
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.”

AP-Tree: Efficiently Support Continuous
Spatial-Keyword Queries Over Stream

Xiang Wang†, Ying Zhang§, Wenjie Zhang†, Xuemin Lin†∗, Wei Wang†
†School of Computer Science and Engineering, University of New South Wales, Australia

§QCIS, University of Technology Sydney, Australia
{xiangw, zhangw, lxue, weiw}@cse.unsw.edu.au, Ying.Zhang@uts.edu.au

Abstract—We investigate the problem of processing a large
amount of continuous spatial-keyword queries over streaming
data, which is essential in many applications such as location-
based recommendation and advertising, thanks to the prolifer-
ation of geo-equipped devices and the ensuing location-based
social media applications. For example, a location-based e-coupon
system may allow potentially millions of users to register their
continuous spatial-keyword queries (e.g., interests in nearby
sales) by specifying a set of keywords and a spatial region;
the system then delivers each incoming spatial-textual object
(e.g., a geo-tagged e-coupon) to all the matched queries (i.e.,
users) whose spatial and textual requirements are satisfied. While
there are several prior approaches aiming at providing efficient
query processing techniques for the problem, their approaches
belong to spatial-first indexing method which cannot well exploit
the keyword distribution. In addition, their textual filtering
techniques are built upon simple variants of traditional inverted
indexes, which do not perform well for the textual constraint
imposed by the problem.

In this paper, we address the above limitations and provide a
highly efficient solution based on a novel adaptive index, named
AP-Tree. The AP-Tree adaptively groups registered queries using
keyword and spatial partitions, guided by a cost model. The AP-
Tree also naturally indexes ordered keyword combinations. We
present index construction algorithm that seamlessly and effec-
tively integrates keyword and spatial partitions. Consequently,
our method adapts well to the underlying spatial and keyword
distributions of the data. Our extensive experiments demonstrate
that AP-Tree achieves up to an order of magnitude improvement
on efficiency compared with prior state-of-the-art methods.

I. INTRODUCTION

Due to the proliferation of User Generated Content and geo-
equipped devices, there is a vast amount of data with both
spatial and textual information, referred to as spatial-textual
data; they often come in a rapid streaming fashion in many
important applications such as social networks (e.g., Facebook,
Flickr, FourSquare and Twitter) and location-based services
(e.g., location-based advertising). For instance, it is reported
that there are about 30 million people sending geo-tagged data
out into the Twitterverse, and 2.2 percentage of the global
tweets (about 4.4 million tweets a day) provide location data
together with the text of their posts.1

To make sense of streaming spatial-textual data, it is critical
to develop efficient analytical techniques. In this paper, we
investigate the problem of continuous spatial-keyword queries
over spatial-textual stream, which plays a fundamental role in

∗Corresponding author
1http://www.futurity.org/tweets-give-info-location

u1

(ipad, discount)

u2

e2

(nexus)

u3

(surface, brand-new,

ipad, discount,)

(nexus,

discount)
(surface, brand-new)

e1

Fig. 1. Location-aware e-coupon system

a variety of applications such as information dissemination [1],
location-based recommendation [2] and sponsored search [3].

Example 1. Fig. 1 demonstrates a location-aware pub-
lish/subscribe system which delivers e-coupons to potential
consumers. A user may register her interest as a query
specified by a set of keywords and a spatial region. For
instance, user u1 wants to keep an eye on the discount ipad
from nearby shopping malls, and hence issues a query with
keywords {ipad, discount} and a circular region as shown
in Fig. 1. Suppose two geo-tagged e-coupons e1 and e2 are
released from two shops. Obviously, a e-coupon matches a
query if the e-coupon’s location is within the query’s region,
and all the query’s search keywords are contained in the e-
coupon. Therefore, in this example, e1 will be delivered to
{u1, u3} and e2 will be sent to {u2}.

Challenges. There are three key challenges in efficiently pro-
cessing continuous spatial-keyword queries over spatial-textual
streams. Firstly, a massive number of queries, typically in the
order of millions, are registered in many applications, and
hence even a small increase in efficiency results in significant
savings. Secondly, the streaming spatial-textual objects (e.g.,
geo-tagged tweets) may continuously arrive in a rapid rate
which also calls for high throughput performance for better
user satisfaction. Thirdly, novel techniques need to be created
to develop spatial-textual indexing mechanism that adapts
to both the spatial and keyword distributions of the query
workload. To the best of our knowledge, [4] and [5] are the
only two existing work that systematically study the problem
of processing continuous queries over streaming spatial-textual
data. Two indexing techniques, IQ-Tree and Rt-Tree, are
proposed to match each incoming object to relevant queries
following the filtering-and-refinement paradigm. Although a
large number of irrelevant queries can be pruned by IQ-Tree

q4

q3

q2

q1

{blues, jazz}

{transformers, hobbit}

{football,
tennis}

{iphone, ios}

(a) keyword preferred

q4

q3

q2q1

{iphone, galaxy}

{iphone, lumia}

{nexus, lumia}

{nexus, galaxy}

(b) spatial preferred

Fig. 2. Two motivating examples

and Rt-Tree, they suffer from two fundamental drawbacks.
Firstly, the spatial factor is always prioritized during the

index construction regardless of the keyword distribution of
the query set. One of our key observations is that the filtering
powers based on the spatial and textual constraints may
differ substantially under different query workload. Hence,
an indexing method must adapt to both spatial and keyword
distributions of the query set to achieve high efficiency. For
example, in Fig. 2(a), textual filtering is more effective because
regions of the queries are heavily overlapped while queries can
be easily distinguished by their keywords. On the contrary,
we prefer spatial filtering in Fig. 2(b) since query regions are
scattered evenly throughout the space while keywords of the
queries are quite similar.

Secondly, the inverted indexing technique adopted in [4],
[5] is not well-suited to textual filtering given the nature of
the problem is a superset containment search [6] from textual
perspective. Although inverted indexes have been widely em-
ployed in traditional spatial-keyword queries, they are essen-
tially designed for subset containment queries [6], where a set
of indexed objects containing all query keywords are retrieved.
We observe that index structures specifically designed for
superset containment queries, such as the ordered keyword
trie [7], shall offer better performance by exploiting the order
of keywords, and indexing multiple keyword combinations.

Based on the above observations, we propose a novel index
technique, namely the Adaptive spatial-textual Partition Tree
(AP-Tree for short), to effectively organize continuous spatial-
keyword queries. In a nutshell, AP-Tree is a f -ary tree where
queries are recursively divided by spatial or keyword partitions
(nodes). A cost model is devised to rigorously guide the
selection of partition methods such that the construction of the
index is adaptive to the query workload. Moreover, we seam-
lessly and effectively integrate a variant of ordered keyword
trie structure [7] to enhance the textual filtering performance.
Extensive experiments show that our AP-Tree based matching
algorithm achieves very substantial improvements over all
previous studies due to its adaptiveness. For instance, with
20 million registered queries, our method can process around
2, 500 tweets per second, compared with about 300 tweets by
the previous methods.
Contributions. The principle contributions of this paper are
summarized as follows.
• We devise a novel adaptive spatial-textual partition tree (AP-

Tree for short) to tackle the problem of continuous spatial-

TABLE I
THE SUMMARY OF NOTATIONS

Notation Definition
o a spatial-textual object
q a continuous spatial-keyword query

o.ψ (q.ψ) a set of keywords for object o (query q)
o.loc (q.r) object location (query region)
w, wi, wj keyword (term)
Q (Q) query set (subset of Q)
O (O) object stream (subset of O)
V (V) vocabulary (subset of V)
N a node of AP-Tree
Nl offset of node N
Nr spatial region of node N
f fanout of AP-Tree node
θq partition termination threshold
θKL KL-Divergence threshold

keyword queries over streaming spatial-textual objects. To
the best of our knowledge, this is the first spatial-textual
indexing mechanism which adaptively prioritizes spatial and
keyword partition methods.

• A cost model is proposed to evaluate the goodness of
keyword partition and spatial partition. For keyword par-
tition, an optimal algorithm as well as an efficient heuristic
algorithm are devised. As to spatial partition, we show that
finding optimal spatial partition is NP-hard, and propose
an efficient heuristic algorithm instead. With the guide of
cost model, AP-Tree is constructed in an adaptive way to
minimize overall cost. Moreover, we show that AP-Tree is
self-adjustable to the change of query workload.

• Comprehensive experiments show that our new matching
algorithm achieves substantial improvements (up to an order
of magnitude speed up) over the state-of-the-art techniques.

Roadmap. The rest of this paper is organized as follows.
We introduce preliminary and related work in Section II.
Section III presents the framework of AP-Tree and matching
algorithm. The cost model and index construction algorithms
are devised in Section IV. Extensive experiments are depicted
in Section V. Finally, Section VI concludes the paper.

II. PRELIMINARIES

We first formally define the problem of continuous spatial-
keyword queries in Section II-A. Section II-B reviews related
work, and Section II-C presents two state-of-the-art tech-
niques, IQ-Tree [4] and Rt-Tree [5]. Section II-D introduces
the ordered keyword trie [7]. Table I summarizes the mathe-
matical notations used throughout this paper.

A. Problem Definition

In this paper, O denotes a sequence of streaming spatial-
textual objects. A spatial-textual object is a textual message
with geo-location, such as check-ins and geo-tagged tweets.
Formally, a spatial-textual object o is modeled as o = (ψ, loc),
where o.ψ denotes a set of distinct terms (keywords) from a
vocabulary set V and o.loc represents a geo-location 2.

Definition 1 (Continuous Spatial-keyword Query). A contin-
uous spatial-keyword query q is defined as q = (ψ, r), where

2We assume the location of object is a point while our techniques can be
immediately extended to support a spatial region.

q ✂

q1 w1,w2

q2 w1,w2

q3 w2,w4

q4 w1,w5

o2:✂ ={w1,w2,w5}

o1:✂ ={w2,w3,w4}

q6 w3,w5

q7 w3,w4

q8 w4,w6

q5 w1,w3

q1

q3
q6

q7

q4

0 5

6 7

8 12

q9 w5,w6

q9

4

9

10 11

q5

o1

q8

o2

q2

1

2 3

13

14 15

Fig. 3. Running example

q.ψ is a set of distinct user-specified keywords, and q.r is a
spatial region (e.g., a rectangle or a circle).

Note that a continuous spatial-keyword query is a long-
running query, and is valid until it is deregistered. We say
an incoming spatial-textual object matches (or satisfies) a
continuous spatial-keyword query if it satisfies both spatial
and keyword constraints of the query. Following is a formal
definition.

Definition 2 (Matching). A spatial-textual object matches a
continuous spatial-keyword query if and only if the following
two conditions are satisfied: (1) o.ψ ⊇ q.ψ, and (2) o.loc ∈
q.r.

Problem Statement. In this paper, we tackle the problem of
continuous spatial-keyword queries against streaming spatial-
textual data. Specifically, given a set Q of continuous queries,
for each incoming object o from streaming spatial-textual data
O, we aim to rapidly deliver o to all the matched queries.

Example 2. Fig. 3 depicts a running example used throughout
this paper. In this example, there are 9 registered queries
{q1, . . . , q9} and two objects {o1, o2}. Specifically, o1 falls
in the search regions of {q1, q2, q4, q7}, and its keywords only
fully contain all the keywords of q7. Thus, o1 is delivered to
{q7}. With similar rationale, o2 matches queries {q1, q4}.

In the paper hereafter, we abbreviate the spatial-textual
object and the continuous spatial-keyword query as object
and query respectively, if there is no ambiguity. We assume
there is a total order for keywords in V , and the keywords in
each query and object are sorted accordingly. For presentation
simplicity, we assume wi < wj if i < j.

B. Related Work

Spatial-keyword Search. In recent years, spatial-keyword
search has attracted great attention, which aims to retrieve
the relevant spatial-textual objects for a given spatial-keyword
query. Existing work usually combines keyword indexing and
spatial indexing techniques to organize objects such that non-
promising objects can be quickly pruned from both spatial
and textual perspectives. In general, these techniques can be
classified into two categories: keyword-first (e.g., [8], [9], [10],
[11]) and spatial-first (e.g., [12], [13]). Note that a spatial-
keyword search is an ad-hoc query (i.e., user-initiated model)

while our problem focuses on continuous queries (i.e., server-
initiated model).
Continuous Query Processing. In continuous query pro-
cessing system, there are many long-running queries on the
server side. The incoming objects are continuously evalu-
ated and reported to the matched queries registered at the
server. Many studies on publish/subscribe systems investi-
gate a variety of continuous queries such as predicate-based
matching (e.g., [14], [15], [16], [17]) and similarity-based
ranking (e.g., [18], [19]). Nevertheless, they do not consider
the spatial information. Recently, continuous moving spatial-
keyword queries have been investigated (e.g., [20], [21]), but
they focus on continuously reporting relevant objects where
queries are moving, which are inherently different from our
problem. There are some existing work on the location-aware
publish/subscribe systems, but most of them either cannot
properly handle large scale streaming data (e.g., [22]) or
do not consider the textual information (e.g., [23]). Another
recent work [24] proposes a temporal publish/subscribe system
considering both spatial and keyword factors. However, its
semantics (i.e., top-k matching) are different from ours (i.e.,
boolean filtering). To the best of our knowledge, [4] and [5]
are only two existing work systematically studying the same
problem of continuous queries over streaming spatial-textual
data as ours, which are introduced in Section II-C.

C. IQ-Tree and Rt-Tree

Very recently, [4] and [5] independently investigate the
problem of continuous queries over streaming spatial-textual
data. Two efficient indexing techniques, namely IQ-Tree and
Rt-Tree, are proposed to organize a massive number of
queries. Both IQ-Tree and Rt-Tree belong to spatial-first
indexing mechanism where spatial feature is preferred during
index construction.

In IQ-Tree [4], queries are organized by a Quadtree where
each query is attached to one or multiple Quadtree cells
according to a cost model which aims to balance matching and
update costs. For each cell, the related queries are organized
by a ranked-key inverted list [25], and a query is assigned to
the posting list of its least frequent keyword. Fig. 4 shows an
example of IQ-Tree where 9 queries in the running example
are organized. In particular, query q7 in cell 9 is in the posting
list of w4 since w4 is the least frequent keyword among
q7.ψ = {w3, w4}. The matching algorithm of IQ-Tree follows
the filtering-and-refinement paradigm. For instance, regarding
the incoming object o1 in Fig. 3, unpromising queries are first
pruned based on their search regions, i.e., only queries which
reside on the cells penetrated by o1 (gray cells) survive the
spatial filtering. Then keyword filtering is applied, and only
the queries on the posting lists of the object keywords are
retrieved, which correspond to {q1, q2, q7}. Finally, candidate
queries are verified based on their search regions and query
keywords and object o1 is delivered to query {q7}. The total
number of queries verified in this example is 3.

Regarding Rt-Tree [5], queries are indexed by an R-Tree
based on their search regions. Each R-Tree node also records
the keywords of its descendant queries, namely token filter,

4

0 1 2 3

12

q1 q1,q2,q4

(w2:q1,q2) (w5:q4)

q6 q4

8 9 10 11

q7

(w4:q7)

q7

q1,q2,q4q1,q4

q8

Fig. 4. Example of IQ-Tree

R1 R2

R5 R6R3 R4

q1 q8 q6 q3 q5 q2 q7 q4 q9

w1,w2,w3,
w4,w5,w6

w1,w2,w3,
w4,w5,w6

w1,w2,w3,
w4,w5,w6

w1,w2,
w3,w4

w1,w2,
w3,w4

w1,w5,w6

Fig. 5. Example of Rt-Tree

for textual filtering purpose. Two variants of Rt-Tree, namely
Rt+-Tree and Rt++-Tree, further improve the performance
by carefully choosing one and multiple representative tokens
(keywords), respectively. Fig. 5 demonstrates an example of
Rt-Tree on the running example. At each node, it employs both
spatial and keyword filtering techniques to prune unpromising
queries. For example, to match object o1 in Fig. 3, we need
access all the gray nodes, and verify {q1, q8, q6, q2, q7} in the
leaf nodes according to spatial and keyword constraints. Note
that R6 is pruned because its token set, i.e., {w1, w5, w6}, has
no overlap with keywords in o1, i.e., {w2, w3, w4}, while R4

is pruned by spatial constraint. The total number of queries
verified in this example is 5.

D. Ordered Keyword Trie

The problem of superset containment search has been
extensively studied in the literature and a variety of efficient
techniques are proposed (e.g., [3], [26], [7]). Specifically,
given a set of queries and an object, each of which consists
of a set of keywords, we aim to find queries whose query
keywords are fully contained by the object keywords. Clearly,
the nature of our problem is a superset containment search if
the spatial dimension is not considered.

To efficiently support superset containment search, Zeinab
et al. [7] recently propose an ordered keyword trie structure
where each node corresponds to a keyword assuming there is a
global order for all keywords. Each query is indexed based on
its ordered query keywords (i.e., “prefixes”). Fig. 6 depicts the
ordered keyword trie structure over the running example where
each query can be accessed through a unique path following
its ordered keywords. For instance, q1 with keywords {w1,w2}
can be visited through the path as indicated by the dotted
polygon. Given object o1 with o1.ψ = {w2, w3, w4}, we only
need to visit gray nodes in Fig. 6 and come up with final
matches {q3, q7} w.r.t. keywords only.

In this paper, we integrate a variant of the ordered keyword
trie structure in AP-Tree to efficiently support textual filtering.

III. AP-TREE FRAMEWORK

In this section, we present a novel adaptive spatial-textual
indexing mechanism to organize continuous queries, namely

W3 W5

W2 W3 W5 W4 W4 W5 W6

q1,q2

W4W1 W2

W6

o1:✂ ={w2,w3,w4}

q5 q4 q3 q7 q6 q8 q9

Fig. 6. Example of ordered keyword trie

AP-Tree (Adaptive Partition Tree). Section III-A introduces
the motivation of the AP-Tree. Section III-B describes the AP-
Tree structure, followed by a detailed matching algorithm in
Section III-C.

A. Motivation

Due to the massive number of continuous queries, it is
imperative to devise efficient indexing technique such that
a large number of unpromising queries can be filtered at a
cheap cost. We show that a good indexing mechanism over
continuous spatial-keyword queries should satisfy following
three criteria.
(1) Adaptiveness. Intuitively, with respect to different key-
word and location distributions of the query workload, both
spatial feature and textual feature may become the dominant
factor. This observation is illustrated in Fig. 2, and substan-
tiated by our empirical study. As shown in Section II-C, tree
structure of IQ-Tree [4] and Rt-Tree [5] is only determined by
the spatial feature. Although the keyword filtering component
(e.g., local inverted list) is augmented to tree nodes, their
overall performance is unavoidably deteriorated. On the other
hand, our experiments show that textual dominant indexing
approach also suffers from the same problem. This motivates
us to devise a novel textual and spatial partition based f -ary
tree structure so that the queries are indexed in an adaptive and
flexible way w.r.t. the query workload. Moreover, the index
should be self-adjustable to the change of query workload. In
particular, two types of partition strategies, namely keyword
partition and spatial partition, are proposed to recursively
partition a set of queries by textual feature and spatial feature,
respectively. A node partitioned by textual (resp. spatial)
feature is called keyword (resp. spatial) node. A cost model
(Section IV-A) is developed to decide which partition approach
is employed at each node.
(2) Efficient Keyword Filtering. From textual perspective,
our problem is essentially a superset containment search; that
is, finding queries whose keywords are fully contained by a
given object. Among existing techniques (e.g., [3], [26], [7]),
ordered keyword trie [7] demonstrates its superior performance
because it takes great advantage of common prefixes of the
ordered query keywords. Moreover, it is a hierarchical tree
structure. This motivates us to integrate the ordered keyword
trie for keyword filtering purpose. To accommodate the f -ary
tree structure of AP-Tree, we partition related keywords on
the tree node into f parts based on our cost model, instead
of keeping each individual keyword3. Optimal and heuristic
keyword partition methods are proposed in Section IV-B.

3Note that there are about 1.7 million distinct keywords in the tweet dataset.

k1-node

k2-node k3-node

q1,q2 q5 q6

[W1]

q8,q9

q4

[W4,W5][W2,W3]

[W2] [W5][W4][W3]

q3,q7

[W5]

1

2 2

(a) keyword partition

s2-node

s1-node

q1 q1,q4 q3 q4,q5

s3-node

q1,q2 q2 q9

dummy cell

q4

(b) spatial partition

k1-node

k2-node s2-nodes1-node

q1,q2

q7 q3q6 q8 q9

[W2]

[W4,W5][W2,W3][W1]

q5 q4

[W3] [W5]

1

2

(c) AP-Tree

Fig. 7. Examples of keyword partition, spatial partition and AP-Tree

(3) Efficient Spatial Filtering. Regarding the spatial filtering,
our problem corresponds to the point stabbing search [27]
in 2-dimensional space; that is, identifying query rectangles
which are stabbed by the geo-location of the incoming object.
The best known data structure for the point stabbing problem
is the segment tree [28] which can retrieve all k related
rectangles with search time O(log(m) + k) where m is the
number of queries. However, segment tree is not well-suited
to large scale data because the space usage of O(m logm)
on 2-dimensional data. Space-oriented (e.g., Quadtree) and
object-oriented (e.g., R-Tree) partition strategies are adopted
in [4] and [5] respectively due to their good support of point
stabbing search and scalability. As stressed in [4], space-
oriented partition strategy is more suitable to spatial filtering
because of its disjoint space decomposition policy and good
support of query regions with different sizes. Our empirical
study also substantiates this claim. Motivated by this, we
adopt space-oriented partition approach for spatial partition.
In particular, the region of each spatial node is partitioned into
f grid cells guided by the cost model. As it is an NP-hard
problem to find optimal spatial partition, an efficient heuristic
algorithm is designed in Section IV-C.

B. AP-Tree Structure

Based on the above motivations, we devise an adaptive
spatial-textual partition tree (AP-Tree for short) which em-
ploys keyword partition and spatial partition methods to
recursively divide queries in a top-down manner. In this paper,
N denotes an AP-Tree node and there are three types of nodes:
keyword node (k-node), spatial node (s-node), and query node
(q-node). An intermediate node is a keyword (resp. spatial)
node if keyword partition (resp. spatial partition) is adopted.
We use f to denote the fanout of the intermediate node. A leaf
node of AP-Tree corresponds to a q-node, and each query will
be assigned to one or multiple query nodes according to its
query region and ordered query keywords.

Below, we introduce keyword node and spatial node in
details.
Keyword Node. We assume there is a total order among
keywords in the vocabulary V , and keywords in each object
and query are sorted accordingly. We delay the discussion of
the effect of keyword order strategy to the experimental part.
Queries assigned to a node N are partitioned into f ordered
cuts according to their Nl-th keywords, where Nl is called
the partition offset of the node N . We have Nl ≤ N∗l if N∗

is a descendant keyword node of N . An ordered cut is an
interval of the ordered keywords, denoted as c[wi, wj], where
wi and wj (wi ≤ wj) are boundary keywords. For presentation
simplicity, we use c[wi] to denote c[wi, wi] if there is only one
keyword in the cut.

Example 3. Fig. 7(a) shows a special case of AP-Tree in
which only keyword partition is employed on the running
example. We use an oval to represent a k-node and the number
on its right side indicates the partition offset. Meanwhile, a q-
node is denoted by a circle. Assume there are at most 3 ordered
cuts on each keyword node. In k1-node with partition offset 1,
we collect the first keywords of 9 queries which correspond to
{w1, w2, w3, w4, w5}. These keywords can be divided into 3
cuts: c[w1], c[w2, w3] and c[w4, w5]. Queries {q1, q2, q4, q5}
are assigned to c[w1] whose corresponding node is k2-node.
Since the partition offset of k2-node is 2, the second keywords
of these queries, i.e., {w2, w3, w5}, are used to assign queries
into three cuts: c[w2], c[w3] and c[w5], each of which is
associated with a q-node.

Spatial Node. The space is recursively partitioned by spatial
nodes. Let Nr denote the region of a spatial node N , which
will be divided into f grid cells. A query on a spatial node N
is pushed to a grid cell c if q.r overlaps c or contains c. Note
that, unlike the keyword node in which a query is assigned to
an unique cut, a spatial node may assign a query to multiple
cells.

Example 4. Fig. 7(b) depicts another special case of AP-Tree
in which only spatial partition is employed on the running
example. Here, we use a rectangle to represent a s-node. In
each spatial node, the spatial region is partitioned into 4 cells.
To match an object, we simply navigate through the spatial
nodes which contain the object location, until we reach the
leaf node. We remark that the cells on each spatial node may
not be of equal size.

For each keyword node N , a query q assigned to N cannot
find a cut if there is no enough query keywords, i.e., |q.ψ| <
Nl. We use a dummy cut to keep these queries. Similarly,
each spatial node N has a dummy cell for the queries which
contain the region of N (i.e., Nr ⊆ q.r) and hence do not
need to be further partitioned on node N . Note that queries
on the dummy cut (resp. cell) may be further partitioned by
spatial (resp. keyword) node only, or simply maintained by a
query node. For instance, the node indicated by dotted circle in

Fig. 7(b) is actually a dummy node, because the query region
of q4 fully contains the region of s3-node.

Example 5. Fig. 7(c) illustrates an example of AP-Tree
constructed over the running example, where both keyword
and spatial partitions are employed. Queries are recursively
partitioned by keyword nodes or spatial nodes, and finally
assigned to query nodes.

C. Object Matching
In this subsection, we present efficient AP-Tree based object

matching algorithm. Following the filtering-and-verification
paradigm, we navigate through AP-Tree to prune non-
promising queries by utilizing spatial or keyword filtering
techniques, and then verify the candidate queries on query
nodes accessed.

Algorithm 1 depicts the procedure to retrieve all the matched
queries for a given object o. It is a recursive procedure invoked
by each accessed intermediate node with a depth-first search
strategy. In particular, we simply verify the associated queries
if a q-node is accessed, and matched queries are kept in R
(Line 2). Regarding s-node (Lines 12-15), we only need to
access the cell c stabbed by o (i.e., o.loc ∈ cr) as well as the
dummy cell. Recall that the dummy cell of a s-node keeps
queries covering the region of the node, and may be further
partitioned by keyword node only. As to the k-node (Lines 5-
10), let w1, w2, . . ., w|o.ψ| denote all the object keywords in
o.ψ. For each k-node N accessed, we use η to denote the
start matching position regarding the object keywords. Line 6
identifies the corresponding cut for each object keyword wj
(η ≤ j ≤ |o.ψ|). For each cut hit by at least one object
keyword, we further explore its corresponding node at Line 8
where η is set to i + 1 and wi denotes the smallest keyword
which hits the cut. Similar to s-node, dummy cut will be
explored (Line 10) since all queries on the dummy cut survive
the keyword filtering according to its definition. For each
incoming object o, we retrieve all the matched queries by
calling the function ObjectMatching(o, 1, root), where root
is the root node of AP-Tree.

Example 6. Suppose 9 queries in the running example (Fig. 3)
are organized by AP-Tree as shown in Fig. 7(c). For the
incoming object o1, we first access k1-node with η = 1.
According to Lines 5-10, the cut c[w2, w3] on k1-node is hit
by the first and second object keyword w2 and w3 in o1.
Therefore, s1-node will be explored with η = 1 + 1 = 2.
Similarly, s2-node is accessed with η = 3+1 = 4. Regarding
s1-node, we identify the grid cell stabbed by o1.loc (shaded
cell on s1-node), and reach the corresponding query node,
which contains {q7}. We verify q7 and put it into R because
it satisfies both keyword and spatial constraints. The same
procedure is applied to s2-node. Since there is no q-node on
the cell stabbed by o1 (shaded cell on s2-node), none of the q-
nodes of s2-node will be accessed. Finally, we haveR = {q7}.
In this example, the total number of queries verified is only 1.

Time Complexity. The dominant cost of Algorithm 1 is the
AP-Tree traverse cost and verification cost. The traverse costs
are O(|o.ψ| × log(f)) and O(log(f)) for each k-node and

Algorithm 1: ObjectMatching(o, η, N)
Input : o : incoming object

η : the start matching position regarding o.ψ
N : node accessed currently

Output : R : set of all the matched queries
if N is a q-node then1

Verify queries in N and insert the matched ones to R ;2
return3

if N is a k -node then4
for η ≤ i ≤ |o.ψ| do5

Find the corresponding cut based on wi in o.ψ;6
if cut has not been visited then7

ObjectMatching(o, i+ 1, cut) ;8

if dummy cut exists then9
ObjectMatching(o, η, dummy cut);10

else11
Find the cell which covers o.loc using grid structure;12
ObjectMatching(o, η, cell);13
if dummy cell exists then14

ObjectMatching(o, η, dummy cell);15

s-node, respectively. The verification cost of a query q is
O(|o.ψ| + |q.ψ|) in the worst case, while the number of
verifications heavily depends on the filtering capacity of AP-
Tree.
Algorithm Correctness. Since each query will be validated
at Line 2, it is immediate that all queries in R are valid.
As a query may be assigned to disjoint grid cells at each
spatial node and the union of these cells contains the query
region, each matched query q must be assigned to a query
node whose ancestor spatial nodes are stabbed by the object
location. Let B1, B2, . . . , Bm denote the buckets (cuts or cells)
along the path from root of AP-Tree to this query node. It is
immediate that cell B1 will be visited if the root is a s-node.
Similarly, the cut B1 will be visited if the root is a k-node
since there must exist one object keyword which is equal to
the first query keyword of q. It is easy to see that Bi will
be visited sequentially for 1 < i ≤ m, and the correctness of
Algorithm 1 follows.

IV. AP-TREE CONSTRUCTION AND MAINTENANCE

We first propose a cost model in Section IV-A to quantita-
tively analyze the goodness of keyword and spatial partitions.
Then efficient keyword and spatial partition approaches are
devised to minimize the matching cost in Section IV-B and
Section IV-C, respectively. Section IV-D presents the AP-Tree
construction algorithm which adaptively selects keyword and
spatial partition methods to construct AP-Tree in a top-down
manner. Section IV-E develop dynamic maintenance approach
which makes AP-Tree self-adjustable to the change of query
workload.

A. Cost Model
Given a set Q of queries, AP-Tree is constructed in a top-

down manner. Thus, we need to evaluate the goodness of a
keyword or spatial partition such that the AP-Tree is adaptive
to query workload. In this subsection, we propose a cost model
to quantitatively measure the matching cost for two partition

methods. Given a node N and a set Q of queries assigned
to N , without further partition the matching cost contributed
by N is |Q| assuming the average query verification cost is
a unit time. Clearly, we can partition |Q| queries into a set
P of f buckets by keyword partition or spatial partition to
reduce the matching cost. Throughout this paper, we might
use bucket and cut, bucket and cell interchangeably for better
understanding of the idea.

Let B denote a bucket of the partition, we use w(B) to
record its weight which is the number of queries associated to
B. By p(B) we mean the hit probability of the bucket B, i.e.,
the probability that B is explored during the object matching.
The expected matching cost regarding partition P , denoted by
C(P), is as follows.

C(P) =
f∑
i=1

w(Bi)× p(Bi) (1)

Given a partition P and a set of queries Q on the node, the
calculation of w(B) is immediate for each bucket B. We may
derive the hit probability p(B) based on some distribution
assumptions or object workload. For analysis simplicity, we
assume that p(B) =

∑
w∈B p(w) for keyword node, where

p(w) is the hit probability of the keyword w. In case a set O
of the objects is available, it is trivial to derive hit probability
of each individual keyword. Otherwise, we assume the query
keyword with high frequency among Q has better chance to
appear in object keywords; that is, we use query workload
to simulate object workload. Specifically, we set p(w) =

freq(w)∑
w∈P freq(w) where freq(w) is the frequency of keyword w

among all queries in Q. Regarding spatial partition, we may
simply assume the uniform distribution of the object location,
and hence p(B) = Area(B)

Area(N) where Area(B) is the area of the
bucket (i.e., cell) B and Area(N) is the region size of the
node N . The hit probability calculation of each cell (bucket)
is immediate when object workload is available.

B. Keyword Partition

Without loss of generality, we assume the l-th keywords
of the queries in Q correspond to a set of ordered keywords
V = {w1, w2, . . . , w|V |}. On each keyword node, queries are
partitioned into f ordered cuts based on their l-th keywords,
and we aim to find an optimal keyword partition, denoted by
P∗k , such that the matching cost is minimized. We first present
a dynamic programming approach to achieve the optimal
partition, followed by a simple optimal solution for a special
case. Then we develop an efficient heuristic approach.
(1) Optimal Partition.
Dynamic Programming Algorithm. By Pk(i, j, c) we mean
a keyword partition regarding keywords between wi and wj
(both inclusive) with c cuts. The optimal partition is denoted
by P∗k (i, j, c). Since keywords are ordered, we can come up
with P∗k (i, j, c) by exhausting all possible locations of the first
cut as follows.

C(P∗k (i, j, c)) = min
i≤m≤j−c+1

(C(P∗k (i,m, 1)) +

C(P∗k (m+ 1, j, c− 1))) (2)

Let P∗k (i,m, 1) represent the optimal partition which consists
of one cut c[wi, wm], we have

C(P∗k (i,m, 1)) = (

m∑
j=i

w(wj))× (

m∑
j=i

p(wj)) (3)

where w(wj) denotes the number of queries whose l-th
keyword equals wj .

Algorithm 2 illustrates our dynamic programming method
for optimal keyword partition. In particular, Lines 1-2 compute
the cost for each partition with single cut. Then Lines 3-5
iteratively compute the optimal partitions with c cuts (2 ≤ c ≤
f − 1). Finally, the optimal keyword partition P∗k corresponds
to P∗k (1, |V |, f). The time complexity of Algorithm 2 is O(f×
|V |2).

Algorithm 2: Optimal Keyword Partition(V , f)
Input : V : keyword set to be partitioned

f : number of cuts
Output : P∗k : optimal keyword partition
for 1 ≤ i ≤ j ≤ |V | do1

Compute C(P∗k (i, j, 1)) based on Equation 3 ;2

for 2 ≤ c ≤ f − 1 do3
for 1 ≤ i ≤ |V |+ 1− c do4

Compute C(P∗k (i, |V |, c)) based on Equation 2 ;5

Compute C(P∗k (1, |V |, f)) based on Equation 2 ;6
return P∗k (1, |V |, f)7

Optimal solution for special case. We say the query workload
and object workload have similar distribution if and only if
p(wi)
w(wi)

= λ for any 1 ≤ i ≤ |V |. In this special case, we
come up with a simple optimal solution with time O(|V |) if
each cut has the same weight. In particular, the cost model in
Equation 1 now turns to

C(P) = λ

f∑
i=1

w(Bi)
2 (4)

According to Cauchy-Schwarz Inequality, we have (
∑f
i=1

w(Bi)
2)(

∑f
i=1 1

2) ≥ (
∑f
i=1 w(Bi) × 1)2. Therefore, C(P)

can achieve the optimal solution if w(Bi) = w(Bj) for
1 ≤ i, j ≤ f . Note that as discussed in Section IV-A,
we use query workload to simulate object workload when
object workload is unavailable, and hence two distributions
are similar.

Algorithm 3: Heuristic Keyword Partition(V , f)
Input : V : keyword set to be partitioned

f : number of cuts
Output : Pk : keyword partition
Find a partition Pk which evenly partitions V by weight;1
for 2 ≤ i ≤ f do2

for each keyword w between l(ci−1) and r(ci) do3
Compute C(Pk) suppose ci−1 and ci are separated by4
w;
Update ci−1 and ci in Pk using w if a lower C(Pk) is5
achieved;

return Pk6

(2) Heuristic Partition.

5 1 0 3

1

2

0

0 2 5

0 0 9

0 8 0

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

(a) Example of GBD problem

B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

(b) Example of our problem

Fig. 8. Example of NP-complete

Following the local improvement heuristic [29], we develop
an efficient greedy partition algorithm, where details are
illustrated in Algorithm 3. Line 1 first partitions V into f
cuts with similar weights. Then Lines 2-5 iteratively improve
keyword partition method by exhaustive search in a local
area. In particular, let ci denote the i-th ordered cut, while
l(ci) and r(ci) represent its left and right boundary keywords,
respectively. For each cut ci (1 < i ≤ f), we attempt to reduce
the local cost (i.e., the cost of ci−1 and ci) by exhausting all
possible boundary (separate) keywords regarding two adjacent
cuts ci−1 and ci. The time cost of Algorithm 3 is O(f × |V |)
in the worst case.

C. Spatial Partition
Without loss of generality, we assume f = m × n and Ps

represents a spatial partition of the node N which divides the
region into m × n grid cells (buckets). We first show that it
is an NP-hard problem to find optimal spatial partition. Then
we resort to local improvement heuristic algorithm.

Theorem 1. The problem of finding optimal spatial partition
is NP-hard.

Proof. Our proof relies on the problem of Generalized Block
Distribution (GBD) [30] with K = 1, which is NP-complete.
GBD Instance: Given a g× g matrix A, and each element is
an integer; A partition which divides A into m×n contiguous
blocks where Bi,j denotes the ij-th block; A function φ, where
φ(Bi,j) reports the number of non-zero elements in block
Bi,j .
Question: Is there a partition on A such that

max
1≤i≤m,1≤j≤n

φ(Bi,j) ≤ 1 (5)

Fig. 8(a) shows an example of GBD problem where each
block contains at most one non-zero element under the given
partition (g = 4, m = n = 3). Given an instance of GBD, we
reduce it to a special case of decision version of our spatial
partition problem as follows. Suppose there are g × g unit
cells in the region of node N , as shown in Fig. 8(b) we put a
query with extremely small region (thus being regarded as a
point) at the center of an unit cell if the corresponding element
in A is non-zero. A spatial partition of node N divides the
space into m × n grid cells (buckets). w(Bi,j) (1 ≤ i ≤
m, 1 ≤ j ≤ n) is the number of queries in the bucket Bi,j
and p(Bi,j) =

w(Bi,j)
|Q| where |Q| is the number of queries

generated. A special case of decision version of our problem
is that if there is a spatial partition Ps on the node N such
that

C(Ps) =
m∑
i=1

n∑
j=1

w(Bi,j)× p(Bi,j) ≤ 1 (6)

Since p(Bi,j) =
w(Bi,j)
|Q| , we have C(Ps) = 1

|Q|
∑m
i=1∑n

j=1 w(Bi,j)
2. Given the fact that

∑m
i=1

∑n
j=1 w(Bi,j) =

|Q|, a partition Ps with C(Ps) ≤ 1 implies that w(Bi,j) ≤ 1
for any bucket Bi,j , i.e., there is at most one query in
each bucket. Note that, if there exists one delimiter line
of the spatial partition which lies across unit cells, we can
simply shift it to its nearest boundary line without changing
the partition cost. Consequently, as illustrated in Fig. 8, Ps
immediately leads to a solution of the GBD problem in which
there is at most one non-zero element in each block, and vice
versa. Thus, our problem is NP-hard.

Due to the NP-hardness of the problem, we resort to a
local improvement heuristic algorithm in which the space
is partitioned along each dimension independently. We first
partition the space into m buckets along the first dimension
such that the centers of the queries are evenly distributed.
With similar rationale to Algorithm 3, we iteratively improve
the partition cost. Since the possible number of boundary
points along each dimension is bounded by 2× |Q|, the time
complexity is O(m × |Q|) in the worst case. Similarly, the
space is partitioned into n buckets along another dimension.
In this way, we divide the region of N into f grid cells with
time complexity O(

√
f × |Q|).

D. Index Construction

Algorithm 4 presents the procedure of AP-Tree construc-
tion, which recursively divides queries through keyword and
spatial partitions. Given a set Q of queries passed from parent
node, the current node N may be set to q-node, k-node or s-
node. Specifically, two flags, kP and sP , are used to indicate
if queries in Q can be further partitioned by keyword and
space, respectively. Line 2 keeps all queries in a q-node if
the number of queries does not exceed a given threshold θq
(i.e., |Q| < θq) or queries cannot be split further by keyword
or spatial partitions (i.e., kP is false and sP is false). If
keyword partition is allowed (i.e., kP is true), Line 6 explores
keyword partition with offset l, and the cost is recorded by
Ck. Recall that offset l indicates that the l-th keywords from
queries in Q are employed for keyword partition. By Cs we
record the cost of spatial partition at Line 8 if sP is true.
Then we can decide the current node N to be constructed from
keyword partition (Line 10) or spatial partition (Line 18) based
on Ck and Cs. The queries in Q are pushed to related child
nodes (i.e., cuts and cells) for further processing (Line 16 and
Line 24), in which the partition offset is increased by one if
keyword partition is adopted.

In addition to regular cuts (cells), we also maintain dummy
cut (cell) for k-node (s-node). In particular, we maintain a
dummy cut for a k-node such that queries whose keywords
have been exhausted (i.e., |q.ψ| < l) are pushed to the dummy

cut with kP set to false (Lines 11-13). Similarly, Lines 19-
21 push all queries with regions containing the node N to the
dummy cell for further potential keyword partition, where the
flag sP is set to false. Finally, the AP-Tree can be constructed
by the function BuildIndex(root,Q, 1, true, true).

Algorithm 4: BuildIndex(N , Q, l, kP , sP)
Input : N : current node, Q : a set of queries

l : keyword partition offset to be used in N
kP and sP : flags for keyword and spatial partitions

Output : AP-Tree
if (kP is false and sP is false) or |Q| < θq then1

N is a q-node for Q;2
return3

Ck := +∞; Cs := +∞;4
if kP is true then /* Try keyword partition */5

Ck ← keyword partition on Q with offset l;6

if sP is true then /* Try spatial partition */7
Cs ← spatial partition on Q;8

if keyword partition is chosen (i.e., Ck < Cs) then9
N is a k-node with node offset Nl = l;10
Q′ ← queries {q} in Q with |q.ψ| < l ;11
B′ ← dummy cut of N ;12
BuildIndex(B′, Q′, l + 1, kP = false, sP) ;13
for each child node (i.e., cut) B of node N do14

QB ← queries in Q−Q′ which hit the cut B ;15
BuildIndex(B, QB , l + 1, kP , sP);16

else17
N is a s-node;18
Q′ ← queries in Q which contains Nr;19
B′ ← dummy cell of N ;20
BuildIndex(B′, Q′, l, kP , sP = false) ;21
for each child node (i.e., cell) B of node N do22

QB ← queries in Q−Q′ which overlap or contain B ;23
BuildIndex(B, QB , l, kP , sP) ;24

E. Index Maintenance

In practice, we may need to dynamically maintain an AP-
Tree due to registration of new queries and deregistration of
existing queries. A simple strategy is that we put a new query
into its corresponding query node based on its ordered query
keywords and query region, and a query node is partitioned
when its number of queries exceeds the threshold θq . Similarly,
we remove a query from its corresponding query nodes if
it is deregistered and a keyword node or spatial node turns
to a query node if the number of its descendant queries is
less than θq . This approach is efficient and works well if the
underlying query workload remains stable. On the downside,
the partitions of the existing nodes cannot be adjusted to the
change of query workload, and hence the performance may
be deteriorated. To alleviate this issue, we adopt the well-
known KL-Divergence [31] to detect the changes of underlying
query workload for nodes with a particular amount of queries.
Specifically, let wold(Bi) denote the weight of the bucket Bi
when the node is constructed while w(Bi) is calculated for
all current queries. Let DKL(wold|w) denote KL-Divergence
of the query workload, and an AP-Tree node will be re-
constructed if DKL(wold|w) exceeds a given threshold θKL.

We remark that calculation of KL-Divergence value is almost
cost-free because they can be easily updated when the node is
visited during the query updates. Moreover, only descendant
queries of the node are involved in the re-construction. In this
way, our empirical study shows that AP-Tree is self-adjustable
to the workload changes with a decent maintenance overhead.

V. EXPERIMENT

In this section, we present the results of a comprehensive
performance study to evaluate the effectiveness and efficiency
of our techniques proposed in this paper.

A. Experiment Setup

To the best of our knowledge, IQ-Tree [4] and Rt-Tree [5]
are only two existing work investigating continuous queries on
streaming spatial-textual data. Both work fall in the category
of spatial-first indexing structure. For comprehensive perfor-
mance evaluation, we also investigate a keyword-first indexing
structure, namely RQ-Tree. In this paper, we implement and
evaluate following algorithms.
• Rt-Tree. Object matching algorithm based on Rt++-Tree

proposed in [5], which achieves the best performance com-
pared with Rt-Tree and Rt+-Tree. The source code is
provided by the authors in [5].

• IQ-Tree. Object matching algorithm based on IQ-Tree
proposed in [4]. The query decomposition cost model4 is
adopted to allocate queries to Quadtree cells according to
query and object workloads.

• RQ-Tree. The representative of keyword-first indexing
method which can be regarded as a variant of IQ-Tree.
Particularly, RQ-Tree first employ ranked-key Inverted
List [25], [4] to partition queries into the posting lists
according to their least frequent keywords. Then for queries
on each posting list, we build a Quadtree for spatial filtering
purpose where the cost model in [4] is also adopted.

• AP-Tree. AP-Tree based object matching algorithm pro-
posed in this paper. By default, the heuristic algorithms are
employed for keyword and spatial partitions.

Datasets. Four datasets are collected for experimental evalu-
ations. TWEETS is a real-life dataset collected from Twit-
ter [5], containing 12 million tweets with geo-locations from
May 2012 to August 2012. TWEETS is the default dataset
in the experiments. GN is obtained from the US Board on
Geographic Names5 in which each object is associated with
a geo-location and a short text description. CARS and AIS
obtain the geo-locations from Chorochronos Archive6 and
we randomly tag the locations with user-generated keywords
from 20 Newsgroups 7. The statistics of four datasets are
summarized in Table II.
Query Workload. We generate four query workloads based
on the above four datasets. In each query workload, 5M

4As we assume indexes are fit in the main memory, we use the number of
verifications to evaluate the goodness of the query decomposition, instead of
the number of I/Os.

5http://geonames.usgs.gov
6http://www.chorochronos.org
7http://people.csail.mit.edu/jrennie/20Newsgroups

TABLE II
DATASETS STATISTICS

Datasets TWEETS GN CARS AIS
objects 12.7M 2.2M 2.2M 5.7M

vocabulary size 1.7M 208K 81K 81K
avg. # keywords in objects 9 7 30 50

spatial-textual objects are randomly chosen from correspond-
ing dataset. For each sampled object, we randomly pick m
terms as query keywords and m is a random number between
1 and 5. The query region is set to a rectangle centered at the
geo-location of the object, and the region size is uniformly
chosen between 0.01% and 1% of the data space.
Object Workload. We use first 5% of the spatial-textual
objects as the historical object workload when IQ-Tree, RQ-
Tree and AP-Tree are constructed. The remaining objects are
fed to the continuous queries as streaming spatial-textual data.

All experiments are implemented in C++. The experiments
are conducted on a PC with 3.4GHz Intel Xeon 2 cores
CPU and 32GB memory running Red Hat Enterprise Linux.
Following the typical setting of publish/subscribe systems
(e.g., [5], [17]), we assume indexes are fit in the main memory
to support real-time response. The average object matching
time is reported to evaluate the performance of the algorithms.
We also evaluate the index construction and maintenance time
as well as the index size. By default, keywords are ordered
by their term frequencies over the query keywords (i.e., Tf
order). Important parameters of AP-Tree and alternative im-
plementations are investigated in Section V-B. Throughout the
experiments, we set fanout f , partition threshold θq and KL-
Divergence threshold θKL to 200, 40 and 0.001 respectively,
unless otherwise specified.

10
-2

10
-1

10
0

10
1

10
2

50 100 200 400 600 800

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
) TWEETS

GN
CARS

AIS

(a) Vary f

10
-2

10
-1

10
0

10
1

10
2

5 20 40 60 80 100 200 400

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
) TWEETS

GN
CARS

AIS

(b) Vary θq
Fig. 9. Effect of varying f and θq

B. Experimental Tuning

Effect of f and θq . In the first set of experiments, we evaluate
the impact of the fanout f and partition threshold θq in four
datasets under default settings. Intuitively, a small f cannot
fully utilize the keyword partition due to the small number of
cuts on each keyword node. On the other hand, a large f may
result in poor adaptiveness of the AP-Tree. This is confirmed
in Fig. 9(a), where the average matching time is reported with
f varying from 50 to 800. We set f to 200 for all datasets in the
hereafter experiments. Fig. 9(b) reports the average matching
time as a function of θq which grows from 5 to 400. It is
observed that θq does not noticeably affect performance when
θq is smaller than 40. By default, θq is set to 40 for a better
trade-off between index size and matching performance.
Effect of different order strategies. Fig. 10 evaluates the ef-
fect of three typical keyword order strategies on four datasets.

10
-2

10
-1

10
0

10
1

TWEETS GN CARS AIS

A
v
g

.
M

a
tc

h
in

g
 T

im
e

(m
s
) Tf

Random
Idf

Fig. 10. Effect of keyword order
HR DP KFirst SFirst Trie-Qd

10
-3

10
-2

10
-1

10
0

10
1

TWEETS GN CARS AIS

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
)

(a) Avg. Matching Time

10
0

10
1

10
2

10
3

TWEETS GN CARS AIS

In
d
e
x
 C

o
n
s
tr

u
c
ti
o
n
 T

im
e
(s

)

(b) Index Construction Time

Fig. 11. Comparison among different AP-Tree variants

In particular, keywords are sorted decreasingly according to
their term frequencies in Tf, while Idf sorts keywords by
the inverse document frequency, where a rare keyword is
ranked high. Keywords are randomly ordered when Random
is adopted. Fig. 10 demonstrates the superior performance of
Tf order strategy on all datasets. The reason is that, given
the fixed number of cuts on each keyword node, there are
less number of false positives if the less frequent keywords
are pushed to the lower level (i.e., nodes with larger offset
values). Tf order is used in hereafter experiments.
Comparison of AP-Tree variants. We compare the perfor-
mance of several variants of AP-Tree as follows. DP employs
dynamic programming approach to find optimal keyword parti-
tion, and HR uses the heuristic keyword partition. KFirst puts
high priority to keyword partition on each node when AP-Tree
is constructed, while spatial partition is prioritized in SFirst.
Finally, Trie-Qd adopts the ordered keyword trie structure
in [7] to organize queries, and then uses Quadtree to further
partition queries with the same query keywords. Fig. 11(a)
and Fig. 11(b) report the average object matching cost and the
index construction time of the algorithms, respectively, over
four datasets where the default average query region size is
set to 0.001%. Following are two important observations.
• Among all algorithms, DP achieves the best matching

performance. HR has similar matching time with DP but
beats DP by a huge margin w.r.t. index construction time.

• The poor matching performance of KFirst and SFirst implies
that AP-Tree should be constructed in an adaptive way.
Similarly, due to the lack of the adaptiveness and a large
number of tree nodes, a straightforward combination of the
ordered keyword trie [7] and Quadtree (Trie-Qd) cannot well
support continuous spatial-keyword queries.

In hereafter experiments, HR is employed for performance
evaluation of AP-Tree.

C. Performance Evaluation
In this subsection, we evaluate the performance of AP-Tree

with other competitors.
Evaluation on different datasets. We evaluate the average
object matching time, index construction time and index size

AP-Tree IQ-Tree RQ-Tree R
t
-Tree

10
-2

10
-1

10
0

10
1

10
2

TWEETS GN CARS AIS

A
v
g

.
M

a
tc

h
in

g
 T

im
e

(m
s
)

(a) Avg. Matching Time

10
0

10
1

10
2

10
3

TWEETS GN CARS AIS

In
d

e
x
 C

o
n

s
tr

u
c
ti
o

n
 T

im
e

(s
)

(b) Index Construction Time

0

100

200

300

400

TWEETS GN CARS AIS

In
d

e
x
 S

iz
e

(M
)

(c) Index Size

Fig. 12. Performance over various datasets

10
-1

10
0

10
1

1 2 3 4 5

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
)

of Query Keywords

AP-Tree
IQ-Tree

RQ-Tree

(a) TWEETS

10
-2

10
-1

10
0

10
1

1 2 3 4 5

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
)

of Query Keywords

AP-Tree
IQ-Tree

RQ-Tree

(b) GN

Fig. 13. Effect of number of query keywords

of the algorithms against four datasets TWEETS, GN, CARS
and AIS. As shown in Fig. 12(a), AP-Tree significantly beats
other algorithms in terms of object matching time. Particularly,
AP-Tree is 30 times faster than the second best algorithm
in GN because it is observed that the keyword and spatial
distributions vary significantly among different regions in GN,
and AP-Tree can take great advantage of its adaptiveness. It
is worth noting that the keyword-first method RQ-Tree has
better performance than two spatial-first methods (i.e., IQ-
Tree and Rt-Tree) on TWEETS, GN and AIS datasets, but
is defeated on CARS dataset by IQ-Tree. This implies that
the effectiveness of the keyword and spatial filtering depends
on the underlying query workload. As expected, Fig. 12(b)
reports that Rt-Tree has the fastest index construction time
because there is no cost model in [5] and the query regions are
not decomposed. Fig. 12(c) shows that four index structures
have similar index sizes. In the following experiments, we
exclude Rt-Tree from the performance evaluation because it
is dominated by IQ-Tree. Moreover both algorithms belong to
spatial-first category, and hence exhibit similar trend in the
experiments.
Effect of the number of query keywords. Fig. 13 evaluates
the performance of three algorithms against TWEETS and GN
datasets where the number of query keywords varies from 1
to 5. Not surprisingly, the performance of three algorithms
improves with the growth of the number of query keywords be-
cause the number of matched queries is significantly reduced.
When there is only one query keyword, AP-Tree only slightly
outperforms RQ-Tree and IQ-Tree because it is difficult to
distinguish queries from keyword perspective. Nevertheless,
the margin becomes significant when there are more than one
query keyword.
Effect of the query region size. We evaluate the effect of
query region size in Fig. 14 where the average matching
time is reported as a function of the region size varying
from 0.000001% to 10% of the data space. As expected, the
performance of three algorithms is sensitive to the region size
because larger region size increases the number of matched
queries and hence leads to higher matching costs. It is noticed

10
-2

10
-1

10
0

10
1

0.000001% 0.0001% 0.01% 1% 10%

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
)

Size of Query Region

AP-Tree
IQ-Tree

RQ-Tree

(a) TWEETS

10
-3

10
-2

10
-1

10
0

10
1

0.000001% 0.0001% 0.01% 1% 10%

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
)

Size of Query Region

AP-Tree
IQ-Tree

RQ-Tree

(b) GN

Fig. 14. Effect of query region size

0

1

2

3

4

1M 5M 10M 15M 20M
A

v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
)

of Queries

AP-Tree
IQ-Tree

RQ-Tree

(a) TWEETS

0

0.5

1.0

1.5

2.0

1M 5M 10M 15M 20M

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
)

of Queries

AP-Tree
IQ-Tree

RQ-Tree

(b) GN

Fig. 15. Effect of scalability
that RQ-Tree is ranked after IQ-Tree when the region size
is very small while RQ-Tree has better performance when
the region size becomes large. This is quite intuitive because
spatial-first is more attractive when the region size is very
small. AP-Tree is the most stable algorithm and consistently
beats RQ-Tree and IQ-Tree by a large margin. It is observed
that more keyword nodes appear on high levels of AP-Tree
when the query region is large, which verifies the adaptiveness
of AP-Tree structure.
Effect of the number of queries. We turn to evaluate the
scalability of the algorithms in Fig. 15 where the number
of queries grows from 1M to 20M . The result shows that
AP-Tree is much more scalable to the number of queries.
For instance, it only takes 0.4ms and 0.04ms on average to
match incoming objects on TWEETS and GN datasets when
the number of queries reaches 20M.
Evaluate index maintenance. We evaluate the costs of incre-
mental maintenance of AP-Tree, IQ-Tree and RQ-Tree as well
as their object matching performance. In particular, TWEETS
dataset is deployed because the arrival order of the queries can
naturally follow the corresponding timestamps of the tweets.
The first δ percentage of the queries are used to construct the
indexes and then remaining queries are incrementally inserted,
where δ is set to 20 by default. Finally, we report the average
object matching cost after all queries arrives. We also record
the average updating time for all queries inserted.

In the experiments, a keyword or spatial node of AP-Tree is
re-constructed if it covers at least 0.1% of the query population
and its KL-divergence value exceeds θKL. It is quite intuitive
that a small θKL value results in a better object matching time
but higher AP-Tree maintenance overhead. Fig. 16 evaluates

0.10

0.12

0.14

0.16

0.18

0.20

0.0001 0.001 0.01 0.1 0.5

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
) TWEETS

(a) Vary θKL

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0001 0.001 0.01 0.1 0.5

A
v
g
.
U

p
d
a
ti
n
g
 T

im
e
(m

s
) TWEETS

(b) Vary θKL

Fig. 16. Effect of θKL

the impact of threshold θKL which increases from 0.0001
to 0.5. In the following experiments, we set θKL to 0.001
since it achieves a good trade-off between matching cost and
maintenance cost.

AP-Tree AP-Tree-NR IQ-Tree RQ-Tree

0.1

0.2

0.4

0.6

0.8

1.0

10 20 30 40 50 60 70 80 90 100

A
v
g
.
M

a
tc

h
in

g
 T

im
e
(m

s
)

(a) Vary δ

0

0.05

0.10

0.15

0.20

0.25

10 20 30 40 50 60 70 80 90

A
v
g
.
U

p
d
a
ti
n
g
 T

im
e
(m

s
)

(b) Vary δ

Fig. 17. Performance of maintenance

In the last set of experiments, we also consider a variant
of AP-Tree algorithm, namely AP-Tree-NR, which does not
re-construct the existing AP-Tree node. Fig. 17 reports the
average object matching time as well as the average delay of
query insertions for four algorithms where the percentage of
queries used for initial AP-Tree construction (δ%) increases
from 10% to 90%. Fig. 17(a) shows that the performance
of AP-Tree-NR is not satisfactory when δ is small. This
is because AP-Tree structure built on a small proportion
of the query set does not well-suit to the change of query
workload. On the contrary, the performance of AP-Tree is
rather stable and consistently beats IQ-Tree and RQ-Tree by
a large margin since AP-Tree can adjust the tree structure to
the change of query workload by node re-constructions. The
average maintenance cost of four algorithms is reported in
Fig. 17(b). As expected, AP-Tree-NR has the best performance
since there is no node re-constructions, while AP-Tree has
the largest index maintenance overhead. Nevertheless, AP-Tree
can process a query in around 0.12ms on average which is still
quite efficient in practice.

VI. CONCLUSION

The phenomenon of streaming spatial-textual data raises
interesting challenges for indexing continuous spatial-keyword
queries. In this paper, we propose a novel adaptive spatial-
textual partition indexing structure, namely AP-Tree, to ef-
ficiently organize a massive number of continuous spatial-
keyword queries such that each incoming object from spatial-
textual data can be rapidly delivered to relevant queries. Unlike
the previous spatial-textual indexes which prefer either textual
feature or spatial feature, AP-Tree can be constructed in
an adaptive way by carefully choosing keyword or spatial
partitions guided by a cost model. Extensive experiments
demonstrate that our technique achieves a high throughput
performance over streaming spatial-textual data.

ACKNOWLEDGMENT
Ying Zhang is supported by ARC DE140100679 and DP130103245.

Wenjie Zhang is supported by ARC DP150103071, DP150102728
and DE120102144. Xuemin Lin is supported by ARC DP150102728,
DP140103578 and NSFC61232006. Wei Wang is supported by ARC
DP130103401 and DP130103405.

REFERENCES

[1] T. W. Yan and H. Garcı́a-Molina, “Index structures for selective dissem-
ination of information under the boolean model,” TODS, 1994.

[2] M.-H. Park, J.-H. Hong, and S.-B. Cho, “Location-based recommenda-
tion system using bayesian users preference model in mobile devices,”
in Ubiquitous Intelligence and Computing. Springer, 2007.

[3] A. Konig, K. Church, and M. Markov, “A data structure for sponsored
search,” in ICDE, 2009, pp. 90–101.

[4] L. Chen, G. Cong, and X. Cao, “An efficient query indexing mechanism
for filtering geo-textual data,” in SIGMOD, 2013, pp. 749–760.

[5] G. Li, Y. Wang, T. Wang, and J. Feng, “Location-aware pub-
lish/subscribe,” in ACM SIGKDD, 2013, pp. 802–810.

[6] S. Helmer and G. Moerkotte, “A performance study of four index
structures for set-valued attributes of low cardinality,” VLDBJ, 2003.

[7] Z. Hmedeh, H. Kourdounakis, V. Christophides, C. Du Mouza,
M. Scholl, and N. Travers, “Subscription indexes for web syndication
systems,” in EDBT, 2012, pp. 312–323.

[8] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel,
“Text vs. space: efficient geo-search query processing,” in CIKM, 2011.

[9] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg, “Efficient
processing of top-k spatial keyword queries,” in SSTD, 2011.

[10] C. Zhang, Y. Zhang, W. Zhang, and X. Lin, “Inverted linear quadtree:
Efficient top k spatial keyword search.” in ICDE, 2013, pp. 901–912.

[11] C. Zhang, Y. Zhang, W. Zhang, X. Lin, M. A. Cheema, and X. Wang,
“Diversified spatial keyword search on road networks,” in EDBT, 2014.

[12] I. De Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in ICDE, 2008, pp. 656–665.

[13] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” PVLDB, vol. 2, no. 1, pp. 337–348, 2009.

[14] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha, “Filtering algorithms and implementation for very fast
publish/subscribe,” in SIGMOD Conference, 2001, pp. 115–126.

[15] S. E. Whang, H. Garcia-Molina, C. Brower, J. Shanmugasundaram,
S. Vassilvitskii, E. Vee, and R. Yerneni, “Indexing boolean expressions,”
PVLDB, vol. 2, no. 1, pp. 37–48, 2009.

[16] M. Sadoghi and H.-A. Jacobsen, “Be-tree: An index structure to
efficiently match boolean expressions over high-dimensional discrete
space,” in ACM SIGMOD, 2011, pp. 637–648.

[17] D. Zhang, C.-Y. Chan, and K.-L. Tan, “An efficient publish/subscribe
index for e-commerce databases,” PVLDB, vol. 7, no. 8, 2014.

[18] K. Mouratidis and H. Pang, “Efficient evaluation of continuous text
search queries,” IEEE TKDE, vol. 23, no. 10, pp. 1469–1482, 2011.

[19] A. Shraer, M. Gurevich, M. Fontoura, and V. Josifovski, “Top-k publish-
subscribe for social annotation of news,” PVLDB, 2013.

[20] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient continuously
moving top-k spatial keyword query processing,” in ICDE, 2011.

[21] W. Huang, G. Li, K.-L. Tan, and J. Feng, “Efficient safe-region con-
struction for moving top-k spatial keyword queries,” in CIKM, 2012.

[22] X. Chen, Y. Chen, and F. Rao, “An efficient spatial publish/subscribe
system for intelligent location-based services,” in DEBS, 2003.

[23] J. Bao, M. F. Mokbel, and C.-Y. Chow, “Geofeed: A location aware
news feed system,” in ICDE, 2012, pp. 54–65.

[24] L. Chen, G. Cong, X. Cao, and K.-L. Tan, “Temporal spatial-keyword
top-k publish/subscribe,” in ICDE, 2015.

[25] T. W. Yan and H. Garcia-Molina, “Duplicate removal in information
system dissemination,” in PVLDB, 1995, pp. 66–77.

[26] M. Terrovitis, P. Bouros, P. Vassiliadis, T. K. Sellis, and N. Mamoulis,
“Efficient answering of set containment queries for skewed item distri-
butions,” in EDBT, 2011, pp. 225–236.

[27] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf,
Computational geometry. Springer, 2000.

[28] J. L. Bentley, “Solutions to klees rectangle problems,” Technical report,
Carnegie-Mellon Univ., Pittsburgh, PA, Tech. Rep., 1977.

[29] A. N. Swami, “Optimization of large join queries: Combining heuristic
and combinatorial techniques,” in SIGMOD, 1989, pp. 367–376.

[30] M. Grigni and F. Manne, “On the complexity of the generalized block
distribution,” in Parallel Algorithms for Irregularly Structured Problems.
Springer, 1996, pp. 319–326.

[31] S. Kullback, Information theory and statistics. Courier Dover Publica-
tions, 1997.

