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Abstract Representation based classification method (RBCEH &ttracted much attention in the last decade.
RBCM exploits the linear combination of trainingngales to represent the test sample, which thenldssitied
according to the minimum reconstruction residuacéntly, an interesting concept, Inverse RepresentélR), is
proposed. It is the inverse process of the coneraliRBCM, which applies test samples' informatiomepresent
each training sample, and then classify the trgis@mple as a useful supplementary for the firedsification. The
relative algorithm called CIRLRC, integrating IRdahinear regression classification (LRC) by scausirig, does
show the superior classification performance. Havethere are two main drawbacks in CIRLRC. Onis itot a
pure IR, for the test vector contains some traimiagple information. The other is the computatiwafficiency that
CIRLRC should solveC linear equations for classifying the test sampkpectively, whereC is the number of
the classes. Therefore, we present a novel metitedrating simplified IR(SIR) and collaborative regpentation
classification (CRC) for face recognition (SIRCRE).SIRCRC, only test sample information is fullyad in SIR,
and CRC is more efficient than LRC in terms of shehat is, 1 linear equation system is needederisive
experimental results on face databases show tligtéry competitive with both CIRLRC and the stateéhe-art
RBCM.
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1 Introduction

Representation based classification method (RBG& emerged as a powerful tool in a
wide range of application fields, especially inrafprocessing[1,2], image processing[3-5] and
visual tracking[6, 7]. Also, it plays an importanble in biometrics recognition, such as
face[8-12], palmprint[13], ear[14], fingerprint[18)d iris[16]. RBCM requires a test sample to
be sparsely represented by a weighted sum of altrtining samples. According to the type of
norm regularization, RBCM can be classified inteethcategories, that id, norm, |, norm
and I, norm(0<p<1).



It is reported thatl, norm can measure the sparsity, while it is nottatale due to NP-hard

property. As the closest convex function ltgp norm, |, minimization is widely used in RBCM.

Sparse Representation based Classification (SRCa[8be referred as the milestone of RBCM
in face recognition. In SRC, the query face imageadded as a sparse linear combination of all

the training samples vid, norm minimization. Not only it yields high recogpit accuracy in
face databases, but also it is robust to face smriuand corruption. The success of SRC boots
the research of sparsity based pattern classiicatind the extensive RBCM with norm

minimization have been proposed, such as sparsagcdor face recognition[17] and sparse
image classification [18]. However, some reseactimubt about the role of sparsity in face
recognition[9]. Lei Zhang et. al. pointed out thatis collaborate representation (CR, i.e.

representing the query image collaboratively by glas from all the classes) ndt norm

sparsity to contribute the final classification a@cy. The non-sparsé, norm to calculate the
representation coefficients could lead to simitragnition but significantly high computational
speed. Based orl, norm CR, they proposed a simple but more efficientlaborate

representation classification (CRC). But it is mbteat all the feature elements both in SRC and
CRC share the same coding vector over their agsdcisub-dictionaries. This requirement
ignores the fact that the feature elements in gepanot only share similarities but also have
differences. Therefore, Meng Y. et. al. preserdxetl collaborative representation (RCR)[11]
model to effectively exploit the similarity and tiirxctiveness of features. Also, Liner regression

classification (LRC)[12] can be referred ad.a norm based on the linear regression model. In
addition to the |, norm andl, norm minimization, some researchers are tryingolwesthe

sparse representation problem with the norm (0<p<1), especially p=0.l%,% or

0.9[19-21]. More information about RBCM can be fdun the review of Ref.[22].

More Recently, an interesting concept, InversprBsentation (IR)[23], is proposed. In
essence, IR is the inverse process of RBCM, i.elagsifies the training sample using the test
sample's information. The relative algorithm CIRLRCintegrating IR and linear regression
classification (LRC) by score fusing. It does shiwve superior classification performance.
However, there are two main drawbacks in CIRLRCe @rnis not a pure IR, for the test vector
contains some training sample information. The mtisethe computation inefficiency that
CIRLRC should solveC linear equations for classifying the test sampbpectively, whereC
is the number of the classes. Therefore, we presanvel method integrating simplified IR(SIR)
and collaborative representation classification QFRfor face recognition (SIRCRC). In
SIRCRC, only test sample information and its miiraages are fully used in SIR, and CRC is
more efficient than LRC in terms of speed, thafliBnear equation system is needed.

The rest of this paper is organized as followstiSe@ gives a brief review of some related
works. Section 3 presents the proposed SIRCRC methd some analysis. Section 4 performs
experiments and Section 5 concludes the paper.



2 Review of related works

2.1 Presentation of CIRLRC[23]

The proposed CIRLRC in Ref.[23] exploits the cami@nal LRC and IR to generate two
kinds of scores, and then combine them by scoiadus recognize the face. The comparison of
LRC and CRC presents in Section 2.2. In CIRLRC, IRes the inverse process of LRC and
mirror samples are used to form the visual sam@lesume that there ar€ classes and each
class hasn training samples. We denotX =[x, --,X,] as all the N training samples, and
yUY as the test sample. The main steps in CIRLRC fslasvs:

Step1 Mirror samples creation. Calculate the mirror sasf#l4] of training samples<and
test sampley, respectively, denoted ag’ and y"

Step 2 LRC process. Let the training sample vector costainginal samples and its mirror
images, denoted aX' =[X;-+- XXXy Xc g = Xy X g - X (N =Cn) - The
linear system isy=X, a,, i=1---,C Using LRC method to classify each test
sample and yield one score namé&l..

Step 3 IR process.
a) Test vector definition. For thg -th class, combine all the naive training samples

from the other classes, the nalve test sample mtuhk/test sample to form the test
vector Z , where Z = [X XJ_1 Xj+1 ---XC y Vv].

b) IR classification. Z acts as the training vector and each naive traisargple from
the j-th classacts as the test sample. Then apply inverse LR@atssify each
naive training sample from the -th class. Here, the residual is calculated using
d? = HX BEIMy— BEI2yYl Eor the j-th class, the mean ofi® is used as
the distance between the test sample and jtil class and is denoted by, . It
yields the other score name8 g . -

Step4 Score fusing. The final score is calculated BF WS +W,Sgre
where a,and @, are fusing coefficients, and +a, =1. According to the final
score, classify the test sample finally.

We can observe that the test vector containgesmaining sample information in Step 3.

Therefore it is not a pure IR. In the proposed SRRIC we simplify the IR definition, which

contains only test sample information, which haweter classification accuracy.

2.2 Comparison of LRC and CRC

In this subsection, we present the comparison of l&dd CRC. Table 1 and Table 2
shows the LRC and CRC algorithms respectively.



Table 1: The LRC Algorithm

1. B OR™is evaluated against each class model,
B =(XX)*XTy,i=12:--,C (1)

2. Calculate the distance between original andiptedi response variable

d.(V)=|y-XA| i=12--C @)
3. If k=argmin, d,(y), then the test sample is assigned to kh¢h class.

Table 2: The CRC Algorithm
1. Normalize the columns oiX to have unitl, -norm.
2. Code yover by
P=(XTX+A)" Xy 3)

3. Compute the regularized residuals

fi :"y—Xi,bi”Z,i:lZ,-“,C (4)

4. Output the identity ofy as
Identity(y ) =argmin{r} .

During the residual calculation process, both LR@ €RC fall into thel, minimization
category according to Eq. (2) and Eq. (4). We cheeove from the tables, that the main
difference lies in Eqg. (1) and Eqg. (3). Indeed, L&% CRC are based on the different ideas. The
former is based on the linear regression model,thadatter is the collaborate representation.
But, they can all be attributed to the minimum sedierror (MSE) problem. As for Eq. (1), in
general, we use the following to make the leasasgsolution stable and to impose a weaker
sparsity constraint on the solution:

B = (XX +A)*XTy,i =12+, N (5)
wheredis a positive constant, which is the same in E}. f®wever, in Eq. (1), LRC should
solve C linear equations for classifying the test samplgpectively, whereC is the number
of the classes. And Eq. (3) in CRC is more effitidran LRC in terms of speed, that is, one
linear equation system is needed. Therefore, wiep@RC in the proposed method.

3 Description of proposed method SIRCRC

3.1 SIRCRC Framework

In this subsection, we illustrate the proposed SRRGn detail. Comparing to the CIRLRC,
we make two improvements. One is the simplificatbhR definition, which is more reasonable



and leads to higher classification accuracy. Therolies in the integrating the presented SIR to
CRC instead of LRC, which produces higher compomaspeed. It is well known that the
number of training samples is always bigger that tif test samples in real applications. When
we try to consider the test vector as the traisagples according to the IR definition, we need
to enlarge its number. In other words, we needtwstuct visual test samples. Mirror image is a
simple but effective method[24]. L&t=[x,,---,X,] stand for the training sample vector, and
Y =[y,,---,yu ]is the test sample vector respectively. Suppoddiieee areC classes and each
class hasn training samples andm testing samples. ObviouslyN =Cn andM =Cm.
Xi-ymk Stands for thek -th training sample of the -th class. Similarly, Y, ., Stands for the
p-th training sample of thej -th class.

The proposed method is described as followst,Rt forms the test vector by test sample
and its mirror image. Note that all the test sampfermation is in the test vector, no training
information at all, not like CIRLRC. We think it imiore natural according to the IR essence.
Further, for score fusing, more uncorrelated inheidem, better recognition rate it yields. SIR
definition is more independent than IR. Second,ob&in the optimal linear training samples
from every class to represent the test sample,catmlilates the score of each class. Here the
classical CRC method is applied. Third, we con@I& on the base of CRC. Finally, it fuses the
scores produced from the second and third stepthéoultimate classification. These steps are
presented in detail below.

Step 1 Produce the test vector. It contains two partgjioal test sample and mirror images.
For original test sampley in the form of face image, the virtual test sanipldefined
as

y'ts)=ytS-s+), t=1..T, s=1--S (6)
whereT is the rows andS is the columns of the face image matrix. The refeship
betweeny and y' is that column vectory'is obtained by concatenating the rows of
yin sequence.

Step 2 CRC procedure. We first establish the linear system

y= XA (7)
In order to simultaneously minimize the norm of tbalution vector, we give an
objective function as miny =|XA/+A|A|. Hereafter|{falways denotes thé,norm.
Therefore, we solveA using

A=(XTX +A)XTY (8)

Aand | stand for a small positive constant and the idgntiaitrix, respectively. We

calculate the score between the test saypbnd the i -th class usings :Hy—xiﬁ{

Step 3 SIR procedure. Define the test vectdrfirst.



Step 4

Z=[Y Y] 9
Then we establish a linear system for each naiamitg sample asX =Zf3.Sis
solved using

B=(Z"Z+A)Z"X 110
Aand | still stand for a small positive constant and ttlentity matrix, respectively.
We use the following

d =|x -/ (11)

as the distance of between the test samylend the training sample .

Score fusing. For test sample we first normalize its scores and "distance" with
respect to all the classes using

Srj — (Sj _ Smln.) /(Smax _ Smln)l (12)

d, =(d; -d™)/(d™ -d™) (13)

where s™ =min(s,---,s.) , S"™=max(,,s) , d™ =min(d,,--,d.) ,
d™ =max@,,--,dc). It usest, =a,s; +a,d;to calculate the ultimate score with
respect to thej -th class. «, and «,are the weights and, +«, =1. Because
conventional representation seems to be more leliabevaluating the dissimilarity
than the SIR, we often assigns a larger value aoin comparison taw,. If

k =argmin, t;, then test sampley is assigned to theth class.

3.2 Analysisof SIRCRC

The proposed SIRCRC method has two main cotitoibst One is that the simplification of
IR. The other is that we apply CRC instead of LRC.

We can observe from Step 3 in the original CIRLfRat the test vector contains three parts:
original training sample, the test sample and itlsanimages. In the proposed SIRCRC, we
simplify it by getting rid of the naive trainingre@le. The essence of IR is the inverse procedure
of conventional RBCM. Hereafter, in SIRCRC we m#hke best of the test sample information.
Another drawback of IR definition in CIRLRC lies the distance calculation phase. Owing to
the training sample part in the test vector of W, couldn't calculate them to the naive training
sample. Therefore, CIRLRC calculate the other taxdsgrespectively and then average them. As
for SIR in SIRCRC, all the information in the testctor is about test sample, we can compute
the residual difference directly. It is naturampie and efficient.

As it has analyzed in CIRLRC, in real-world dpations, the error exists in both the test
sample and the training one. The conventional RBE€Mased on the least-squares algorithm,
which takes only the error in the test sample adcount. Actually, Eq. (7) can be rewritten as

XA=y =y, +L0y (14)
where y, and Ay stand for the true test sample and error, respegtiAnd it generates the
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following objective function:

(AN} = argmin(Ayl| +A|A)) StXA=y, +Ay (15)
While the IR takes only the error in the trainiregrgle into account. The equatif =x can
be rewritten as

Z3 = X=X, +[\x (16)
where X, and Ax stand for the true train sample and error, respedgt It is easy to know that
the relative objective function is as follows:

(B4 =argmin(D]+A|B)  stZB=x,+Ix (17)
We see from the above presentation that it alldves drror both in the test sample and the
training sample to be considered and processedtameously. This will be beneficial to achieve
good face recognition performance. However, Eq) th&es account of error in the training
sample on the right side, but the error of thentrej sample in the test vector is neglected. When
we use the proposed SIR, this drawback will beléatk

Both CIRLRC and the presented SIRCRC adopt rikegrating technique and score fusing
finally. In score level fusion, if correlation cdiefent between the two kinds of scores to fuse is
low, the fusion result is usually good. That issty, a smaller correlation coefficient allows the
fusion to better accuracy. Letx and y be two variables. Generally, we define the coti@ta
coefficient between them as

cov(x,y)

\Jcov(x, ) /cov(y, )
wherecov(x, y) = E[(Xx—E(X))(y— E(Y))]. As for the two residuals and dfrom Step 2 and
Step 3 respectively, we calculate the correlatmefficient between them, that is

o(s.d) = cov(s,d)
\Jcov(s,s)/cov(d,d)
wherecovisd) == 3 (5, -8)(d, ~d),5=2 X5, d =37 d,

Table 1 shows the mean of all the correlatioeffedents of the scores and distances of the
test samples from the ORL database. The highest wieeorrelation coefficients of CIRLRC is
0.5469, while that in SIRCRC is 0.4939. It impliget SIRCRC has lower difference than
CIRLRC, and hence the better fusion performance.

Fig. 1 depicts the scores and distances ofastetést sample, obtained using Steps 2 and 3 in
the case where the first 5 face images of eaclesulyj the ORL database are used as training
samples and the others are taken as test sampeRalris SIRCRC and Fig.1(b) is CIRLRC.
We can observe that in the former there are 3 poiith similar data, while the latter has 9 such
points. Hence, for SIRCRC, the difference of ther@ation coefficient of scores in CRC and
distance in SIR is greater than that in CIRLRC. RBigepicts the scores and distances, of the last

P(Xy) = (18)

(19)

7



test sample from the subset of the FERET datalmddained using Steps 2 and 3 in the case
where the first 4 images of each subject are usetfamning samples and the rest as the test
samples. We can easily draw the similar conclugidfig. 1.

Table 1 Mean of all the correlation coefficientdtud residuals from Step 2 and Step 3 of CIRLRCthed
proposed SIRCRC in ORL face database.

Training sample per cls 3 4 5
CIRLRC 0.546¢ 0.526¢ 0.502¢
SIRCRC 0.4939 0.486: 0.473:

ol | “ | ‘ -
1f \ il 7‘/\.‘“! il

01 —8—CRC
—+—SIR

a. SIRCRC b. CIRLRC
Fig. 1 Residuals of the last test sample obtairstugusteps 2 and 3 of the methods. Fig. 1(a) iCR®R® and
Fig. 1(b) is CIRLRC. The first 5 images of eachjsubin the ORL database are used as training ssngpid
the others are taken as test samples. The veaidslshows the values of residuals and the homtantis
shows the no. of the component of the normalizedeseector and distance vector.

L L 1 n L L L L L & L L L L n T s L &
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

a. SIRCRC b. CIRLRC
Fig. 2 Residuals of the last test sample obtairsgagusteps 2 and 3 of the methods. Fig.2 (a) iCRR and
Fig. 2 (b) is CIRLRC. The first 4 images of eacbjeat in the FERET database are used as trainmglsa
and the others are taken as test samples. Thealeaxkis shows the values of residuals and thebwotal axis
shows the no. of the component of the normalizedeseector and distance vector.



4 Experiments

We use the ORL, FERET and Georgia Tech(GT) datbto test the presented SIRCRC. Fig.
3-5 gives some samples of these face databasesoklveare it with CIRLRC[23], and some
state-of-art face recognition methods as well, agBRC[8], LRC[12], CRC[9]and RCRJ[11]. In
SIRCRC, we guarantee the two weighis + w, =1. Therefore, we just show the value af .
While in CIRLRC, we only adopt the optimal weigh#snd the parameterdin Eg.(8) and
Eq.(10) is set to 0.001.

Fig. 3. Some samples from ORL face database.

Fig. 4. Some samples from FERET.

Fig. 5. Some samples from GT face database.

4.1 Experiments on the ORL face database

We use the ORL face database [24] to evaluate etiod. There are 400 gray images from
40 subjects. Every subject provides 10 images.deone subjects, the images were taken at
different times, with varying lighting, facial exgssions and facial details. Each image was also
resized to an image with one half of the originaé 9y using the down-sampling algorithm. We
respectively take the first 2, 3 and 4 face imagiesach subject as original training samples and
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treated the remaining face images as test sanifiesexperimental results are shown in Table 2.
It shows that both CIRLRC and SIRCRC are able tdop@ better than the classical RBCM,
such as SRC, RCR, and LRC and CRC as well. In ¢ohe of CIRLRC, we also give the
recognition error rates of LRC and CIR, that istilve parts of score fusing. In the same way, we
list them, CRC and SIR, in the SIRCRC. Compare GIR@ LRC, we can observe that CRC
performs well on the ORL face database. And SlRoisas well as CIR in terms of recognition
performance. While as we have analyzed in Sec.tB&,two parts in SIRCRC has greater
irrelevance than in CIRLRC. Hereafter, we get ado\inal error rates than CIRLRC on the
ORL face database.

Table 2 Recognition error rates (%)of different Inoels on the ORL face database

Number of the original training samples per c 2 3 4
SRC 22.25 11.93 09.92
RCR 21.77 18.8¢ 17.52
LRC 21.5¢ 18.9: 15.4:
CIR 20.26 18.57 17.92
CIRLRC(G,=0.6) 09.64 08.33 11.00
CRC 16.5¢ 15.0¢ 11.2¢
SIR 21.38 20.43 18.33
SIRCRC((, =0.8) 09.93 08.18 07.33
SIRCRC(G, =0.7) 09.56 07.94 08.15
SIRCRC((, =0.6) 08.60 07.49 09.50

4.2 Experimentson the FERET face database

The FERET database is one of the standard facegendatabase specially used for the face
recognition algorithms[25]. We use a subset ofitiis composed of 1400 images from 200
individuals with each subject providing 7 imagesisTsubset includes the face images whose
names contain two-character string: “ba”, “bj”, "pKbe”, “bf”, “bd” and “bg”. The images in
this subset have pose variations D15, +25, and also the variations of the illumination and
expression. Before experiment, we use the down-agnalgorithm to resize each image into a
40x40 pixel. Table 3 shows that our proposed method llysakassifies more accurately than
CIRCLC and the classical RBCM.

Table 3 Recognition error rates (%) of differentieels on the FERET face database

Number of the original training samples per class 1 2 3
SRC 64.9( 52.71 56.0(
RCR 79.99 80.18 88.52
LRC 80.18 59.97 60.87
CIR 81.4i 61.2: 63.8¢
CIRLRC(&,=0.8) 64.39 53.97 54.77
CRC 55.67 41.60 55.63
SIR 57.75 49.60 53.25
SIRCRC((, =0.8) 52.83 37.20 43.13
SIRCRC(G, =0.7) 52.58 38.30 45.62

SIRCRC((, =0.6) 50.83 36.50 43.13
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4.3 Experimentson the GT face database

In this subsection, we use the Georgia Tech (G@¢ fdatabase [33] to test our method. It
was built at Georgia Institute of Technology, whadntains images of 50 people taken in two or
three sessions. All people in the database wereesepted by 15 color JPEG images with
cluttered background taken at the resolution6dfox 480 pixels. The pictures show frontal or
tilted faces with different facial expressions,hlimg conditions and scale. Each image was
manually labeled to determine the position of @eefin the image. We use the face images with
the background removed and each of these face sriage the resolution ofi0x30 pixels.
They are all converted into gray images in advaite first 2, 3 and 4 face images of each
subject are used as training samples and the remgaimages are taken as test samples.
Table 4 shows again that CIRLRC and SIRCRC areebéiian SRC, RCR, LRC and CRC.
Meanwhile, CIRLRC and SIRCRC have the similar restgn error rates.

Table 4 Recognition error rates (%) of differentinoels on the GT face database

Number of the original training samples per ¢ 2 3 4
SRC 45.26 42.17 40.24
RCR 63.71 61.57 58.21
LRC 54.1& 4917 44.36
CIR 64.15 64.33 62.55
CIRLRC(G,=0.9) 46.92 42.83 39.45
CRC 57.54 54.5C 52.55
SIR 58.31 57.5C 55.09
SIRCRC((, =0.8) 45.69 43.50 40.00
SIRCRC(G, =0.7) 45.23 42.33 40.18
SIRCRC((, =0.6) 45.54 41.50 48.91

4.4 Running time

In this subsection, we compare the computatiortieficy between CIRLRC and SIRCRC
on the ORL, FERET and GT face databases. The5fjr8tand 4 face images of each subject are
used as training samples and the remaining imagesiken as test samples in the ORL, FERET
and GT respectively. Table 5 describes the spe&@IRERC and SIRCRC on face databases. It
is obvious that the presented SIRCRC is more coatipnial efficient than CIRLRC by the 11.81
averaging speed-up times.

Table 5 Speed on the face databases (Time s)

Number of training CIRLRC SIRCRC Speed-up(times)
samples per class
ORL 5 1452.51 139.93 10.38
FERET 3 16495.38 1138.77 14.49
GT 4 602.26 57.11 10.55

5 Conclusions

Representation based classification method (RBG&4 attracted much attention in the last
decade. It exploits the linear combination of tignsamples to represent the test sample and
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then classify the test sample according to the muimh reconstruction residual. Among the
RBCM, a novel concept, Inverse Representation [{iRproposed recently. It makes the most of
test samples' information to represent each trgisample. The relative CIRLRC algorithm
integrates IR and LRC by score fusing and showsstiggerior classification performance.
However, it suffers from two aspects. One it ig tha test vector contains some training sample
information. The other is the computation inefficig that CIRLRC should solvé& linear
equations for classifying the test sample respeltiwvhere C is the number of the classes.
Therefore, we present a novel method integratingpkiied IR(MIR) and collaborative
representation classification (CRC) for face redtigm (SIRCRC). In SIRCRC, only test sample
information is fully used in SIR, and CRC is mof@agent than LRC in terms of speed, that is, 1
linear equation system is needed. Extensive expeiizh results on ORL, FERET and GT
databases show that it is very competitive withiBOIRLRC and the state-of-the-art RBCM.
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