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Our original article (Thomson et al. 2014) presented data exploring Zostera nigricaulis 15 

asexually-produced vegetative propagules as a potential long-distance dispersal mechanism for 16 

seagrasses. We found that the vegetative propagules of Z. nigricaulis were able to maintain buoyancy 17 

and photosynthetic health for more than 85 days, which suggested capacity for long-distance 18 

dispersal. While long-term establishment of propagules in situ was not successful due to poor seasonal 19 

conditions, highly-successful establishment and growth in mesocosm-based experiments gave support 20 

for positive establishment opportunities. Resilience of seagrass meadows relies on the ability of 21 

seagrass to successfully recolonise denuded areas or disperse to new areas (Macreadie et al. 2014), 22 

and this research demonstrated that although successful establishment may be rare, vegetative 23 

propagules show re-establishment potential for declining seagrass populations. These results are 24 

consistent with results found by Stafford-Bell et al. (2015), where prolonged dispersal of Zostera 25 

muelleri vegetative fragments was predicted.  26 

 Sinclair et al. (2015) argue that, in the case of Thomson et al. (2014), seagrass vivipary has 27 

been confused with vegetative (clonal) growth. We agree that the term vivipary was not the 28 

appropriate term to use when referring to an asexually derived propagule. We originally used the term 29 

to try and distinguish the specialised asexually-produced Z. nigricaulis vegetative propagules from 30 

adult plants becoming dislodged from the sediment and split into smaller fractions due to disturbance. 31 

We agree that these structures should be referred to as (asexual) vegetative propagules, and welcome 32 

the opportunity to correct this error.  33 

Further to this,  Sinclair et al. (2015) contend that the genetic distinctiveness of propagules 34 

was not appropriately demonstrated, and suggest testing the genetic distinctiveness of the propagules 35 

as a way to determine if they were in fact viviparous. We disagree, as each propagule was individually 36 

picked from the parent plant, as stated in the methods. We have already conceded that the propagules 37 

are vegetative, and therefore this comment loses its relevance.  38 

 Sinclair et al. (2015) also assert that potential vegetative propagule dispersal over long 39 

distances was not supported by appropriate data. We disagree and believe this was suitably addressed 40 
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by showing that propagules maintained health and buoyancy over an extended (> 3 months) period. 41 

While we did not experimentally demonstrate dispersal, we did show evidence of long-term survival, 42 

both on the water surface and while planted in mesocosm experiments. Although the in situ 43 

experiments failed to establish, the number of vegetative propagules trialled were extremely small, 44 

given the number of propagules that are produced in natural seagrass meadows annually.   45 

Contrary to the evidence presented in Thomson et al. (2014),  Sinclair et al. (2015) maintain 46 

that vegetative propagules would not be capable of establishment or survival in situ. Whilst we agree 47 

that establishment in situ was unsuccessful in this occasion, it was largely due to propagule 48 

dislodgement caused by poor weather conditions and sediment scouring, rather than mortality. We do 49 

not believe this demonstrates that propagules are incapable of establishment and survival. Rather, the 50 

evidence suggests that in this case the original point of propagule settlement did not provide adequate 51 

conditions for establishment. Our research successfully showed that given the right conditions, 52 

propagules can survive within a new environment, as displayed by the 100% survival rate in the 53 

mesocosm transplantation. While Sinclair et al. (2015) acknowledge this, the significance of our result 54 

is completely undermined by the overall conclusion reached by Sinclair et al. (2015), where they state 55 

that propagules are not capable of establishment and survival. 56 

Lastly, we disagree with Sinclair et al. (2015) that the spreading of existing clones would not 57 

introduce genetic variability into existing meadows.  If given the chance to successfully disperse long-58 

distances, an asexual-produced vegetative propagule has the potential to bring new genetic material to 59 

a genetically distinct meadow, which would only require a low establishment rate to be biologically 60 

and genetically significant (Rousset 1997; Slatkin 1987). As a result, the movement of asexual 61 

propagules between locations can facilitate enhanced genetic diversity if those propagules are able to 62 

successfully recruit and sexually reproduce within the new population. Additionally, if those 63 

propagules carry novel alleles, they will contribute new gene variants to the population and contribute 64 

to increasing both genetic and genotypic diversity. 65 

We agree with Sinclair et al. (2015) that utilising correct biological definitions is essential for 66 

understanding the biology and variation in seagrass meadows; however, we reassert our findings that 67 

Z. nigricaulis asexually-produced vegetative propagules show potential as a long-distance dispersal 68 

mechanism.   69 
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