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Efficient tensor completion: Low-rank tensor train
Ho N. Phien1, Hoang D. Tuan1, Johann A. Bengua1 and Minh N. Do2

Abstract—This paper proposes a novel formulation of the
tensor completion problem to impute missing entries of data
represented by tensors. The formulation is introduced in terms
of tensor train (TT) rank which can effectively capture global
information of tensors thanks to its construction by a well-
balanced matricization scheme. Two algorithms are proposed
to solve the corresponding tensor completion problem. The
first one called simple low-rank tensor completion via tensor
train (SiLRTC-TT) is intimately related to minimizing the TT
nuclear norm. The second one is based on a multilinear matrix
factorization model to approximate the TT rank of the tensor
and called tensor completion by parallel matrix factorization
via tensor train (TMac-TT). These algorithms are applied to
complete both synthetic and real world data tensors. Simulation
results of synthetic data show that the proposed algorithms are
efficient in estimating missing entries for tensors with either
low Tucker rank or TT rank while Tucker-based algorithms
are only comparable in the case of low Tucker rank tensors.
When applied to recover color images represented by ninth-
order tensors augmented from third-order ones, the proposed
algorithms outperforms the Tucker-based algorithms.

Index Terms—Tensor completion, tensor train decomposition,
tensor train rank, tensor train nuclear norm, Tucker decompo-
sition.

I. INTRODUCTION

Tensors are multi-dimensional arrays, known as higher-
order generalizations of matrices and vectors [1]. Tensors
provide a natural way to represent multi-dimensional data
objects whose entries are indexed by several continuous or
discrete variables. Employing tensors and their decompositions
to process data objects has become increasingly popular since
[2]–[4]. For instance, a color image is a third-order tensor
defined by two indices for spatial variables and one index
for color mode. A video comprised of color images is a
fourth-order tensor with an additional index for a temporal
variable. Residing in extremely high-dimensional data spaces,
the tensors in practical applications are nevertheless often of
low-rank [1]. Consequently, they can be effectively projected
to much smaller subspaces underlying their decompositions
such as the CANDECOMP/PARAFAC (CP) [5], [6], Tucker
[7] and tensor train (TT) [8] or matrix product state (MPS)
[9]–[11].

Motivated by the success of low rank matrix completion
(LRMC) [12]–[14], much recent effort has been made to
extend its concept to low rank tensor completion (LRTC).
In fact, LRTC has been seen pivotal in computer vision
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and graphics, signal processing and machine learning [15]–
[21]. The common target is to recover missing entries of a
tensor from its partially observed entities [22]–[24]. Despite
its potential application, LRTC remains a grand challenge
due to the fact that minimization of the tensor rank, defined
as CP rank [1], is an NP-hard problem. There have been
some progress in formulating the LRTC via Tucker rank [15],
[18]. However, a crucial drawback of Tucker rank is that
its components are ranks of matrices constructed based on
an unbalanced matricization scheme (one mode versus the
rest). Therefore, the upper bound of each individual rank is
often small, and may not be suitable for describing global
information of the tensor, especially strongly correlated tensors
of high orders. In addition, the matrix rank minimization are
only efficient when the matrix is more balanced. As the rank
of a matrix is not more than min{n,m}, where m and n are
the number of rows and columns of the matrix, respectively,
the high ratio max{m,n}/min{m,n} would effectively rule
out the need of matrix rank minimization.

In this paper we introduce a novel formulation of LRTC
in the concept of TT rank [8] which is different from the
Tucker rank. Specifically, the TT rank is constituted by ranks
of matrices formed by a well-balanced matricization scheme,
i.e. matricize the tensor along one or a few modes. This
gives rise to a huge advantage for representing the tensor
rank in the sense that its components can have large upper
bounds. Consequently, it provides a much better means to
capture the global information in the tensor. We will also
analyze how the rank of a matrix is closely related to the
concept of von Neumann entropy in quantum information
theory [25]. Subsequently, it is shown that the weakness of
LRTC formulated by Tucker rank can be mitigated by utilizing
the TT rank.

Two algorithms are proposed to approximately solve the
proposed LRTC formulation, namely SiLRTC-TT and TMac-
TT. The former is based on the SiLRTC [15] which employs
the block coordinate descent (BCD) for optimization and tools
such as singular value thresholding from the matrix rank
minimization problem [12], [13]. The SiLRTC-TT mainly
solves the TT nuclear norm minimization problem that is a
convex surrogate for the new LRTC. Here, we define TT
nuclear norm of a tensor as a sum of weighted nuclear norms
of matrices formed by matricizing the tensor along one or
a few modes. The latter adapted from its counterpart, i.e.
TMac [21], is related to solving a weighted multilinear matrix
factorization model. Although this model is non-convex, it
can be solved effectively in the sense that no computationally
expensive SVD is needed compared to the former.

The algorithms are applied to complete both synthetic and
real world data described by tensors which are assumed to
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have low Tucker rank or TT rank. Empirical results simulated
by proposed algorithms for synthetic data are much more
efficient than the Tucker-based algorithms in the case of
low TT rank and are comparable in the case of low Tucker
rank tensors. When studying real world data such as color
images, we introduce a tensor augmentation scheme called
ket augmentation (KA) to represent a lower-order tensor by a
higher-order one without changing its number of entries. The
KA scheme extended from the one introduced in [26] provides
a perfect means to obtain higher-order tensor representation of
visual data. We apply the proposed algorithms to complete
a few color images represented by ninth-order tensors and
results show that our algorithms outperforms the Tucker-based
ones. Besides, we will show that our proposed algorithms
recover augmented tensors more efficiently than those without
applying augmentation scheme.

The rest of the paper is organized as follows. Section
II provides some notations and preliminaries of tensors. In
Section III, we firstly review the conventional formulation of
LRTC and then introduce our new formulation in terms of TT
rank. The algorithms are then proposed to solve the problem.
We introduce the tensor augmentation scheme KA in Section
IV. Section V presents simulation results. Finally, we conclude
our work in Section VI.

II. NOTATIONS AND PRELIMINARIES OF TENSORS

We adopt some mathematical notations and preliminaries
of tensors in [1]. A tensor is a multi-dimensional array and
its order (also known as way or mode) is the number of
its dimensions. Scalars are zero-order tensors denoted by
lowercase letters (x, y, z, . . .). Vectors and matrices are the
first- and second-order tensors which are denoted by boldface
lowercase letters (x, y, z,. . . ) and capital letters (X,Y, Z, . . .),
respectively. A higher-order tensor (the tensor of order three
or above) are denoted by calligraphic letters (X ,Y,Z, . . .).

An Nth-order tensor is denoted as X ∈ RI1×I2×···×IN
where Ik, k = 1, . . . , N is the dimension corresponding to
mode k. The elements of X are denoted as xi1···ik···iN , where
1 ≤ ik ≤ Ik, k = 1, . . . , N .

A mode-n fiber of a tensor X ∈ RI1×I2×···×IN is a
vector defined by fixing all indices but in and denoted by
xi1...in−1:in+1...iN .

Mode-n matricization (also known as mode-n unfolding
or flattening) of a tensor X ∈ RI1×I2×···×IN is the pro-
cess of unfolding or reshaping the tensor into a matrix
X(n) ∈ RIn×(I1···Ik−1Ik+1···IN ) by rearranging the mode-n
fibers to be the columns of the resulting matrix. Tensor element
(i1, . . . , in−1, in, in+1, . . . , iN ) maps to matrix element (in, j)
such that

j = 1 +

N∑
k=1,k 6=n

(ik − 1)Jk with Jk =

k−1∏
m=1,m 6=n

Im. (1)

The mode-n product of a tensor X ∈ RI1×I2×···×IN with a
matrix A ∈ RJ×In results into a new tensor of size I1×· · ·×
In−1 × J × In+1 × · · · × IN which is denoted as X ×n A.

Elementwise, it is described by

(X ×n A)i1···in−1jin+1···iN =

In∑
in=1

xi1···in···iNajin . (2)

The Tucker decomposition (TD) is a form of higher-order
principle component analysis [1], [7]. It is employed to decom-
pose a tensor into a core tensor multiplied by a matrix along
each mode. In general, for a given tensor X ∈ RI1×I2×···×IN ,
its TD is written as,

X = G ×1 A
(1) ×2 A

(2) · · · ×N A(N), (3)

where the core tensor G ∈ Rr1×r2···×rN and the factor
matrices A(k) ∈ Rrk×Ik , k = 1, . . . , N . The vector r =
(r1, r2, . . . , rN ), where rn is the rank of the corresponding
matrix X(n) denoted as rn = rank(X(n)), is called as the
Tucker rank of the tensor X .

The inner product of two tensors X ,Y ∈ RI1×I2×···×IN is
defined as

〈X ,Y〉 =
∑
i1

∑
i2

· · ·
∑
iN

xi1i2···iN yi1i2···iN . (4)

Accordingly, the Frobenius norm of X is ||X ||F =
√
〈X ,X〉.

III. THE FORMULATION OF TENSOR COMPLETION AND
ALGORITHMS

This section firstly revisits the conventional formulation of
LRTC based on the Tucker rank, a generalization of LRMC.
Then a new LRTC formulated in terms of the TT rank is
introduced with algorithms.

A. Conventional formulation of tensor completion

We give an overview of matrix completion before intro-
ducing the formulation for tensor completion. The problem
on how to recover missing entries of a low-rank matrix
T ∈ Rm×n from its partially known entries given by a subset
Ω can be studied via the well-known optimization problem
[27]:

min
X

rank(X) s.t. XΩ = TΩ. (5)

The missing entries of X are estimated such that the rank of
X is as small as possible. Due to the combinational nature of
the function rank(·), problem (5), however, is NP-hard and one
needs to look for its surrogates. Minimization of the matrix
nuclear norm has proved as an excellent approximation of the
matrix rank. This leads to the following convex optimization
problem for matrix completion [12], [13], [28]:

min
X

||X||∗ s.t. XΩ = TΩ, (6)

where the nuclear norm ||X||∗ is the summation of the singular
values of X . Note that this matrix nuclear norm optimization
problem is efficient only when X is balanced which implies
that m ≈ n.

Alternatively, one can also apply the low-rank matrix fac-
torization model to solve the matrix completion problem [29]:

min
U,V,X

1

2
||UV −X||2F s.t. XΩ = TΩ, (7)



3

where U ∈ Rm×r, V ∈ Rr×n and X ∈ Rm×n and the integer
r is the estimated rank of the matrix T .

The matrix completion can be generalized for tensor
underlying the concept of tensor rank, e.g. the CANDE-
COMP/PARAFAC rank (CP-rank), Tucker rank [1], [7]. For
instance, in terms of Tucker rank, completing an N th-order
tensor T ∈ RI1×I2···×IN from its known entries given by an
index set Ω is related to solving the following optimization
problem [15], [18], [20], [21]:

min
X(k)

N∑
k=1

αkrank(X(k)) s.t. XΩ = TΩ. (8)

where {αk}Nk=1 are defined as weights fulfilling condition∑N
k=1 αk = 1. The Eq. (8) is a weighted multilinear matrix

completion problem which is still NP-hard. Therefore, one
needs to switch to an alternative by generalizing the matrix
case. For instance, (8) can be converted to the following
optimization problem [15]:

min
X(k)

N∑
k=1

αk||X(k)||∗ s.t. XΩ = TΩ, (9)

where
∑N
k=1 αk||X(k)||∗ can be defined as Tucker nuclear

norm of the tensor. This problem can be then solved by simply
applying known methods such as the block coordinate descent
(BCD) to alternatively optimize a group of variables while the
other groups remain fixed. Besides, one can generalize the low-
rank matrix factorization model in (7) as a subsitute for (8) and
then apply the BCD method with the nonlinear Gauss-Seidal
method to solve it [20], [21], [29].

Although the Tucker-based LRTC problem has become
increasingly popular, it is only appropriate for the tensors with
either low Tucker rank or low orders and might be less efficient
when applying to real world data represented by tensors of or-
ders higher than three. This weakness comes from the fact that
each matrix X(k) in (8) is obtained by matricizing the tensor
along one single mode. As a consequence, it is unbalanced
and the corresponding rank is not large enough to capture the
global correlation between elements in the tensor. Even when
all the modes have the same dimension (I1 = · · · = IN ≡ I),
these matrices are highly unbalanced. We can clarify this
observation via the concept of von Neumann entropy [25] as
follows.

Represent X as a pure state in the space RI1×I2···×IN ,

X =
∑

i1,i2...,iN

xi1i2···iN ei1 ⊗ ei2 · · · ⊗ eiN , (10)

where “⊗” denotes a tensor product [1], eik ∈ RIk forms an
orthonormal basis in RIk for each k = 1, . . . , N . Applying
mode-k matricization of X results into X(k) representing
a pure state of the composite system AB in the space
HAB ∈ Rm×n, which is a tensor product of two subspaces
HA ∈ Rm and HB ∈ Rn of dimensions m = Ik and

n =
N∏

l=1,l 6=k
Il, respectively. The subsystems A and B are

seen as two contigous partitions consisting of mode k and all

other modes of the tensor, respectively. It follows from (10)
that

X(k) =
∑
ik,j

xikjeik ⊗ ej , (11)

where the new index j is defined as in (1), ej = ⊗Nl=1,l 6=keil ∈
Rn. According to the Schmidt decomposition [25], there exist
orthonormal bases {uAl } in HA and {vBl } in HB such that,

X(k) =

rk∑
l=1

λluAl ⊗ vBl , (12)

where rk is the rank of X(k), λl are nonvanishing singular val-
ues and {uAl } and {vBl } are columns of orthonormal matrices
U and V which are obtained from the SVD X(k) = UλV T ,
respectively. The correlation between two subsystems A and
B can be studied via von Neumann entropy defined as [25]:

SA = −Trace(ρA log2(ρA)), (13)

where ρA is called the reduced density matrix operator of the
composite system and computed by taking the partial trace of
the density matrix ρAB with respect to B. Specifically, we
have

ρAB = X(k) ⊗ (X(k))
T

=
( rk∑
l=1

λluAl ⊗ vBl
)
⊗
( rk∑
j=1

λjuAj ⊗ vBj
)T
.(14)

Then ρA is computed as

ρA = TraceB(ρAB)

=

r∑
l=1

λ2
l uAl ⊗ (uAl )T , (15)

Substituting (15) to (13) yields

SA = −
rk∑
l=1

λ2
l log2 λ

2
l . (16)

Similarly,

SB = −Trace(ρB log2(ρB))

= −
rk∑
l=1

λ2
l log2 λ

2
l , (17)

which is the same with SA, simply SA = SB = S. This
entropy reflects the correlation or degree of entanglement
between subsystem A and its complement B [30]. Without
loss of generality, the normalization condition

∑rk
l=1 λ

2
l = 1

can be imposed, so 0 ≤ S ≤ log2 rk. Obviously, there
is no correlation between subsystems A and B whenever
S = 0 (where λ1 = 1 and the other singular values are
zeros). There exists correlation between subsystems A and
B whenever S 6= 0 with its maxima S = log2 rk (when
λ1 = · · · = λrk = 1/

√
rk). If the singular values decay

significantly, e.g. exponential decay, we can also keep a
few rk (rk � m) largest singular values of λ without
considerably losing accuracy in quantifying the amount of
correlation between the subsystems. Then rk is referred to
as the approximate low rank of the matrix X(k) which means
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that the amount of correlation between the elements in the
matrix is small. On the contrary, if two subsystems A and
B are highly correlated, i.e. the singular values decay very
slowly, then rk needs to be as large as possible to capture
the correlation in the tensor. Therefore, the problem of matrix
rank minimization is in fact intimately related to the problem
of von Neumann entropy minimization.

From the above analysis, we see that the amount of cor-
relation between elements in the matrix X(k) depends on the
rank rk which is bounded by m = Ik. Therefore, when the
dimensions of modes are slightly different or the same, that is
I1 ≈ I2 ≈ · · · ≈ IN ≈ I , the matrix X(k) is essentially
unbalanced due to m � n when either I or N is large.
As a result, the limit of each rk is too small to describe
the correlation of the tensor in case the tensor X has higher
order (N > 3) that makes the Tucker-based LRTC no longer
appropriate for a highly-correlated tensor. In the next section
we introduce a new LRTC problem formulated in terms of TT
rank defined by more balanced matrices.

B. Tensor completion formulation in the concept of tensor
train rank and algorithms

The tensor train (TT) decomposition is applied to decom-
pose a higher-order tensor into a sequence of connected lower-
order tensors [8]. Using Vidal’s decomposition [31], the TT
decomposition of a tensor described by (10) can be written in
the following form,

X =
∑

i1,...,iN

Γ
[1]
i1
λ[1] · · ·λ[N−1]Γ

[N ]
iN

ei1 ⊗ · · · ⊗ eiN ,(18)

where for k = 1, . . . , N , Γ
[k]
ik

is an rk−1 × rk matrix and λ[k]

is the rk × rk diagonal singular matrix, r0 = rN+1 = 1. For
every k, the following orthogonal conditions are fulfilled:

Ik∑
ik=1

Γ
[k]
ik
λ[k](Γ

[k]
ik
λ[k])T = I[k−1], (19)

Ik∑
ik=1

(λ[k−1]Γ
[k]
ik

)Tλ[k−1]Γ
[k]
ik

= I[k], (20)

where I[k−1] and I[k] are the identity matrices of sizes rk−1×
rk−1 and rk × rk, respectively. Based on the form (18), each
component rk of the so-called TT rank of the tensor, simply
defined as r = (r1, r2, . . . , rN−1), can be determined directly
via the singular matrices λ[k]. Specifically, to determine rk,
rewrite (18) as

X =
∑

i1,i2...,iN

u[1···k]i1···ikλ[k]v[k+1···N ]ik+1···iN , (21)

where

u[1···k]i1···ik = Γ
[1]
i1
λ[1] · · ·Γ[k]

ik
⊗kl=1 eil , (22)

and

v[k+1···N ]ik+1···iN = Γ
[k+1]
ik+1

λ[k+1] · · ·Γ[N ]
iN
⊗Nl=k+1 eil . (23)

We can also rewrite (21) in terms of the matrix form of an
SVD as

X[k] = Uλ[k]V T , (24)

where X[k] ∈ Rm×n (m =
∏k
l=1 Il, n =

∏N
l=k+1 Il) is the

mode-(1, 2, . . . , k) matricization of the tensor X [8], U ∈
Rm×rk and V ∈ Rn×rk are orthogonal matrices. Obviously,
rk, defined as number of nonvanishing singular values of λ[k],
is the rank of X[k].

In practice, the mode-(1, 2, . . . , k) matricization X[k] of
tensor X can be obtained by reshaping the tensor X in such
a way that the first k indices enumerate the rows of X[k], and
the last (N − k) enumerate the columns of X[k] [8], [32].
Specifically, the tensor element (i1, i2, . . . , iN ) of X maps to
the element (i, j) of X[k] for

i = 1 +

k∑
m=1

(
(im − 1)

m−1∏
l=1

Il
)
, (25)

j = 1 +

N∑
m=k+1

(
(im − 1)

m−1∏
l=k+1

Il
)
. (26)

Since matrix X[k] is obtained by matricizing along a few k
modes rather than one single mode, its rank rk is bounded
by min(

∏k
l=1 Il,

∏N
l=k+1 Il). Therefore TT rank is in general

more appropriate than Tucker rank for quantifying correlation
of higher-order tensors.

We now propose to formulate the LRTC problem in terms
of TT rank as

min
X[k]

N−1∑
k=1

αkrank(X[k]) s.t. XΩ = TΩ, (27)

where αk denotes the weight that the rank of the matrix X[k]

contributes to the TT rank that the condition
∑N−1
k=1 αk = 1 is

satisfied. The LRTC problem is now relaxed to the weighted
multilinear matrix completion problem which is similar to (8).
It is still difficult to directly tackle as rank(·) is presumably
hard. Thus, we will convert this problem into two separate
problems. The first one based on the so-called TT nuclear
norm, defined as

||X ||∗ =

N−1∑
k=1

αk||X[k]||∗, (28)

is given by

min
X

N−1∑
k=1

αk||X[k]||∗ s.t. XΩ = TΩ, (29)

The problem (29) is defined similarly to (9) where the Tucker
nuclear norm is used instead. Besides, from (29) we can
recover the square model [32] by choosing the weights such
that αk = 1 if k = round(N/2) otherwise αk = 0.

The problem (29) can be further converted to the following
problem:

min
X ,Mk

N−1∑
k=1

αk||Mk||∗ +
βk
2
||X[k] −Mk||2F

s.t. XΩ = TΩ,

(30)

where βk are positive numbers and can be solved by em-
ploying the BCD method for the optimization which will be
discussed later in this section.
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The second proposed problem is based on the multilinear
matrix factorization model. More specifically, given a matrix
X[k] ∈ Rm×n of rank rk, it can be factorized as X[k] = UV
where U ∈ Rm×rk and V ∈ Rrk×n. Therefore, instead of
optimizing the nuclear norm of the unfolding matrices X[k],
the Frobenius norm is minimized as follows,

min
Uk,Vk,X

N−1∑
k=1

αk
2
||UkVk −X[k]||2F

s.t. XΩ = TΩ,

(31)

where Uk ∈ R
∏k
j=1 Ij×rk and Vk ∈ Rrk×

∏N
j=k+1 Ij . This

model is similar to the one proposed in [20], [21] (which is
an extension of the matrix completion model [29]) where the
Tucker rank is employed.

To solve the convex but nondifferentiable optimization prob-
lem described by (30), one can adapt the TT nuclear norm to
the algorithms such as SiLRTC, FaLRTC in [15]. Besides,
in order to solve (31), we can apply the alternating least
squares (ALS) technique to variationally optimize U, V,X
until a convergence is obtained. Specifically, one can modify
the algorithms such as TMac and TC-MLFM in [21] and
[20], respectively by incorporating the concept of TT rank
into them. The essential advantage of this multilinear matrix
factorization model when compared to the model in (30) is
that it avoids a lot of SVDs and hence can substantially save
the computational time.

Let us propose the first algorithm to solve the optimization
problem in (30) which is deeply rooted by the SiLRTC
algorithm [15]. We call our algorithm “SiLRTC-TT” which
stands for “simple low rank tensor completion via tensor
train”. The central concept of this algorithm is based on the
BCD method to alternatively optimize a group of variables
while the other groups remain fixed. More specifically, the
variables are divided into two main groups. The first one
contains the unfolding matrices M1,M2, . . . ,MN−1 and the
other is tensor X . Computing each matrix Mk is related to
solving the following optimization problem:

min
Mk

αk||Mk||∗ +
βk
2
||X[k] −Mk||2F , (32)

with fixed X[k]. The optimal solution for this problem has the
closed form [13] which is determined by

Mk = Dγk(X[k]), (33)

where γk = αk
βk

and Dγk(X[k]) denotes the thresholding SVD
of X[k] [12]. Specifically, if the SVD of X[k] = UλV T , its
thresholding SVD is defined as:

Dγk(X[k]) = UλγkV
T , (34)

where λγk = diag(max(λl − γk, 0)). After updating all the
Mk matrices, we turn into another block to compute the tensor
X which elements are given by

xi1···iN =

{ (∑N
k=1 βkfold(Mk)∑N

k=1 βk

)
i1···iN

(i1 · · · iN ) /∈ Ω

ti1···iN (i1 · · · iN ) ∈ Ω
(35)

The pseudo-code of this algorithm is given in Algorithm I.
The convergence condition is reached when the relative error
between two successive tensors X is smaller than a threshold.
The algorithm is guaranteed to be converged and gives rise to
a global solution since the objective in (30) is a convex and the
nonsmooth term is separable. We can also apply this algorithm
for the square model [32] by simply choosing the weights such
that αk = 1 if k = round(N/2) otherwise αk = 0. For this
particular case, let us call the algorithm as SiLRTC-Square.

Algorithm I: SiLRTC-TT

Input: The observed data T ∈ RI1×I2···×IN , index set Ω.
Parameters: αk, βk, k = 1, . . . , N − 1.

1: Initialization: X 0, with X 0
Ω = TΩ, l = 0.

2: While not converged do:
3: for k = 1 to N − 1 do
4: Unfold the tensor X l to get Xl

[k]

5: M l+1
k = Dαk

βk

(Xl
[k]

)

6: end for
7: Update X l+1 from M l+1

k by (35)
8: End while

Output: The recovered tensor X as an approximation of T

In order to solve the problem given by (31), we apply
the BCD method to alternatively optimize different groups
of variables. Specifically, we can first solve the following
problem:

min
Uk,Vk,X[k]

||UkVk −X[k]||2F , (36)

for k = 1, 2, . . . , N−1. As the problem is convex with respect
to each block of variables Uk, Vk and X[k] while the other two
are fixed, we have the following updates:

U l+1
k = X l

[k](V
l
k)T (V lk(V lk)T )†, (37)

V l+1
k = ((U l+1

k )TU l+1
k )†(U l+1

k )T )X l
[k] (38)

X l+1
[k] = U l+1

k V l+1
k , (39)

where “†”denotes the Moore-Penrose pseudoinverse. It was
shown in [21] that, we can replace (37) by the following one:

U l+1
k = X l

[k](V
l
k)T , (40)

to avoid computing the Moore-Penrose pseudoinverse
(V lk(V lk)T )†. The rationale behind this is that we only need the
product U l+1

k V l+1
k to compute X l+1

[k] as in (39) that is the same
when either (37) or (40) is used. After updating U l+1

k , V l+1
k

and X l+1
[k] for all k = 1, 2, . . . , N − 1, we compute elements

of the tensor X l+1 as follows:

xl+1
i1···iN =

{ (∑N−1
k=1 αkfold(X l+1

[k] )
)
i1···iN

(i1 · · · iN ) /∈ Ω

ti1···iN (i1 · · · iN ) ∈ Ω
(41)

Let us name the algorithm as TMac-TT which stands for
“tensor completion by parallel matrix factorization in the
concept of tensor train” and its pseudo-code is summarized in
Algorithm II. Again, the Algorithm II can be applied for the
square model [32] by choosing the weights such that αk = 1
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if k = round(N/2) otherwise αk = 0, and we call it as TMac-
Square.

Algorithm II: TMac-TT

Input: The observed data T ∈ RI1×I2···×IN , index set Ω.
Parameters: αi, ri, i = 1, . . . , N − 1.

1: Initialization: U0, V 0,X 0, with X 0
Ω = TΩ, l = 0.

While not converged do:
2: for k = 1 to N − 1 do
3: Unfold the tensor X l to get Xl

[k]

4: U l+1
i = Xl

[k]
(V l

k)T

5: V l+1
k = ((U l+1

k )TU l+1
k )†(U l+1

k )TXl
[k]

6: Xl+1
[k]

= U l+1
k V l+1

k

7: end
8: Update the tensor X l+1 using (41)
End while

Output: The recovered tensor X as an approximation of T

C. Computational complexity of algorithms

We analyze the computational complexity of algorithms
applied to complete a tensor X ∈ RI1×I2×···×IN in the Table
I where we assume that I1 = I2 = · · · = IN = I , the Tucker
rank and TT rank are the same r1 = r2 = · · · = rN = r.

Table I: Computational complexity of algorithms for one
iteration.

Algorithm Computational complexity

SiLRTC O(NIN+1)

SiLRTC-TT O(I3N/2 + I3N/2−1)
TMac O(3NINr)
TMac-TT O(3(N − 1)INr)

IV. TENSOR AUGMENTATION

In this section, we introduce the ket augmentation (KA)
to represent a lower-order tensor by a higher-order one, i.e.
to cast an N th-order tensor T ∈ RI1×I2×···×IN into a Kth-
order tensor T̃ ∈ RJ1×J2×···×JK , where K ≥ N and∏N
l=1 Il =

∏K
l=1 Jl. Higher-order representation of the tensor

offers some important advantages. For instance, TT decompo-
sition is more efficient for the augmented tensor because the
local structure of the data can be exploited effectively in terms
of computational resources. Actually, if the tensor is slightly
correlated, its augmented tensor can be represented by a low-
rank TT [8], [26].

The KA was originally introduced in [26] for casting a
grayscale image into real ket state of a Hilbert space, which
is simply a higher-order tensor, using an appropriate block
structured addressing. Here we generalize the KA scheme for
third-order tensors T ∈ RI1×I2×I3 that represent color images,
where I1× I2 = 2n× 2n (n ≥ 1 ∈ Z) is the number of pixels
in the image and I3 = 3 is the number of colors (red, green
and blue). Let us start with an initial block, labeled as i1, of
2 × 2 pixels corresponding to a single color j (assume that

the color is indexed by j where j = 1, 2, 3 corresponding to
red, green and blue colors, respectively). This block can be
represented as

T[21×21×j] =

4∑
i1=1

ci1jei1 , (42)

where ci1j is the pixel value corresponding to color j and ei1
is the orthonormal base which is defined as e1 = (1, 0, 0, 0),
e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1). The
value i1 = 1, 2, 3 and 4 can be considered as labeling the up-
left, up-right, down-left and down-right pixels, respectively.
For all three colors, we have three blocks which are presented
by

T[21×21×3] =

4∑
i1=1

3∑
j=1

ci1jei1 ⊗ uj , (43)

where uj is also an orthonormal base which is defined as
u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1). We now consider

Figure 1: A structured block addressing procedure to cast an
image into a higher-order tensor. (a) Example for an image of
size 2×2×3 represented by (43). (b) Illustration for an image
of size 22 × 22 × 3 represented by (44).

a larger block labeled as i2 make up of four inner sub-blocks
for each color j as shown in Fig. 1. In total, the new block is
represented by

T[22×22×3] =

4∑
i2=1

4∑
i1=1

3∑
j=1

ci2i1jei2 ⊗ ei1 ⊗ uj . (44)

Generally, this block structure can be extended to a size of
2n × 2n × 3 after several steps until it can present all the
values of pixels in the image. Finally, the image can be cast
into an (n + 1)th-order tensor C ∈ R4×4×···×4×3 containing
all the pixel values as follows,

T[2n×2n×3] =

4∑
in,...,i1=1

3∑
j=1

cin···i1jein ⊗ · · · ⊗ ei1 ⊗ uj . (45)

When the image is represented by a real ket state, its entan-
glement entropy can reflect the correlation between individual
pixels as due to their relative positions in the image. Besides,
this presentation is suitable for the image processing as it not
only preserves the pixels values of the image but also rearrange
them in a higher-order tensor such that the richness of textures
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in the image can be studied via the correlation between modes
of the tensor [26].

V. SIMULATIONS

We apply the proposed algorithms for completing both syn-
thetic data and color images. Simulation results are compared
with commonly used algorithms, i.e. SiLRTC [15], SiLRTC-
Square [32], TMac [21] and TMac-Square. To measure perfor-
mance of a LRTC algorithm we compute the relative square
error (RSE) between the approximately recovered tensor X
and the original one T , which is defined as,

RSE = ||X − T ||F /||T ||F . (46)

It is hard to choose the parameters in the models so that
optimal solutions can be achieved. In experiments, we simply
choose the weights αk for our proposed algorithms as follows:

αk =
δk∑N−1
k=1 δk

with δk = min(

k∏
l=1

Il,

N∏
l=k+1

Il),(47)

where k = 1, . . . , N − 1. The positive parameters are chosen
by βk = fαk, where f is empirically chosen from one of the
following values in [0.01, 0.05, 0.1, 0.5, 1] in such a way that
the algorithm performs the best. For the algorithms used to
compare with ours, i.e. SiLRTC and TMac the weights are
chosen as follows:

αk =
Ik∑N
k=1 Ik

, (48)

where k = 1, . . . , N . The positive parameters are chosen such
that βk = fαk, where f is empirically chosen from one of
the following values in [0.01, 0.05, 0.1, 0.5, 1] which gives the
best performance. The convergence criterion of our proposed
algorithms is defined by computing the relative error of the
tensor X between two successive iterations as follows:

ε =
||X l+1 −X l||F
||T ||F

≤ tol, (49)

where we set tol = 10−4 and the maximum number of
iterations is maxiter = 1000.

In what follows, we perform simulations for algorithms with
respect to different missing ratios (mr) defined as,

mr =
p∏N

k=1 Ik
, (50)

where p is the number of missing entries which are often
chosen randomly from the tensor T based on a uniform dis-
tribution. These simulations are implemented under a Matlab
environment using the FEIT cluster from the University of
Technology Sydney.

A. Synthetic data completion

We firstly perform the simulation on two different types of
low-rank tensors which are generated synthetically in such a
way that the Tucker and TT rank are known in advance.

1) Completion of low TT rank tensor: The N th-order
tensors T ∈ RI1×I2···×IN of TT rank (r1, r2, . . . , rN−1) are
generated such that its elements is represented by a TT format
[8]. Specifically, its elements is ti1i2...iN = A

[1]
i1
A

[2]
i2
· · ·A[N ]

iN
,

where A[1] ∈ RI1×r1 , A[N ] ∈ RrN×IN and A[k] ∈
Rrk−1×Ik×rk with k = 2, . . . , N − 1 are generated randomly
with respect to the standard Gaussian distribution N (0, 1).
For simplicity, in this paper we set all components of the TT
rank the same and so does the dimension of each mode, i.e.
r1 = r2 = · · · = rN−1 = r and I1 = I2 = · · · = IN = I .

The plots of RSE with respect to mr are shown in the
Figure. 2 for tensors of different sizes, 40×40×40×40 (4D),
20×20×20×20×20 (5D), 10×10×10×10×10×10 (6D) and
10×10×10×10×10×10×10 (7D) and the corresponding TT
rank tuples are (10, 10, 10) (4D), (5, 5, 5, 5) (5D), (4, 4, 4, 4, 4)
(6D) and (4, 4, 4, 4, 4, 4) (7D). From the plots we can see that
TMac-TT shows best performance in most cases. Especially,
TMac-TT can recover the tensor successfully despite the high
missing ratios. Particularly, in most cases with high missing
ratios, e.g. mr = 0.9, it can recover the tensor with RSE ≈
10−4. More importantly, the proposed algorithms SiLRTC-TT
and TMac-TT often performs better than their corresponding
counterparts, i.e. SiLRTC and TMac in most cases.
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Figure 2: The RSE comparison when applying different LRTC
algorithms to synthetic random tensors of low TT rank.
Simulation results are shown for different tensor dimensions,
4D, 5D, 6D and 7D.

For a better comparison on the performance of different
LRTC algorithms, we present the phase diagrams using the
grayscale color to estimate how successfully a tensor can be
recovered for a range of different TT rank and missing ratios.
If RSE ≤ ε where ε is a small threshold, we say that the tensor
is recovered successfully and is represented by a white block
in the phase diagram. Otherwise, if RSE > ε, the tensor is
recovered partially with a relative error and the block color is
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gray. Especially the recovery is completely failed if RSE = 1.
Concretely, we show in Fig. 3 the phase diagrams for different
algorithms applied to complete a 5D tensor of size 20× 20×
20 × 20 × 20 where the TT rank r varies from 2 to 16 and
ε = 10−2. We can see that our LRTC algorithms outperform
the others. Especially, TMac-TT always recovers successfully
the tensor with any TT rank and missing ratio.
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Figure 3: Phase diagrams for low TT rank tensor completion
when applying different algorithms to a 5D tensor.

2) Completion of low Tucker rank tensor: Let us now
apply our proposed algorithms to synthetic random tensors
of low Tucker rank. The N th-order tensor T ∈ RI1×I2···×IN
of Tucker rank (r1, r2, . . . , rN ) is constructed by T =
G ×1 A

(1) ×2 A
(2) · · · ×N A(N), where the core tensor G ∈

Rr1×r2···×rN and the factor matrices A(k) ∈ Rrk×Ik , k =
1, . . . , N are generated randomly by using the standard Gaus-
sian distribution N (0, 1). Here, we choose r1 = r2 = · · · =
rN = r and I1 = I2 = · · · = IN = I for simplicity. To
compare the performance between the algorithms, we show in
the Fig. 4 the phase diagrams for different algorithms applied
to complete a 5D tensor of size 20× 20× 20× 20× 20 where
the Tucker rank r varies from 2 to 16 and ε = 10−2. We can
see that both TMac and TMac-TT perform much better than
the others and. Besides, SiLRTC-TT shows better performance
when compared to SiLRTC and SiLRTC-Square. Similarly,
TMac-TT is better than its particular case TMac-Square.

In summary, we can see that although the tensors are
generated synthetically to have low Tucker ranks, the proposed
algorithms are still capable of producing results which are as
good as the ones obtained by the Tucker-based algorithms.
In order to have a better comparison between algorithms, we
show results of applying them to the real world data such as

color images where the ranks of the tensors are not known in
advance in the next subsection.
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Figure 4: Phase diagrams for low Tucker rank tensor comple-
tion when applying different algorithms to a 5D tensor.

B. Image completion

A set of color images, namely “Peppers”, “Lenna” and
“House” are employed to test the algorithms with different
missing ratios. All the images are initially represented by third-
order tensors which have same sizes of 256 × 256 × 3. Note
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Figure 5: Performance comparison between different tensor
completion algorithms based on the RSE vs the missing rate
when applied to the Peppers image. (a) Original tensor (no
order augmentation). (b) Augmented tensor using KA scheme.

that when completing the third-order tensors, we do not expect
that our proposed methods prevail against the conventional
ones due to the fact that the TT rank of the tensor is a special
case of the Tucker rank. Thus, performance of the algorithms
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should be mutually comparable. However, for the purpose of
comparing the performance between different algorithms for
real data (images) represented in terms of higher-order tensors,
we apply tensor augmentation scheme KA mentioned above
to reshape third-order tensors to higher-order ones without
changing the number of entries in the tensor. Specifically,
we start our simulation by casting a third-order tensor T ∈
R256×256×3 into a ninth-order T̃ ∈ R4×4×4×4×4×4×4×4×3

and then applying the tensor completion algorithms to impute
its missing entries. We perform the simulation for the Peppers
and Lenna images where missing entries of each image are
chosen randomly according to a uniform distribution, the
missing ratio mr varies from 0.1 to 0.9. In Fig. 5, we compare
performance of algorithms on completing the Peppers image.
We can see that, when the image is represented by a third-
order tensor, the performance of the algorithms are comparable
(The TMac-TT is actually slightly better than the others in
most of the missing ratios). However, for the case of the
ninth-order tensors, the performance of the algorithms are
rigorously distinguished. Specifically, our proposed algorithms
(especially TMac-TT) prevail against the others. We also
illustrate the recovered images for mr = 0.7 in Fig. 6. This
shows that our proposed algorithms give really good results
in the case of augmented tensors, meanwhile the compared
algorithms seem to be inefficient. Furthermore, using the KA
scheme to increase the tensor order, SiLRTC-TT and TMac-
TT significantly improve the accuracy when compared to the
cases without augmentation. More precisely, TMac-TT gives
the best results RSE ≈ 0.088 with respect to the case of
using KA scheme. Same experiment is performed on the Lenna
image and recovery results are shown in Fig. 7 and Fig. 8. The
results also show that TMac-TT gives the best results for the
augmented tensor using the KA scheme.

Original image mr =0.7

RSE =0.129 RSE =0.134 RSE =0.121 RSE =0.109 RSE =0.135 RSE =0.110

RSE =0.394

SiLRTC

RSE =0.134

SiLRTC-Square

RSE =0.114

SiLRTC-TT

RSE =0.397

TMac

RSE =0.172

TMac-Square

RSE =0.088

TMac-TT

Original image mr =0.7

RSE =0.129 RSE =0.134 RSE =0.121 RSE =0.109 RSE =0.135 RSE =0.110

RSE =0.394

SiLRTC

RSE =0.134

SiLRTC-Square

RSE =0.114

SiLRTC-TT

RSE =0.397

TMac

RSE =0.172

TMac-Square

RSE =0.088

TMac-TT

Figure 6: Recover the Peppers image with 70% of missing
entries using different algorithms. Top row from left to right:
the original image and its copy with 70% of missing entries.
Second and third rows represent the recovery results of third-
order (no order augmentation) and ninth-order tensors (KA
augmentation), using different algorithms: SiLRTC, SiLRTC-
Square, SiLRTC-TT, TMac, TMac-Square and TMac-TT from
the left to the right, respectively.

We perform the same above experiment on the House image,
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Figure 7: Performance comparison between different tensor
completion algorithms based on the RSE vs the missing rate
when applied to the Lenna image. (a) Original tensor (no order
augmentation). (b) Augmented tensor using KA scheme.
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Figure 8: Recover the Lenna image with 90% of missing
entries using different algorithms. Top row from left to right:
the original image and its copy with 90% of missing entries.
Second and third rows represent the recovery results of third-
order (no order augmentation) and ninth-order tensors (KA
augmentation), using different algorithms: SiLRTC, SiLRTC-
Square, SiLRTC-TT, TMac, TMac-Square and TMac-TT from
the left to the right, respectively.

however, the missing entries are now chosen as the white text,
and hence the missing rate is fixed. The result is shown in
Fig. 9. In the cases of tensor augmentation, the conventional
algorithms SiLRTC and TMac do not perform well meanwhile
our proposed algorithms do. Using the KA scheme, better
results can be achieved by employing our algorithms when
compared to the case without using the augmentation schemes.

To sum up, we see that the TT-based algorithms outperforms
the Tucker-based ones when applying to the images repre-
sented by ninth-order tensors T̃ ∈ R4×4×4×4×4×4×4×4×3.
This is because the components of TT rank can approximately
vary in a broad range of values (the maximum value it can
reach is 256) to capture the global information of the images.
On the contrary, the components of Tucker rank can have value
up to 4 due to the mode-k matricization Xk ∈ R4×49152.
Consequently, the Tucker-based algorithms are not reliable due
to the naturally small Tucker rank.
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Figure 9: Recover the House image with missing entries
described by the white letters using different algorithms. Top
row from left to right: the original image and its copy with
white letters. Second and third rows represent the recovery
results of third-order (no order augmentation) and ninth-
order tensors (KA augmentation), using different algorithms:
SiLRTC, SiLRTC-Square, SiLRTC-TT, TMac, TMac-Square
and TMac-TT from the left to the right, respectively.

VI. CONCLUSION

We have proposed efficient LRTC algorithms based on the
concept of the TT decomposition. The SiLRTC-TT algorithm
is applied to minimize the TT rank of the tensor by solving the
TT nuclear norm optimization. Meanwhile, TMac-TT is based
on the multilinear matrix factorization model to minimize the
TT-rank. The latter is more computationally efficient due to
the fact that it does not need the SVD which is different
from the former. The proposed algorithms are employed to
simulate with both synthetic and real world data represented
by higher-order tensors and their performance are compared
with their replicates, which are formulated in terms of Tucker
rank. For synthetic data, on the one hand our algorithms
prevail the other when the tensors have low TT rank. On
the other hand, their performance are comparable in case of
low Tucker rank tensors. Therefore, the TT-based algorithms
are quite promising and reliable when applying to real world
data. To validate this, we apply the algorithms to study the
image completion problem. Benchmark results show that when
applied to original tensors without order augmentation, all
algorithms are comparable to each other. However, in the
case of augmented tensors, our proposed algorithms not only
outperform the others but also provide better recovery results
when compared to the case without tensor order augmentation.

Although the proposed algorithms can potentially be applied
to complete tensors with a wide range of low tensor ranks,
i.e. Tucker rank or TT rank, the optimal parameters such as
weights and TT rank cannot be chosen automatically rather
than empirically. We plan to further improve the algorithms
by developing a scheme to adaptively choose these parameters.
Besides, their applications to data compression, text mining,
image classification and video indexing are under our interest.
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