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Purpose: Electromagnetically guided endoscopic procedure, which aims at accu-

rately and robustly localizing the endoscope, involves multimodal sensory informa-10

tion during interventions. However, it still remains challenging in how to integrate

these information for precise and stable endoscopic guidance. To tackle such a chal-

lenge, this paper proposes a new framework on the basis of an enhanced particle

swarm optimization method to effectively fuse these information for accurate and

continuous endoscope localization.15

Methods: We use the particle swarm optimization method, one of stochastic evo-

lutionary computation algorithms, to effectively fuse the multimodal information in-

cluding pre-operative information (i.e., computed tomography images) as a frame of

reference, endoscopic camera videos, and positional sensor measurements (i.e., elec-

tromagnetic sensor outputs). Since the evolutionary computation method usually20

limits its possible premature convergence and evolutionary factors, we introduce the

current (endoscopic camera and electromagnetic sensor’s) observation to boost the

particle swarm optimization and also adaptively update evolutionary parameters in

accordance with spatial constraints and the current observation, resulting in advan-

tageous performance in the enhanced algorithm.25

Results: The experimental results demonstrate that our proposed method provides

a more accurate and robust endoscopic guidance framework than state-of-the-art

methods. The average guidance accuracy or error of our framework was about 3.0

mm and 5.6◦ while the previous methods show at least 3.9 mm and 7.0◦. The average

position and orientation smoothness of our method was 1.0 mm and 1.6◦, which is30

significantly better than the other methods at least with (2.0 mm and 2.6◦). Addi-

tionally, the average visual quality of the endoscopic guidance was improved to 0.29.

Conclusions: A robust electromagnetically guided endoscopy framework was pro-

posed on the basis of an enhanced particle swarm optimization method with using

the current observation information and adaptive evolutionary factors. Our proposed35

framework greatly reduced the guidance errors from (4.3, 7.8) to (3.0 mm, 5.6◦), com-

pared to state-of-the-art methods.

PACS numbers: —–
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I. INTRODUCTION

Endoscopic interventions are widely performed for diagnosis and treatment of differ-

ent cancers, e.g., bronchus and lung cancers via bronchoscopic surgery1–4, bowel cancer

by colonoscopic surgery5, brain tumors using neurosurgery6,7. Guided endoscopic pro-

cedure is endoscopy system is generally recognized as the next generation of interven-45

tional endoscopy. Such a guidance usually involves different modalities of sensory infor-

mation: (1) pre-operative information, e.g., 3-D computed tomography (CT) images, (2)

two-dimensional (2-D) endoscopic video sequences, and (3) positional sensor measurements,

e.g., a full six degrees of freedom (6DoF) sensor output from electromagnetic (EM) tracker

systems (Northern Digital Inc.8, Waterloo, Canada). However, solely using one of three50

kinds of information is very difficult to accurately navigate or localize the endoscope to can-

cerous regions where surgical interventions must be performed. At this point, the endoscopic

guidance is considered as a procedure of multimodal information fusion.

Unfortunately, it still remains challenging to effectively and efficiently combine three

modalities of sensory information for the endoscopic guidance since these information are55

incomplete that means their limitations: (1) pre-operative information (e.g., CT slices)

before endoscopic surgery cannot record any information about patient movements (e.g.,

respiration) which exactly happen in the operating room, (2) image artifacts (e.g., inter-

reflection or motion blurring) unavoidably occur in endoscopic videos, resulting in a large

number of low-quality images, and (3) the positional EM sensor’s accuracy is heavily dete-60

riorated by patient movements and the magnetic field distortion that is caused by ferrous

metals or conductive material within or close to the working volume of EM trackers. Due

to the incompleteness of these information, current commercially available tracking systems

(e.g., superDimension), which are increasingly used in clinical applications9–11, were reported

their diagnostic accuracy between 59% and 74%, without sensitivity to tumor size12,13.65

To tackle these incomplete information for accurate endoscopic guidance, it is common to

formulate such multimodal information fusion as an optimization process, which is usually

solved by deterministic14,15 or stochastic16–18 approaches. Deterministic methods, typically

2-D/3-D image registration algorithms4, usually define an optimization function to minimize

the pixel difference between endoscopic video images and virtual renderings generated from70

pre-operative information. On the other hand, stochastic approaches were demonstrated to
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be more precise and stable than deterministic methods since they take dynamic uncertainties

into account and adapt themselves to incomplete information for the endoscope localization.

Even though several publications have been discussed about stochastic methods17–19, a

more robust and accurate stochastic approach is still vastly expected to effectively fuse these75

incomplete information for guided endoscopic procedures. Recently, a numerous population-

based stochastic evolutionary algorithm, particle swarm optimization (PSO), which was orig-

inally proposed by Kennedy and Eberhart20, has been increasingly applied as a successful

optimization technique to address complex problems21–23. The algorithm simulates natural

and biological behaviors such as birds flocking and fish schooling to find optimal solutions80

in nonlinear and high-dimensional spaces. Moreover, one of most attractive aspects of PSO

is able to deal with nonlinear, non-differentiable, and multimodal optimization problems

by dynamically interacting all particles in a similar analogy with the cognitive and social

properties of populations24. However, the standard PSO method limits to its evolutionary

parameters, particularly it does not take the current observation information into consider-85

ation when propagating the particle swarm to the new state. These limitations potentially

result in a premature convergence.

This paper proposes an accurate and robust electromagnetically endoscopic guidance

framework that uses an enhanced particle swarm optimization (EPSO) algorithm to address

these limitations to improve the PSO’s performance. It is worthwhile to highlight several90

technical contributions of this work. First, EPSO integrates the current observation informa-

tion into the particle swarm. The current observation results in the more powerful searching

ability for particles to approximate the optimal solution. We also introduce a new strategy

to adaptively control evolutionary parameters on the basis of the particle fitness value and

spatial constraints, which are very useful to tackle the diversity loss problem, alleviate par-95

ticle impoverishment, and obtain various particle diversity in the EPSO’s iterations. Next,

with application to the incomplete multimodal information fusion, an EPSO-based endo-

scopic guidance method was developed for surgical procedures. We successfully formulated

the problem of the endoscopic guidance as an EPSO-based stochastic optimization process.

The EPSO algorithm exactly provides an effective scheme to fuse multimodal information100

of the CT images, endoscopic videos, and EM sensor measurements for achieving a robust

and accurate guidance procedure. Additionally, although our EPSO algorithm currently

was applied to the medical image community, it should be definitely applicable to other dif-
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Fig. 1 Multimodal information including the CT images used to generate 2-D virtual rendering

images, endoscopic video images, and positional sensor measurements involved in an electromag-

netically guided endoscopic procedure.

ferent optimization problems in the computer vision field, e.g., image segmentation, visual

tracking, or object recognition.105

II. METHODS AND MATERIALS

Electromagnetically guided endoscopy seeks to accurately and continuously determine

the endoscope location or its 6DoF motion parameters including position and orientation

in a reference frame (e.g., the CT image coordinate system). The core of our endoscopic

guidance framework is to use the EPSO algorithm to integrate multimodal information to110

precisely navigate the endoscope. Before discussing EPSO, we slightly introduce different

sensory information involved in the endoscopic guidance.

II.A. Multimodal information

II.A.1. Pre-operative information115

Before performing endoscopic examinations, physicians usually use 3-D imaging devices

such as CT scanners to acquire pre-operative images. We segment these pre-operative images

to obtain organ structures and pre-build 3-D anatomy model before endoscopic procedures4.

We use the CT images to generate 2-D virtual images by volume rendering techniques25
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(Fig. 1).120

II.A.2. Endoscopic video sequences

The endoscopic camera is directly inserted to observe organ interior structures. Endo-

scopic video images display sufficient organ interior surface information (Fig. 1). However,

the camera only provides 2-D live video images without depth information to target re-

gions. Hence, we require to integrate 2-D endoscopic images with 3-D CT images to guide125

endoscopic procedures.

II.A.3. Positional sensor measurements

Ultra-miniature sensors, i.e, EM sensors (Fig. 1), which are externally attached to the

endoscope’s distal tip surface or its working channel, are increasingly used to measure the

endoscopic camera movement information. However, the sensor measurements might be130

inaccurate due to tissue deformation, e.g., respiration.

II.B. Enhanced particle swarm optimization

The PSO algorithm is a population-based stochastic optimization technique. It seeks to

propagate the population with a number of particles to approximate the optimal solution.

Suppose that we generate a population of particles Pj = {(pi,j, f(pi,j), γi,j)}Mi=1 at j-th135

iteration, where f(pi,j) is the particle fitness value, γi,j is a weight on the basis of spatial

distribution constraint, M is the particle number, and j = 1, 2, . . . N , N is the iteration

number. Our proposed EPSO algorithm is to update these particles with several steps: (1)

randomization, (2) propagation, (3) evolutionary parameters analysis, and (4) population

update, as discussed as follows.140

II.B.1. Population randomization

We first initialize particle p0,0 and f(p0,0) = γ0,0 = 1/M before iterations. We perform a

randomization only once to increase the diversity of particles and avoid the particle impov-

erishment. Particle p0,0 is randomized by using the Gaussian propagation model, and we
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Fig. 2 Population propagation to obtain new particle states.

obtain particle state x0,0:

x0,0 = G(p0,0, µΛ), (1)

where G is the transform function that is used to add changeable part µΛ to particle p0,0 and

obtain new particle x0,0, µ is a Gaussian distribution random number: µ ∼ N (0, 1), and Λ

is a pre-determined constant vector. Note that the randomization for particle diversification

does not perform a resampling process, as particle filter methods do18, since the local best145

particles provide compact samples for propagation26.

II.B.2. Population propagation

After the randomization, we obtain particles {xi,j}Mi=1 at j-th iteration and propagate xi,j

to xi,j+1 at iteration j+1 on the basis of velocity vi,j and inertia weight ω that is used for

deciding how much vi,j to be preserved in vi,j+1 (Fig. 2):

vi,j+1 = ωvi,j + λ1η1(pi,j − xi,j)︸ ︷︷ ︸
∆p

+λ2η2(gi,j − xi,j)︸ ︷︷ ︸
∆g

, (2)

xi,j+1 = xi,j + vi,j+1, (3)

where λ1 and λ2 are acceleration constants and η1 and η2 are randomly generated from the

uniform distribution with interval [0.0 1.0]. Particles pi,j (for the local individual best) and

gi,j (for the global all best) are the best state found by particle i so far and the best state150

found by the whole swarm so far.

The PSO’s performance depends on this particle progapation (Eq. 3), where velocity vi,j

plays an important role since it aims at keeping all the particles approaching to the optimal
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solution. It is difficult to accurately determine vi,j. In the standard PSO algorithm, it is

empirically determined within a reasonable range, which usually loses the relative continuity

between two consecutive times k−1 and k from iterations j to j+1. PSO might get trapped

in a local minima convergence. To address this problem, our idea is to integrate current

observation at time k to compute velocity vi,j:

vi,j = Φ(ok−1,ok), (4)

where function Φ(·) is to compute the relative continuity between previous and current

observations ok−1 and ok.

Now velocity vi,j+1 can be deterministically updated by

vi,j+1 = ωΦ(ok−1,ok)︸ ︷︷ ︸
Observation

+∆p + ∆g, (5)

which is effective to control the population’s propagation.

II.B.3. Evolutionary parameters analysis155

Evolutionary parameters λ1, λ2, and ω heavily influence the optimization performance.

Most of current improved PSO algorithms do not consider the relative or temporal continuity

and spatial constraint information. This might result in a lack of systematic treatment of

evolutionary states and expose PSO to a dangerous level of swarm explosion and divergence.

To handle this limitation, we here adaptively control acceleration factors λ1 and λ2 relative

to the particle’s fitness value:

λ1 =
2f(pi,j)

f(pi,j) + f(gi,j)
, λ2 =

2f(gi,j)

f(pi,j) + f(gi,j)
, (6)

where fitness f(·) is defined as observation probability π(·) of each particle relative to current

observation ok:

f(pi,j) = π(ok|pi,j), f(gi,j) = π(ok|gi,j). (7)

For adaptively calculating ω, we utilize both fitness value f(xi,j) ∈ [0.0 1.0] and particle

spatial distribution information γi,j among all the particles in the population. We first

compute average distance di,j from one particle to all other particles:

di,j =
1

M − 1

M∑
i=1,i 6=i′

‖xi,j − xi′,j‖ . (8)
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where symbol || · || means the Euclidean norm. After finding the largest distance dmax and

the smallest distance dmin from {di,j}Mi=1, we normalize distance di,g between one particle

and the global best particle and obtain γi,j for each particle:

γi,j = (di,g − dmin)/(dmax − dmin), γi,j ∈ [0.0 1.0]. (9)

Finally, since inertia weight ω was suggested within the interval [0.4 0.9] for weighting

the global and the local searching abilities24, we can adaptively calculate it by

ω(f(xi,j), γi,j) =
2

2 + 3 exp(−1.28(f(xi,j) + γi,j))
, (10)

which shows a novel strategy to automatically control ω in our proposed EPSO algorithm.

Note that spatial constraint γi,j uses the particle distribution information to limit the particle

to be moved far from the optimal solution and enhances the exploitation ability of each

particle in the population.

II.B.4. Population update160

After the (j+1)-th iteration, we obtain population Pj+1 where pi,j+1 and gi,j+1 are up-

dated using fitness f(xi,j+1):

pi,j+1 =

 xi,j+1 iff(xi,j+1) > f(pi,j)

pi,j otherwise
, (11)

gi,j+1 = arg max
pi,j+1∈Pj+1

f(pi,j+1). (12)

Based on Eqs. 1∼12, all the particles are updated iteratively to approximate the optimal

solution during our EPSO procedure.

II.C. Application to endoscopic guidance

This section applies the EPSO algorithm to fuse the multimodal information for guiding

the endoscopic procedure. Fig. 3 shows the flowchart of our EPSO method that integrates165

the multimodal information for the robust electromagnetically endoscopic guidance during

interventions. We first interpolate EM sensor measurements.
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Fig. 3 Our endoscopic guidance framework using EPSO for the multimodal information integra-

tion.

II.C.1. Sensor measurement interpolation

Since the endoscope movement is spatially continuous, we perform the Catmull-Rom

spline interpolation for endoscope position tk at time k (or at frame k) and the spherical170

linear interpolation (SLERP) for endoscope orientation that is described by quaternion qk

to smoothly approximate endoscope real movement27. Position tk is interpolated by:

tk = Ω


0 1 0 0

−β 0 β 0

2β β − 3 3− 2β −β

−β 2− β β − 2 β




tv−1

tv

tv+1

tv+2

 , (13)

where Ω = (1 α α2 α3), the interpolation ratio α = k/u− bk/uc, tv−1 · · · tv+2 are positions

of continuous controlled points (v = bk/uc, floor operator b·c, time spacing u), and tension

parameter β impacts on the curvature at the control points (usually, β = 0.5). Quaternion

qk is interpolated by:

qk =


sin(1−α)φ

sinφ
qv + sinαφ

sinφ
qv+1 φ ≥ 0

sin(1−α)φ
sinφ

qv − sinαφ
sinφ

qv+1 φ < 0
, (14)

φ = arccos
< qv, qv+1 >

‖ qv ‖‖ qv+1 ‖
, (15)
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(a)Input camera image (b)Detected image patches

Fig. 4 Detect image patches with specific structures from camera image Ik for the similarity or

the fitness computation.

where <,> is the dot product and ‖ · ‖ is the Euclidean norm.

Since a population of particles in the EPSO algorithm denotes the potential solutions in

a dynamic system, we define the i-th particle pi,j at iteration j as a seven-dimensional (7-D)

vector with respect to the endoscopic camera 6DoF pose with position t̃k and orientation

(quaternion) q̃k at time k:

pi,j =
(
t̃k q̃k

)
7×1

, (16)

where t̃k = (t̃xk, t̃
y
k, t̃

z
k)3×1 and q̃k = (q̃0

k, q̃
1
k, q̃

2
k, q̃

3
k)4×1.175

Particle p0,0 is initialized by the first sensor measurement: p0,0 = (t0 q0)7×1. So, the

endoscopic camera motion is parameterized as a 7-D vector with the position and orientation.

II.C.2. EPSO-based guidance framework

The EPSO algorithm performs several steps, as discussed in Section II.B, to fuse endo-

scopic video images, the CT images, and the EM sensor measurements. It estimates the180

endoscope’s 6DoF position and orientation to locate it during endoscopic examinations.

Let Ik and IV be the k-th endoscopic camera image and 2-D virtual rendering image

generated from the CT images, respectively. In our endoscopic guidance, we have two live

observations: endoscopic camera image Ik and EM sensor measurement mk = (tk,qk).
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Based on current EM sensor observation mk, the velocity in Eq. 5 can be calculated by

vi,j+1 = ωΦ(mk−1,mk)︸ ︷︷ ︸
Observation

+∆p + ∆g. (17)

Based current endoscopic camera observation Ik, we define the fitness of particle pi,jk in

accordance with Eq. 7:

f(pi,j) = π(Ik|IV (pi,j)), (18)

where IV (pi,j) denotes the virtual image corresponding to particle pi,j. It is natural to define

probability π(Ik|IV (pi,j)) as the similarity between images Ik and IV (pi,j):

π(Ik|IV (pi,j)) = S(Ik, IV (pi,j)). (19)

Before computing similarity S(Ik, IV (pi,j)), we detect the specific patches with structural

information from the camera video image Ik (Fig 4). Based on the mean square error

measure18,28, we calculate similarity S(Ik, IV (pi,j)) in the detected patches from endoscopic

camera image Ik:

S(Ik, IV (pi,j)) =
1

U

∑
U

1

W

∑
(a,b)∈W

M, (20)

M =
(
(Ik(a, b)− Īk)− (IV (a, b)− ĪV )

)2
(21)

where U is the number of the detected patches, W is the number of pixels in one patch, Īk

and ĪV are the average intensities of all the detected patches from images Ik and IV .

We perform N iterations in EPSO at frame k and obtain best solution set Bk = {gi,j+1}Nj=1

by storing global best solution gi,j+1 at each iteration. We select optimal solution g∗k from

Bk on the basis of fitness f(gi,j+1) (Eqs. 18∼21). Eventually, the output of EPSO, which

fuses the CT images, endoscopic videos, and EM sensor measurements for the endoscopic

guidance, is the endoscope’s position t̃∗k and orientation q̃∗k:

(̃t∗k q̃∗k)←→ g∗k = arg max
gi,j+1∈Bk

f(gi,j+1). (22)

II.D. Validation

II.D.1. Information acquisition185

We validated our proposed method on a dynamic phantom with an adjustable mo-

tion: 0 ∼ 24 mm. The CT images of our phantom were acquired with parameters of
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512×512×1021 voxels and 0.68×0.68×0.5 mm3. A 3-D Guidance medSAFE tracker (Ascen-

sion Technology Corporation, USA) was used as an EMT system, which includes a 9-coil

at flat-type transmitter as a magnetic field generator and an EMT sensor (1.5 mm, 6DoF).190

Endoscopic video images of size 362×370 pixels were collected at 30 frames per second using

an endoscope (BF Type P260F, Olympus, Tokyo).

We investigate five approaches for endoscope location: (1) M1: reported by Schwarz

et al.10, (2) M2: a hybrid method by Mori et al.14, (3) M3, a method to selectively use

EMT sensor measurements by Luo et al.29, (4) M4, a sequential Monte Carlo-based method195

introduced by Luo et al.18, (5) M5, our proposed method, as discussed in Section II.

II.D.2. Evaluation criteria

To evaluate the guidance accuracy of different methods, we generated five ground truth

datasets (GTDs) by manually adjusting the position and orientation of the virtual camera

to qualitatively register the video and virtual camera viewing points by hand. Two ob-

servers independently and repeatedly collected these GTDs. We clarify that intra-observer

consistency was 1.81 mm and 5.9◦, 1.76 mm and 4.9◦, and 1.93 mm and 4.8◦ from the two

observers, respectively; inter-observer consistency was 1.71 mm and 5.6◦. Based on GTDs,

position and orientation errors, ζ and ψ, are computed by:

ζ = ||t− tG||, ε = ψ(q,qG), (23)

where t and tG are the estimated and ground-truth positions, and q and qG are the estimated

and ground-truth orientations.

Even though the accuracy and runtime of the endoscopic guidance are much significant

for clinical applications, it is necessary to evaluate the smoothness of the guidance procedure,

since the endoscope movement is usually a continuous procedure where the camera trajectory

should be a smooth curve. Smooth guidance implies little jitter or jump errors might be

involved in the endoscope movement estimation. We define the guidance smoothness as the

average inter-frame distance for a series of endoscope position tk and orientation qk that are

estimated by the five approaches:

1

K − 1

K−1∑
k=1

||tk+1 − tk||,
1

K − 1

K−1∑
k=1

ψ(qk+1,qk). (24)
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(a)Particles (b)Iterations

Fig. 5 Experimentally determined particle and iteration numbers: M = 20 and N = 8.

Table I Comparison of guidance accuracy (position, orientation) in terms of the ground truth

datasets and the estimated results of using the five different methods of M110, M214, M318, M422,

and M5 (our EPSO-based method).

Methods Data 1 Data 2 Data 3 Data 4 Data 5 Average

M1 (4.2 mm, 6.7◦) (5.3 mm, 8.8◦) (5.6 mm, 7.9◦) (6.0 mm, 9.6◦) (7.2 mm, 13.5◦) (5.7 mm, 9.3◦)

M2 (3.8 mm, 6.1◦) (4.9 mm, 7.6◦) (5.4 mm, 6.8◦) (5.8 mm, 8.8◦) (6.8 mm, 12.9◦) (5.3 mm, 8.4◦)

M3 (3.1 mm, 4.8◦) (3.9 mm, 5.8◦) (4.1 mm, 6.2◦) (4.6 mm, 9.5◦) (5.6 mm, 12.9◦) (4.3 mm, 7.8◦)

M4 (2.4 mm, 4.3◦) (3.4 mm, 5.3◦) (4.2 mm, 5.6◦) (4.4 mm, 8.2◦) (5.1 mm, 11.5◦) (3.9 mm, 7.0◦)

M5 (2.1 mm, 3.2◦) (2.8 mm, 3.8◦) (3.0 mm, 4.1◦) (3.2 mm, 7.9◦) (4.1 mm, 9.1◦) (3.0 mm, 5.6◦)

To evaluate the visual quality of 2-D virtual rendering images that were generated from

the estimated position and orientation of the five methods, we compute normalized cross

correlation (NCC) coefficient Ck,V between each video image Ik and its estimated virtual

image IV at time k in an experiment. The average visual quality Q of one endoscopic video

sequence for testing different methods can be defined as:

Q =
1

K

K∑
k=1

(Ck,V + 1)

2
, (25)

where visual quality Q has a dynamic range of [0, 1].200
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(a)Position error (b)Orientation error

Fig. 6 Plotted the guidance (position and orientation) accuracy of the five methods on Data 3.

(a)Position smoothness (b)Orientation smoothness

Fig. 7 Position and orientation smoothness of the five methods on ten experiments.

(a)Visual quality (b)Runtime

Fig. 8 Comparison of visual quality and computational time of the five methods.
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Number 0796 0896 0996 1096 1196 1296 1396 1496 1596 1696 1796 1896

Images

M1

M2

M3

M4

M5

Fig. 9 Visualized video and virtual images to investigate the visual quality of different methods.

Top row shows frame numbers selected uniformly at every 100 frames, and second row shows their

corresponding real images. Other rows display virtual images generated from tracking results using

the methods discussed above. Our method displays much better quality.

III. RESULTS

We determined iteration and particle numbers experimentally. Fig. 5 shows the position

and orientation errors under different iterations and particles. We chose particle and iteration

numbers, M = 20 and N = 8, since they can balance the accuracy and computational time

of our proposed method.205

Table I summarizes the guidance accuracy of the five methods. The average accuracy

or error of our proposed EPSO-based method (M5) was about 3.0 mm and 5.6◦ while the

previous methods (M1, M2, M3, and M4) show at least 3.9 mm and 7.0◦. Fig. 6 plots the

guidance accuracy of different methods on Data 3. Beyond using GTDs for assessment, we

further performed ten experiments where we did not generate ground truth for them. Fig. 7210

shows the smoothness of the five methods evaluated on ten experiments. The average posi-

tion and orientation smoothness of our method was 1.0 mm and 1.6◦, which is significantly

better than other methods M1 (4.0 mm and 2.1◦), M2 (4.2 mm and 4.7◦), M3 (3.7 mm and

3.8◦), and M4 (2.0 mm and 2.6◦). Fig. 8 (a) compares the visual quality of the five methods

on ten experiments. The average quality of methods of M1, M2, M3, M4, and M5 were 0.15,215

0.17, 0.23, 0.25, and 0.29, respectively. Our proposed method shows better visual quality

17



Electromagnetically guided endoscopic procedure

than others. Fig. 9 further demonstrates that our method can obtain much better visual

quality since the virtual images from our proposed approach resemble video images greatly

better than other methods.

Additionally, Fig. 8 (b) displays the computational times of the five different methods.220

The current runtime of our proposed method was 0.71 seconds per frame (spf). The methods

of M2, M3, and M4 were 0.45, 1.21, and 0.78 spf. The method of M1 can meet the real-time

requirement during the endoscopic guidance.

IV. DISCUSSION

IV.A. Effectiveness225

Basically, the objective of this work is to effectively and accurately fuse multimodal

information of pre-operative images, endoscopic video sequences, and positional sensor mea-

surements to determine endoscope position and orientation during endoscopic surgery. Our

proposed EPSO algorithm provides a more accurate and robust framework to guide the

endoscope than previous approaches. We attribute such an advantageous performance of230

EPSO to several aspects.

First, we believe that EPSO is partly an association of PSO iterations and sequential

Monte Carlo (SMC) sampling procedures, and hence it outperforms SMC sampling algo-

rithms in endoscope navigation18. During SMC sampling procedures, a successful particle

sampling depends heavily on the proposal distribution function30. Particles with large fit-235

nesses or weights located in the useful area of the proposal distribution are usually sampled.

In fact, the proposal distribution is suggested to be the dynamic transition distribution,

which may incur particles with larger fitness that are not sampled when the useful area

of the transition distribution stays at the tail of the observation distribution30. However,

PSO performs more like a hierarchical sampling strategy which propagates the particles240

integrated with the newest observations22, possibly resolving the particle impoverishment

problem. Next, automatically or adaptively controlling evolutionary parameters is greatly

helpful to update particles in iterations. The two acceleration factors, which were calculated

based on the fitness value from the image intensity information, are more reasonable than

setting them to 2.0 in standard PSOs31. Moreover, the inertia weight is also adaptively245
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determined by both spatial distance constraint and image intensity information, resulting

in more flexibly balancing the global and local search abilities and providing a reasonable

velocity limitation to move particles. Finally, without any resampling process in our method,

compared to SMC sampling or particle filtering, it is helpful to reduce the runtime of our

method.250

IV.B. Potential Limitations

We must clarify the potential limitations of our proposed method. The major limita-

tion is that the particle fitness might be incorrectly computed and evaluated during particle

propagation since it depends somewhat on the quality of endoscopic camera images. How-

ever, image artifacts, e.g., complex reflectance and motion blurring, which possibly occur in255

endoscopic video sequences, might collapse the correct computation of the fitness value. On

the other hand, the particle fitness value also indicates the particle’s exploitation capacity

that means sufficient fitness values to obtain even better solutions from good particles: the

higher the particle fitness, the more powerful particle exploitation. To tackle the incorrect

fitness computation problem and obtain the powerful exploitation capacity, a more robust260

image similarity measure, which should be greatly insensitive to illumination changes or

other image artifacts, is expected to develop in the future. Additionally, another open issue,

which also remains very challenging, is the computational efficiency of our proposed method

that is currently about 0.71 seconds per frame. In our proposed EPSO approach, the main

computational effort lies in the calculation of each particle’s fitness in the population, which265

is vastly time-consuming since 2-D virtual rendering images need to be generated by per-

forming the volume rendering procedure. Note that we did neither speed optimizations nor

multi-threading in our implementation. Furthermore, it is also possible to use graphics pro-

cessing unit (GPU) techniques to accelerate our implementation to a real-time processing.

V. CONCLUSIONS270

This article proposed an enhanced particle swarm optimization algorithm. It combines

the current observation into the population propagation and refreshes its evolutionary pa-

rameters on the basis of the spatially distributed constraint of particles and the observation
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information during iterations. Therefore, it is more accurate and robust to approximate the

optimal solution for a stochastic problem. With its application to the multimodal infor-275

mation fusion for the endoscopic guidance, the experimental results demonstrate that our

proposed method provides a more advantageous guidance performance than state-of-the-art

methods. The average position and orientation errors were greatly reduced from (4.3, 7.8) to

(3.0 mm, 5.6◦). The average position and orientation smoothnesses were also significantly

improved from (3.7, 3.8) to (1.0 mm and 1.6◦), which makes our guidance less jitter or280

jumps during endoscopic surgery. Future work includes improvement of the particle fitness

calculation to correctly evaluate particles and reduction of the computational time of our

proposed method.
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