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Abstract 

Background and purpose: Lymphangioleiomyomatosis (LAM) is associated with 

dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation 

and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can 

inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through 

which doxycycline works and to assess the effectiveness of combining doxycycline with 

rapamycin (mammalian target of rapamycin complex [mTORC] 1 inhibitor) in controlling 

cell migration, proliferation and wound closure. 

Experimental approach: TSC2-positive and TSC2-negative mouse embryonic fibroblasts 

(MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) 

cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound 

closure and proliferation were assessed using a transwell migration assay, time-lapse 

microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of 

p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with 

doxycycline were examined using enzyme-linked immunosorbent assay and immunoblotting 

techniques. 

Key results: The enhanced migration of TSC2-null cells was reduced by doxycycline at 

concentrations as low as 20pM, while the rate of wound closure was reduced at 2–59µM. 

Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but 

had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline 

with rapamycin significantly reduced the rate of wound closure at lower concentrations than 

achieved with either drug alone. 

Conclusion and implications: This study shows that doxycycline inhibits TSC2-null cell 

migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of 

diseases with TSC2 dysfunction.  
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Introduction 

Pulmonary lymphangioleiomyomatosis (LAM), a rare disease in women of childbearing age 

[1,2], is characterised by the irregular proliferation and migration of smooth muscle-like cells 

(LAM-cells) throughout the lungs, resulting in the obstruction of the small airways [3,4]. The 

disease ultimately manifests as cystic destruction of the lung parenchyma and the loss of 

pulmonary function [5].  

 

LAM is associated with the mutational inactivation of the tuberous sclerosis gene complex 

(TSC), TSC1 TSC1 and TSC2 TSC2 [6,7]. Dysfunction of either TSC1 (hamartin) or TSC2 

(tuberin) (with TSC2 being more common) results in enhanced cell proliferation and 

migration [8-10]. Over the last decade, knowledge of the underlying cellular mechanisms that 

drive LAM pathophysiology has been enhanced with an increased understanding of the 

rapamycin-sensitive, mammalian target of rapamycin complex 1 (mTORC1) [11] and the 

rapamycin-insensitive mTORC2 signalling pathways [12-15]. The TSC1/TSC2 complex 

indirectly regulates the phosphorylation of ribosomal p70S6 kinase (p70S6K) and the 

initiation factor 4E-binding protein 1 (4E-BP1) through the mTORC1 pathway, thus acting as 

a central regulator of cell growth and proliferation [16-18]. The functional TSC1/TSC2 

complex also acts to regulate the mTORC2 pathway, which controls actin cytoskeleton 

rearrangement through Rho GTPases, RhoA and Rac1 [19,20]. Dysfunction of the 

TSC1/TSC2 complex leads to the activation of mTORC2, resulting in increased RhoA-

GTPase activity and consequently enhanced cellular migration [21].  

 

Cell migration in LAM has been demonstrated clinically, where it is reported that the same 

TSC2 mutation is observed in pulmonary LAM cells and angiomyolipoma (AML) cells [22]. 

This suggests that the cells have originated from a common origin, disseminating through the 
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vascular and lymphatic systems [23]. This also may explain the recurrence of LAM cells in 

the healthy lungs received by LAM patients post lung transplant [24-28]. In vitro studies by 

Goncharova et al. have also provided supporting evidence that a functional TSC1/TSC2 

complex acts to regulate normal cell migration through the mTORC2 pathway, which 

controls RhoA-GTPase activity [21].  

 

The mTORC1 inhibitor rapamycin, a bacterial macrolide with immunosuppressive and 

antitumour properties, has been a major focus of LAM research. In vitro studies have shown 

rapamycin to effectively inhibit LAM cell proliferation [9,29,30]. In addition, in the 

Multicenter International LAM Efficacy of Sirolimus (MILES) trial, McCormack et al. 

reported that patients with LAM treated with sirolimus (rapamycin) experienced stabilised 

lung function with a reduction in symptoms and improvement in quality of life compared to 

patients who were taking a placebo [31]. However limitations were present, most notably the 

continued decline in lung function following the discontinuation of sirolimus [31]. Similarly, 

in a murine model of TSC2-null tumours, rapamycin inhibited tumour growth but its 

withdrawal resulted in TSC2-null tumour regrowth together with a decreased survival [21]. 

Although the long term effects of rapamycin are not known in LAM, chronic sirolimus use 

has previously been associated with altered lipid and glucose metabolism resulting in 

hyperlipidemia, glucose intolerance, diabetes like syndromes and cancer [32-35]. Together, 

these in vitro and in vivo studies highlight that although rapamycin shows beneficial effects 

in the treatment of LAM, its requirement for long term use and its potential adverse effects 

highlight the need for alternative treatments.  

 

Since enhanced migration is a prominent feature of TSC2-null cells, the lack of effect of 

rapamycin on migration [9] suggests that mTORC1 inhibitors alone may not be the optimal 
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treatment for LAM. Alternative treatments, in particular, drugs that tackle the increased 

migratory capacity of LAM cells may provide added benefit. Since LAM is a disease 

characterised by enhanced cell proliferation and migration, where both processes occur, the 

examination of the effects of drugs on both processes is necessary.  

   

Moses et al. demonstrated that doxycycline, a second-generation tetracycline antibiotic, 

improved lung function and quality of life in a single LAM patient, with minimal side-effects 

[36]. In addition, we have previously reported that doxycycline can reduce the mitochondrial 

activity and extracellular levels of active MMP-2 in human LAM cells and TSC2-null mouse 

embryonic fibroblasts (MEF) [37]. Furthermore, doxycycline has been shown to inhibit 

migration of cells in the development of arterial intimal lesions [38], breast carcinoma [39] 

and human melanoma [40]. 

 

Since the loss of TSC2 plays a prominent role in the phenotypic characteristics in LAM, the 

study of cells that are well characterised for TSC2 dysfunction is highly relevant. Examples 

of these cells are the TSC2 knockout mouse embryonic fibroblasts (MEF) [41], 323 MEF in 

which TSC2 is stably reintroduced [13] and the Eker rat uterine leiomyoma (ELT3) cells in 

which TSC2 is naturally absent [42].  

 

In this study, we investigated the effects of doxycycline on the migratory capacity of cells 

deficient for TSC2, identified the signalling pathways through which doxycycline works and 

examined the potential of combining doxycycline with the mTORC1 inhibitor rapamycin, to 

inhibit the enhanced migration, proliferation and wound closure of TSC2-deficient cells. 
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Materials and Methods 

Cell Culture 

Littermate derived p53 knockout TSC2-negative MEF, TSC2-positive MEF and isogenic p53 

positive 323-TSC2-null MEF and 323-TSC2-positive MEF (where TSC2 was stably 

reintroduced) (a gift from Dr. D. Kwiatkowski, Brigham and Women’s Hospital Boston, MA, 

USA) and Eker rat uterine leiomyoma (ELT3) cells that were spontaneously deficient in 

TSC2 (a gift from Dr. Cheryl Walker, MD Anderson Cancer Center, TX, USA) were cultured 

as previously described [10,11,21,42,43].  

 

MEF, 323 MEF and ELT3 cell preparation 

For experiments with MEF and 323 MEF, the cells were seeded at a density of 1 x 10
4
 

cells.cm-2 in high glucose DMEM (Life Technologies, Carlsbad, CA, USA) containing 10 % 

foetal bovine serum (FBS - Glendarach Biological, Melbourne, VIC, Australia) and 1 % 

penicillin-streptomycin (Life Technologies) for 24 hours. The medium was then changed to 

DMEM containing 0.5 % FBS and 1 % penicillin-streptomycin (serum-reduced DMEM) for 

24 hours. The cells were then used as indicated in the experiments.  

 

ELT3 cells were cultured in DF8 medium (supplemented with 10% FBS) as previously 

described [10,11,42,43]. ELT3 cells were seeded at a density of 1 x 104 cells.cm-2 in DF8 

medium for 24 hours, after which the medium was changed to serum free DF8-basal medium 

for 24 hours as previously described [11]. The cells were then used as indicated in the 

experiments. 

 

Doxycycline, rapamycin and Y-27632 preparation 
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Doxycycline hyclate (Sigma-Aldrich, St. Louis, MO, USA) was freshly prepared in sterile 

distilled water at a stock concentration of 20 mM. Insolution™ rapamycin (Calbiochem, St. 

Louis, MO, USA) was diluted in sterile dimethyl sulfoxide (DMSO; Sigma-Aldrich) to a 

stock concentration of 1 mM and stored at -20 °C prior to use. Y-27632 (Calbiochem) a 

ROCK inhibitor was diluted in sterile water to a stock concentration of 10 mM and stored at -

20 °C prior to use.  

 

For all experiments, doxycycline was used at a final concentration range of 200 fM - 59 µM, 

rapamycin at 0.2 - 200 nM (with respective DMSO vehicle controls) and Y-27632 at 0.3 – 30 

µM. For experiments in which the effects of combining doxycycline and rapamycin were 

assessed, various combinations of concentrations were used as indicated, with respective 

DMSO vehicle controls.   

 

Proliferation assay 

Cells that were seeded and placed under serum-reduced conditions in 12-well flat-bottom, 

tissue-culture treated polystyrene cell culture plates (BD Falcon™, Becton Dickinson, 

Franklin Lakes, NJ, USA) as described above, were pretreated with doxycycline or 

rapamycin alone or in combination or with Y-27632 in the presence of serum-reduced 

DMEM for 30 minutes. The cells were subsequently stimulated with 10 % FBS with or 

without drug for 24 hours. Cells were then trypsinsed and proliferation was assessed by 

counting the number of viable cells (trypan blue exclusion) using a haemocytometer.  

 

Migration assay 

Cells that were seeded and placed in serum reduced conditions in 75cm2 tissue culture flasks 

(BD Falcon™) as described above were trypsinised, counted and resuspended in serum-
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reduced DMEM. Cell migration was assessed using a transwell migration assay as previously 

described [8,10].  Briefly, cells in suspension were pre-treated with doxycycline or rapamycin 

alone or in combination, or with Y-27632 (ROCK inhibitor) for 30 minutes before seeding 

onto collagen type I (1 µg/ml) coated cell culture inserts (8.0 µm polyethylene terephthalate 

(PET) membrane (BD Falcon™) at a density of 2 x 105 cells per 0.3 cm2. The cells were then 

allowed to migrate for 4 hours towards a chemoattractant of 10 % FBS at 37 ⁰C, 5 % CO2. 

Non-migrated cells were removed and migrated cells were fixed with 4% (v/v) 

paraformaldehyde (PFA), stained with 0.5 % (w/v) toludine blue (Sigma) containing 0.5 % 

(w/v) boric acid (Sigma) and imaged (Olympus BX60, Center Valley, PA, USA). Cell 

migration was measured by manually counting cells in five regions of 200 µm2 and expressed 

as an average.  

 

Wound Assay 

Cells that were seeded and placed under serum-reduced conditions in 12-well flat-bottom 

polystyrene cell culture plates precoated with collagen type I (1 µg/ml) as described above, 

were pretreated with doxycycline or rapamycin alone, or in combination for 30 minutes prior 

to wounding. A wound was created by scratching the cell layer with a sterile 200 µl pipette 

tip (Thermo Fisher Scientific, Waltham, MA, USA). The cells were rinsed with serum-

reduced DMEM to remove any cell debris and freshly prepared drug treatments were 

replaced into each well. The cells were then incubated at 37 °C, 5 % CO2 in a humidified 

incubation chamber (Clear State Solutions, Victoria, Australia) mounted on a Nikon Eclipse 

Ti-microscope (Nikon Eclipse Ti, Tokyo, Japan). Time-lapse images were captured at 

intervals of 1 hour for up to 20 hours as indicated and the rate of wound closure was assessed 

using Nikon Imaging software (NIS-Elements Imaging Software Version 3.22.01, Melville, 

NY, USA). 
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Immunoblotting 

Levels of phosphorylated (phospho)-p70S6 kinase (p70S6K), phospho-AKT, phospho p44/42 

MAPK (ERK1/2) and phospho-focal adhesion kinase (FAK) were measured using 

immunoblotting as previously described [44]. Briefly, cells that were seeded and placed in 

serum-reduced conditions in 6-well flat-bottom polystyrene cell culture plates were treated 

with doxycycline or rapamycin alone or in combination or with Y-27632. The cells were then 

lysed in modified RIPA buffer and the samples were size fractionated on 10 % 

polyacrylamide gels and transferred to polyvinvylidene fluoride (PVDF) membranes 

(Millipore, Billerica, MA, USA). The membranes were then blocked with 5% bovine serum 

albumin (BSA) diluted in phosphate buffered saline with 0.05% Tween-20 (PBS-T) and 

subsequently incubated with respective primary antibodies against phosphorylated proteins 

(as indicated in Table 1) overnight at 4 °C, before incubation with respective 

immunoglobulin G- horseradish peroxidase (HRP) conjugated secondary antibody (as 

indicated in Table 1) for 1 hour at room temperature. The membranes were then visualised 

using chemiluminescence (Millipore, Temecula, CA, USA), imaged and analysed using a 

Kodak Image Station 4000MM (Carestream Molecular Imaging Software Version 5.0.2.30, 

Rochester, NY, USA). 

 

To allow for comparison of phosphorylated proteins to total proteins, antibodies were 

stripped from the membranes, the membranes were re-blocked and re-probed as previously 

described with either primary antibodies against total proteins (as indicated in Table 1) or 

mouse anti-α-tubulin (loading control; 1:2000 dilution in 1% PBS-T) (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) [44]. Respective immunoglobulin G- horseradish 

peroxidase (HRP) conjugated secondary antibodies (as indicated in Table 1) were used.  
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RhoA Activation Assay 

RhoA activity was measured using the G-LISA RhoA Activation Assay Biochem Kit as per 

the manufacturer's instructions (Cytoskeleton, CO, USA). Briefly, cells that were seeded and 

placed in serum-reduced conditions in 175 cm2 tissue cell culture flasks were treated with or 

without Y-27632, rapamycin or doxycycline alone or in combination as indicated for 1 

minute (as assessed by time-course experiments to exhibit maximum RhoA expression 

levels). The cells were then lysed and the activity of RhoA was measured using the G-LISA 

assay at an absorbance of 490 nm with the limits of detection at 0.05 ng. Following the 

manufacturer's instructions, levels of active RhoA were then normalised to total Rho (-A, -B, 

-C) levels as measured using immunoblotting (as detailed above). Mouse monoclonal anti-

Rho (-A, -B, -C) primary antibody (diluted 1:2000 - Millipore) and goat polyclonal anti-

mouse immunoglobulin G- HRP conjugated secondary antibody (diluted 1:2000 - Dako) 

were used.  

 

Statistical analysis 

Results from n experiments were analysed using Student's unpaired t-test, area under the 

curve, repeated measures one-way analysis of variance (ANOVA) or repeated measures two-

way ANOVA with a Bonferroni post-test where appropriate (Graphpad Prism Version 4, 

Graphpad Software Inc, La Jolla, CA, USA). A probability (p) value of less than or equal to 

0.05 was considered statistically significant.
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Results 

Enhanced cell migration and increased rate of wound closure in TSC2-deficient cells 

In this study, we confirmed the enhanced migration of p53 knockout TSC2-negative MEF 

compared to TSC2-positive MEF (TSC2-negative and TSC2-positive, n=10; p≤0.05, Figure 

1A) [9,10] and extended our findings to show, using 323-TSC2-positive MEF in which TSC2 

has been stably reintroduced, that cell migration was significantly lower in cells where TSC2 

is present (323-TSC2-null and 323-TSC2-positive MEF, n=5; p≤0.05, Figure 1A). In addition, 

the rate of wound closure in TSC2-negative MEF was also significantly greater compared to 

TSC2-positive MEF (area under the curve, TSC2-negative and TSC2-positive, n=4; p≤0.05, 

Figure 1B). Again, using 323-TSC2-positive MEF, the rate at which the cells closed a wound 

was significantly decreased by the presence of TSC2 (323-TSC2-positive and 323-TSC2-null, 

n=4; p≤0.05, Figure 1C). 

 

Doxycycline reduced enhanced cell migration in TSC2-deficient cells 

Doxycycline (20 pM - 59 µM) decreased 10% FBS-induced migration of TSC2-negative 

MEF by 14.5 - 60.7 % (TSC2-negative, n=5; p≤0.05, Figure 2A) and of 323-TSC2-null MEF 

by 33.7 – 77.5 % (323-TSC2-null MEF, n=5; p≤0.05, Figure 2B). Doxycycline also 

decreased the rate of wound closure in both TSC2-negative MEF and 323-TSC2-null MEF (2 

µM - 59 µM area under the curve, TSC2-negative and 323-TSC2-null MEF, n=4; p≤0.05, 

Figure 2C, D). Similarly, the ROCK inhibitor, Y-27632 (10 - 30 µM) decreased FBS-induced 

migration of TSC2-negative MEF by 15.6 - 58.0 % (TSC2-negative MEF, n=4; p≤0.05, 

Figure 2E). In contrast, rapamycin, had no effect on the migration of TSC2-negative MEF 

and 323-TSC2-null MEF at any of the concentrations tested (2 - 200 nM) (data not shown) in 

accordance with previous studies [9].  
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Doxycycline and Y-27632 had no effect on cell proliferation 

0.5 % FBS and 10 % FBS induced the proliferation of TSC2-negative MEF to a greater 

extent than TSC2-positive MEF (TSC2-negative and TSC2-positive, n=12; p≤0.05, Figure 

E1) and this is in accordance with previous studies [11,45]. Cell proliferation of 323-TSC2-

positive MEF in the presence of 10 % FBS was less than that in 323-TSC2-null MEF (323-

TSC2-positive and 323-TSC2-null MEF, n=8; p≤0.05, Figure E2). 

 

We have previously shown that doxycycline has no effect on the proliferation of TSC2-

positive or TSC2-negative MEF [37] and we were able to replicate these findings in 323-

TSC2-positive and 323-TSC2-null MEF (323-TSC2-positive and 323-TSC2-null MEF, n=5; 

p>0.05, Figure E3) and in ELT3 cells where doxycycline inhibited cell proliferation only at 

the highest concentration (59 µM) (ELT3 cells, n=5, p≤0.05, Figure E4). In addition,  

Y-27632 had no effect on the proliferation of TSC2-positive or TSC2-negative MEF (TSC2-

positive and TSC2-negative MEF, n=4; p>0.05, Figure E5). To confirm that proliferation in 

the above cell types can be inhibited, the mTORC1 inhibitor rapamycin was used as a 

positive control, showing a reduction in the proliferation of MEF, 323 MEF and ELT3 cells 

(TSC2-negative and TSC2-positive, n=5; p≤0.05, Supplement Figure E6, 323-TSC2-positive 

and 323-TSC2-null MEF, n=5; p≤0.05, Figure E7 and ELT3, n=5; p≤0.05, Figure E8). 

Furthermore, doxycycline and Y-27632 had no effect on the phosphorylation of p70S6K, 

(TSC2-positive or TSC2-negative, n=5, p>0.05, doxycycline Figure 3A, B, Y-27632 Figure 

3C, D), whereas rapamycin inhibited the phosphorylation of p70S6K (TSC2-positive and 

TSC2-negative, n=5, p≤0.05, Figure 3E, F).  

 

Doxycycline inhibits RhoA activity and reduces phosphorylation of FAK in TSC2-

negative MEF 
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To investigate the mechanism through which doxycycline inhibits the migration of TSC2-

deficient cells, we examined the activity of RhoA-GTPase and the phosphorylation of FAK, 

AKT and ERK1/2. Under basal conditions and in the presence of 10 % FBS, TSC2-negative 

MEF exhibited increased RhoA-GTPase activity compared to TSC2-positive MEF in 

accordance with published studies [43,46]. In addition, in TSC2-positive MEF, RhoA-

GTPase activity was induced in the presence of 10 % FBS, whereas this was constitutively 

active in TSC2-negative MEF (TSC2-positive and TSC2-negative MEF, 0.5 % FBS and 

10 % FBS, p≤0.05, Figure 4A). 

 

Doxycycline (2 µM & 59 µM) and Y-27632 (10 µM) reduced elevated RhoA-GTPase 

activity in TSC2-negative MEF by 26.8 - 34.3 % and 38.4 % at 1 minute (TSC2-negative, 

doxycycline and Y-27632, n=6, p≤0.05, Figure 4B), while rapamycin (200 nM) had no effect 

(TSC2-negative, rapamycin 200 nM, n=6, p≥0.05, Figure 4B). In addition, doxycycline had 

no effect on RhoA-GTPase activity in TSC2-positive MEF (TSC2-positive, n=4, p>0.05, 

Figure 4C).  

 

The amount of phospho-FAK was constitutively higher in TSC2-negative MEF compared to 

TSC2-positive MEF (n=4, p≤0.05 Figure 5). Doxycycline reduced elevated levels of 

phospho-FAK in TSC2-negative MEF while it had no effect in TSC2-positive MEF (TSC2-

negative MEF, n=4, p≤0.05 Figure 5). Doxycycline also had no effect on the levels of 

phospho-AKT (n=4, p>0.05, Figure 6A, B) or phospho-ERK1/2 (p44/42) (n=4, p>0.05, 

Figure 6C, D) in TSC2-positive or TSC2-negative MEF. 

 

Combined treatment of doxycycline and rapamycin inhibits the rate of wound closure 

in TSC2-negative MEFs 
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We next assessed the effectiveness of combining rapamycin with doxycycline in inhibiting 

the proliferation, migration and the ability to close a wound of TSC2-null MEF, as well as its 

effect on RhoA-GTPase activity. Doxycycline or rapamycin alone or in combination had no 

effect on the proliferation of TSC2-positive MEF (TSC2-positive, n=4; p>0.05, Figure 7A). 

Combining doxycycline and rapamycin significantly inhibited TSC2-negative MEF 

proliferation, migration and RhoA-GTPase activity, however the degree of inhibition was no 

greater compared to the individual drugs alone (Cell proliferation, TSC2-negative, n=4; 

p>0.05, Figure 7B, cell migration, TSC2-negative, n=4; p>0.05, Figure 8A and RhoA activity, 

n=6, p>0.05, Figure 8B). The combination of doxycycline and rapamycin at sub-maximal 

concentrations decreased the rate of wound closure in TSC2-negative MEF when compared 

to the individual effects of doxycycline or rapamycin alone (TSC2-negative, n=4; p<0.05, 

Figures 8C).  
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Discussion 

A lack of treatment for LAM has prompted studies to further understand the pathogenic 

characteristics of the disease, in an attempt to pinpoint possible future therapeutic targets. In 

this study, we demonstrated the ability of doxycycline to reduce the enhanced migratory 

capacity of cells deficient for TSC2 through the inhibition of RhoA-GTPase activity and 

reduced levels of phospho-FAK. In addition, we extended our research to examine the 

combination of doxycycline and rapamycin and showed this reduced the rate of wound 

closure and maintained the reduction in migration, proliferation and RhoA-GTPase activity in 

TSC2-null cells.  

 

Since LAM is associated with TSC2 dysfunction, cells deficient for TSC2 such as MEF, 323-

MEF and ELT3 cells, have been widely used to enhance our understanding of this disease 

[47]. The use of TSC2-negative MEF and 323-TSC2-null MEF in this study is of particular 

relevance to LAM as some LAM cells have been reported to be TSC2 negative [7,48,49]. In 

addition, TSC2-negative and 323-TSC2-null MEF have also been shown to exhibit enhanced 

proliferation and migration, characteristics which are also shared by LAM cells [8,9,21,50].  

 

The dysfunction of TSC2 has been widely demonstrated to be associated with enhanced 

proliferation of LAM cells [3,11,13,18,45,51]. Many studies have focused on controlling this 

enhanced proliferation through the anti-proliferative properties of rapamycin (an mTORC1 

inhibitor) [11,31,52,53]. However, it is as important to recognise that the loss of TSC2 

function in LAM not only results in the hallmark manifestations of enhanced cell 

proliferation, but also enhanced cell migration. For this reason, we believe that targeting the 

increased migratory capacity of cells deficient for TSC2 may be beneficial.  
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It is well established that TSC2 plays a prominent role in the regulation of cell migration 

[9,10,46,51,54]. Previous studies that examined cell migration using a transwell migration 

assay have demonstrated enhanced migratory capacity in cells deficient for TSC2. In this 

study, we were able to confirm these findings and extended the study to assess the rate at 

which TSC2-null cells can close a wound. Here, we demonstrated that the rate of wound 

closure in cells deficient for TSC2 was significantly increased compared to TSC2-positive 

cells.  

 

In this study, we have demonstrated for the first time that doxycycline can reduce the 

migratory capabilities and reduce the rate of wound closure of TSC2-negative MEF and 323-

TSC2-null MEF. It was of great interest that doxycycline inhibited cell migration at 

concentrations as low as 20 pM whereas it had no effect on the proliferation of 323-TSC2-

positive and 323-TSC2-null MEF. This is in accordance with our previous study that showed 

doxycycline had no effect on the proliferation of TSC2-positive, TSC2-null MEF or human 

LAM cells [37]. Also in the present study, we showed that proliferation of ELT3 cells was 

inhibited by doxycycline only at high concentrations and these findings are similar to those of 

Chang et al. who reported that doxycycline at concentrations of 2 - 20 µM [1-10 µg.ml-1] had 

no effect on the proliferation of ELT3 cells but concentrations >49 µM [>25 µg.ml-1] 

decreased proliferation, increased apoptosis and altered cell morphology - effects which were 

due to doxycycline-induced toxicity [55]. Furthermore, we demonstrated rapamycin to be 

ineffective in the inhibition of migration and confirmed the findings of Goncharova et al. 

who showed rapamycin, at concentrations that significantly abrogated LAM cell proliferation, 

had no effect on human LAM cell migration [9]. Wound closure assays have previously been 

reported to reflect two crucial processes, cell proliferation and migration (Liang et al., 2007). 

However, we have demonstrated in this study that, the ability of TSC2-negative and 323-
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TSC2-null MEFs to close a wound relies predominantly on migration and not proliferation, 

as rapamycin had little effect in these assays.    

 

Matrix metalloproteinase (MMP) -2 and -9 have often been associated with cell migration 

and invasion; however the concentrations of doxycycline that inhibited cell migration were 

significantly lower than those we have previously reported for effective MMP-2 inhibition 

[37]. This suggests that, although doxycycline is capable of MMP-2 inhibition, the reduction 

in migratory capacity demonstrated in this study is not likely to be due to the inhibition of 

MMPs. It was also interesting to observe that doxycycline was not as effective in the wound 

closure assay as in the transwell migration assay, where concentrations of only ≥20 µM 

[10µg.ml
-1

] significantly inhibited wound closure. This may be in part due to other processes 

involved in the wound closure assay such as cell-cell interactions.  

 

The rapamycin-insensitive mTORC2 pathway regulates cell migration through RhoA-

GTPase, and, in this study, we confirmed previous findings that RhoA-GTPase activity in 

TSC2-negative MEF was higher than in TSC2-positive MEF under basal conditions and in 

the presence of 10 % FBS [9]. The mechanism of action through which doxycycline inhibits 

TSC2-null cell migration was not known, however this study shows doxycycline inhibits the 

migration of TSC2-null cells through the activity of RhoA-GTPase, whereas levels of 

phospho-p70S6K, phospho-AKT and phospho-ERK1/2 were unaltered. However, the 

mechanism by which doxycycline inhibits cell migration at the lower concentrations at which 

RhoA-GTPase activity was not affected (20 pM - 200 nM), is likely to be due to targeting 

other signalling pathways. 
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Importantly, doxycycline inhibited the activity of RhoA-GTPase in TSC2-negative MEF, 

while it was unaltered in TSC2-positive MEF. RhoA-GTPase is known to play a prominent 

role in the regulation and organisation of the cytoskeleton by promoting the assembly of focal 

adhesions and by activating focal adhesion kinase (FAK) [56,57], processes which are 

important for cell motility. We have shown, in this study, that the protein tyrosine kinase 

FAK is constitutively active in TSC2-negative MEF compared to TSC2-positive MEF, thus 

supporting the finding of enhanced cell migration in TSC2-negative MEF. Furthermore, 

doxycycline significantly inhibited levels of phospho-FAK in TSC2-negative MEF while 

they were unaltered in TSC2-positive MEF. These data show that in TSC2-negative MEF, 

doxycycline inhibited the activity of RhoA-GTPase at 1 minute. This inhibition is then 

transduced downstream where FAK signalling was inhibited at 4 hours and subsequently 

reduced functional migration at 4 hours. The finding that doxycycline can regulate cell 

migration and FAK expression supports the findings by Sun et al. who showed doxycycline 

inhibited the adhesion and migration of melanoma cells through the inhibition of FAK 

expression [58]. Although no studies have demonstrated the sustained effects of doxycycline 

in the reduction of RhoA-GTPase activity, Sun et al. reported the effects of doxycycline in 

wound healing assays and FAK expression in the continued presence of doxycycline up to 12 

hours [58]. This suggests that the abrupt changes in RhoA-GTPase activity by doxycycline 

can influence outcomes of FAK expression and functional migration over a sustained period 

of time. 

 

It is now accepted that rapamycin alone may not be the most effective way to treat LAM, and 

investigations into combination therapies are underway [21,54]. Here, we explored the effects 

of combining doxycycline and rapamycin on the migration, proliferation, wound closure and 

RhoA activity of cells deficient for TSC2. Although combining doxycycline and rapamycin 
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in this study inhibited those cellular parameters, the degree of inhibition was no greater than 

that of the individual drugs alone. The absence of a greater effect from the combination 

treatment was not surprising, as each drug works to inhibit independent functional 

characteristics and signalling pathways. However, it is important to note that the combination 

of doxycycline and rapamycin was not detrimental to the individual outcomes, i.e. it did not 

reduce the degree of inhibition caused by the individual drug treatment. Furthermore, as 

shown in the wound closure assay, combination treatment with submaximal doxycycline and 

rapamycin concentrations significantly reduced the rate of wound closure, whereas no effect 

was observed with individual doxycycline and rapamycin treatments at those concentrations. 

The mechanisms through which combination therapy reduced wound closure in TSC2-

negative MEF were not investigated in this study. 

 

The results from this study suggest that doxycycline may be of potential therapeutic benefit 

as a treatment for diseases in which TSC2 dysfunction results in enhanced cellular migration. 

In addition, this study provides preliminary evidence that the combination of doxycycline and 

rapamycin may lower the dosing requirement for rapamycin, and in turn potentially reduce 

the side effects associated with chronic rapamycin use. 
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Figure Legends 

Figure 1: 10 % FBS-induced migration of A. TSC2-positive (n=10) and TSC2-negative 

(n=10) MEF and 323-TSC2-positive MEF (n=5) and 323-TSC2-null MEF (n=5). 

Datarepresent the average number of cells migrated in five regions of 200 µm2 ± SEM 

*p≤0.05 unpaired t-test. Wound closure assay of B. TSC2-positive (black line, n=4) and 

TSC2-negative MEF (red line, n=4) over 20 hours and C. 323-TSC2-positive (black line, 

n=4) and 323-TSC2-null MEF (red line, n=4) over 20 hours. Data expressed as a percentage 

closure ± SEM in response to0.5 % FBS stimulation *p≤0.05 repeated measures one-way 

ANOVA.  

 

Figure 2: Migration of A. TSC2-negative MEF (n=5) and B. 323-TSC2-null MEF following 

30 minutes pretreatment with doxycycline. Data expressed as the average number of cells 

migrated in five regions of 200 µm2± SEM *p≤0.05 repeated measures one-way ANOVA. 

Wound closure assay of C. TSC2-negative MEF (n=4) and D. 323-TSC2-null MEF (n=4) 

following 30 minutes pretreatment with doxycycline. Data expressed as area under the curve 

(AUC) over 20 hours ± SEM. *p≤0.05 repeated measures one-way ANOVA. Migration of E. 

TSC2-negative MEF (n=4) following 30 minutes pretreatment with Y-27632. Data expressed 

as the average number of cells migrated per 200 µm2 *p≤0.05 repeated measures one-way 

ANOVA. 

 

Figure 3: Proliferation of A. TSC2-positive MEF (n=4) and B. TSC2-negative MEF (n=4) 

treated with doxycycline, vehicle or rapamycin alone, or in combination as indicated. Data 

expressed as mean ± SEM *p≤0.05 repeated measures one-way ANOVA compared to FBS 

or DMSO vehicle control where appropriate. Bonferroni post-test was used. 
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Figure 4: Phospho-p70S6K levels in A. TSC2-positive MEF (n=5) and B. TSC2-negative 

MEF (n=5) in the presence (+) or absence (-) of doxycycline as indicated, C. TSC2-positive 

MEF (n=3) and D. TSC2-negative MEF (n=3) in the presence (+) or absence (-) of Y-27632 

as indicated and E. TSC2-positive MEF (n=4) and F. TSC2-negative MEF (n=4) in the 

presence (+) or absence (-) of vehicle control (V) or rapamycin as indicated. Representative 

western blots of phospho-p70S6K, p70S6K and α-tubulin are shown (A-F) above mean data. 

Data expressed as mean ± SEM *p≤0.05 repeated measures one-way ANOVA with a 

Bonferroni post-test. 

 

Figure 5: RhoA-GTPase activity in A. TSC2-positive (n=5) and TSC2-negative MEF (n=6) 

under basal conditions (0.5 % FBS) and in the presence of the stimulus 10 % FBS, B. TSC2-

negative MEF (n=6) following 1 minute of treatment with doxycycline, DMSO vehicle 

control, rapamycin or Y-27632 as indicated and C. TSC2-positive MEF (n=5) following 1 

minute of treatment with doxycycline, or Y-27632. RhoA activity corrected for total Rho (-A, 

-B, -C) and expressed as a percentage of 10 % FBS ± SEM *p≤0.05 repeated measures one-

way ANOVA with a Bonferroni post-test. 

 

Figure 6: Phospho-FAK levels in TSC2-positive and TSC2-negative MEF (n=4) in the 

presence (+) or absence (-) of doxycycline treatment for 4 hours. Representative western 

blots of phospho-FAK, FAK and α-tubulin are shown above mean data. Data expressed as 

mean ± SEM *p≤0.05 repeated measures one-way ANOVA with a Bonferroni post-test. 

 

Figure 7: Phospho-AKT levels in A. TSC2-positive MEF (n=4) and B. TSC2-negative MEF 

(n=4) and phospho-ERK1/2 (p44/42) levels in C. TSC2-positive MEF (n=4) and D. TSC2-

negative MEF (n=4) in the presence (+) or absence (-) of doxycycline as indicated. 
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Representative western blots of phospho-AKT, AKT, phospho-ERK1/2 (p44/42), ERK1/2 

(p44/42) and α-tubulin are shown above mean data. Data expressed as mean ± SEM *p≤0.05 

repeated measures one-way ANOVA with a Bonferroni post-test. 

 

Figure 8: Proliferation of A. TSC2-positive MEF (n=4), B. TSC2-negative MEF (n=4) and C. 

cell migration of TSC2-negative MEF (n=4) treated with doxycycline (D) at 2 nM, vehicle 

(V) or rapamycin (R) at 2 nM alone, or in combination (RD). Data expressed as mean ± SEM 

*p≤0.05 repeated measures one-way ANOVA. D. RhoA activity of TSC2-negative MEF 

(n=6) treated with doxycycline 2 nM, vehicle or rapamycin 2 nM alone or in combination. 

RhoA activity corrected for total Rho (-A, -B, -C) and expressed as a percentage of 10 % 

FBS ± SEM *p≤0.05 repeated measures one-way ANOVA. E. Wound closure of TSC2-

negative MEF (n=4) treated with doxycycline at 2 nM, vehicle or rapamycin 2 nM alone or in 

combination. Data expressed as area under the curve (AUC) over 20 hours ± SEM. *p≤0.05 

repeated measures one-way ANOVA compared to FBS or DMSO vehicle control (V) where 

appropriate.  

 

Supplement Figure E1: Proliferation of TSC2-positive (n=4) and TSC2-negative MEF 

(n=4) treated with vehicle (V) or rapamycin. Data expressed as mean ± SEM # p≤0.05 TSC2-

positive MEF compared to 10 % FBS and *p≤0.05 TSC2-negative MEF compared to 10 % 

FBS, repeated measures two-way ANOVA compared to DMSO vehicle control (V).  

 

Supplement Figure E2. Proliferation of 323-TSC2-positive MEF (n=4) and 323-TSC2-null 

MEF (n=4) treated with vehicle (V) or rapamycin. Data expressed as mean ± SEM # p≤0.05 

323-TSC2-positive MEF compared to 10 % FBS and *p≤0.05 323-TSC2-null MEF 
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compared to 10 % FBS, repeated measures two-way ANOVA compared to DMSO vehicle 

control (V).  

   

Supplement Figure E3. Proliferation of ELT3 cells (n=4) treated with vehicle (V) or 

rapamycin. Data expressed as mean ± SEM *p≤0.05 repeated measures two-way ANOVA 

compared to DMSO vehicle control (V).  

 

Supplement Figure E4. Basal level (0.5 % FBS) and 10 % FBS-induced proliferation of 

TSC2-positive (n=16) and TSC2-negative (n=16) MEF. Data expressed as mean ± SEM 

*p≤0.05 repeated measures two-way ANOVA. 

 

Supplement Figure E5. Basal level (0.5 % FBS) and 10 % FBS-induced proliferation of 

323-TSC2-positive (n=8) and 323-TSC2-null MEF (n=8). Data expressed as mean ± SEM 

*p≤0.05 repeated measures two-way ANOVA.  

Supplement Figure E6. Proliferation of 323-TSC2-positive (n=5) and 323-TSC2-null MEF 

(n=5), D. ELT3 cells treated with doxycycline. Data expressed as mean ± SEM *p≤0.05 

repeated measures one-way ANOVA. 

 

Supplement Figure E7. Proliferation of TSC2-positive (n=4) and TSC2-negative MEF 

(n=4) treated with Y-27632. Data expressed as mean ± SEM *p≤0.05 repeated measures one-

way ANOVA. 

 

Supplement Figure E8. Cell migration of TSC2-negative MEF treated with doxycycline, 

vehicle or rapamycin alone, or in combination as indicated. Data expressed as mean ± SEM 
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*p≤0.05 repeated measures one-way ANOVA compared to FBS or DMSO vehicle control 

where appropriate. Bonferroni post-test was used. 

 

Supplement Figure E9. RhoA activity in TSC2-negative MEF (n=6) treated with 

doxycycline, vehicle or rapamycin alone, or in combination as indicated. RhoA activity 

corrected for total Rho (-A, -B, -C) and expressed as a percentage of 10 % FBS *p≤0.05 

repeated measures one-way ANOVA compared to FBS or DMSO vehicle control where 

appropriate. Bonferroni post-test was used. 

 

Supplement Figure E10. Wound closure of TSC2-negative MEF (n=4) treated with 

doxycycline, vehicle or rapamycin alone, or in combination as indicated. Data expressed as 

percentage closure over 20 hours *p≤0.05 repeated measures one-way ANOVA compared to 

FBS or DMSO vehicle control where appropriate. Bonferroni post-test was used. 

 

Figure Legends 

Figure 1: 10 % FBS-induced migration of A. TSC2-positive (n=10) and TSC2-negative 

(n=10) MEF and 323-TSC2-positive MEF (n=5) and 323-TSC2-null MEF (n=5). Data 

represent the average number of cells migrated in five regions of 200 µm2 ± SEM *p≤0.05 

unpaired t-test. Wound closure assay of B. TSC2-positive (black line, n=4) and TSC2-

negative MEF (red line, n=4) over 20 hours and C. 323-TSC2-positive (black line, n=4) and 

323-TSC2-null MEF (red line, n=4) over 20 hours. Data expressed as a percentage closure ± 

SEM in response to0.5 % FBS stimulation *p≤0.05 repeated measures one-way ANOVA 

with a Bonferroni post test.  
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Figure 2: Migration of A. TSC2-negative MEF (n=5) and B. 323-TSC2-null MEF following 

30 minutes pretreatment with doxycycline. Data expressed as the average number of cells 

migrated in five regions of 200 µm
2
± SEM. Wound closure assay of C. TSC2-negative MEF 

(n=4) and D. 323-TSC2-null MEF (n=4) following 30 minutes pretreatment with doxycycline. 

Data expressed as area under the curve (AUC) over 20 hours ± SEM.. Migration of E. TSC2-

negative MEF (n=4) following 30 minutes pretreatment with Y-27632. Data expressed as the 

average number of cells migrated per 200 µm
2 

*p≤0.05 repeated measures one-way ANOVA 

compared with FBS with a Bonferroni post-test. 

 

Figure 3: Phospho-p70S6K levels in A. TSC2-positive MEF (n=5) and B. TSC2-negative 

MEF (n=5) in the presence (+) or absence (-) of doxycycline as indicated, C. TSC2-positive 

MEF (n=3) and D. TSC2-negative MEF (n=3) in the presence (+) or absence (-) of Y-27632 

as indicated and E. TSC2-positive MEF (n=4) and F. TSC2-negative MEF (n=4) in the 

presence (+) or absence (-) of vehicle control (V) or rapamycin as indicated. Representative 

western blots of phospho-p70S6K, p70S6K and α-tubulin are shown (A-F) above mean data. 

Data expressed as mean ± SEM *p≤0.05 repeated measures one-way ANOVA with a 

Bonferroni post-test (compared with 10% FBS). 

 

Figure  4: RhoA-GTPase activity in A. TSC2-positive (n=5) and TSC2-negative MEF (n=6) 

under basal conditions (0.5 % FBS) and in the presence of the stimulus 10 % FBS #p<0.05  

TSC2-positive vs TSC2-negative cells, B. TSC2-negative MEF (n=6) following 1 minute of 

treatment with doxycycline, vehicle control (DMSO), rapamycin or Y-27632 as indicated and 

C. TSC2-positive MEF (n=5) following 1 minute of treatment with doxycycline, or Y-27632. 

RhoA activity corrected for total Rho (-A, -B, -C) and expressed as a percentage of 10 % 

Page 31 of 74 Journal of Cellular and Molecular Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 32

FBS ± SEM *p≤0.05 repeated measures one-way ANOVA with a Bonferroni post-test 

(compared with 10% FBS). 

 

Figure 5: Phospho-FAK levels in TSC2-positive and TSC2-negative MEF (n=4) in the 

presence (+) or absence (-) of doxycycline treatment for 4 hours. Representative western 

blots of phospho-FAK, FAK and α-tubulin are shown above mean data. Data expressed as 

mean ± SEM #p<0.05 compared with TSC2-negative cells; *p≤0.05 repeated measures one-

way ANOVA with a Bonferroni post-test (compared with 10% FBS). 

 

Figure 6 : Phospho-AKT levels in A. TSC2-positive MEF (n=4) and B. TSC2-negative MEF 

(n=4) and phospho-ERK1/2 (p44/42) levels in C. TSC2-positive MEF (n=4) and D. TSC2-

negative MEF (n=4) in the presence (+) or absence (-) of doxycycline as indicated. 

Representative western blots of phospho-AKT, AKT, phospho-ERK1/2 (p44/42), ERK1/2 

(p44/42) and α-tubulin are shown above mean data. Data expressed as mean ± SEM *p≤0.05 

repeated measures one-way ANOVA with a Bonferroni post-test (comparison with 10% 

FBS). 

 

Figure 7: Proliferation of A. TSC2-positive MEF (n=4) and B. TSC2-negative MEF (n=4) 

treated with doxycycline, vehicle or rapamycin alone, or in combination as indicated. Data 

expressed as mean ± SEM *p≤0.05 repeated measures one-way ANOVA compared to FBS 

#p<0.05 repeated measures one-way ANOVA compared to Vehicle (DMSO) control where 

appropriate. Bonferroni post-test was used. 

 

Figure 8: Cell migration of A. TSC2-negative MEF (n=4), treated with doxycycline (D) 

vehicle or rapamycin (R) alone, or in combination (R+D). Data expressed as mean ± SEM 
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*p≤0.05 comparison with 10% FBS, $p<0.05 comparison with vehicle control, using repeated 

measures one-way ANOVA. B. RhoA activity of TSC2-negative MEF (n=6) treated with 

doxycycline(D), vehicle or rapamycin (R) alone or in combination. RhoA activity corrected 

for total Rho (-A, -B, -C) and expressed as a percentage of 10 % FBS ± SEM *p≤0.05 

comparison with 10% FBS, 
$
p<0.05 comparison with vehicle control using repeated 

measures one-way ANOVA. C. Wound closure of TSC2-negative MEF (n=4) treated with 

doxycycline, vehicle or rapamycin 2 nM alone or in combination. Data expressed as area 

under the curve (AUC) over 20 hours ± SEM. *p≤0.05 comparison with 10% FBS, $p<0.05 

comparison with vehicle control, analysed using repeated measures one-way ANOVA as 

appropriate.  

 

Supplement Figure E1. Basal level (0.5 % FBS) and 10 % FBS-induced proliferation of 

TSC2-positive (n=12) and TSC2-negative (n=12) MEF. Data expressed as mean ± SEM 

*p≤0.05 repeated measures two-way ANOVA with a Bonferroni post test. 

 

Supplement Figure E2. Basal level (0.5 % FBS) and 10 % FBS-induced proliferation of 

323-TSC2-positive (n=8) and 323-TSC2-null MEF (n=8). Data expressed as mean ± SEM 

*p≤0.05 repeated measures two-way ANOVA with a Bonferroni post test.  

 

Supplement Figure E3. Proliferation of 323-TSC2-positive (n=5) and 323-TSC2-null MEF 

(n=5), treated with doxycycline. Data expressed as mean ± SEM *p≤0.05 repeated measures 

one-way ANOVA with a Bonferroni post test. 
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Supplement Figure E4. Proliferation of ELT3 cells treated with doxycycline. Data 

expressed as mean ± SEM *p≤0.05 compared to 10% FBS using repeated measures one-way 

ANOVA with a Bonferroni post test. 

Supplement Figure E5. Proliferation of TSC2-positive (white bars, n=5) and TSC2-negative 

MEF (grey bars, n=5), treated with Y-27632. Data expressed as mean ± SEM *p≤0.05 

repeated measures one-way ANOVA with a Bonferroni post test. 

 

Supplement Figure E6: Proliferation of TSC2-positive (n=4) and TSC2-negative MEF 

(n=4) treated with vehicle (V) or rapamycin. Data expressed as mean ± SEM # p≤0.05 TSC2-

positive MEF compared to 10 % FBS and *p≤0.05 TSC2-negative MEF compared to 10 % 

FBS, repeated measures two-way ANOVA compared to DMSO vehicle control (V) with a 

Bonferroni post test.  

 

Supplement Figure E7. Proliferation of 323-TSC2-positive MEF (n=4) and 323-TSC2-null 

MEF (n=4) treated with vehicle (V) or rapamycin. Data expressed as mean ± SEM # p≤0.05 

323-TSC2-positive MEF compared to 10 % FBS and *p≤0.05 323-TSC2-null MEF 

compared to 10 % FBS, repeated measures two-way ANOVA compared to DMSO vehicle 

control (V) with a Bonferroni post test.  

 

Supplement Figure E8. Proliferation of ELT3 cells treated with vehicle (V) or rapamycin. 

Data expressed as mean ± SEM # p≤0.05 ELT3 cells compared to 10 % FBS repeated 

measures one-way ANOVA compared to DMSO vehicle control (V) with a Bonferroni post 

test.  
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Table 1. Antibodies for immunoblotting 

Target 

Protein 

Primary Antibody / 

Concentration (Supplier) 
Secondary Antibody (Supplier) 

Treatment 

Incubation 

Time (hrs) 

p70S6K 

Rabbit polyclonal anti-mouse 
Phospho-p70S6K (Thr389) / 1:2000 

(Cell Signalling Technology, 
Danvers, MA, USA) 

Goat polyclonal anti-rabbit 
immunoglobulin G- HRP 

conjugated 1:2000 
(Dako Glosturp, Denmark) 

1/2 

Rabbit polyclonal anti-mouse 
p70S6K / 1:2000 

(Cell Signalling Technology) 

AKT 

Rabbit monoclonal anti-mouse 
Phospho-AKT (Thr308) / 1:2000 
(Cell Signalling Technology,) 1/4 

Rabbit monoclonal anti-mouse 
AKT / 1:2000 

(Cell Signalling Technology,) 

p42/44 

ERK1/2 

MAPK 

Rabbit monoclonal anti-mouse 
Phospho-p44/42 MAPK (ERK1/2) 

(Thr202/Thr204) / 1:2000 
(Cell Signalling Technology,) 

1/4 

Rabbit monoclonal anti-mouse 
p44/42 MAPK (ERK1/2) / 1:2000 

(Cell Signalling Technology,) 

FAK 

Rabbit polyclonal anti-mouse 
Phospho-FAK (Tyr397) / 1:2000 
(Cell Signalling Technology,) 4 

Rabbit polyclonal anti-mouse 
FAK / 1:2000 

(Cell Signalling Technology,) 

α-tubulin 

Mouse polyclonal 
α-tubulin 1:2000 

 (SantaCruz) 

Goat polyclonal anti-mouse 
immunoglobulin G- HRP 

conjugated 1:2000 
(Dako) 

- 

 

*Primary and secondary antibodies were diluted in 1% BSA/PBS-T. 
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Abstract 

Background and purpose: Lymphangioleiomyomatosis (LAM) is associated with 

dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation 

and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can 

inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through 

which doxycycline works and to assess the effectiveness of combining doxycycline with 

rapamycin (mammalian target of rapamycin complex [mTORC] 1 inhibitor) in controlling 

cell migration, proliferation and wound closure. 

Experimental approach: TSC2-positive and TSC2-negative mouse embryonic fibroblasts 

(MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) 

cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound 

closure and proliferation were assessed using a transwell migration assay, time-lapse 

microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of 

p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with 

doxycycline were examined using enzyme-linked immunosorbent assay and immunoblotting 

techniques. 

Key results: The enhanced migration of TSC2-null cells was reduced by doxycycline at 

concentrations as low as 20pM, while the rate of wound closure was reduced at 2–59µM. 

Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but 

had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline 

with rapamycin significantly reduced the rate of wound closure at lower concentrations than 

achieved with either drug alone. 

Conclusion and implications: This study shows that doxycycline inhibits TSC2-null cell 

migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of 

diseases with TSC2 dysfunction.  
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Key Words: pulmonary lymphangioleiomyomatosis, tuberous sclerosis gene complex-2, 
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Introduction 

Pulmonary lymphangioleiomyomatosis (LAM), a rare disease in women of childbearing age 

[1,2], is characterised by the irregular proliferation and migration of smooth muscle-like cells 

(LAM-cells) throughout the lungs, resulting in the obstruction of the small airways [3,4]. The 

disease ultimately manifests as cystic destruction of the lung parenchyma and the loss of 

pulmonary function [5].  

 

LAM is associated with the mutational inactivation of the tuberous sclerosis gene complex 

(TSC), TSC1 and TSC2 [6,7]. Dysfunction of either TSC1 (hamartin) or TSC2 (tuberin) (with 

TSC2 being more common) results in enhanced cell proliferation and migration [8-10]. Over 

the last decade, knowledge of the underlying cellular mechanisms that drive LAM 

pathophysiology has been enhanced with an increased understanding of the rapamycin-

sensitive, mammalian target of rapamycin complex 1 (mTORC1) [11] and the rapamycin-

insensitive mTORC2 signalling pathways [12-15]. The TSC1/TSC2 complex indirectly 

regulates the phosphorylation of ribosomal p70S6 kinase (p70S6K) and the initiation factor 

4E-binding protein 1 (4E-BP1) through the mTORC1 pathway, thus acting as a central 

regulator of cell growth and proliferation [16-18]. The functional TSC1/TSC2 complex also 

acts to regulate the mTORC2 pathway, which controls actin cytoskeleton rearrangement 

through Rho GTPases, RhoA and Rac1 [19,20]. Dysfunction of the TSC1/TSC2 complex 

leads to the activation of mTORC2, resulting in increased RhoA-GTPase activity and 

consequently enhanced cellular migration [21].  

 

Cell migration in LAM has been demonstrated clinically, where it is reported that the same 

TSC2 mutation is observed in pulmonary LAM cells and angiomyolipoma (AML) cells [22]. 

This suggests that the cells have originated from a common origin, disseminating through the 
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vascular and lymphatic systems [23]. This also may explain the recurrence of LAM cells in 

the healthy lungs received by LAM patients post lung transplant [24-28]. In vitro studies by 

Goncharova et al. have also provided supporting evidence that a functional TSC1/TSC2 

complex acts to regulate normal cell migration through the mTORC2 pathway, which 

controls RhoA-GTPase activity [21].  

 

The mTORC1 inhibitor rapamycin, a bacterial macrolide with immunosuppressive and 

antitumour properties, has been a major focus of LAM research. In vitro studies have shown 

rapamycin to effectively inhibit LAM cell proliferation [9,29,30]. In addition, in the 

Multicenter International LAM Efficacy of Sirolimus (MILES) trial, McCormack et al. 

reported that patients with LAM treated with sirolimus (rapamycin) experienced stabilised 

lung function with a reduction in symptoms and improvement in quality of life compared to 

patients who were taking a placebo [31]. However limitations were present, most notably the 

continued decline in lung function following the discontinuation of sirolimus [31]. Similarly, 

in a murine model of TSC2-null tumours, rapamycin inhibited tumour growth but its 

withdrawal resulted in TSC2-null tumour regrowth together with a decreased survival [21]. 

Although the long term effects of rapamycin are not known in LAM, chronic sirolimus use 

has previously been associated with altered lipid and glucose metabolism resulting in 

hyperlipidemia, glucose intolerance, diabetes like syndromes and cancer [32-35]. Together, 

these in vitro and in vivo studies highlight that although rapamycin shows beneficial effects 

in the treatment of LAM, its requirement for long term use and its potential adverse effects 

highlight the need for alternative treatments.  

 

Since enhanced migration is a prominent feature of TSC2-null cells, the lack of effect of 

rapamycin on migration [9] suggests that mTORC1 inhibitors alone may not be the optimal 
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treatment for LAM. Alternative treatments, in particular, drugs that tackle the increased 

migratory capacity of LAM cells may provide added benefit. Since LAM is a disease 

characterised by enhanced cell proliferation and migration, where both processes occur, the 

examination of the effects of drugs on both processes is necessary.  

   

Moses et al. demonstrated that doxycycline, a second-generation tetracycline antibiotic, 

improved lung function and quality of life in a single LAM patient, with minimal side-effects 

[36]. In addition, we have previously reported that doxycycline can reduce the mitochondrial 

activity and extracellular levels of active MMP-2 in human LAM cells and TSC2-null mouse 

embryonic fibroblasts (MEF) [37]. Furthermore, doxycycline has been shown to inhibit 

migration of cells in the development of arterial intimal lesions [38], breast carcinoma [39] 

and human melanoma [40]. 

 

Since the loss of TSC2 plays a prominent role in the phenotypic characteristics in LAM, the 

study of cells that are well characterised for TSC2 dysfunction is highly relevant. Examples 

of these cells are the TSC2 knockout mouse embryonic fibroblasts (MEF) [41], 323 MEF in 

which TSC2 is stably reintroduced [13] and the Eker rat uterine leiomyoma (ELT3) cells in 

which TSC2 is naturally absent [42].  

 

In this study, we investigated the effects of doxycycline on the migratory capacity of cells 

deficient for TSC2, identified the signalling pathways through which doxycycline works and 

examined the potential of combining doxycycline with the mTORC1 inhibitor rapamycin, to 

inhibit the enhanced migration, proliferation and wound closure of TSC2-deficient cells. 
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Materials and Methods 

Cell Culture 

Littermate derived p53 knockout TSC2-negative MEF, TSC2-positive MEF and isogenic p53 

positive 323-TSC2-null MEF and 323-TSC2-positive MEF (where TSC2 was stably 

reintroduced) (a gift from Dr. D. Kwiatkowski, Brigham and Women’s Hospital Boston, MA, 

USA) and Eker rat uterine leiomyoma (ELT3) cells that were spontaneously deficient in 

TSC2 (a gift from Dr. Cheryl Walker, MD Anderson Cancer Center, TX, USA) were cultured 

as previously described [10,11,21,42,43].  

 

MEF, 323 MEF and ELT3 cell preparation 

For experiments with MEF and 323 MEF, the cells were seeded at a density of 1 x 104 

cells.cm-2 in high glucose DMEM (Life Technologies, Carlsbad, CA, USA) containing 10 % 

foetal bovine serum (FBS - Glendarach Biological, Melbourne, VIC, Australia) and 1 % 

penicillin-streptomycin (Life Technologies) for 24 hours. The medium was then changed to 

DMEM containing 0.5 % FBS and 1 % penicillin-streptomycin (serum-reduced DMEM) for 

24 hours. The cells were then used as indicated in the experiments.  

 

ELT3 cells were cultured in DF8 medium (supplemented with 10% FBS) as previously 

described [10,11,42,43]. ELT3 cells were seeded at a density of 1 x 104 cells.cm-2 in DF8 

medium for 24 hours, after which the medium was changed to serum free DF8-basal medium 

for 24 hours as previously described [11]. The cells were then used as indicated in the 

experiments. 
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Doxycycline, rapamycin and Y-27632 preparation 

Doxycycline hyclate (Sigma-Aldrich, St. Louis, MO, USA) was freshly prepared in sterile 

distilled water at a stock concentration of 20 mM. Insolution™ rapamycin (Calbiochem, St. 

Louis, MO, USA) was diluted in sterile dimethyl sulfoxide (DMSO; Sigma-Aldrich) to a 

stock concentration of 1 mM and stored at -20 °C prior to use. Y-27632 (Calbiochem) a 

ROCK inhibitor was diluted in sterile water to a stock concentration of 10 mM and stored at -

20 °C prior to use.  

 

For all experiments, doxycycline was used at a final concentration range of 200 fM - 59 µM, 

rapamycin at 0.2 - 200 nM (with respective DMSO vehicle controls) and Y-27632 at 0.3 – 30 

µM. For experiments in which the effects of combining doxycycline and rapamycin were 

assessed, various combinations of concentrations were used as indicated, with respective 

DMSO vehicle controls.   

 

Proliferation assay 

Cells that were seeded and placed under serum-reduced conditions in 12-well flat-bottom, 

tissue-culture treated polystyrene cell culture plates (BD Falcon™, Becton Dickinson, 

Franklin Lakes, NJ, USA) as described above, were pretreated with doxycycline or 

rapamycin alone or in combination or with Y-27632 in the presence of serum-reduced 

DMEM for 30 minutes. The cells were subsequently stimulated with 10 % FBS with or 

without drug for 24 hours. Cells were then trypsinsed and proliferation was assessed by 

counting the number of viable cells (trypan blue exclusion) using a haemocytometer.  
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Migration assay 

Cells that were seeded and placed in serum reduced conditions in 75cm2 tissue culture flasks 

(BD Falcon™) as described above were trypsinised, counted and resuspended in serum-

reduced DMEM. Cell migration was assessed using a transwell migration assay as previously 

described [8,10].  Briefly, cells in suspension were pre-treated with doxycycline or rapamycin 

alone or in combination, or with Y-27632 (ROCK inhibitor) for 30 minutes before seeding 

onto collagen type I (1 µg/ml) coated cell culture inserts (8.0 µm polyethylene terephthalate 

(PET) membrane (BD Falcon™) at a density of 2 x 105 cells per 0.3 cm2. The cells were then 

allowed to migrate for 4 hours towards a chemoattractant of 10 % FBS at 37 ⁰C, 5 % CO2. 

Non-migrated cells were removed and migrated cells were fixed with 4% (v/v) 

paraformaldehyde (PFA), stained with 0.5 % (w/v) toludine blue (Sigma) containing 0.5 % 

(w/v) boric acid (Sigma) and imaged (Olympus BX60, Center Valley, PA, USA). Cell 

migration was measured by manually counting cells in five regions of 200 µm2 and expressed 

as an average.  

 

Wound Assay 

Cells that were seeded and placed under serum-reduced conditions in 12-well flat-bottom 

polystyrene cell culture plates precoated with collagen type I (1 µg/ml) as described above, 

were pretreated with doxycycline or rapamycin alone, or in combination for 30 minutes prior 

to wounding. A wound was created by scratching the cell layer with a sterile 200 µl pipette 

tip (Thermo Fisher Scientific, Waltham, MA, USA). The cells were rinsed with serum-

reduced DMEM to remove any cell debris and freshly prepared drug treatments were 

replaced into each well. The cells were then incubated at 37 °C, 5 % CO2 in a humidified 

incubation chamber (Clear State Solutions, Victoria, Australia) mounted on a Nikon Eclipse 

Ti-microscope (Nikon Eclipse Ti, Tokyo, Japan). Time-lapse images were captured at 
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intervals of 1 hour for up to 20 hours as indicated and the rate of wound closure was assessed 

using Nikon Imaging software (NIS-Elements Imaging Software Version 3.22.01, Melville, 

NY, USA). 

 

Immunoblotting 

Levels of phosphorylated (phospho)-p70S6 kinase (p70S6K), phospho-AKT, phospho p44/42 

MAPK (ERK1/2) and phospho-focal adhesion kinase (FAK) were measured using 

immunoblotting as previously described [44]. Briefly, cells that were seeded and placed in 

serum-reduced conditions in 6-well flat-bottom polystyrene cell culture plates were treated 

with doxycycline or rapamycin alone or in combination or with Y-27632. The cells were then 

lysed in modified RIPA buffer and the samples were size fractionated on 10 % 

polyacrylamide gels and transferred to polyvinvylidene fluoride (PVDF) membranes 

(Millipore, Billerica, MA, USA). The membranes were then blocked with 5% bovine serum 

albumin (BSA) diluted in phosphate buffered saline with 0.05% Tween-20 (PBS-T) and 

subsequently incubated with respective primary antibodies against phosphorylated proteins 

(as indicated in Table 1) overnight at 4 °C, before incubation with respective 

immunoglobulin G- horseradish peroxidase (HRP) conjugated secondary antibody (as 

indicated in Table 1) for 1 hour at room temperature. The membranes were then visualised 

using chemiluminescence (Millipore, Temecula, CA, USA), imaged and analysed using a 

Kodak Image Station 4000MM (Carestream Molecular Imaging Software Version 5.0.2.30, 

Rochester, NY, USA). 

 

To allow for comparison of phosphorylated proteins to total proteins, antibodies were 

stripped from the membranes, the membranes were re-blocked and re-probed as previously 

described with either primary antibodies against total proteins (as indicated in Table 1) or 
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mouse anti-α-tubulin (loading control; 1:2000 dilution in 1% PBS-T) (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) [44]. Respective immunoglobulin G- horseradish 

peroxidase (HRP) conjugated secondary antibodies (as indicated in Table 1) were used.  

  

RhoA Activation Assay 

RhoA activity was measured using the G-LISA RhoA Activation Assay Biochem Kit as per 

the manufacturer's instructions (Cytoskeleton, CO, USA). Briefly, cells that were seeded and 

placed in serum-reduced conditions in 175 cm2 tissue cell culture flasks were treated with or 

without Y-27632, rapamycin or doxycycline alone or in combination as indicated for 1 

minute (as assessed by time-course experiments to exhibit maximum RhoA expression 

levels). The cells were then lysed and the activity of RhoA was measured using the G-LISA 

assay at an absorbance of 490 nm with the limits of detection at 0.05 ng. Following the 

manufacturer's instructions, levels of active RhoA were then normalised to total Rho (-A, -B, 

-C) levels as measured using immunoblotting (as detailed above). Mouse monoclonal anti-

Rho (-A, -B, -C) primary antibody (diluted 1:2000 - Millipore) and goat polyclonal anti-

mouse immunoglobulin G- HRP conjugated secondary antibody (diluted 1:2000 - Dako) 

were used.  

 

Statistical analysis 

Results from n experiments were analysed using Student's unpaired t-test, area under the 

curve, repeated measures one-way analysis of variance (ANOVA) or repeated measures two-

way ANOVA with a Bonferroni post-test where appropriate (Graphpad Prism Version 4, 

Graphpad Software Inc, La Jolla, CA, USA). A probability (p) value of less than or equal to 

0.05 was considered statistically significant.
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Results 

Enhanced cell migration and increased rate of wound closure in TSC2-deficient cells 

In this study, we confirmed the enhanced migration of p53 knockout TSC2-negative MEF 

compared to TSC2-positive MEF (TSC2-negative and TSC2-positive, n=10; p≤0.05, Figure 

1A) [9,10] and extended our findings to show, using 323-TSC2-positive MEF in which TSC2 

has been stably reintroduced, that cell migration was significantly lower in cells where TSC2 

is present (323-TSC2-null and 323-TSC2-positive MEF, n=5; p≤0.05, Figure 1A). In addition, 

the rate of wound closure in TSC2-negative MEF was also significantly greater compared to 

TSC2-positive MEF (area under the curve, TSC2-negative and TSC2-positive, n=4; p≤0.05, 

Figure 1B). Again, using 323-TSC2-positive MEF, the rate at which the cells closed a wound 

was significantly decreased by the presence of TSC2 (323-TSC2-positive and 323-TSC2-null, 

n=4; p≤0.05, Figure 1C). 

 

Doxycycline reduced enhanced cell migration in TSC2-deficient cells 

Doxycycline (20 pM - 59 µM) decreased 10% FBS-induced migration of TSC2-negative 

MEF by 14.5 - 60.7 % (TSC2-negative, n=5; p≤0.05, Figure 2A) and of 323-TSC2-null MEF 

by 33.7 – 77.5 % (323-TSC2-null MEF, n=5; p≤0.05, Figure 2B). Doxycycline also 

decreased the rate of wound closure in both TSC2-negative MEF and 323-TSC2-null MEF (2 

µM - 59 µM area under the curve, TSC2-negative and 323-TSC2-null MEF, n=4; p≤0.05, 

Figure 2C, D). Similarly, the ROCK inhibitor, Y-27632 (10 - 30 µM) decreased FBS-induced 

migration of TSC2-negative MEF by 15.6 - 58.0 % (TSC2-negative MEF, n=4; p≤0.05, 

Figure 2E). In contrast, rapamycin, had no effect on the migration of TSC2-negative MEF 

and 323-TSC2-null MEF at any of the concentrations tested (2 - 200 nM) (data not shown) in 

accordance with previous studies [9].  
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Doxycycline and Y-27632 had no effect on cell proliferation 

0.5 % FBS and 10 % FBS induced the proliferation of TSC2-negative MEF to a greater 

extent than TSC2-positive MEF (TSC2-negative and TSC2-positive, n=12; p≤0.05, Figure 

E1) and this is in accordance with previous studies [11,45]. Cell proliferation of 323-TSC2-

positive MEF in the presence of 10 % FBS was less than that in 323-TSC2-null MEF (323-

TSC2-positive and 323-TSC2-null MEF, n=8; p≤0.05, Figure E2). 

 

We have previously shown that doxycycline has no effect on the proliferation of TSC2-

positive or TSC2-negative MEF [37] and we were able to replicate these findings in 323-

TSC2-positive and 323-TSC2-null MEF (323-TSC2-positive and 323-TSC2-null MEF, n=5; 

p>0.05, Figure E3) and in ELT3 cells where doxycycline inhibited cell proliferation only at 

the highest concentration (59 µM) (ELT3 cells, n=5, p≤0.05, Figure E4). In addition,  

Y-27632 had no effect on the proliferation of TSC2-positive or TSC2-negative MEF (TSC2-

positive and TSC2-negative MEF, n=4; p>0.05, Figure E5). To confirm that proliferation in 

the above cell types can be inhibited, the mTORC1 inhibitor rapamycin was used as a 

positive control, showing a reduction in the proliferation of MEF, 323 MEF and ELT3 cells 

(TSC2-negative and TSC2-positive, n=5; p≤0.05, Supplement Figure E6, 323-TSC2-positive 

and 323-TSC2-null MEF, n=5; p≤0.05, Figure E7 and ELT3, n=5; p≤0.05, Figure E8). 

Furthermore, doxycycline and Y-27632 had no effect on the phosphorylation of p70S6K, 

(TSC2-positive or TSC2-negative, n=5, p>0.05, doxycycline Figure 3A, B, Y-27632 Figure 

3C, D), whereas rapamycin inhibited the phosphorylation of p70S6K (TSC2-positive and 

TSC2-negative, n=5, p≤0.05, Figure 3E, F).  
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Doxycycline inhibits RhoA activity and reduces phosphorylation of FAK in TSC2-

negative MEF 

To investigate the mechanism through which doxycycline inhibits the migration of TSC2-

deficient cells, we examined the activity of RhoA-GTPase and the phosphorylation of FAK, 

AKT and ERK1/2. Under basal conditions and in the presence of 10 % FBS, TSC2-negative 

MEF exhibited increased RhoA-GTPase activity compared to TSC2-positive MEF in 

accordance with published studies [43,46]. In addition, in TSC2-positive MEF, RhoA-

GTPase activity was induced in the presence of 10 % FBS, whereas this was constitutively 

active in TSC2-negative MEF (TSC2-positive and TSC2-negative MEF, 0.5 % FBS and 

10 % FBS, p≤0.05, Figure 4A). 

 

Doxycycline (2 µM & 59 µM) and Y-27632 (10 µM) reduced elevated RhoA-GTPase 

activity in TSC2-negative MEF by 26.8 - 34.3 % and 38.4 % at 1 minute (TSC2-negative, 

doxycycline and Y-27632, n=6, p≤0.05, Figure 4B), while rapamycin (200 nM) had no effect 

(TSC2-negative, rapamycin 200 nM, n=6, p≥0.05, Figure 4B). In addition, doxycycline had 

no effect on RhoA-GTPase activity in TSC2-positive MEF (TSC2-positive, n=4, p>0.05, 

Figure 4C).  

 

The amount of phospho-FAK was constitutively higher in TSC2-negative MEF compared to 

TSC2-positive MEF (n=4, p≤0.05 Figure 5). Doxycycline reduced elevated levels of 

phospho-FAK in TSC2-negative MEF while it had no effect in TSC2-positive MEF (TSC2-

negative MEF, n=4, p≤0.05 Figure 5). Doxycycline also had no effect on the levels of 

phospho-AKT (n=4, p>0.05, Figure 6A, B) or phospho-ERK1/2 (p44/42) (n=4, p>0.05, 

Figure 6C, D) in TSC2-positive or TSC2-negative MEF. 
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Combined treatment of doxycycline and rapamycin inhibits the rate of wound closure 

in TSC2-negative MEFs 

We next assessed the effectiveness of combining rapamycin with doxycycline in inhibiting 

the proliferation, migration and the ability to close a wound of TSC2-null MEF, as well as its 

effect on RhoA-GTPase activity. Doxycycline or rapamycin alone or in combination had no 

effect on the proliferation of TSC2-positive MEF (TSC2-positive, n=4; p>0.05, Figure 7A). 

Combining doxycycline and rapamycin significantly inhibited TSC2-negative MEF 

proliferation, migration and RhoA-GTPase activity, however the degree of inhibition was no 

greater compared to the individual drugs alone (Cell proliferation, TSC2-negative, n=4; 

p>0.05, Figure 7B, cell migration, TSC2-negative, n=4; p>0.05, Figure 8A and RhoA activity, 

n=6, p>0.05, Figure 8B). The combination of doxycycline and rapamycin at sub-maximal 

concentrations decreased the rate of wound closure in TSC2-negative MEF when compared 

to the individual effects of doxycycline or rapamycin alone (TSC2-negative, n=4; p<0.05, 

Figures 8C).  
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Discussion 

A lack of treatment for LAM has prompted studies to further understand the pathogenic 

characteristics of the disease, in an attempt to pinpoint possible future therapeutic targets. In 

this study, we demonstrated the ability of doxycycline to reduce the enhanced migratory 

capacity of cells deficient for TSC2 through the inhibition of RhoA-GTPase activity and 

reduced levels of phospho-FAK. In addition, we extended our research to examine the 

combination of doxycycline and rapamycin and showed this reduced the rate of wound 

closure and maintained the reduction in migration, proliferation and RhoA-GTPase activity in 

TSC2-null cells.  

 

Since LAM is associated with TSC2 dysfunction, cells deficient for TSC2 such as MEF, 323-

MEF and ELT3 cells, have been widely used to enhance our understanding of this disease 

[47]. The use of TSC2-negative MEF and 323-TSC2-null MEF in this study is of particular 

relevance to LAM as some LAM cells have been reported to be TSC2 negative [7,48,49]. In 

addition, TSC2-negative and 323-TSC2-null MEF have also been shown to exhibit enhanced 

proliferation and migration, characteristics which are also shared by LAM cells [8,9,21,50].  

 

The dysfunction of TSC2 has been widely demonstrated to be associated with enhanced 

proliferation of LAM cells [3,11,13,18,45,51]. Many studies have focused on controlling this 

enhanced proliferation through the anti-proliferative properties of rapamycin (an mTORC1 

inhibitor) [11,31,52,53]. However, it is as important to recognise that the loss of TSC2 

function in LAM not only results in the hallmark manifestations of enhanced cell 

proliferation, but also enhanced cell migration. For this reason, we believe that targeting the 

increased migratory capacity of cells deficient for TSC2 may be beneficial.  
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It is well established that TSC2 plays a prominent role in the regulation of cell migration 

[9,10,46,51,54]. Previous studies that examined cell migration using a transwell migration 

assay have demonstrated enhanced migratory capacity in cells deficient for TSC2. In this 

study, we were able to confirm these findings and extended the study to assess the rate at 

which TSC2-null cells can close a wound. Here, we demonstrated that the rate of wound 

closure in cells deficient for TSC2 was significantly increased compared to TSC2-positive 

cells.  

 

In this study, we have demonstrated for the first time that doxycycline can reduce the 

migratory capabilities and reduce the rate of wound closure of TSC2-negative MEF and 323-

TSC2-null MEF. It was of great interest that doxycycline inhibited cell migration at 

concentrations as low as 20 pM whereas it had no effect on the proliferation of 323-TSC2-

positive and 323-TSC2-null MEF. This is in accordance with our previous study that showed 

doxycycline had no effect on the proliferation of TSC2-positive, TSC2-null MEF or human 

LAM cells [37]. Also in the present study, we showed that proliferation of ELT3 cells was 

inhibited by doxycycline only at high concentrations and these findings are similar to those of 

Chang et al. who reported that doxycycline at concentrations of 2 - 20 µM [1-10 µg.ml-1] had 

no effect on the proliferation of ELT3 cells but concentrations >49 µM [>25 µg.ml-1] 

decreased proliferation, increased apoptosis and altered cell morphology - effects which were 

due to doxycycline-induced toxicity [55]. Furthermore, we demonstrated rapamycin to be 

ineffective in the inhibition of migration and confirmed the findings of Goncharova et al. 

who showed rapamycin, at concentrations that significantly abrogated LAM cell proliferation, 

had no effect on human LAM cell migration [9]. Wound closure assays have previously been 

reported to reflect two crucial processes, cell proliferation and migration (Liang et al., 2007). 

However, we have demonstrated in this study that, the ability of TSC2-negative and 323-
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TSC2-null MEFs to close a wound relies predominantly on migration and not proliferation, 

as rapamycin had little effect in these assays.    

 

Matrix metalloproteinase (MMP) -2 and -9 have often been associated with cell migration 

and invasion; however the concentrations of doxycycline that inhibited cell migration were 

significantly lower than those we have previously reported for effective MMP-2 inhibition 

[37]. This suggests that, although doxycycline is capable of MMP-2 inhibition, the reduction 

in migratory capacity demonstrated in this study is not likely to be due to the inhibition of 

MMPs. It was also interesting to observe that doxycycline was not as effective in the wound 

closure assay as in the transwell migration assay, where concentrations of only ≥20 µM 

[10µg.ml-1] significantly inhibited wound closure. This may be in part due to other processes 

involved in the wound closure assay such as cell-cell interactions.  

 

The rapamycin-insensitive mTORC2 pathway regulates cell migration through RhoA-

GTPase, and, in this study, we confirmed previous findings that RhoA-GTPase activity in 

TSC2-negative MEF was higher than in TSC2-positive MEF under basal conditions and in 

the presence of 10 % FBS [9]. The mechanism of action through which doxycycline inhibits 

TSC2-null cell migration was not known, however this study shows doxycycline inhibits the 

migration of TSC2-null cells through the activity of RhoA-GTPase, whereas levels of 

phospho-p70S6K, phospho-AKT and phospho-ERK1/2 were unaltered. However, the 

mechanism by which doxycycline inhibits cell migration at the lower concentrations at which 

RhoA-GTPase activity was not affected (20 pM - 200 nM), is likely to be due to targeting 

other signalling pathways. 
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Importantly, doxycycline inhibited the activity of RhoA-GTPase in TSC2-negative MEF, 

while it was unaltered in TSC2-positive MEF. RhoA-GTPase is known to play a prominent 

role in the regulation and organisation of the cytoskeleton by promoting the assembly of focal 

adhesions and by activating focal adhesion kinase (FAK) [56,57], processes which are 

important for cell motility. We have shown, in this study, that the protein tyrosine kinase 

FAK is constitutively active in TSC2-negative MEF compared to TSC2-positive MEF, thus 

supporting the finding of enhanced cell migration in TSC2-negative MEF. Furthermore, 

doxycycline significantly inhibited levels of phospho-FAK in TSC2-negative MEF while 

they were unaltered in TSC2-positive MEF. These data show that in TSC2-negative MEF, 

doxycycline inhibited the activity of RhoA-GTPase at 1 minute. This inhibition is then 

transduced downstream where FAK signalling was inhibited at 4 hours and subsequently 

reduced functional migration at 4 hours. The finding that doxycycline can regulate cell 

migration and FAK expression supports the findings by Sun et al. who showed doxycycline 

inhibited the adhesion and migration of melanoma cells through the inhibition of FAK 

expression [58]. Although no studies have demonstrated the sustained effects of doxycycline 

in the reduction of RhoA-GTPase activity, Sun et al. reported the effects of doxycycline in 

wound healing assays and FAK expression in the continued presence of doxycycline up to 12 

hours [58]. This suggests that the abrupt changes in RhoA-GTPase activity by doxycycline 

can influence outcomes of FAK expression and functional migration over a sustained period 

of time. 

 

It is now accepted that rapamycin alone may not be the most effective way to treat LAM, and 

investigations into combination therapies are underway [21,54]. Here, we explored the effects 

of combining doxycycline and rapamycin on the migration, proliferation, wound closure and 

RhoA activity of cells deficient for TSC2. Although combining doxycycline and rapamycin 
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in this study inhibited those cellular parameters, the degree of inhibition was no greater than 

that of the individual drugs alone. The absence of a greater effect from the combination 

treatment was not surprising, as each drug works to inhibit independent functional 

characteristics and signalling pathways. However, it is important to note that the combination 

of doxycycline and rapamycin was not detrimental to the individual outcomes, i.e. it did not 

reduce the degree of inhibition caused by the individual drug treatment. Furthermore, as 

shown in the wound closure assay, combination treatment with submaximal doxycycline and 

rapamycin concentrations significantly reduced the rate of wound closure, whereas no effect 

was observed with individual doxycycline and rapamycin treatments at those concentrations. 

The mechanisms through which combination therapy reduced wound closure in TSC2-

negative MEF were not investigated in this study. 

 

The results from this study suggest that doxycycline may be of potential therapeutic benefit 

as a treatment for diseases in which TSC2 dysfunction results in enhanced cellular migration. 

In addition, this study provides preliminary evidence that the combination of doxycycline and 

rapamycin may lower the dosing requirement for rapamycin, and in turn potentially reduce 

the side effects associated with chronic rapamycin use. 
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Figure Legends 

Figure 1: 10 % FBS-induced migration of A. TSC2-positive (n=10) and TSC2-negative 

(n=10) MEF and 323-TSC2-positive MEF (n=5) and 323-TSC2-null MEF (n=5). Data 

represent the average number of cells migrated in five regions of 200 µm2 ± SEM *p≤0.05 

unpaired t-test. Wound closure assay of B. TSC2-positive (black line, n=4) and TSC2-

negative MEF (red line, n=4) over 20 hours and C. 323-TSC2-positive (black line, n=4) and 

323-TSC2-null MEF (red line, n=4) over 20 hours. Data expressed as a percentage closure ± 

SEM in response to0.5 % FBS stimulation *p≤0.05 repeated measures one-way ANOVA 

with a Bonferroni post test.  

 

Figure 2: Migration of A. TSC2-negative MEF (n=5) and B. 323-TSC2-null MEF following 

30 minutes pretreatment with doxycycline. Data expressed as the average number of cells 

migrated in five regions of 200 µm2± SEM. Wound closure assay of C. TSC2-negative MEF 

(n=4) and D. 323-TSC2-null MEF (n=4) following 30 minutes pretreatment with doxycycline. 

Data expressed as area under the curve (AUC) over 20 hours ± SEM.. Migration of E. TSC2-

negative MEF (n=4) following 30 minutes pretreatment with Y-27632. Data expressed as the 

average number of cells migrated per 200 µm2 *p≤0.05 repeated measures one-way ANOVA 

compared with FBS with a Bonferroni post-test. 

 

Figure 3: Phospho-p70S6K levels in A. TSC2-positive MEF (n=5) and B. TSC2-negative 

MEF (n=5) in the presence (+) or absence (-) of doxycycline as indicated, C. TSC2-positive 

MEF (n=3) and D. TSC2-negative MEF (n=3) in the presence (+) or absence (-) of Y-27632 

as indicated and E. TSC2-positive MEF (n=4) and F. TSC2-negative MEF (n=4) in the 

presence (+) or absence (-) of vehicle control (V) or rapamycin as indicated. Representative 
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western blots of phospho-p70S6K, p70S6K and α-tubulin are shown (A-F) above mean data. 

Data expressed as mean ± SEM *p≤0.05 repeated measures one-way ANOVA with a 

Bonferroni post-test (compared with 10% FBS). 

 

Figure  4: RhoA-GTPase activity in A. TSC2-positive (n=5) and TSC2-negative MEF (n=6) 

under basal conditions (0.5 % FBS) and in the presence of the stimulus 10 % FBS #p≤0.05  

TSC2-positive vs TSC2-negative cells, B. TSC2-negative MEF (n=6) following 1 minute of 

treatment with doxycycline, vehicle control (DMSO), rapamycin or Y-27632 as indicated and 

C. TSC2-positive MEF (n=5) following 1 minute of treatment with doxycycline, or Y-27632. 

RhoA activity corrected for total Rho (-A, -B, -C) and expressed as a percentage of 10 % 

FBS ± SEM *p≤0.05 repeated measures one-way ANOVA with a Bonferroni post-test 

(compared with 10% FBS). 

 

Figure 5: Phospho-FAK levels in TSC2-positive and TSC2-negative MEF (n=4) in the 

presence (+) or absence (-) of doxycycline treatment for 4 hours. Representative western 

blots of phospho-FAK, FAK and α-tubulin are shown above mean data. Data expressed as 

mean ± SEM #p≤0.05 compared with TSC2-negative cells; *p≤0.05 repeated measures one-

way ANOVA with a Bonferroni post-test (compared with 10% FBS). 

 

Figure 6 : Phospho-AKT levels in A. TSC2-positive MEF (n=4) and B. TSC2-negative MEF 

(n=4) and phospho-ERK1/2 (p44/42) levels in C. TSC2-positive MEF (n=4) and D. TSC2-

negative MEF (n=4) in the presence (+) or absence (-) of doxycycline as indicated. 

Representative western blots of phospho-AKT, AKT, phospho-ERK1/2 (p44/42), ERK1/2 

(p44/42) and α-tubulin are shown above mean data. Data expressed as mean ± SEM *p≤0.05 
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repeated measures one-way ANOVA with a Bonferroni post-test (comparison with 10% 

FBS). 

 

Figure 7: Proliferation of A. TSC2-positive MEF (n=4) and B. TSC2-negative MEF (n=4) 

treated with doxycycline, vehicle or rapamycin alone, or in combination as indicated. Data 

expressed as mean ± SEM *p≤0.05 repeated measures one-way ANOVA compared to FBS 

#p≤0.05 repeated measures one-way ANOVA compared to Vehicle (DMSO) control where 

appropriate. Bonferroni post-test was used. 

 

Figure 8: Cell migration of A. TSC2-negative MEF (n=4), treated with doxycycline (D) 

vehicle or rapamycin (R) alone, or in combination (R+D). Data expressed as mean ± SEM 

*p≤0.05 comparison with 10% FBS, $p<0.05 comparison with vehicle control, using repeated 

measures one-way ANOVA. B. RhoA activity of TSC2-negative MEF (n=6) treated with 

doxycycline(D), vehicle or rapamycin (R) alone or in combination. RhoA activity corrected 

for total Rho (-A, -B, -C) and expressed as a percentage of 10 % FBS ± SEM *p≤0.05 

comparison with 10% FBS, $p<0.05 comparison with vehicle control using repeated 

measures one-way ANOVA. C. Wound closure of TSC2-negative MEF (n=4) treated with 

doxycycline, vehicle or rapamycin 2 nM alone or in combination. Data expressed as area 

under the curve (AUC) over 20 hours ± SEM. *p≤0.05 comparison with 10% FBS, $p<0.05 

comparison with vehicle control, analysed using repeated measures one-way ANOVA as 

appropriate.  

 

Supplement Figure E1. Basal level (0.5 % FBS) and 10 % FBS-induced proliferation of 

TSC2-positive (n=12) and TSC2-negative (n=12) MEF. Data expressed as mean ± SEM 

*p≤0.05 repeated measures two-way ANOVA with a Bonferroni post test. 

Page 63 of 74 Journal of Cellular and Molecular Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 29

 

Supplement Figure E2. Basal level (0.5 % FBS) and 10 % FBS-induced proliferation of 

323-TSC2-positive (n=8) and 323-TSC2-null MEF (n=8). Data expressed as mean ± SEM 

*p≤0.05 repeated measures two-way ANOVA with a Bonferroni post test.  

 

Supplement Figure E3. Proliferation of 323-TSC2-positive (n=5) and 323-TSC2-null MEF 

(n=5), treated with doxycycline. Data expressed as mean ± SEM *p≤0.05 repeated measures 

one-way ANOVA with a Bonferroni post test. 

 

Supplement Figure E4. Proliferation of ELT3 cells treated with doxycycline. Data 

expressed as mean ± SEM *p≤0.05 compared to 10% FBS using repeated measures one-way 

ANOVA with a Bonferroni post test. 

 

Supplement Figure E5. Proliferation of TSC2-positive (white bars, n=5) and TSC2-negative 

MEF (grey bars, n=5), treated with Y-27632. Data expressed as mean ± SEM *p≤0.05 

repeated measures one-way ANOVA with a Bonferroni post test. 

 

Supplement Figure E6: Proliferation of TSC2-positive (n=4) and TSC2-negative MEF 

(n=4) treated with vehicle (V) or rapamycin. Data expressed as mean ± SEM # p≤0.05 TSC2-

positive MEF compared to 10 % FBS and *p≤0.05 TSC2-negative MEF compared to 10 % 

FBS, repeated measures two-way ANOVA compared to DMSO vehicle control (V) with a 

Bonferroni post test.  

 

Supplement Figure E7. Proliferation of 323-TSC2-positive MEF (n=4) and 323-TSC2-null 

MEF (n=4) treated with vehicle (V) or rapamycin. Data expressed as mean ± SEM #p≤0.05 
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323-TSC2-positive MEF compared to 10 % FBS and *p≤0.05 323-TSC2-null MEF 

compared to 10 % FBS, repeated measures two-way ANOVA compared to DMSO vehicle 

control (V) with a Bonferroni post test.  

 

Supplement Figure E8. Proliferation of ELT3 cells treated with vehicle (V) or rapamycin. 

Data expressed as mean ± SEM # p≤0.05 ELT3 cells compared to 10 % FBS repeated 

measures one-way ANOVA compared to DMSO vehicle control (V) with a Bonferroni post 

test.  
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Table 1. Antibodies for immunoblotting 

Target 

Protein 

Primary Antibody / 

Concentration (Supplier) 
Secondary Antibody (Supplier) 

Incubation 

Time (hrs) 

p70S6K 

Rabbit polyclonal anti-mouse 
Phospho-p70S6K (Thr389) / 1:2000 

(Cell Signalling Technology, 
Danvers, MA, USA) 

Goat polyclonal anti-rabbit 
immunoglobulin G- HRP 

conjugated 1:2000 
(Dako Glosturp, Denmark) 

1/2 

Rabbit polyclonal anti-mouse 
p70S6K / 1:2000 

(Cell Signalling Technology) 

AKT 

Rabbit monoclonal anti-mouse 
Phospho-AKT (Thr308) / 1:2000 
(Cell Signalling Technology,) 1/4 
Rabbit monoclonal anti-mouse 

AKT / 1:2000 
(Cell Signalling Technology,) 

p42/44 

ERK1/2 

MAPK 

Rabbit monoclonal anti-mouse 
Phospho-p44/42 MAPK (ERK1/2) 

(Thr202/Thr204) / 1:2000 
(Cell Signalling Technology,) 

1/4 

Rabbit monoclonal anti-mouse 
p44/42 MAPK (ERK1/2) / 1:2000 

(Cell Signalling Technology,) 

FAK 

Rabbit polyclonal anti-mouse 
Phospho-FAK (Tyr397) / 1:2000 
(Cell Signalling Technology,) 4 
Rabbit polyclonal anti-mouse 

FAK / 1:2000 
(Cell Signalling Technology,) 

α-tubulin 

Mouse polyclonal 
α-tubulin 1:2000 

 (SantaCruz) 

Goat polyclonal anti-mouse 
immunoglobulin G- HRP 

conjugated 1:2000 
(Dako) 

- 

 

*Primary and secondary antibodies were diluted in 1% BSA/PBS-T. 
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Figure 1: 10 % FBS-induced migration of A. TSC2-positive (n=10) and TSC2-negative (n=10) MEF and 323-
TSC2-positive MEF (n=5) and 323-TSC2-null MEF (n=5). Data represent the average number of cells 

migrated in five regions of 200 µm2 ± SEM *p≤0.05 unpaired t-test. Wound closure assay of B. TSC2-

positive (black line, n=4) and TSC2-negative MEF (red line, n=4) over 20 hours and C. 323-TSC2-positive 
(black line, n=4) and 323-TSC2-null MEF (red line, n=4) over 20 hours. Data expressed as a percentage 
closure ± SEM in response to 0.5 % FBS stimulation *p≤0.05 repeated measures one-way ANOVA with a 

Bonferroni post test.  
187x208mm (300 x 300 DPI)  
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Figure 2: Migration of A. TSC2-negative MEF (n=5) and B. 323-TSC2-null MEF following 30 minutes 
pretreatment with doxycycline. Data expressed as the average number of cells migrated in five regions of 
200 µm2± SEM. Wound closure assay of C. TSC2-negative MEF (n=4) and D. 323-TSC2-null MEF (n=4) 

following 30 minutes pretreatment with doxycycline. Data expressed as area under the curve (AUC) over 20 
hours ± SEM.. Migration of E. TSC2-negative MEF (n=4) following 30 minutes pretreatment with Y-27632. 

Data expressed as the average number of cells migrated per 200 µm2 *p≤0.05 repeated measures one-way 
ANOVA compared with FBS with a Bonferroni post-test.  

231x316mm (300 x 300 DPI)  
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Figure 3: Phospho-p70S6K levels in A. TSC2-positive MEF (n=5) and B. TSC2-negative MEF (n=5) in the 
presence (+) or absence (-) of doxycycline as indicated, C. TSC2-positive MEF (n=3) and D. TSC2-negative 
MEF (n=3) in the presence (+) or absence (-) of Y-27632 as indicated and E. TSC2-positive MEF (n=4) and 

F. TSC2-negative MEF (n=4) in the presence (+) or absence (-) of vehicle control (V) or rapamycin as 
indicated. Representative western blots of phospho-p70S6K, p70S6K and α-tubulin are shown (A-F) above 

mean data. Data expressed as mean ± SEM *p≤0.05 repeated measures one-way ANOVA with a Bonferroni 
post-test (compared with 10% FBS).  

251x373mm (300 x 300 DPI)  
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Figure  4: RhoA-GTPase activity in A. TSC2-positive (n=5) and TSC2-negative MEF (n=6) under basal 
conditions (0.5 % FBS) and in the presence of the stimulus 10 % FBS #p≤0.05  TSC2-positive vs TSC2-

negative cells, B. TSC2-negative MEF (n=6) following 1 minute of treatment with doxycycline, vehicle 

control (DMSO), rapamycin or Y-27632 as indicated and C. TSC2-positive MEF (n=5) following 1 minute of 
treatment with doxycycline, or Y-27632. RhoA activity corrected for total Rho (-A, -B, -C) and expressed as 
a percentage of 10 % FBS ± SEM *p≤0.05 repeated measures one-way ANOVA with a Bonferroni post-test 

(compared with 10% FBS).  
170x364mm (600 x 600 DPI)  
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Figure 5: Phospho-FAK levels in TSC2-positive and TSC2-negative MEF (n=4) in the presence (+) or absence 
(-) of doxycycline treatment for 4 hours. Representative western blots of phospho-FAK, FAK and α-tubulin 

are shown above mean data. Data expressed as mean ± SEM #p≤0.05 compared with TSC2-negative cells; 

*p≤0.05 repeated measures one-way ANOVA with a Bonferroni post-test (compared with 10% FBS).  
80x80mm (300 x 300 DPI)  
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Figure 6 : Phospho-AKT levels in A. TSC2-positive MEF (n=4) and B. TSC2-negative MEF (n=4) and 
phospho-ERK1/2 (p44/42) levels in C. TSC2-positive MEF (n=4) and D. TSC2-negative MEF (n=4) in the 

presence (+) or absence (-) of doxycycline as indicated. Representative western blots of phospho-AKT, AKT, 

phospho-ERK1/2 (p44/42), ERK1/2 (p44/42) and α-tubulin are shown above mean data. Data expressed as 
mean ± SEM *p≤0.05 repeated measures one-way ANOVA with a Bonferroni post-test (comparison with 

10% FBS).  
168x168mm (300 x 300 DPI)  
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Figure 7: Proliferation of A. TSC2-positive MEF (n=4) and B. TSC2-negative MEF (n=4) treated with 
doxycycline, vehicle or rapamycin alone, or in combination as indicated. Data expressed as mean ± SEM 
*p≤0.05 repeated measures one-way ANOVA compared to FBS #p≤0.05 repeated measures one-way 

ANOVA compared to Vehicle (DMSO) control where appropriate. Bonferroni post-test was used.  
104x137mm (300 x 300 DPI)  
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Figure 8: Cell migration of A. TSC2-negative MEF (n=4), treated with doxycycline (D) vehicle or rapamycin 
(R) alone, or in combination (R+D). Data expressed as mean ± SEM *p≤0.05 comparison with 10% FBS, 
$p≤0.05 comparison with vehicle control, using repeated measures one-way ANOVA. B. RhoA activity of 

TSC2-negative MEF (n=6) treated with doxycycline(D), vehicle or rapamycin (R) alone or in combination. 
RhoA activity corrected for total Rho (-A, -B, -C) and expressed as a percentage of 10 % FBS ± SEM 

*p≤0.05 comparison with 10% FBS, $p≤0.05 comparison with vehicle control using repeated measures one-
way ANOVA. C. Wound closure of TSC2-negative MEF (n=4) treated with doxycycline, vehicle or rapamycin 

2 nM alone or in combination. Data expressed as area under the curve (AUC) over 20 hours ± SEM. 
*p≤0.05 comparison with 10% FBS, $p≤0.05 comparison with vehicle control, analysed using repeated 

measures one-way ANOVA as appropriate.  
139x244mm (300 x 300 DPI)  
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