root in the dominance graph GRN,q
, or

– there is an edge ec
c→
q

e in GRN,q
, such that ec arrives earlier than the n-th most recent

element (i.e., κ(ec) < M − n+ 1 ≤ κ(e)).

The encoding scheme for GRN,q
is as follows. 1) Every edge ec

c→
q

e in GRN,q
is represented

by an interval (κ(ec), κ(e)]. 2) Each root e in GRN,q
is represented by the interval (0, κ(e)].

Let IRN,q
denote the interval tree on the intervals obtained by the encoding scheme on

GRN,q
. So, an element e in GRN,q

is the answer of a Pn-of-N query (n ≤ N ) if and only if
κ(e) is the right end of an interval that contains M − n+ 1. The problem of computing Pn-
of-N query is thus converted to the stabbing query problem with stabbing point M−n+1 as
discussed in Section 2.2. Namely, stab the intervals in IRN,q

by M − n+ 1, and then return
the data elements e such that κ(e) is the right end of a stabbed interval.

Example 7 In Figure 3, M = 7 since there are 7 elements in the stream so far. Suppose N

= 6. The candidate set RN,q consists of all recent 6 elements b, c, d, f, g and h since the
Pnew value of each element is not below the threshold q. Only the elements with occurrence
probabilities not smaller than q are considered when computing probabilistic dominance re-
lations, i.e., b, c, g. Element b is dominated by two newer elements d and f , and Psky(b) =
P (b) × (1 − P (d)) × (1 − P (f)) = 0.567, so b is a root in the dominance graph GRN,q

. c
is dominated by newer element h with Psky(c) = P (c) × (1 − P (h)) = 0.63, so c is a root
in GRN,q

. g is dominated by newer element h and older elements b, d, f . From Example 6,
b probabilistically critically dominates g (b c→

q
g). So the interval tree IRN,q

consists the fol-

lowing intervals by encoding the dominance relations in the dominance graph GRN,q
: (0, 2],

(0, 3] and (2, 6]. If n = 5 (to retrieve probabilistic skylines within the recent 6 elements), we
stab the interval tree IRN,q

with M − n+ 1 = 3 and c, g will be returned as the final results.

Note that in exact data streams, any non-redundant element in RN is a skyline point for
some n ≤ N . However, in uncertain streams, this statement no longer holds. For instance,
an element e may have an occurrence probability lower than q, disabling it from being a
skyline point for any n values. However, we still need to keep e in RN,q if its Pnew(e) value
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is above q. This is because as proved in [5], removing such elements may incur incorrect
probabilistic skyline results.

Time Complexity. The number of intervals kept in GRN,q
is O(|RN,q|) since GRN,q

is
a forest. Thus, the stabbing query which retrieves the results for Pn-of-N queries runs in
O(log|RN,q|) + s where s is the number of probabilistic skyline points within the most
recent n elements.

4 Maintaining RN,q and the Encoding Scheme

In the sliding window model, when a new element enew arrives, the window slides to ac-
commodate enew, and the oldest element eold moves out of the window range and should
be removed. These may also trigger updates in the non-redundant element set RN,q and the
dominance interval tree IRN,q

. Algorithm 1 describes the overall framework to handle the
key issues while the window slides for the uncertain stream.

Algorithm 1: Framework
while a new element enew arrives do1

if κ(enew) ≤ N then2
Updates introduced by enew;3

else4
Updates introduced by enew;5
Updates introduced by eold;6
Deletion of eold;7

Insertion of enew;8

As shown in Algorithm 1, when the sliding window is not yet full (i.e., enew is the i-th
element and i ≤ N ), we only need to handle the updates introduced by enew and insertion
of enew, where insertion of enew identifies the qualification of enew regarding the candidate
set RN,q and IRN,q

. After the window is full, we need to further address the deletion of the
oldest element eold (i.e., the element which arrives (M −N + 1)-th in the stream) from the
sliding window as well as the updates introduced by the deletion of eold. In the following
subsections we discuss the three major steps, insertion of enew, updates introduced by enew,
and updates introduced by eold, respectively. Deletion of eold is trivial since we only need
to delete eold from the candidate set RN,q and interval tree IRN,q

if necessary. Naively
processing these steps requires a sequential scan of elements in RN,q .

4.1 Insertion of enew

Since the most recent element enew is not dominated by any element newer than it, Pnew(enew)

= 1 and we insert enew into the aggregate R-tree indexing the candidate set RN,q . Next, if
P (enew) ≥ q the skyline probability of enew should be explored to determine its probabilis-
tic dominance relation. Otherwise (i.e., P (enew) < q), the identification of probabilistic
dominance relation is not necessary since enew has no chance to be a probabilistic skyline
element for any n ≤ N .
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Remind that to determine the critical dominance relation for enew is to locate the ele-
ment ec with κ(ec) = M − nc + 1 making Psky,nc

(enew) ≥ q invalid, where nc is mini-
mized (or κ(ec) is maximized). A naive way to do so is to firstly sort all elements in RN,q

decreasingly according to timestamps of elements; then scan the sorted elements and update
Psky(enew) by multiplying 1 − P (e) if an element e ≺ enew. Each element dominating
enew in the process will be kept in a list called critical dominance list of enew, denoted as
Lc(enew) which is decreasingly sorted based on timestamps. The scan stops when the first
element ec with timestamp κ(ec) = M −nc+1 making Psky,nc

(enew) < q is encountered.
Considering that elements in RN,q are indexed by an R-tree. We propose to use the

best first search paradigm on R-tree to determine the critical dominance relation for enew.
For a node v in the R-tree indexing RN,q , we record the maximum timestamp κ(v) of all
descendent elements of v. A max heap H based on κ(v) is built to keep the nodes to be
expanded. We denote the lower left corner of the minimal bounding box (MBB) of v as
vlower . The criteria to expand a node is vlower ≺ enew. Otherwise (i.e., vlower ⊀ enew),
no elements from v dominates enew and v will not be expanded. We terminate if the heap is
empty, or the current element under investigation ec with timestamp κ(ec) = M − nc + 1

makes Psky,nc
(enew) < q. If such an element is not found, enew is a probabilistic skyline

element for the time interval (0, κ(enew].
Algorithm 2 depicts above steps. Remind that Algorithm 2 is invoked only when P (enew) ≥

q. Starting from the root node of RN,q , child entries of an intermediate entry v are inserted
into the max heap if vlower ≺ enew (Line 6). If v is a data element and the updated sky-
line probability of enew remains above q after considering the dominance of v, v is inserted
into the critical dominance list of enew (Line 10); Psky(enew) is also updated accordingly
(Line 11). Otherwise (i.e., Psky(enew) below q), the algorithm terminates with the critical
dominance relation identified.

Algorithm 2: Critical Dominance of enew
max Heap H ← root of R-tree indexing RN,q;1

while H is not empty do2

v = H .top();3

H.pop();4

if v is an intermediate node AND vlower ≺ enew then5

insert children entries of v into H;6

else7

if v ≺ enew then8

if Psky(enew) ∗ (1− P (v)) ≥ q then9

insert v into Lc(enew);10

Psky(enew)∗ = 1− P (v);11

else12

insert (κ(v), κ(enew)] into IRN,q
;13

found = true; exit;14

if found = false then15

insert (0, κ(enew] into IRN,q
;16
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4.2 Updates Introduced by enew

Next we handle the updates introduced by enew. If an element e is dominated by enew, we
need to update its Pnew and Psky probability which may render them invalid as a citizen in
the non-redundant set RN,q or in the dominance graph GRN,q

. First of all we retrieve the set
of elements dominated by enew, denoted as Denew . The following algorithm describes the
key update issues related to enew. We maintain a priority query Q initialized to the root node
of R-tree R. Q is prioritized according to the levels of nodes, i.e., nodes of higher levels are
accessed first.

Algorithm 3: Dealing with Denew

for ∀e ∈ Denew do1

if Pnew(e)× (1− P (enew)) < q then2

delete e from RN,q;3

if e is the end of an interval in GRN,q
then4

delete the interval;5

else if Psky(e)× (1− P (enew)) < q then6

update the probabilistic critical dominance relation of e;7

Pnew(e) = Pnew(e)× (1− P (enew));8

Lines 2-5 in Algorithm 3 handle the first case when Pnew value of e degrades to be
smaller than q with the contribution of 1 − P (enew). In this case we remove e from RN,q

and if it has a critical dominance relation captured in GRN,q
, it is also deleted. Lines 6-8

deal with the case where e survives the citizenship test in RN,q but Psky(e) becomes below
q after multiplying 1−P (enew). In this case the probabilistic critical dominance relationship
will be re-calculated by visiting the critical dominance list Lc(e) sequentially,

Note that if an element e is deleted from RN,q in the first case (Pnew(e)×(1−P (enew)) <

q), we do not need to update the information of elements dominated by e. We formally prove
this in the following lemma.

Lemma 1 If enew ≺ e and Pnew(e) × (1 − P (enew)) < q after the arrival of the new
element enew, e could be removed from RN,q without updating the dominating probabilities
of elements dominated by e.

Proof For an element e′ and e ≺ e′, first suppose κ(e′) < κ(e), namely, e′ is older than e.
Since e ≺ e′, all elements dominating e also dominates e′, so Pnew(e

′)× (1−P (enew) < q.
e′ should also be removed from RN,q; if κ(e′) > κ(e), since e ≺ e′, the skyline probability
of e′ computed within the most recent M − κ(e) + 1 elements, Psky,M−κ(e)+1(e

′), after
multiplying 1− P (enew), must be smaller than q. Thus, the critical dominance relationship
of e′, ec

c→
q

e′ , will be re-computed in Algorithm 3 and κ(ec) > κ(e), which means deleting

e does not affect the critical dominance relationship and dominating probabilities of e′.
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4.3 Updates Introduced by eold

For the expired element eold, we first remove it from the candidate set RN,q and the dom-
inance graph if necessary. Next, for each element e dominated by eold, the Pold and Psky

values of e change and the critical dominance relation might also change. Algorithm 4 illus-
trates the process. Line 1 deletes eold from RN,q and Line 3 removes the critical dominance
relation from GRN,q

. Note that we do not need to check every element dominated by eold
to remove the effect of Pold. Instead, only those which are critically dominated by eold will
be actually affected by eold. This is because eold is the oldest element in RN,q and may not
contribute to the critical dominance relation of all elements.

Algorithm 4: Expiration of Old Element eold
RN,q := RN,q − {eold};1

if (0, κ(eold)] ∈ IRN,q
then2

remove (0, κ(eold)] from IRN,q
;3

for ∀(κ(eold), κ(e)] ∈ IRN
do4

update (κ(eold), κ(e)] to (0, κ(e)];5

Psky(e) is updated by discounting 1− Pold;6

5 Continuous Pn-of-N Queries

A continuous query is issued once and run continuously to generate results along with the
updates of underlying streaming datasets. Arrival of a new element in the data stream may
invoke update in Pn-of-N results. A simple way is to re-run the the query processing algo-
rithm (stabbing query in Section 3.2) per arrival of a new element. This takes O(logN + s)

time where N is the number of intervals in GRN,q
and s is the number of elements in the

Pn-of-N result set Sn. In this section, we present a trigger based algorithm which continu-
ously and incrementally updates the Pn-of-N results. Correctness of our algorithm is based
on the following observation.

Proposition 1 Once a new element enew arrives, the current result Sn of a Pn-of-N query
may have the following changes after we apply Algorithm 3 to reflect the updates introduced
by enew.

Deletion: An element e ∈ Sn is removed from Sn, if either e expires, or the updated critical
dominance relation for e is: e′ c→

q
e, where κ(e′) ≥M− n+ 1.

Insertion: An element e ∈ RN is added to Sn in the following two cases. (1) e is enew
and either enew is a root node in GRN,q

or for the critical dominance relation of enew
e′

c→
q

enew, κ(e′) <M− n + 1; (2) e is critically dominated by the element e′ which

just expired from the most recent n elements; namely, κ(e′) =M− n.

Algorithm 5 below describes the process for continuous Pn-of-N queries. Note that
Algorithm 3 for handling updates incurred by arrival of enew is invoked prior to Algorithm
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5. On the other hand, Algorithm 4 may not be necessary unless n = N . Suppose elements
in the result set Sn are maintained by a min-heap according to arrival order of elements and
etop is the top element of the min-heap.

Algorithm 5: Continuous Pn-of-N Queries

while new element enew do1

M =M + 1;2

for e ∈ Sn&e ∈ Denew do3

if ∃e′ c→
q

e with κ(e′) ≥M − n+ 1 then
4

remove e from Sn;5

if @e′ c→
q

enew with κ(e′) ≥M − n+ 1 then
6

insert enew into Sn;7

while κ(etop) < M − n+ 1 do8

remove etop from Sn;9

for etop
c→
q

e ∈ GRN,q
do

10

insert e into Sn;11

In the algorithm, we handle unqualified results in Sn in Lines 3 to 5 and Line 9 with two
different cases, 1) after updating the probabilistic critical dominance relation, an element
e is critically dominated by an element e′ within the most recent n element, namely, e is
no longer a probabilistic skyline point after enew arrives, or, 2)etop is no longer within the
most recent n elements after enew arrives The new results are added to Sn in Lines 6 to 7
and Lines 10 to 11. There are also two cases to add new results, 1) if enew is a probabilistic
skyline within the most recent n element or 2) an element e is critically dominated by etop
which just slides out of the most recent n elements.

Time Complexity. Let δ be the number of elements changing from the current result to the
new result. It takes O(δ) time to change the result set. Considering the min-heap keeping the
result set Sn. The update cost per element change is O(log s).

6 Performance Evaluation

In this section, we present the results of a comprehensive performance evaluation of our
techniques. As mentioned earlier, there is no existing technique specifically designed to
support efficient computation of n-of-N skyline queries over uncertain sliding windows. In
our performance study, we implement the most efficient main-memory algorithm for skyline
queries over uncertain data streams [5] and use it as a benchmark algorithm to evaluate our
techniques.

All algorithms proposed in the paper are implemented in standard C++ with STL library
support and compiled with GNU GCC. Experiments are conducted on a PC with Intel Xeon
2.4GHz dual CPU and 4G memory under Debian Linux. In our implementation, MBBs of
the uncertain objects are indexed by an R-tree with page size 4096 bytes.



15

Real Dataset. The real dataset is extracted from the stock statistics from NYSE (New York
Stock Exchange). We choose 2 million stock transaction records of Dell Inc. from Decem-
ber 1st 2000 to May 22nd 2001. For each transaction, the average price per volume and total
volume are recorded. This 2-dimensional dataset is referred to as stock in the following.
To evaluate the techniques over uncertain sliding windows, we randomly assign a probabil-
ity value between 0 and 1 to each transaction; that is, probability values follows uniform
distribution. Elements arrival order is based on their transaction time.

Synthetic Dataset. We evaluate our techniques against the 3 most popular synthetic bench-
mark data, correlated, independent, and anti-correlated [11]. We evaluate our techniques
against the space dimensions from 2 to 5. To evaluate the techniques over uncertain sliding
windows, we use two models uniform and normal to assign occurrence probability to each
element. In uniform distribution, the occurrence probability of each element takes a random
value between 0 and 1, while in the normal distribution, the mean value of occurrence prob-
abilities Pµ varies from 0.1 to 0.9 and standard deviation Sd is set to 0.3. The occurrence
probability distribution follows uniform distribution by default unless otherwise specified.
We assign a random order for elements arrival in a data stream.

The following algorithms are evaluated in this subsection for Pn-of-N queries.

q-sky : The query processing algorithm for probabilistic skyline queries over uncertain slid-
ing windows in [5].

pnN: Our query processing algorithm (Section 3.2) for Pn-of-N; that is, the stabbing query
processing algorithm.

pmnN : Our algorithms (Section 4)for continuously maintaining the data structures for sup-
porting Pn-of-N queries.

pcnN : The continuous query processing algorithm in Section 5 for continuously outputting
Pn-of-N results.

6.1 Evaluating query algorithm: pnN

In this set of experiments, we fix N = 106 and randomly choose 1000 different n values
varying from 1000 to 106. Each n is thus mapped to a Pn-of-N query with N = 106 to
evaluate the query processing algorithm pnN. The processing time reported in Figure 4 is
the average of the bucket of 1000 queries. As there is no existing work supporting skyline
query processing over uncertain sliding windows with variable length, we naively search
each candidate kept in the q-sky algorithm [5] and test if it is a probabilistic element over
the recent n elements; pnN utilizes the stabbing query processing algorithm over the interval
set IRN,q

. In Figure 4, we vary dimensionality from 2 to 5, and evaluate both q-sky and pnN
over the three synthetic datasets anti-correlated, independent, and correlated. As shown,
both q-sky and pnN have a better performance over corr dataset and pnN is up to 2 orders of
magnitude faster than q-sky. In the more challenging anti dataset, pnN is up to 5 orders of
magnitude faster. In the remaining of this subsection, we no longer evaluate the performance
of q-sky in our performance study since pnN significantly outperforms q-sky.

Figure 5 reports the impact of different n values on query processing time. The space
dimensionality is fixed to 2 and 5 respectively. We also record the average query processing
time of 1000 queries. The results in Figure 5 show that the query techniques for Pn-of-N
queries are not very sensitive to the value of n. On the other hand, dimensionality and data
distribution have a greater impact over the efficiency.
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6.2 Efficiency of Maintenance Techniques: pmnN
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In this subsection, we report the efficiency of the maintenance techniques for Pn-of-
N queries over uncertain sliding windows. The dimensionality is fixed to 2 and 5, and N

varies from 100k to 1M. For each of the space dimensions, we generate three data streams
where the spatial distribution follows correlated, independent, and anti-correlated, respec-
tively. The real data stream stock is also studied along with the anti-correlated data stream.
In Figure 6, we report the maximum and average cost of processing one element against dif-
ferent N values. As shown, when dimensionality is high the maintenance time per element
is also high as the size of candidate set RN,q is larger. As illustrated, the correlated data has
the best performance and the anti-correlated data is the most challenging. This is because
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correlated data leads to the smallest size of RN,q on average while the anti-correlated data
set generates the largest RN,q on average. The results demonstrate that our continuous main-
tenance techniques are very efficient and can support on-line update against a very rapid data
stream. For the most challenging case of 5d anti-correlated data set, in average pmnN can
handle the stream speed of about 500 elements per second.

6.3 Scalability Evaluation

We evaluate the scalability for the proposed techniques to handle a number of Pn-of-N
queries regarding various parameters. We choose N = 106, and limit the data set size to
2 × 106.For each space dimension d (1 ≤ d ≤ 5), we generate two streams (independent
and anti-correlated) with 2 × 106 data elements. The stock data is reported along with anti-
correlated data.

The scalability of our algorithms is recorded as follows. We randomly generate 2× 106

Pn-of-N queries and randomly assign them among the most recent 1M elements. Then,
we run the pmnN algorithm to continuously maintain the data structures and run pnN for
processing Pn-of-N queries. We record the processing time between two consecutive data
elements which includes both the time of processing the queries and the time to maintain
the data structures. Since such time is too short to be captured, we use average time for
processing 1000 elements as the processing time. In Figure 7, we vary the number of points
from 106 to 2×106. As illustrated, the proposed techniques could support queries over very
rapid data streams with the arrival speed higher than 10K per second when dimensionality
is lower (2 and 3). When dimensionality is higher (4 and 5), our techniques could still
support data stream with a medium arrival speed at 200 elements per second even in the
most challenging scenario of 5d anti correlated data set.
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Fig. 7 Overall Performance

We also report the impact of the expected occurrence probability (Pµ) in normal dis-
tribution and the probability threshold (q) on the scalability of Pn-of-N query processing.
Figure 8 illustrates that the query processing techniques perform better with the increase of
Pµ. This is because when the occurrence probabilities of uncertain elements are large, it is
less likely for an element to be a probabilistic skyline point and thus the size of candidate
set RN,q is smaller. Figure 9 shows that the processing time decreases with the increase of
probability threshold q also because less elements are in the candidate set RN,q .
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6.4 Evaluation of continuous query processing algorithm: pcnN

In this subsection we evaluate the performance of continuous query processing techniques -
pcnN. To make a comparison, we also run our pnN algorithm once per new data item arrival
to continuously process a Pn-of-N query. We use 2d and 5d data for the evaluation. We
choose N = 10K and 1M. In the system, 20 Pn-of-N queries are generated such that 10 for
N = 1M and 10 for N = 10K. For N = 10K (N = 1M), these 10 queries are with n = i× N

10
(for 1 ≤ i ≤ 10), respectively. We record the average delay (processing time) and maximum
delay of an element, respectively. Note that a delay of an element e means the processing
time involving processing e before processing next element; this includes the data structure
maintenance costs and query processing costs. Again to record precisely such a delay per
element, we use the average delay per 1000 elements instead. The performance of pcnN for
continuous Pn-of-N queries is shown in Figure 10. As shown in the gure, both pnN and
pcnN algorithms are quite efcient, while pcnN technique can support a data stream against
medium arrival speed even for the most challenging 5d anti-correlated datasets.
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7 Extensions

Techniques proposed in this paper can also be applied to other extensions of skyline queries
over uncertain data streams under n-of-N model. In this section, we introduce several vari-
ations and briefly discuss the techniques.

7.1 Uncertain Object Model

In this paper we focus on the existential uncertainty of objects, namely, a probability value
is associated with an object to indicate the likelihood of its existence. In some applications,
each uncertain object may have several possible values (instances) and we call it the uncer-
tain object model. Below we formally define the Pn-of-N in the uncertain object model and
briefly discuss the techniques.

In uncertain object model, an uncertain object U is represented by a set of instances
such that each instance u ∈ U is a point in a d-dimensional numeric space D = {D1, ...,
Dd} with the probability P (u) to occur where 0<P (u)≤ 1 and

∑
u∈U P (u)= 1. Given a

set of uncertain objects U = {U1, · · · , Un}, a possible world W = {u1, · · · , un} is a set of
instances with one instance from each uncertain object. The probability of W to appear is
Pr(W ) =

∏n
i=1 pui . Let Ω be the set of all possible worlds, then

∑
W∈Ω Pr(W ) = 1.

We use SKY (W ) to denote the set of objects such that for each object U ∈ SKY (W ),
U has an instance in the skyline of a possible world W . The probability that U appears in
the skylines of the possible worlds is Psky(U) =

∑
U∈SKY (W ),W∈Ω P (W ). Psky(U) is

called the skyline probability of U .
Our framework still works for the uncertain object model based Pn-of-N queries. It

could be verified that the candidate set for U is the set of objects with skyline probability
no less than the given probability q. The probabilistic critical dominance relationship could
be identified based on the techniques in Section 3.2. To manage the possibly large volume
of instances for each uncertain object, an in memory R-tree may be built to index all of its
instances.

7.2 Probabilistic Top-k Skyline Elements

Based on the definition ofPn-of-N queries, a probabilistic top-k query retrieves the k skyline
elements with the highest skyline probability (but not smaller than q). In case there are less
than k elements with probabilities not smaller than q, only these elements are output.

Our techniques could be directly applied to support probabilistic top-k skyline elements
in the n-of-N model. After processing Pn-of-N queries, the skyline probability of each
element e in the result set could be computed by simply scanning the critical dominance
list (Section 4.1). The scanning is according to a decreasing order of elements in the critical
dominance list, till the constraint of “most n elements” is met. The k elements with the
largest skyline probabilities form the result set.

8 Related Work

Börzsönyi et al [11] first study the skyline operator in the context of databases and pro-
pose an SQL syntax for the skyline query. They also develop two computation techniques
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based on block-nested-loop and divide-and-conquer paradigms, respectively. Another block-
nested-loop based technique SFS (sort-filter-skyline) is proposed by Chomicki et al [12],
which takes advantage of a pre-sorting step. SFS is then significantly improved by Godfrey
et al [13]. The progressive paradigm that aims to output skyline points without scanning
the whole dataset is firstly proposed by Tan et al [14]. It is supported by two auxiliary
data structures, bitmap and search tree. Kossmann et al [15] present another progressive
technique based on the nearest neighbor search technique. Papadias et al [16] develop a
branch-and-bound algorithm (BBS) to progressively output skyline points based on R-trees
with the guarantee of minimal I/O cost.

Skyline queries processing in exact data streams is investigated by Lin et al [6] follow-
ing the n-of-N model. Tao et al [7] independently develop efficient techniques to compute
sliding window skylines.

The skyline query processing on uncertain data is firstly approached by Pei et al [17]
where Bounding-pruning-refining techniques are developed for efficient computation. Ef-
ficient pruning techniques are developed to reduce the search space for query processing.
While [17] solves the case of probabilistic skyline computation with a pre-given threshold,
[18] studies the problem of computing skyline probabilities for every object in the uncertain
database. In [19], instead of a pregiven probability threshold, k uncertain objects from the
data set with the highest skyline probabilities are retrieved. Stochastic skyline operators are
proposed in [20,21] to retain a minimum set of candidates for all ranking functions in the
light of expected utility principles.

9 Conclusions

In this paper, we presented novel techniques for on-line skyline computation over the most
recent n elements (for any n ≤ N ) in an uncertain data stream in a probability threshold
fashion. Each element in the data stream is associated with an occurrence probability. We
identify the minimum candidate set to maintain and propose efficient query processing and
index maintaining techniques. Our experiment results demonstrated that the techniques can
be used to process rapid data streams in lower dimensional spaces with the space dimension
not greater than 5.
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