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The infinite projected entangled pair states (iPEPS) algorithm [J. Jordan et al., Phys. Rev. Lett. 101, 250602
(2008)] has become a useful tool in the calculation of ground-state properties of two-dimensional quantum
lattice systems in the thermodynamic limit. Despite its many successful implementations, the method has some
limitations in its present formulation which hinder its application to some highly entangled systems. The purpose
of this paper is to unravel some of these issues, in turn enhancing the stability and efficiency of iPEPS methods.
For this, we first introduce the fast full update scheme, where effective environment and iPEPS tensors are both
simultaneously updated (or evolved) throughout time. As we shall show, this implies two crucial advantages:
(i) dramatic computational savings and (ii) improved overall stability. In addition, we extend the application
of the local gauge fixing, successfully implemented for finite-size PEPS [M. Lubasch et al., Phys. Rev. B 90,
064425 (2014)], to the iPEPS algorithm. We see that the gauge fixing not only further improves the stability of
the method but also accelerates the convergence of the alternating least-squares sweeping in the (either “full” or
“fast full”) tensor update scheme. The improvement in terms of computational cost and stability of the resulting
“improved” iPEPS algorithm is benchmarked by studying the ground-state properties of the quantum Heisenberg
and transverse-field Ising models on an infinite square lattice.
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I. INTRODUCTION

Recently, tensor networks have emerged as a powerful
tool to understand quantum many-body systems [1]. From
the point of view of numerical simulations there have been a
number of novel algorithms developed, whose inner workings
are deeply rooted in the theory of quantum entanglement. In all
these algorithms quantum many-body states are conveniently
represented by tensor networks that efficiently capture the
natural structure of quantum correlations in the system (such
as the so-called entanglement area law [2–6]). Many important
classes of states can be accurately approximated by a tensor
network with a number of parameters that depend only
polynomially on the size of the system. Such properties, among
others, have enabled tensor network methods to break the
curse of dimensionality, namely, the fact that the Hilbert-space
dimension of a quantum many-body system is exponentially
large in the number of particles. Thanks to this, it is now
possible to efficiently simulate quantum many-body systems
by targeting the relevant tiny corner of quantum states (e.g.,
those satisfying an area law) inside of the exponentially large
Hilbert space [7–9].

The so-called matrix product state (MPS) [10,11] is
a typical tensor network ansatz representing the state of
one-dimensional (1D) gapped quantum lattice systems. It is
also well known that MPS is the class of variational wave
functions at the root of the density matrix renormalization
group (DMRG) method [12,13], widely used in the study
of 1D systems [14–20]. Subsequently, MPS methods
to study time evolution of 1D systems have also been
put forward, such as time-evolving block decimation
(TEBD) [7,8], time-dependent DMRG [21,22], and, more
recently, algorithms based on the time-dependent variational
principle [23]. One way of generalizing MPS methods to

higher-dimensional systems [24] is using projected entangled
pair states (PEPS) [25–27], sometimes also called tensor
product states (TPS) [28–30]. There has been a lot of progress
in both conceptual and algorithmic developments for PEPS
(see, e.g., Refs. [31–47]). From the numerical perspective,
PEPS have been used to study ground-state properties as well
as dynamics of two-dimensional (2D) lattice systems of both
finite and infinite size. Moreover, motivated by the success
of 1D methods in the thermodynamic limit such as infinite
TEBD (iTEBD) [48,49], the so-called infinite PEPS (iPEPS)
algorithm [32,33] was put forward to study infinite-size 2D
quantum lattice systems.

So far, the iPEPS algorithm has been quite successful in
the study of ground-state properties of a growing number of
2D quantum lattice systems (see, e.g., Ref. [1] and references
therein). In general terms, results obtained by using iPEPS
can be competitive when compared to the ones derived from
quantum Monte Carlo [33,50]. More important, the iPEPS
algorithm is not hampered by the sign problem (unlike
quantum Monte Carlo) in the study of fermionic and frustrated
spin systems. Recent applications of iPEPS to such systems
include calculations for the t − J model of fermions on the
square [36,51,52] and honeycomb lattices [53], as well as
the J1 − J2 frustrated Heisenberg model on the square lattice
[54], the Shastry-Sutherland model [55], and the kagome
Heisenberg antiferromagnet [56].

One of the main drawbacks of the iPEPS algorithm is its
high computational cost as a function of the bond dimension
D, which controls the accuracy of the method. This is
particularly true when trying to obtain good accuracies in
physical regimes where entanglement is large (e.g., close to
a quantum critical point or in the presence of many nearly
degenerate quantum states), which requires a large D. The
computational bottleneck of the method is the calculation of
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the so-called effective environment, i.e., the effective descrip-
tion of the tensor network surrounding a given site. Techni-
cally, effective environments can be computed using different
approaches, such as Tensor Renormalization Group/Second
Renormalization Group (TRG/SRG) and Higher Order Tensor
Renormalization Group/Higher Order Second Renormaliza-
tion Group (HOTRG/HOSRG) [31,35,40,57], iTEBD [32],
corner transfer matrices (CTM) [33,58–62], or, more recently,
the tensor network renormalization method [63]. Independent
of the chosen approach for their calculation, accurate effective
environments are required for the so-called full update (FU),
which is the accurate scheme proposed to find the iPEPS
tensors throughout an (imaginary) time evolution. Because
of the large computational cost, only relatively small bond
dimensions can be afforded when using the FU scheme.

Alternative update schemes have been developed trying
to overcome this problem, but with only partial success. A
very popular approach is the so-called simple update (SU)
[34,39], which relies on a mean-field approximation of the
effective environment and thus is very efficient. Such a scheme
allows us to reach large bond dimensions in the iPEPS, but
not surprisingly, it does not produce accurate results when
systems are very strongly correlated. Intermediate approaches
interpolating between the FU and the SU schemes have also
been put forward as an alternative [43,44].

So here is the dilemma: accurate update schemes like the
FU are too costly, whereas efficient update schemes such as
the SU are not accurate enough. The question then is, Can one
somehow “accelerate” the FU, making it more efficient while
keeping its accuracy?

In this paper we give a positive answer to this question.
We do this by constructing an update scheme, which we
call “fast full update” (FFU), that significantly reduces the
computational cost of iPEPS algorithms while still being
accurate. More specifically, in this new strategy at every time
step the tensors of the effective environment are updated by
a single iteration step (in a sense to be made specific later)
and simultaneously with those of the iPEPS. Importantly, we
find that applying this strategy to iPEPS algorithms not only
reduces the computational cost by a large factor (as expected)
but also contributes to stabilizing the algorithm. The reason
for this is that the successively updated environment helps
to maintain the compatibility between the related tensors
throughout the time evolution, as we shall explain later.

In addition, we show that incorporating the local gauge-
fixing scheme proposed in Ref. [45] (and successfully applied
to finite PEPS) can make the iPEPS algorithm even faster
and more stable. As described in Ref. [45], the idea for the
gauge fixing of PEPS tensors is inspired by the case of MPS,
for which tensors can always be represented in a canonical
form during their update by means of local gauge fixing.
In the canonical form many of the tensor manipulations of
an MPS get simplified (or directly canceled out), implying a
much better conditioning and stability of related algorithms.
However, unlike in the MPS case, there is no exact canonical
form for PEPS in the same sense. A recent attempt along
this direction is the so-called quasicanonical form for iPEPS
[41,42,46]. This has been shown to lead to some computational
advantages but unfortunately does not fully capture the effect
of quantum correlations spreading throughout the 2D lattice.

A different approach was considered in Refs. [45,46], where
it was shown that by considering the effect of the entire 2D
lattice, a local gauge choice of the tensors can also produce
a well-conditioned environment, which in turn improves the
stability of the subsequent calculations. Here we apply the
same local gauge fixing as in Ref. [45] to the iPEPS algorithm
and show that it not only improves the stability but also
accelerates the convergence of the alternating least-squares
sweeping in the tensor-update scheme.

To show the validity of these approaches, we provide
benchmarking calculations for the “improved” iPEPS algo-
rithm with the two improvements mentioned above (FFU and
gauge fixing). In particular, we analyze the computational cost
and the stability of the algorithm for ground-state calculations
of the Heisenberg and transverse-field Ising models on an
infinite square lattice. We shall see quantitatively that the im-
provements both accelerate and stabilize the overall numerical
calculations.

This paper is structured as follows. Some background
material on PEPS, iPEPS, and the iPEPS algorithm is presented
in Sec. II. In Sec. III we introduce the improvements (FFU
and gauge fixing). Benchmarking calculations are presented
in Sec. IV. Finally, conclusions are presented in Sec. V.

II. BACKGROUND

A. PEPS and iPEPS

1. Generalities

For completeness, we briefly review the notation and
fundamental properties of projected entangled pair states
[25–27]. To this end, let us consider a 2D quantum lattice
system consisting of N sites, each of which is described by a
local Hilbert space Cd . The full Hilbert space of the system
is thus H = (Cd )⊗N . As the dimension of the full Hilbert
space grows exponentially with the size of the system, the
problem quickly becomes intractable already for moderately
low values of N . In order to avoid this curse of dimensionality,
an option is to use a PEPS to represent a pure state of the
system. Generally speaking, a PEPS is a state defined by a 2D
lattice of interconnected tensors, i.e.,

|�〉 =
d∑

{s�ri }Ni=1

F
(
A[�r1]

s�r1
, . . . ,A[�rN ]

s�rN

)|s�r1 , . . . ,s�rN
〉,

(1)

where |s�ri
〉 is the local basis of the site located at �ri = (xi,yi).

Depending on the geometry of the lattice pattern, the tensor
A[�ri ]

s�ri
at each lattice site �ri contains n�ri

bond indexes taking up
to D values (n�ri

is typically the number of nearest neighbors
of the lattice site �ri) and a physical index taking up to d values.
The operation F contracts all the tensors A[�ri ]

s�ri
along the bond

indices. Conventionally, D is usually referred to as the bond
dimension, which plays the role of a parameter quantifying
both the size of the tensors in the PEPS and also the amount
of entanglement in the wave function [64]. Thus, the larger D

is, the better the PEPS can represent the state of the system
(since there are more variational parameters). As an example,
in Fig. 1(a) we illustrate a graphical representation of the
PEPS for a 5 × 5 square lattice. In this case the number of
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FIG. 1. (Color online) (a) Graphical representation of a PEPS on
a 5 × 5 square lattice. Each ball is a tensor, and lines correspond
to tensor indices. Lines from one tensor to another correspond to
common summed indices (or contracted indices). The free index, or
open leg, in each tensor is called the physical index and corresponds
to the local degrees of freedom of the local Hilbert space at every site.
(b) An infinite PEPS with a two-tensor unit cell. The two tensors, A

and B, are repeated on the infinite 2D lattice.

complex parameters describing the PEPS quantum state is
O(NdD4), thus being polynomial in N,D, and d, in contrast
to the exponential dependence on N for an arbitrary state in
the Hilbert space. For the sake of simplicity, from now on we
shall always assume that we have a 2D square lattice [65].

2. Properties

PEPS have some important properties that make them an
appropriate representation for 2D quantum lattice systems.
First, and similar to MPS, PEPS satisfy the entanglement
area law [2–6]. More specifically, the scaling of entanglement
entropy of an L × L block of a PEPS is O(L log D).
Accordingly, PEPS can describe very well the entanglement
structure of many interesting 2D quantum systems, including
low-energy eigenstates of many 2D Hamiltonians with local
interactions. Second, PEPS can, in principle, represent systems
with both finite and infinite correlation lengths [27]. This is
to be contrasted with the case of MPS, where only a finite
correlation length is possible. Third, and also unlike for MPS,
given the loops present on 2D lattices there is no obvious
canonical form for a PEPS (although some proposals have
been recently put forward along this direction [41,42,46]).
Last, but not least, PEPS can be used to represent systems in
the thermodynamic limit by using a small number of tensors
under the assumption of shift invariance. More precisely, a unit
cell of tensors is repeated all over the 2D lattice to construct an
arbitrarily large shift-invariant PEPS. For an infinite system,
this is the so-called infinite PEPS, or iPEPS [see Fig. 1(b) for
a graphical illustration of an iPEPS with a two-site unit cell].

3. Numerical application

PEPS can be used to study both ground-state properties and
dynamics of 2D quantum lattice systems. For ground states,
one can either (i) variationally optimize the PEPS tensors so

as to minimize the expectation value of the 2D corresponding
Hamiltonian (as done in DMRG in one dimension) or
(ii) evolve the system in imaginary time until a fixed point
(ground state) is reached (as done in TEBD in one dimension).
The second method can also be applied to study real-time
evolution of the system. This approach is also easy to extend to
the thermodynamic limit, called the iPEPS algorithm [32,33],
which we go over again briefly in the next section.

B. The iPEPS algorithm

1. Generalities

For a given Hamiltonian H , the ground state of the system
can be obtained by evolving an initial state |�0〉 in imaginary
time β as described by

|�GS〉 = lim
β→∞

e−Hβ |�0〉
||e−Hβ |�0〉|| . (2)

Moreover, the real-time evolution is described via the solution
of the Schrödinger equation, which for a time-independent
Hamiltonian H reads

|�(t)〉 = e−iH t |�0〉. (3)

From now on, let us consider the evolution of an iPEPS
in imaginary time (the extension to real-time evolution is
technically straightforward).

We assume that the Hamiltonian contains only translation-
ally invariant nearest-neighbor interactions, i.e.,

H =
∑

〈�r, �r ′〉
h[�r,�r ′], (4)

where the sum is performed over all the nearest neighbors
〈�r,�r ′〉. For a Hamiltonian that is invariant under translations,
we can use an iPEPS also with translation symmetry to
represent the wave function |�〉 of the system. This could be
achieved by repeating the same tensor on each lattice site all
over the lattice. However, our update scheme (described below)
requires neighboring tensors to be different, which is why
we typically use the two-site translationally invariant iPEPS
shown in Fig. 1(b), depending only on two tensors, A and B. If
translational symmetries are spontaneously broken in the ther-
modynamic limit, then a larger unit cell of tensors (compatible
with the structure of the ground state) can be used instead [51].

In order to compute the ground state of the system by an
evolution in imaginary time, one first decomposes the time-
evolution operator into a product of so-called two-body gates.
To this end, the Hamiltonian H is rewritten as

H = Hl + Hr + Hu + Hd, (5)

where each term Hi = ∑
〈�r,�r ′〉∈i h

[�r,�r ′], i ∈ (l,r,u,d), is the sum
of mutually commuting Hamiltonian terms for links labeled as
(left, right, up, down). Notice, however, that the commutator
[Hi,Hj ] is, in general, different from zero whenever i 
= j .
Applying the first-order Suzuki-Trotter decomposition [66],
we can write the time-evolution operator as

e−Hβ = (e−Hδ)m

≈ (e−Hlδe−Hrδe−Huδe−Hdδ)m, (6)
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where δ is an infinitesimal time step and m ≡ β/δ ∈ N is the
number of “time steps” that need to evolve the system, so as
to reach total evolution time β. Since each term Hi is a sum
of mutually commuting terms, we can further write each term
e−Hiδ in Eq. (6) as a product of two-body gates, i.e.,

e−Hiδ =
∏

〈�r, �r ′〉∈i

g[�r,�r ′], (7)

with g[�r,�r ′] ≡ e−h[�r,�r′ ]δ .
For a given time step of the evolution, let us consider the

action of the term e−Hiδ on an infinite PEPS |�AB〉 with two
tensors A and B and bond dimension D. To this aim we
focus on one link on the lattice and, initially, disregard the
effect of the gates g[�r,�r ′] on the rest of the links (which is
approximately correct since δ  1 and thus g[�r,�r ′] ∼ I). Let
us consider the case of an r link, for concreteness. After
applying the gate, we obtain a new iPEPS |�A′B ′ 〉 which is
characterized by tensors A and B everywhere except for the
two tensors connected by the link where the gate acted. More
precisely, |�A′B ′ 〉 and |�AB〉 differ from each other by only two
tensors. Because of the effect of the gate, the bond dimension
of the affected index changes to D′ � d2D and thus increases,
corresponding to a change of the entanglement in the tensor
network. Because of this, the iPEPS bond dimension quickly
increases exponentially fast after a few gate applications,
making the simulation intractable. To overcome this problem,
the infinite PEPS |�A′B ′ 〉 is approximated by a new PEPS
|�ÃB̃〉 by replacing tensors A′ and B ′ by Ã and B̃, where these
two last tensors have again bond dimension D for the affected
index. This is done in a way such that the state |�ÃB̃〉 is close
to the exact state |�A′B ′ 〉 and thus introduces only a small error.
Such a procedure is called the tensor update of the iPEPS.

A possibility to implement the tensor update is to look
for new tensors Ã and B̃ that minimize the squared distance
between the exact and the approximating states, i.e.,

min
Ã,B̃

|||�A′B ′ 〉 − |�ÃB̃〉||2 = min
Ã,B̃

d(Ã,B̃), (8)

with

d(Ã,B̃) = 〈�A′B ′ |�A′B ′ 〉 + 〈�ÃB̃ |�ÃB̃〉
− 〈�ÃB̃ |�A′B ′ 〉 − 〈�ÃB̃ |�A′B ′ 〉. (9)

To solve the problem in Eq. (8), two main tasks are needed.
These are (i) the effective environment calculation and
(ii) the tensor update. Since these pieces of the method will be
fundamental for the improvements to be later explained, we
review them in detail in the following.

2. Effective environment calculation

To properly evaluate d(Ã,B̃) one needs to take into account
the effect of the whole tensor network surrounding the
affected link, i.e., the environment. Such a tensor network
of infinitely many tensors is conveniently approximated by an
effective environment, consisting of only a small number of
tensors. The effective environment can be computed using
various approaches, such as TRG/SRG, HOTRG/HOSRG
[31,35,40,57], tensor network renormalization (TNR) [63],
iTEBD [32], and CTM methods. This last approach will be
our choice in this paper. We shall not explain CTM methods

r r
 u

 u

d

d
l l 

r

 u

d

l 

r

 u

d

l 

FIG. 2. (Color online) (a) Left: Two-dimensional lattice of ten-
sors formed from a and b; right: contractions to obtain tensors a

and b. (b) Environment of a given link on the lattice (here an r link).
(c) Effective environment of a given link on the lattice (here an r link).
(d) Six-tensor representation of the effective environment around the
link.

in full detail here, and we refer the reader to the extensive
existing literature on the topic, such as Refs. [33,58–62],
for technicalities. However, since these methods will also be
important at a later stage of this paper, we review briefly some
notations and conventions.

We first construct an infinite square lattice L(a,b) by
contracting the physical indexes of |�AB〉 and 〈�AB | [see
Fig. 2(a)], where

al̄r̄ūd̄ =
∑

s

As
lrud

(
As

l′r ′u′d ′
)∗

, (10)

bl̄r̄ūd̄ =
∑

s

Bs
lrud

(
Bs

l′r ′u′d ′
)∗

, (11)

where l̄, r̄ , ū, d̄ are combined indices, e.g., l̄ = (l,l′).
The exact environment E(�r1,�r2) of two sites at �r1

and �r2 is shown in Fig. 2(b). In CTM methods, this is
approximated by an effective tensor network G(�r1,�r2), the
effective environment, which comprises a set of four χ × χ

corner transfer matrices {C1,C2,C3,C4}, eight half transfer
row/column tensors {T a1,T a2,T a3,T a4,T b1,T b2,T b3,T b4},
and two tensors, a and b [see Fig. 2(c)]. A further simple
contraction of the tensor network produces an effective
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FIG. 3. (Color online) Tensor network diagrams showing how to
compute T ,R, and S in Eq. (12).

environment for the considered link in terms of only six
tensors, {E1,E2,E3,E4,E5,E6} [see Fig. 2(d)].

3. iPEPS tensor full update

Equation (9) implies that the squared distance d(Ã,B̃) is a
quadratic function of tensors Ã and B̃. Thus, once the effective
environment is obtained, one can apply an alternating least-
squares method to optimize tensors Ã and B̃. This is the so-
called full update, and it follows these steps:

(i) We fix tensor B̃ to some initial tensor [67] or to the
tensor obtained from the previous iteration. In order to find Ã,
rewrite Eq. (9) as a quadratic scalar expression for the tensor,

d(Ã,Ã†) = Ã†RÃ − Ã†S − S†Ã + T . (12)

In this equation, Ã is understood as a reshaped vector with
D4d components, and matrices R,S,T can be obtained from
the appropriate tensor contractions including the effective
environment around the r link (see Fig. 3).

(ii) We find the minimum of d(Ã,Ã†) in Eq. (12), with
respect to Ã†, which is given by Ã = R−1S.

(iii) Next, we fix tensor Ã and find B̃ using the same
procedure as in steps (i) and (ii) above.

The above steps are iterated until the cost function d(Ã,B̃)
converges to a sufficiently small value. A possibility to
check convergence is, e.g., to check the value of this cost
function between two successive iterations and compare it to
some small tolerance. Last, but not least, once the optimal
tensors are found, they are replaced over the entire 2D lattice,
approximating the effect of all the gates g[�r,�r ′] acting over
the infinitely many links of the same type. Such a procedure
defines the updated infinite PEPS |�ÃB̃〉 in terms of the two
new tensors. Finally, the same procedure is repeated for the l,
u, and d links to complete one time step. This is iterated until
the desired real running time is achieved or until the iPEPS
converges to a fixed-point approximation of the ground state
for imaginary-time evolutions.

As such, the computational cost of the procedure above is
quite high due to the calculation of the inverse of matrix R in
step (ii). Specifically, this cost is O(D8) if recurrent methods
are applied for computing the inverse (e.g., biconjugate
gradient). Otherwise, the cost would be O(D12) for an exact
inverse calculation.

4. Reduced-tensor full update

As an efficient and convenient alternative to this method,
one can apply the “revised” FU scheme discussed in Ref. [36],
where, instead of updating tensors Ã and B̃, one updates some
lower-rank subtensors related to them (sometimes they are also
called reduced tensors [45]). These subtensors are denoted
ãR and b̃L, respectively. The main idea of this optimization

r r

FIG. 4. (Color online) (a) Subtensors for iPEPS tensors A and
B. Decompose A = XaR and B = bLY by means of decompositions
such as QR or SVD. (b) The action of the two-body gate g on the
iPEPS tensors A and B connected by an r link is equivalent to its
action on only the subtensors aR and bL, leaving X and Y unaffected.

scheme is based on the observation that applying the two-body
gate g on two sites A and B connected by a specific link
changes the properties of only that link, while the others remain
unchanged. For instance, for an r link this results in modifying
the bond dimension for this link from D to D′ > D, while the
size of the other indices is unaffected.

Thus, by means of the QR or singular-value decomposition
(SVD), we decompose tensors A and B such that A = XaR and
B = bLY , where aR and bL are connected by the bond index on
the r link and also contain the physical indices [see Fig. 4(a)].
When applying the two-body gate g, we now contract it with
aR and bL in order to update them directly. Once aR and bL are
updated to, say, ãR and b̃L, we can easily get updated iPEPS
tensors Ã and B̃ by using Ã = XãR and B̃ = b̃LY . The update
scheme for ãR and b̃L can be performed in a way similar to
what we explained for Ã and B̃, following steps (i)–(iii) above.
More precisely, in these steps we replace Ã and B̃ by ãR and
b̃L, which are alternatively optimized according to a similar
figure of merit defined as

d(ãR,b̃L) = 〈
�a′

Rb′
L

∣∣�a′
Rb′

L

〉 + 〈
�ãRb̃L

∣∣�ãRb̃R

〉

− 〈
�ãRb̃L

∣∣�a′
Rb′

L

〉 − 〈
�ãRb̃L

∣∣�a′
Rb′

L

〉
. (13)

Equation (12) for ãR is now rewritten as

d(ãR,ã
†
R) = ã

†
RRãR − ã

†
RS − S†ãR + T , (14)

and the cost function for variable b̃L is defined in a similar
way. Note that the tensors {R,S,T } in Eq. (14) are different
from the ones in Eq. (12) (see Fig. 5).

The computational cost of this update scheme is O(d3D6),
where the inverse of the matrix R can now be computed exactly.
Due to this huge advantage in computational cost compared
to the direct update of the iPEPS tensors A and B, the present
scheme is able to deal with iPEPS of larger bond dimension
D, with the corresponding advantages.

FIG. 5. (Color online) Tensor network diagrams showing how to
compute T ,R, and S in Eq. (14).
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The rest of the update follows as explained in the previous
section. That is, the reduced tensors are optimized until the
cost function is sufficiently small, and then, they are replaced
over the entire 2D lattice. As explained before, this last step
approximates the effect of all the gates acting on all the links of
the lattice of the same type. As before, the procedure defines an
updated infinite PEPS |�ÃB̃〉 in terms of two new tensors. After
this, one repeats the same procedure for the l, u, and d links to
complete one time step of the evolution. This will be iterated
until the iPEPS converges to a fixed point approximating the
ground state (for imaginary time) or until the desired real-time
evolution is completed.

III. IMPROVING THE iPEPS ALGORITHM

One of the main limitations of the FU iPEPS algorithm in
its present formulation is that the effective environment has to
be recomputed from scratch at every time step. Obtaining a
converged effective environment requires NCTM iterations of
the CTM algorithm, with NCTM depending on the amount of
entanglement in the system (for not too entangled systems,
typically, NCTM ∼ 10–20, but it can be considerably larger in
strongly entangled systems). Since these CTM iterations are
the computational bottleneck of the method, it is desirable to
keep NCTM as low as possible. However, if one uses an NCTM

which is too small, then the errors introduced in the effective
environment can lead to instability problems of the method.

Here we propose two improvements to the algorithm which
enhance the stability of the method and make it more efficient.
First, we explain how to implement what we call a fast full
update, where the accuracy of the FU is preserved while
substantially reducing its computational cost and improving its
stability. Second, we discuss the application of a local gauge
fixing, as in Ref. [45], which naturally improves stability and
also accelerates the convergence of the overall method. This
is explained in what follows, and benchmarking numerical
calculations shall be provided in the forthcoming sections.

A. Fast full update

In this update scheme we reduce the computational cost
by using the following idea: instead of recomputing the
environment tensors from scratch, we can update the environ-
ment tensors simultaneously with those of the iPEPS at each
step, just by a single CTM iteration step. This reduces the
computational cost by a large factor (see results below). The
crucial technical point of this FFU scheme is to make sure that
the environment tensors remain compatible with the updated
iPEPS tensors throughout the (imaginary) time evolution.

The details of the FFU scheme for iPEPS tensors A and
B plus the effective environment tensors are shown in Fig. 6.
In the following we explain how to proceed at each time step
when the two-body gates g are successively applied on the r ,
l, u, and d links:

(a) r link update. Suppose that the effective environment
around four links of the iPEPS is characterized by tensors
{Ci,T ai,T bi}4

i=1 [see Fig. 6(a-i)]. Applying the gate g to the
r link will modify the properties of this link, so we need to
update the tensors A and B using the update scheme from
the previous section. Specifically, the effective environment

FIG. 6. (Color online) Tensor network diagrams for the fast full
update. Details are explained in the main text.

of an r link is obtained by first absorbing a row of tensors
{T a4,b,a,T b2} in the bottom edge and then contracting the
tensors appropriately, such that the effective environment is
represented by six tensors {Ei}6

i=1 as in Fig. 6(a-ii). We then
apply the tensor update scheme explained previously in order
to find some updated tensors A1 and B1.

In order to prepare for the next update of the l link, we now
update the environment tensors. To this end, we insert two
columns of tensors, {T a1,b1,a1,T b3} and {T b1,a1,b1,T a3}, in
the middle of the tensor network [see Figs. 6(a-iii) and 6(a-iv)].
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Note that the two tensors a and b connected by link r̄ are now
replaced by the updated ones, a1 and b1. But importantly, there
are still two sites where we use the old tensors, a and b, since
the corresponding r link is connected to the old environment
and thus was not “formally” updated.

Next, the columns of tensors {T a1,b1,a,T b3} and
{T b1,a1,b,T a3} are absorbed at the right and left edges,
respectively [see Fig. 6(a-iv)]. After this absorption, one finds
appropriate isometries to renormalize the environment tensors
as usual, in such a way that their bond dimensions do not grow
[33]. The new environment tensors of the l link are denoted as
in Fig. 6(b-i).

(b) l link update. For the action of a gate on the l link,
we proceed in the same way as with the r link, which is
shown graphically in Fig. 6(b). The iPEPS is now updated
and represented by two new tensors, A2 and B2. The new
environment tensors for updating the u link are denoted as in
the Fig. 6(c-i).

(c) u link update. From the tensor network in Fig. 6(c-i),
we obtain the environment tensors for the u link as shown in
Fig. 6(c-ii). An update of the tensors will now produce two new
tensors, A3 and B3. We then compute the effective environment
for the update of the d link as shown in Fig. 6(c-iv)

(d) d link update. Now we follow the same procedure as
for the u link in order to update the iPEPS tensors as well as
the effective environment. This is shown in Fig. 6(d). Finally,
we obtain the new iPEPS tensors, A4 and B4, and the new
effective environment of the four links is represented by tensors
{C ′′′′

i ,T a′′
i ,T b′′

i }4
i=1 [see Fig. 6(d-v)].

The above update scheme is illustrated for only one time
step. One then needs to iterate this scheme in order to
evolve the system up to the desired time. As in the update
approaches explained in the previous section, for the FFU
it is also a good idea to choose properly the initial state
in ground-state calculations (e.g., converged iPEPS obtained
from the SU scheme or from the FU scheme with a smaller
bond dimension). Evidently, for the FFU this choice also helps
in the stability and fast convergence of the algorithm.

The FFU that we just presented has two key advantages:
first, one keeps an environment at every step that is perfectly
compatible with the tensors in the iPEPS in all bond indices.
This is the reason why, e.g., in Fig. 6(a-iv) we still have two ten-
sors, a and b, at two sites. Such a property naturally improves
the stability. Second, the environment is not reconverged for
every link at every step [68]. As a result, this reduces the
required computational time considerably.

B. Gauge fixing

In contrast to MPS, a PEPS does not have a canonical form.
Therefore, it is difficult to fix the gauge of the PEPS tensors in
some appropriate way during the time evolution. Despite this,
local gauge-fixing schemes have proven useful in improving
the stability of the algorithm [41,42,45,46]. In this paper,
we use the local gauge-fixing proposed in Ref. [45] (applied
there to finite PEPS) in the context of the iPEPS algorithm.
We shall see that this helps not only to improve the stability of
the method but also to accelerate its convergence.

FIG. 7. (Color online) (a) Contraction producing the norm tensor.
The leading computational cost of this contraction is O(d4D4χ 2) +
O(d2D6χ 2) + O(d2D3χ 3) [45]. (b) Diagrammatic representation of
the cost function defined in Eq. (15).

To this end, we consider the tensor update applied to the
reduced tensors. We rewrite Eq. (13) as follows:

d(ãR,b̃L) = a
′†
Rb

′†
LNLRa′

Rb′
L + ã

†
Rb̃

†
LNLRãRb̃R

− ã
†
Rb̃

†
LNLRa′

Rb′
L − ã

†
Rb̃LNLRa′

Rb′
L, (15)

where NLR is the “norm” tensor obtained by computing the
overlap of 〈�ãRb̃L

|�ãRb̃R
〉 while leaving out tensors ãR,b̃L and

their complex conjugates. Specifically, this can be done by
contracting the tensor network shown in Fig. 7(a). Also, the
cost function is represented diagrammatically in Fig. 7(b). In
order to update the subtensors one needs, thus, to compute the
norm tensor NLR .

Tensor NLR has the following properties: first, it is
impossible to choose a gauge in such a way that this tensor
is the identity matrix for all links at the same time. The reason
is that an iPEPS does not have a canonical form in the same
sense as MPS. Second, this tensor needs to be computed
using approximations, which implies that, generally, it is
neither strictly Hermitian nor positively defined. Although one
could always apply some approximation methods that preserve
positivity explicitly (such as the single-layer method [38]), the
tensors obtained from such approaches do not produce results
as accurate as those of other methods that do not enforce
positivity (such as CTM methods) [69]. It is well known
that the (normally small) negative part of the norm tensor
often causes some ill-posed conditions in updating the iPEPS
tensors. To circumvent this problem, we can make it Hermitian
and positively defined using the following steps [45]: first,
we approximate the norm tensor as ÑLR = (NLR + N†

LR)/2,
which is Hermitian. Next, we approximate ÑLR by its positive
part. To achieve this, we apply the eigenvalue decomposition
ÑLR = W�W † and replace the (small) negative eigenvalues
in � by zero. This is the so-called positive approximant.
The approximate eigenvalues are now denoted �+. Moreover,
ÑLR = ZZ†, where Z = W�

1/2
+ [see Fig. 8(a)].

The gauge fixing that we apply here is explained in
Fig. 8. After fixing the local gauge in the norm tensor, we
replace ÑLR and compatible subtensors in Eq. (15) and then
start the variational update of subtensors for the iPEPS. As
shown in Ref. [45], this choice of gauge greatly improves the
conditioning of the norm tensor and thus greatly increases the
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FIG. 8. (Color online) (a) Positive approximant for the norm
tensor ÑLR . (b) Apply the QR decomposition for the left and
the right bond indices of tensor Z, so that Z = QLR = LQR .
(c) Insert the identities I = L−1L = R−1R into the left and right
bond indices of the tensor Z to obtain Z̃ = L−1ZR−1 and the new
subtensors ãR = LaR,b̃L = bLR. (d) A new norm tensor is obtained
as ÑLR = Z̃Z̃†. In order to keep the compatibility once the subtensors
have been updated, we need to multiply the tensors X and Y by
matrices L−1,R−1, so that X̃ = XL−1 and Ỹ = R−1Y , respectively.
This is done before recovering the tensors Ã = X̃ãR and B̃ = b̃LỸ .

stability of the update. In particular, when this gauge fixing
is combined with the FFU, the resulting iPEPS algorithm is
remarkably fast, stable, and accurate.

IV. RESULTS

We have benchmarked the improved iPEPS algorithm,
including both the FFU and the gauge fixing, by studying
ground-state properties of two models on an infinite 2D square
lattice. The first model is the ferromagnetic quantum Ising
model with transverse magnetic field,

H = −
∑
〈�r,�r ′〉

σ [�r]
z σ [�r ′]

z − h
∑

�r
σ [�r]

x , (16)

where σ
[�r]
i is the i = (x,z) Pauli matrix for site �r , h is the trans-

verse magnetic field, and 〈�r,�r ′〉 represent nearest-neighbor
sites. The second example is the spin-1/2 antiferromagnetic
Heisenberg model,

H =
∑
〈�r,�r ′〉

�S[�r] �S[�r ′], (17)

where �S[�r] = (σ [�r]
x ,σ [�r]

y ,σ [�r]
z )/2.

In our simulations, we have represented the ground state of
the system by a two-site translationally invariant iPEPS made
up of two tensors, A and B. In order to approximate the ground
state of the system, we have applied imaginary-time evolution
together with a second-order Suzuki-Trotter decomposition
using δ down to 10−3–10−4. To update the tensors, we used

the alternating-least-squares (ALS) sweep for the subtensors,
as explained in Sec. II B 4, combined with the FFU. At every
update, we have also fixed the gauge of the tensors according
to the gauge-fixing described above. Let us stress here that the
leading order of the computational cost is the same for both FU
and FFU plus gauge-fixing schemes, but the prefactor and the
subleading correction are different. These turn out to produce
a big difference in practical running times, as we shall see.

In order to assess the advantage of the local gauge fixing for
the norm matrix ÑLR used in the ALS sweep, we first compare
the mean condition numbers of this matrix obtained with and
without the gauge. As a rule of thumb, the larger the condition
number of ÑLR is, the less accuracy we get in solving the
system of linear equations at every step of the ALS. The result
is shown in Table I for different models and bond dimensions.
Overall, we see that the condition number of the norm matrix
in the case of gauge fixing is improved by several orders of
magnitude when compared to the case without gauge fixing.
For completeness, we also shown in Table I the condition
numbers of matrices L and R. The gauge fixing thus improves
the stability of the iPEPS algorithm. This result is very similar
to what has been obtained for finite PEPS in a similar context
[45].

In addition, we observe that the gauge fixing in the norm
matrix also accelerates the convergence in the ALS sweeping.
More concretely, in Fig. 9 we show the convergence of the
relative change of the cost function defined in Eq. (15), as well
as the local fidelity of the subtensors between two iterations u

and u + 1 defined as

f u+1
ab =

(
au+1

R bu+1
L

∣∣au
Rbu

L

)
√(

au+1
R bu+1

L

∣∣au+1
R bu+1

L

)(
au

Rbu
L

∣∣au
Rbu

L

) , (18)

where, e.g., |au
Rbu

L) is to be understood as tensors au
R and

bu
L with their indices reshaped as a vector. We observe that,

when the gauge fixing is applied, both cost function and local
fidelity tend to converge faster than in the case without gauge
fixing (see Fig. 9). We also noted that speedup in convergences
becomes more significant as the bond dimension D of the
iPEPS increases (not shown).

We also compute the order parameter mz ≡ 〈σz〉 for the
quantum Ising model and compare it for the cases with
and without gauge fixing (see Fig. 10). The results for both
cases are quantitatively very similar deep in the gapped
phases. However, when close to the quantum critical point,
the results obtained with the iPEPS plus gauge fixing are
better, and again, we see that this effect becomes more
relevant for larger bond dimensions (e.g., we almost see no
difference for D = 2, whereas for D = 3 we already see
a clear difference). In addition, in Fig. 11 we have plotted
the correlation function Szz(x) = 〈σ l

zσ
l+x
z 〉 − 〈σ l

z〉〈σ l+x
z 〉 at the

critical point h = 3.044. We see that the simulation with gauge
fixing captures the correlation of the system better for the case
of bond dimensions (D,χ ) = (3,30).

We have also applied the improved iPEPS algorithm to
study the ground state of the Heisenberg model for different
bond dimensions (D,χ ). For small bond dimensions D,
we do not see much difference for the results with and
without gauge fixing. But for large bond dimensions we
observe that the ground-state energy obtained using gauge
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TABLE I. Mean condition number of the norm matrix ÑLR as well as of matrices L and R with their standard deviations. The numbers are
for the case of the positive approximant, with and without fixing the gauge, for the subtensor FFU. We show different bond dimensions (D,χ )
for an iPEPS algorithm with time step δ = 0.02. The mean is computed over ten time steps for Heisenberg and Ising models. The transverse
field for the Ising model is h = 3.01, which is close to criticality.

(D,χ ) No gauge Gauge R L

Heisenberg model
(2, 20) (9.33 ± 1.50) ×102 1.46 ± 0.01 5.49 ± 0.23 5.29 ± 0.39
(3, 30) (1.6 ± 0.17) ×106 (0.15 ± 0.00) ×102 (0.41 ± 0.01) ×102 (0.45 ± 0.01) ×102

w(4, 40) (8.36 ± 0.30) ×104 (3.02 ± 0.02) ×101 (1.78 ± 0.00) ×101 (1.80 ± 0.02) ×101

(5, 50) (3.46 ± 0.16) ×106 (1.04 ± 0.08) ×103 (5.04 ± 0.06) ×101 (5.03 ± 0.06) ×101

(6, 70) (1.01 ± 0.30) ×107 (2.21 ± 0.03) ×104 (5.12 ± 0.15) ×101 (5.05 ± 0.22) ×101

Ising model
(2, 20) (3.44 ± 1.85) ×104 5.97 ± 0.09 (1.29 ± 0.13) ×101 (1.29 ± 0.14) ×101

(3, 30) (4.28 ± 0.59) ×106 (1.95 ± 0.24) ×103 (5.00 ± 0.34) ×101 (5.01 ± 0.32) ×101

(4, 30) (1.28 ± 1.52) ×1019 (5.81 ± 11.88) ×1017 (5.39 ± 0.13) ×102 (5.47 ± 0.14) ×102

fixing is better [see Fig. 12(a)]. To quantify the overall error,
we compare our results with the best result obtained from
quantum Monte Carlo [70], ε0 = −0.669437(5). In our case,
with gauge fixing we obtain εg = −0.669309(2), and without
gauge we get εng = −0.669243(1) for (D,χ ) = (7,70). We
also compute the staggered magnetization m as a function
of the bond dimension, shown in Fig. 12(b). Again, for
large bond dimensions the calculations with the gauge fixing
become better than those without the gauge. Our best values
were obtained for (D,χ ) = (7,70) and are mg = 0.33490 with

gauge and mng = 0.33662 without gauge. This should be
compared with the Monte Carlo result, m0 = 0.30703 [70].

Finally, even if not mentioned explicitly at every calcu-
lation, we recall that our results are obtained by using the
FFU, which is remarkably faster than the costly FU update
because the environment is not recomputed from scratch at
every step. In Fig. 13 we compare the actual running times for
the FU and the FFU (plus gauge fixing) schemes. The speedup
factor increases with increasing D since more CTM steps are
required to reach convergence of the environment tensors if the
state is more entangled. In the present example we obtained a
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FIG. 9. (Color online) Mean value of the relative change ε̄d = |du+1 − du|/|dinit| of the cost function d and the local fidelity ε̄ab =
|f u+1

ab − f u
ab|/|f init

ab | in the iPEPS algorithm with gauge (solid symbols) or without gauge (open symbols) for (a) and (b) the Ising model
with transverse field and (c) and (d) the Heisenberg model, respectively. For the Ising model the magnetic field is h = 3.01 and (D,χ ) = (3,30),
whereas for the Heisenberg model (D,χ ) = (5,50). The time step is δ = 0.005. The mean value is taken over all steps in imaginary time.

035142-9
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FIG. 10. (Color online) Local magnetization mz as a function
of the transverse field h in the quantum Ising model, with gauge
(solid circles) and without gauge (stars). The inset is a zoom around
criticality.

speedup factor of up to ∼30. This factor will be even larger in
more strongly entangled systems (e.g., in fermionic systems).
In combination with the gauge fixing the FFU approach is
even better: we have seen that the overall improved algorithm
is remarkably stable, as well as substantially faster than the
old version.

One more comment is in order: one could naively expect
that after several updates with the FFU scheme the environment
will have drifted away, so that it may need to be reinitialized
by fully converging it. However, we find that the new update
scheme is self-correcting for the considered values of δ and
for the studied models (indeed, if δ is small enough, the
changes in the tensors are also expected to be small). One
may expect, however, that for larger δ the method is no longer
self-correcting. This is a possibility that needs to be taken into
account when implementing the algorithm in practice. But in
any case, δ decreases throughout the evolution of the algorithm,
so the self-correction happens naturally, and in practice we
never need to restart. For the models analyzed in our paper we
never encounter such a situation, but we can imagine that for
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FIG. 11. (Color online) Two-point correlator Szz(x) of the quan-
tum Ising model close to the critical point h = 3.044, computed with
gauge (solid circles) and without gauge (stars).
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FIG. 12. (Color online) (a) Relative error of the energy per link
ε̄ = (ε0 − ε)/ε0 for the Heisenberg model as a function of the iPEPS
bond dimension D. Here ε0 = −0.669437(5) is the quantum Monte
Carlo result [70]. (b) Staggered magnetization m of the Heisenberg
model as a function of the bond dimension D, compared to the Monte
Carlo result m0 = 0.30703 [70].

more complex systems one may need to restart the environment
from time to time in order to improve the results. This may also
be an important difference between imaginary- and real-time
evolutions. For imaginary evolutions, the algorithm is naturally
self-correcting since in the limit δ → 0 the actual time steps
behave, in practice, as convergence steps for the environment.
However, this property may be lost for real-time evolutions if
δ is not small enough, so that several iterations may be needed
at every step. But in any case, for real-time evolutions it is also
important to recycle environment tensors at every iteration in
order to save time, as well as to take care of correctly matching
all bond indices as done explicitly in the FFU.
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FIG. 13. (Color online) Total running time (in seconds) for five
time steps in imaginary-time evolution with the Heisenberg Hamilto-
nian, with the FU and FFU (plus gauge fixing) updates. The speedup
factor of the new update scheme with respect to the old one is shown
in the inset.
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V. CONCLUSIONS

In this paper we have presented how to improve the stability
and efficiency of the iPEPS algorithm. We have discussed
two improvements, namely, the fast full update and the gauge
fixing in the ALS sweep. In the FFU scheme the tensors in
the effective environment are updated at every step while
keeping them compatible with the updated iPEPS tensors.
This implies a speedup by a large factor (up to ∼30 in the
present examples and even larger in more strongly entangled
systems) compared to the previous FU approach, where the
environment tensors are recomputed from scratch at each time
step. The gauge fixing improves the conditioning in the ALS
sweep at every update step in the same way as already shown
for finite PEPS calculations [45], leading to better stability and
faster convergence.

We have benchmarked the improved iPEPS algorithm with
calculations for the quantum Ising and Heisenberg models on
an infinite 2D square lattice, where we have seen that similar
or slightly better accuracies can be obtained substantially
faster and with more stable evolutions than in previous iPEPS
calculations. This is particularly true for large bond dimensions

and in highly entangled systems, such as in the vicinity of
quantum critical points.

Technically, we have demonstrated the improved iPEPS
algorithm for systems on an infinite square lattice and a
two-site unit cell, but the extension to other 2D lattices and
bigger unit cells is straightforward. The method can also
be extended to Hamiltonians with longer-range interactions.
We expect that these improvements will be a significant step
forward towards powerful tensor network calculations for
challenging 2D systems.
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