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Abstract

In this paper, a novel and robust tracking method based on efficient manifold

ranking is proposed. For tracking, tracked results are taken as labeled nodes

while candidate samples are taken as unlabeled nodes. The goal of tracking is

to search the unlabeled sample that is the most relevant to the existing labeled

nodes. Therefore, visual tracking is regarded as a ranking problem in which the

relevance between an object appearance model and candidate samples is pre-

dicted by the manifold ranking algorithm. Due to the outstanding ability of the

manifold ranking algorithm in discovering the underlying geometrical structure

of a given image database, our tracker is more robust to overcome tracking drift.

Meanwhile, we adopt non-adaptive random projections to preserve the structure

of original image space, and a very sparse measurement matrix is used to effi-

ciently extract low-dimensional compressive features for object representation.

Furthermore, spatial context is used to improve the robustness to appearance

variations. Experimental results on some challenging video sequences show the

proposed algorithm outperforms seven state-of-the-art methods in terms of ac-

curacy and robustness.
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1. Introduction

Visual tracking is a long standing research topic due to its wide range of ap-

plications such as behavior analysis, activity recognition, video surveillance, and

human-computer interaction [1, 2]. Although it has had a significant progress

in the past decades, developing an efficient and robust tracking algorithm is still5

a challenging problem due to numerous factors such as partial occlusion, illumi-

nation variation, pose change, abrupt motion, and background clutter. These

factors can lead to wrong association, and result in drift and even failure in

tracking.

The main tracking algorithms can be categorized two classes: generative10

[3, 4, 5, 6] and discriminative methods [7, 8, 9, 10, 11, 12, 13].

Generative methods focus on searching for the regions which are the most

similar to the tracked targets with minimal reconstruction errors of tracking.

Adaptive models including the WSL tracker [3] and IVT method [14] have been

proposed to handle appearance variation. Recently, sparse representation meth-15

ods have been used to represent an object by a set of trivial target templates

and trivial templates [6, 15] to deal with partial occlusion, pose variation and so

on. Therefore, it is critical to construct an effective appearance model in order

to handle various challenging factors. Furthermore, generative methods discard

useful information surrounding target regions that can be exploited to better20

separate objects from backgrounds.

Discriminative methods treat tracking as a classification problem that dis-

tinguishes the tracked targets from the surrounding backgrounds. A tracking

technique called tracking by detection has been shown to have promising results

in real-time. This approach trains a discriminative classifier online to separate25

an object from its background. Collins et al. [7] selected discriminative fea-

tures online to improve the tracking performance. Boosting method has been

used for object tracking through combining weak classifiers to establish a strong

classifier to select discriminative features, and some online boosting feature s-

election methods have been proposed for object tracking [8, 16]. Babenko et30
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al. [9]proposed a novel online MIL algorithm for object tracking that achieves

superior results with real-time performance. An efficient tracking algorithm

based on compressive sensing theories was proposed by Zhang et al. [10]. It

uses low dimensional features randomly extracted from high dimensional multi-

scale image features in the foreground and background, and it achieves better35

tracking performance than other methods in terms of robustness and speed.

Moreover, although some efficient feature extraction techniques have been pro-

posed for visual tracking [8, 10, 12], there often exist a large number of samples

from which features need to be extracted for classification, thereby entailing

computationally expensive operations [9].40

The above tracking methods have shown promising performance. However,

they have some shortcomings. Firstly, although the goal of a generative method

is to learn an object appearance model, an effective searching algorithm and

measuring method to match candidate samples to an object model are difficult

to obtain. Secondly, background varies broadly during a tracking process, so45

it is difficult to achieve the aim of a discriminative method to distinguish a

target region from a complicated background when the target looks similar

to its background. Therefore, it is very difficult to construct a discriminative

object representation. Thirdly, feature selection is of crucial importance for

generating an effective appearance model. However, approaches using a large50

amount of features make the computational load very heavy. Therefore, the

computational complexity of tracking methods is rather high, , and this limit

the real-time applications of these methods.

Graph-based ranking algorithms have been widely applied to information

retrieval and have proved to have excellent performance and feasibility on a va-55

riety of data types [17, 18, 19]. The manifold ranking algorithm first constructs

a weighted graph by considering each data node as a vertex. The ranking score

of the query is iteratively propagated to nearby node via the weighted graph.

Finally nodes will be ranked according to the ranking scores, in which a larger

score indicates higher relevance. In this paper, we develop a novel and robust60

tracking method based on manifold ranking, which regards tracking as a rank-
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ing problem. As shown in Figure 1, we mark the tracked results as labeled

nodes, while candidate samples are regarded as unlabeled nodes. The track-

ing objective is to estimate the corresponding likelihood that is determined by

the relevance between the queries and all candidate samples. We use a mani-65

fold structure to measure the relevance between a model and samples, and in

our method low-dimensional compressive features can efficiently compress fea-

tures of foreground objects and their background. Experimental results on some

challenging video sequences are demonstrated to show the effectiveness and ro-

bustness of the proposed model and algorithm in comparison with seven state-of70

the-art tracking methods.

The main contributions of this paper are as follows.

1. A novel visual tracking method based on graph-manifold ranking is pro-

posed.

2. An efficient manifold ranking algorithm is adopted, it can reconstruct75

graph efficiently in each tracking round and reduce the computation com-

plexity.

3. Low-dimensional compressive features of an image are extracted by a very

sparse measurement matrix for object representation. This matrix pre-

serves the structure of the image and discriminates objects from their80

cluttered background effectively.

4. Our method exploits both temporal and spatial context information, and

it is robust to appearance variations caused by abrupt motion, occlusion

and background clutters.

5. Experimental results show that the proposed algorithm outperforms seven85

state-of-the-art methods in terms of accuracy and robustness.

This is is an extension of our paper showing preliminary results in [20]. The

rest of this paper is organized as follows. Graph-manifold ranking algorithm is

described in Section 2.1. Details of our proposed method based on an efficient

manifold ranking with low-dimensional compressive features are demonstrated90

in Section 3. The efficient manifold ranking algorithm is described in Section
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2.2. Experimental results are shown and analyzed in Section 4. The conclusion

is presented in Section 5.

2. Preliminaries

2.1. Graph-based manifold ranking95

Manifold Ranking (MR), a graph-based ranking algorithm, has been widely

applied in information retrieval and shown to have excellent performance and

feasibility on a variety of data types [17, 18]. The manifold ranking method

is described as follows: given a query node, the remaining unlabeled nodes are

ranked based on their relevance to the given query. The goal is to learn a ranking100

function to define the relevance between unlabeled nodes and this query [18, 19].

In [19, 21], a ranking method that exploits the intrinsic manifold structure

of data for graph labelling is proposed. Given a data set X = {x1, x2, · · · , xn} ∈
<m×n, where m is the dimension of feature vector and n is the number of the

data set, some data points are labelled queries and the rest need to be ranked105

according to their relevance to the queries. Let f : X → <n denote a ranking

function which assigns a ranking value ri to each point xi, and r is a column

vector defined by r = [r1, r2, · · · , rn]T . Let y = [y1, y2, · · · , yn]T denote an

indication vector, in which yi = 1 if xi is a query, and yi = 0 otherwise. Suppose

all data points represent a graph G = (V,E), where V represents vertex set,110

and edges E are weighted by an affinity matrix W = [wij ]n×n. The strength of

edge reflects the similarity between two vertices. To find the optimal ranking of

queries, the cost function associated with r is defined as follows.

O(r) =
1

2
(

n∑
i,j=1

‖ 1√
Dii

ri −
1√
Djj

rj‖2 + µ
n∑

i=1

‖ri − rj‖2) (1)

where µ > 0 controls the balance of the smoothness constraint (the first term)115

and the fitting constraint (the second term), D is a diagonal matrix with the

element Dii =
∑n
j=1 wij , for i, j = 1, 2, · · · , N . To minimize the cost function,

we can obtain the closed form solution as:

r∗ = (I − αS)−1y (2)
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where I is an identity matrix, α = 1
1+µ and S = D− 1

2WD− 1
2 . Then, we use the

iteration scheme to solve the following optimal problem:120

r(t+ 1) = αS(r(t) + (1− α)y) (3)

where α is control parameter, which balances each points information from its

neighbors and and the original information.

2.2. Efficient manifold ranking algorithm

In order to efficiently reconstruct graph, we use efficient manifold ranking

algorithm [19] to compute the ranking score. First, we briefly introduce how to125

use anchor graph to model the data. Given a data set X = {x1, x2, · · · , xn} ∈

<m×n, U = {u1, u2, · · · , ud} ∈ <m×d indicates a set of anchors sharing the same

space with the data set. Then, we define a real value function r : X → R, which

assigns a semantic label for each point in X. The aim is to find a weight matrix

that measures relevance between data points r : X → R and anchors in U . We130

obtain r(x) for each point by a weighted average of these labels on anchors as

follows:

r(xi) =

d∑
k=1

zkir(uk), i = 1, 2, · · · , n (4)

where
∑d
k=1 zki = 1 and zki > 0, in which zki represents the weight between

point xi and an anchor uk. The weights can be obtained by Nadaraya-Watson

kernel regression to increase smoothness. The graph construction process and135

the means to get the anchors can be found in detailed [19].

We use a new approach to represent the adjacency matrix W . The weight

matrix Z ∈ <d∗n can be viewed as a d-dimensional representation of the data

X ∈ <m∗n, in which d is the number of anchor points. It means that data points

can be presented in a new space to replace the original feature space. We set140

the adjacency matrix as follows:

W = ZTZ (5)
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where Wij > 0 if two points are correlative and they will share at least one

common anchor point, otherwise Wij = 0. The new adjacency matrix is useful

to explore relevance among data points. According to W = ZTZ, equation (2)

can be rewritten as follows:145

r∗ = (T1 − αHTH)−1y = (I1 −HT (HHT − 1

α
I2)−1H)y (6)

where H = ZD−1 and S = HTH, I1 and I2 are the identity matrices. By

equation(6), the inversion computation part have changed form a matrix n× n

to a matrix d×d. Therefore, the change can efficiently reduce computation load

for d� n. We can also note that the matrix D is computed without using the

adjacency matrix W . In equation (6),150

Dii =

n∑
j=1

wij =

n∑
j=1

zTi zj = zTi v (7)

where zi is the ith column of Z, and v =
∑n
j=1 zj . Thus, we compute the matrix

D without using the adjacency matrix W . By the equation (6), we multiply a

matrix to avoid the matrix - matrix multiplication every time. Therefore, the

efficient manifold ranking algorithm has a complexity O(dn+ d3). Due to a low

complexity for computing the ranking function r∗, we can reconstruct graph in155

each tracking round efficiently.

2.3. Low-dimensional compressive features

The Haar-like features have been widely used for object representation and

appearance modeling. They are typically designed for different tasks such as

object detection, object tracking and et al. [9, 10, 22]. However, Harr-like fea-160

tures require high computational loads for feature extraction in training and

tracking phases. Recently, Babenko et al. [9] adopted the generalized Haar-like

features where each one is a linear combination of randomly generated rectan-

gle features, and used online boosting to select a small set of them for object

tracking. In our tracking framework, we use the low-dimensional compressive165

features proposed by Zhang et al. [10] for the appearance modelling. A large
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set of Haar-like features is significantly compressed using a very sparse measure-

ment matrix. Object representation using the compressed features preserves the

object structure represented in the original feature space. and these features in

the compressed domain can be applied efficiently.170

Given a random matrix R ∈ <n∗m that projects a high-dimensional image

feature x ∈ <m to a low-dimensional feature v ∈ <n:

v = Rx (8)

where n � m. Ideally, the matrix R can provide a stable embedding to pre-

serve the distance between all pairs of original signals, in other words, lower-

dimensional features can recover original high-dimensional information. Johnson-175

Lindenstrauss lemma [23] states that with high probability the distances be-

tween the points in a vector space are preserved if they are projected onto a

randomly selected subspace with suitably high dimensions. Therefore, if the

random matrix R in equation(8) meets Johnson-Lindenstrauss lemma, we can

reconstruct the original data x with minimum error from low-dimensional data180

v with high probability when x is compressive such as video or image. Thus,

a very sparse matrix is used for extracting compressive features, and it only

satisfies Johnson-Lindenstrauss lemma and the real-time applications.

A typical measurement matrix satisfying the restricted isometry property is

the random Gaussion matrix R ∈ <n∗m, rij ∼ N(0, 1), so a very sparse random185

measurement matrix is defined as:

rij =
√
s×


1 with probability 1/2s

0 with probability 1− 1/s

−1 with probability 1/2s

(9)

In order to satisfy Johnson-Lindenstrauss lemma, the measurement matrix

should be with s = 2 or s = 3 [23]. We can note the measurement matrix is very

easy to compute which requires only a uniform random generator. In order to

enhance separability, distinguish ability and adaptability at fixed scale, samples190

from this fixed scale are convolving with a set of rectangle filters at multiple
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scales. Each rectangular filter at a scale is defined

hp,q(x, y) =

 1 1 ≤ x ≤ p, 1 ≤ y ≤ q

0 otherwise
(10)

where (xi, yi) is the coordinates of the upper left corner in the rectangular

filter, p and q are the width and height of the rectangle filter respectively.

Convolving an image patch with the rectangle filter at a fixed scale is equivalent195

to computing the internal image characters corresponding to this filter. Finally,

we represent each filtered image as a column vector in <wh and then concatenate

these vectors as a very high-dimensional multi-scale image feature vector x.

Then, a very sparse matrix is adopted to project x onto a low-dimensional

feature vector v. In tracking process, the sparse matrix remains fixed in whole200

tracking process and it is computed once in the original stage. Therefore, a

low-dimensional compressive features v can be efficiently computed and it is

used to represent an object.

3. Our proposed method

3.1. Framework205

Figure 1 shows the basic flow of our proposed tracking algorithm. The

tracking problem is formulated as a ranking task. Firstly, we assume the lo-

cations in the first t frames have been obtained by CT tracker [10]. Let l(x∗i )

denote the location of tracking result at the i-th frame where x∗i represents

the sample. Then, we collect these tracked results to form the object appear-210

ance model set Sm = {x∗1, x∗2, · · · , x∗i }, i = 1, 2, · · · , t, and the corresponding

graph is taken as Gm. Secondly, for a new frame, we crop out a set of im-

age patches xr with N samples near the location l(x∗t ) with a search radius

at the current frame, i.e. xβ = {x : ‖l(x) − l(x∗t )‖ < β}. These candidate

image patches are collected to form a set of unlabeled nodes, represented by,215

Su = {xs+1
1 , xs+1

2 , · · · , xs+1
i }, i = 1, 2, · · · , N , and the corresponding graph is

taken as Gu. Thirdly, the candidate Gu is combined with Gm to construct a

graph G = Gm ∪ Gu, in which the label yi = 1 if a node point is in Gm, and
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#1 #2 #3

Object model （tracked results）

#s

……

Labeled nodes Unlabeled nodes

Sample

#s+1

Object representation by low-dimensional compressive features

𝐺 = (𝑉,𝐸) 

𝑖 = 𝑎𝑟𝑔max
𝑖
(𝑟𝑢

∗)𝑖  

#4
Candidates

Figure 1: Basic flow of our tracking algorithm. A graph is established combining labeled nodes

(tracked results) and unlabeled nodes (candidate samples), and ranking scores represent the

relevance between the object model and candidate samples.

yi = 0 if a node point is in Gu. The ranking score vector r∗ = [r∗m; r∗u] can be

obtained by manifold ranking algorithm, where r∗m is corresponding to Gm while220

r∗u is corresponding to Gu. Then, the tracking result is added into Sm, while

the other candidate samples are deleted. This procedure continues to sample

candidates and construct a new graph to obtain the largest ranking score as the

tracking result until the end of the image sequence.

3.2. Graph construction225

We construct a graph G = (V,E) in shown Figure 1, where V is vertex set

and E is edge set. As an object has similar appearance in continuous frames,

each node is connected to those nodes neighboring it to exploit the continuous

relationship. In our work, tracked results are taken as labeled nodes while

candidate samples are taken as unlabeled nodes, so wij reflects how closely230

the i-th node is linked to the j-th node. Meanwhile, W ∈ <n∗m denotes the

adjacency matrix with element wij also indicating the weight of the edge between

points i and j, for i, j = 1, 2, · · · , n. If there exists an edge linking the i-th node
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and the j-th node, the weight between the two nodes can be defined by

wij = e−
||ci−cj ||

2

2σ2 (11)

where ci and cj denote the feature representation for two nodes in the feature235

space respectively, σ is a constant that controls the strength of the weight. By

ranking all nodes on the construction graph, we can obtain a nonzero relevance

value for any nodes on the graph.

3.3. Appearance model updating process

As shown in Figure 1, we can obtain the locations in the first t frames by240

a CT tracker, and then to obtain the location of the t + 1 frame by manifold

ranking algorithm. There exists an obvious problem that the size of Sm will

be very large if all tracked results are added into the appearance model in each

tracking round, so the computation complexity will be very heavy. In addition,

the bad node impacts the performance of the appearance model. To track the245

next frame, we need to update the appearance model firstly. We compute the

average ranking score of r∗m;

µr∗m =

t∑
i=1

(r∗m)i (12)

where (r∗m)i represents the score of the i-th node in Sm. Then, we compute

the displacement error ei between the score of each node in Sm and the average

score:250

ei = ‖(r∗m)i − µr∗m‖
2 (13)

We delete the node that has the largest displacement error, and then add

the current tracking result x∗t+1 into Sm. Thus, the number of Sm will be t

constantly. It is worth noting that the average ranking score computed from

tracked results alleviates the noise effects.
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Algorithm 1. The proposed tracking method

Input: Video frame f=1:F

1. The first t frames are tracked by a CT tracker to

construct an object appearance model set

Sm = {x∗1, x∗2, · · · , x∗i }

2. for f= t+1 to F do

3. Crop out a set of candidate samples as unlabeled set

Su by xβ = {x : ‖l(x)− lt(x∗))‖ < β}.

4. if f == t+1

5. Construct a graph G = Gm ∪Gu and support set Ss.

6. Update model set Sm.

7. else

8. Construct a graph G = Gm ∪Gs ∪Gu.

9. Update model set Sm and support set Ss.

10. end if

11. The i-th candidate sample that has the largest in all ru

is taken as the object location, the i-th sample can be

selected by i = argmaxi r
∗
u, i = 1, 2, · · · , U , where U is

the number of candidate samples.

12. end for

Output: Tracking results {l1(x∗), l2(x∗), · · · , lF (x∗)}.

255

3.4. Support set construction

In our method, object appearance model Sm only reflects the temporal re-

lationship among consecutive frames, while it can not consider its immediate

surrounding background. In the tracking process, the context of a target in an

image sequence consists of the spatial context including the local background260

and the temporal context including all appearances of the targets in the previous

frames. As shown in Figure 2 (left), our object appearance model Sm repre-
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#1 #2 #3

Appearance model 

(temporal relationship)

#s

Spatial relationship

Figure 2: Temporal and spatial relationship.

sents the temporal context in the previous frames. In Figure 2 (right), note that

the object can be influenced by its surrounding background, and there exists a

correlation between the object (denoted by red rectangle) and its surrounding265

background (denoted by yellow rectangle). Therefore, in order to make use of

surrounding background information and provide much appearance information

for graph construct, we establish a support set to describe the spatial context.

The spatial context describes the relevance between the object and its surround-

ing background in small neighborhood region.270

Supposed that, in tracking the (t+ 1)-th frame, we have obtained the object

location l(x∗t+1) with ranking score, and the ranking score of the current candi-

date samples is denoted by r∗u. We select s nodes from the candidate samples set

Su to construct the support set Ss. Ss is corresponding to the first s+ 1 largest

ranking scores among all obtained r∗u, and we then delete the largest one. The275

graph corresponding to the support set is denoted by Gs. The updating process

of the appearance model and the construction of the support set construction

are shown in Figure 4.

To track the (t+ 2)-th frame, a graph G = Gm ∪Gs ∪Gu is constructed and

the label yi = 1 if a node point is from Sm and Ss, while yi = 0 if a node point280

is from Su. The ranking score matrix r∗ = [r∗m; r∗s ; r∗u] can be obtained by an

efficient manifold ranking algorithm (see Section.2.2), where r∗m, r∗s , and r∗u are
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Tracked results

Model nodes set Unlabeled nodes set

Current samplesSupport nodes set

𝒓∗  Compute 

𝒓𝒖
∗  

Samples from the previous candidates with larger ranking score

Update set 

Update set 

𝑺𝒎 

𝑺𝒎 
 

𝑺𝒔 

𝑺𝒔 

𝑺𝒖 

𝒊 = 𝒂𝒓𝒈𝐦𝐚𝐱
𝒊
(𝒓𝒖

∗ )𝒊 

Construct graph

Figure 3: The updating process of appearance model and the construction of support set.

(a) Lemming (b) Coke (c) DavidOutdoor

(e) Stone (f) Couple(d) Deer (g) Bolt

Figure 4: The caption of tracking different object in video sequences.
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Table 1: Evaluated video sequences.

Sequences #Frames Challenging Factors

Deer 71 abrupt motion, background clutter

Coke 291 abrupt motion, partial occlusion

Bolt 293 partial occlusion, scale change

Stone 593 partial occlusion, background clutter

Couple 140 partial occlusion, abrupt motion, background clutter

Lemming 1336 partial occlusion, abrupt motion, background clutter

DavidIndoor 252 partial occlusion, illumination variation

corresponding to Gm, Gs, Gu respectively. The tracking scheme is summarized

in Algorithm 1. Finally, the target in frame t+ 2 is the sample with the largest

component in r∗u, as the i-th sample can be selected from Su and computed by285

i = argmax
i

r∗u, i = 1, 2, · · · , U (14)

where U is the number of candidate samples.

4. Experimental results and analysis

4.1. Experimental setup

We evaluate the proposed tracking method based on an efficient manifold

ranking algorithm and an object representation with low-dimensional features290

using seven video sequences with impacted factors including abrupt motion,

cluttered background, severe occlusion and appearance change (See Table 1).

We compare our proposed tracker with seven other state-of-the-art methods

including: L1 tracker (L1) [6], real-time compressive tracking (CT) [10], multi-

ple instance learning tracker (MIL) [9], incremental visual tracking (IVT) [14],295

fragment tracker (Frag) [4], weighted multiple instance learning tracker (WMIL)

[24] and locally orderless tracking (LOT) [25]. For fair comparison, we adopt

the source or binary codes provided by the authors with tuned parameters for

best performance. But for some trackers involving randomness, we repeat the

experimental results 5 times on each sequence and obtain the averaged results.300
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Table 2: Center location error (CLE). Red fonts indicate the best performance while the blue

fonts indicate the second best ones.

Sequence L1 CT MIL IVT Frag WMIL LOT Ours

Coke 85.3 42.0 26.9 70.5 124.8 76.9 42.5 23.9

Bolt 39.4 211.4 35.8 138.8 18.8 214.3 68.2 7.6

Deer 171.5 95.1 66.5 127.5 92.1 25.1 65.9 23.0

Stone 19.2 32.8 32.3 2.5 65.9 99.8 28.1 6.4

Couple 110.6 33.8 33.9 105.1 32.6 34.4 37.8 9.3

Lemming 184.9 26.3 25.9 93.4 149.1 96.9 19.9 24.3

DavidOutdoor 100.4 87.3 38.4 52.9 90.5 73.3 63.5 29.5

Average CLE 101.6 75.5 37.1 84.4 81.9 88.7 46.6 17.7

In our experiments, the parameters are used in our algorithm as follows.

The search radius for cropping out candidate samples is set to β = 20, which

is related with object motion speed. The dimensionality of the compressive

feature is set to 200. The first t frames are tracked by the CT method and t is

set to 30. The number of nodes in support set is set s = 10. Implemented in305

MATLAB, our tracking method runs at about 10 frames per second (FPS) to

obtain the averaged results on an i3 3.20 GHz machine with 4 GB RAM.

4.2. Quantitative analysis

We perform experiments on seven publicly available standard video sequences.

As the ground truth, the center position of a target in a sequence is labeled310

manually. This ground truth is provided in Wu’s work [26]. For quantitative

analysis, we use average center location errors as evaluation criteria to compare

the performance, and the pixel error in every frame is defined as follow:

CLE =
√

(x′ − x)2 + (y′ − y)2 (15)

where (x
′
, y
′
) represents the object position obtained by different tracking meth-

ods, and (x, y) is the ground truth. The second evaluated metric is the success315
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Table 3: Success rate (SR)(%). Red fonts indicate the best performance while the blue fonts

indicate the second best ones.

Sequence L1 CT MIL IVT Frag WMIL LOT Ours

Coke 13.1 50.2 72.2 15.8 3.5 44.8 13.7 79.4

Bolt 27.5 4.7 44.4 3.4 54.6 3.1 17.4 81.7

Deer 3.9 14.1 21.3 11.7 7.6 83.5 35.2 85.9

Stone 29.2 35.2 32.1 65.2 15.4 8.4 27.8 65.2

Couple 12.3 67.8 71.4 10.1 64.3 65.3 69.7 92.8

Lemming 3.9 74.8 53.5 17.8 13.4 24.4 84.5 82.1

DavidOutdoor 27.5 22.4 64.8 41.1 19.5 29.8 31.2 72.3

Average SR 16.8 38.5 51.4 23.9 25.5 37.1 40.0 79.9

rate [27], and the score in every frame is defined as follow:

score =
area(ROIT ∩ROIG)

area(ROIT ∪ROIG)
(16)

where ROIT is the tracking bounding box and ROIG is the ground truth bound-

ing box. If the score is larger than 0.5 in one frame, the tracking result is con-

sidered as a success. Table 2 reports the center location error, where smaller

CLE means more accurate tracking results. In Table 2, each row represents the320

average center location errors of the eight algorithms testing on a certain video

sequence. The number marked with red indicates the best performance in a

certain testing squence, and blue indicates the second best. Table 3 reports the

success rates, where larger average scores mean more accurate results. From

Table 2 and Table 3, we can see that our method achieves the best or second325

best performance compared with L1, CT, MIL, WMIL, Frag, IVT and LOT for

most of sequences. Moreover, we draw the error curve according to equation

(15) for each video sequences (Figure 5). In addition, Figure 6, Figure 7 and

Figure 8 show the screen captures for some of the video clips. More details of

experiments are analyzed and discussed in the following subsections.330
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Figure 5: Error plots of all tested sequences for different tracking methods.
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Figure 6: Sampled tracking results for tested sequences of (a) Stone and (b) Lemming.
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4.3. Qualitative analysis

Partial occlusion: The objects suffer heavy or longtime partial occlusion,

scale change, deformation and rotation in sequences Bolt(Figure 8(a)), Lem-

ming (Figure 7(b)), DavidOutdoor(Figure 6(c)), Coke (Figure 6(a))). In the

Bolt sequence, Figure 8(a) demonstrate that our tracking method performs well335

in terms of position and scale when the objects undergo severe occlusion and

deformation at frames #112, #157, #167, while the other methods including

the IVT, CT, WMIL and L1 completely fail to track the objects in these frames.

This can be attributed to some reasons: (1) we can extract discriminative fea-

tures by a very sparse matrix to separate an object well from its background,340

and also object representation with low-dimensional compressive features can

preserve the structure of original image space; and (2) the outstanding ability of

manifold ranking algorithm is to discover the underlying geometrical structure

and the relevance between object appearance and candidate samples. Thus,

our tracker is more robust to overcome tracking drift and abrupt motion. In345

the DavidOutdoor sequence, our method and MIL perform better than other

methods at frames #193, #206 and #252. The other methods suffer from sev-

er drift and some of these methods completely fail to track. Furthermore, our

method performs more accurately than MIL at frames #230 and #252. Thus,

our method can handle occlusion and it is not sensitive to partial occlusion since350

the manifold ranking algorithm can measure the relevance between object ap-

pearance and candidate samples. Furthermore, we can also see the advantages

of our tracking method in Lemming and Coke sequences (see Figure 7(b) and

Figure 6(a)).

Abrupt motion and blur: The objects in Deer (Figure 8(b)), Coke (Fig-355

ure 6(a))), Couple (Figure 6(b)) and Lemming (Figure 7(b)) sequences have

abrupt motions. It is difficult to predict the location of a tracked object when

it undergoes an abrupt motion. As illustrated in Figure 8(b), when an object

undergoes an in-plane rotation, all evaluated algorithms except the proposed

tracker do not track the object well. We also see that the WMIL method can360

track the object well except in frames #43 and #56. The CT method suffers
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Figure 7: Sampled tracking results for tested sequences of (a) Coke, (b) Couple and (c)

DavidOutdoor.
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completely from drifts to the background at frames #7, #17, #39, #43, #56,

#60 and #68. In the Coke sequence, we can see that our method perform bet-

ter than other all evaluated algorithms (see all shown frames in Figure 7(a)).

For the Couple sequence, our tracker performs better than the other methods365

whereas the WMIL, LOT,and MIL algorithms are able to track the objects in

some frames. In the Lemming sequence, only the CT and our method perform

well at frame #550, while the other algorithms fail to track the target object-

s well. What is more, the Frag method suffers completely from drift in the

shown frames, which verifies that the Frag method cannot adaptively adjust370

these changes, resulting in serious drifts. We can also see that the LOT method

can track the object well except that there are few drifts in a couple of frames

see frames #550 and #1105). Blurry images exist in the Deer sequence (see

Figure 8(b)), because a fast motion make it difficult to track the target object.

As shown in frames #56 and #71 of Figure 8(a), our proposed method can still375

track the object well compared with other methods.

Background clutters: The trackers are easily confused an object is very

similar to its background. Figure 8(b), Figure 6(b), Figure 7(b) and Figure

7(a) demonstrate the tracking results in the Deer, Couple, Lemming and Stone

sequences with background clutters. Figure 7(a) shows different trackers track380

a yellow cobblestone located among a lot of similar stones. Thus, it is very

difficult to distinguish the object from its background and to keep tracking

the object correctly. Comparatively, our method and the IVT exhibit better

discriminative ability and outperform other methods at frames #495 and #535.

The MIL and WMIL trackers completely drift to the background at frames385

#426, #495 and #535, which verifies that the selected features by the MIL

and WMIL trackers are less informative than our method. The Frag tracker has

severe drifts at all frames except frames #55 and #535 because its template does

not update online, making it unable to handle large background clutter. The

CT method has severe drifts at frames #426, #495 and #535 because it only390

uses compressive features and the Bayesian classifier is sensitive to background

clutter.
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Figure 8: Sampled tracking results for tested sequences of (a) Bolt and (b) Deer.

In the Deer sequence, our method outperforms all other methods in all given

frames. In the Lemming sequence, the L1 tracker completely drifts to the back-

ground at all given frames, which verifies that sparsity is not useful for tracking.395

The Frag, IVT, L1 methods suffer from severe drifts at frames #1105 and #1126

as shown in Figure 8(b). Meanwhile, the CT performs well too at frames #1105

and #1126, but creates a drift at frame #1096, because it is sensitive to the

background clutter and the abrupt motion. In the Couple sequence, the IVT

and L1 methods completely fail to track the object at all shown frames, while400

the MIL, WMIL and CT methods can track well in the first frame. However,

they completely fail to track at other frames because they cannot effectively

distinguish the object from the background clutters.

4.4. Comparison our method with other classifiers

It should be noted that the proposed tracking algorithm is significantly d-405

ifferent from other classifiers such as support vector machine method (SVM).
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……

#1 #2 #3 #s

Positive samples Negative samples

Negative samplesPositive samples

(1) SVM(a)

(2) SVM(b)

Figure 9: Two sampling methods using SVM classifier. (1) The tracked results are selected

as positive samples, while many image patches are selected away from the current location

as negative samples; (2) These image patches around the current location are collected as

positive samples, while many image patches are selected away from the current location as

negative samples
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#100 #130 #200
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(a) Bolt

(b) DavidOutdoor

(c) Lemming

SVM(a) SVM(b) Ours

Figure 10: Comparison our tracking method with SVM classifiers.

The outstanding ability of of the manifold learning algorithm is to discover the

underlying geometrical structure and the relevance between different data set,

while SVM. To verify the performance of our tracker outperforms the perfor-

mance of using SVM classifier, We construct the two tracking methods using410

SVM. In Figure 9(1), we assume the locations in the first t frames have been

obtained by CT tracker [10], then these tracked results are selected as positive

samples, while many image patches are selected away from the current loca-

tion as negative samples (See Figure 9(1) for details). In Figure 9(2), we collect

these image patches around the current location as positive samples, while many415

image patches are selected away from the current location as negative samples.

In these experiments, we use the Haar feature to represent the object and

the dimensionality of the compressive feature is set to 200. The first t frames
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Table 4: Center location error (CLE) for comparing our method with SVM classifiers.

Methods Deer Stone Coke Bolt Couple Lemming DavidOutdoor

SVM(a) 97.1 82.4 56.5 81.8 33.4 162.1 68.7

SVM(b) 60.2 68.9 86.1 33.4 18.9 165.6 67.9

Ours 23.0 6.4 23.9 7.6 9.3 24.3 29.5

are tracked by the CT method and t is set to 30. Table 4 reports the center

location error, where smaller CLE means more accurate tracking results. From420

Table 4, we can see that our method achieves the best performance compared

with SVM classifiers. Figure 10 show the screen captures for some of the video

clips. In Bolt sequence, we can see the two SVM methods completely fail to

track the target object in the frames #200 and there are some tracking error in

frames #130 and #130. In DavidOutdoor and Lemming sequences, our tracker425

performs better than the other methods.

4.5. Discussion

As shown in our experiments, our method can address these factors including

abrupt motion, cluttered background, occlusion more effectively. The reason-

s are as follows. (1) We can extract discriminative features by a very sparse430

matrix to separate an object well from its background, and the object repre-

sentation with low-dimensional compressive features can preserve the structure

of original image space. (2) The outstanding ability of of the manifold ranking

algorithm is to discover the underlying geometrical structure and the relevance

between object appearance and candidate samples. (3) Our method combines435

temporal with spatial context information for tracking, and it is very insensitive

to multiple factors. Thus, our tracker can obtain favorable performance.

However, our proposed method may fail when an out-of-plane rotation and

an abrupt motion occur in the current sequence (see Figure 11). Figure 11(a)

shows an out-of-plane rotation and an abrupt motion after #75. Our method440

drifts away the ground truth because the appearance model can not match well
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#260 #260#290 #260#290#320

(a)

(b)

Figure 11: Two failed tracking cases:(a) out of plane rotation and abrupt motion; (b) similar

appearance information between object and non-objects.

between the object model and the candidates, and it cannot distinguish the

object from the changed background. However, our method is sensitive when

there exists a complex background and when there exists similar appearance in-

formation between the object and the non-objects in a sequence (Figure 11(b)).445

Therefore, our method can not distinguish an object from background clutter-

s. Overall, our method performs favorably against the other state-of-the-art

tracking methods in the challenge sequences.

5. Conclusions

This paper has proposed a novel framework named manifold ranking based450

visual tracking. The algorithm is initially proposed to rank data along their

manifold, which has been widely applied in information retrieval and shown to

have excellent performance and feasibility on a variety of data types. In order to

address the shortcomings of original manifold ranking from graph reconstruction

and heavy computation load, we adopt the efficient manifold ranking algorithm.455

The ability for efficiently constructing a graph is more applicable for tracking

problem. What is more, we adopt non-adaptive random projections to preserve

the structure of original image space, and a very sparse measurement matrix has
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been used to efficiently extract compressive features for object representation.

Furthermore, our method exploits temporal and spatial context information460

for tracking, which is very insensitive to background clutters and appearance

change. Experiments on some challenging video sequences have demonstrated

the superiority of our proposed method to seven state-of-the-art ones in accuracy

and robustness.
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