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Abstract

In this paper, we study a model of quantum Markov chains that is a quan-

tum analogue of Markov chains and is obtained by replacing probabilities in

transition matrices with quantum operations. We show that this model is very

suited to describe hybrid systems that consist of a quantum component and a

classical one, although it has the same expressive power as another quantum

Markov model proposed in the literature. Indeed, hybrid systems are often

encountered in quantum information processing; for example, both quantum

programs and quantum protocols can be regarded as hybrid systems. Thus,

we further propose a model called hybrid quantum automata (HQA) that can

be used to describe these hybrid systems that receive inputs (actions) from the

outer world. We show the language equivalence problem of HQA is decidable

in polynomial time. Furthermore, we apply this result to the trace equivalence

problem of quantum Markov chains, and thus it is also decidable in polynomial

time. Finally, we discuss model checking linear-time properties of quantum

Markov chains, and show the quantitative analysis of regular safety properties

can be addressed successfully.
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1. Introduction

As we know, Markov chains as a mathematical model for stochastic systems

play a fundamental role in computer science and even in the whole field of infor-

mation science. A Markov chain is usually represented by a pair (P, π0) where

π0 is a vector standing for the initial state of a stochastic system, and P is a

stochastic matrix 1 characterizing the evolution of the system. Over the past

two decades, quantum computing and quantum information have attracted con-

siderable attention from the academic community. Then it is natural to study

the quantum analogue of Markov chains. Actually, the terminology “quantum

Markov chains” have appeared many times in the literature [1, 2, 9, 8, 17, 28], al-

though it does not mean exactly the same thing in different references. A usual

approach to defining quantum Markov chains is to view a quantum Markov

chain as a pair (E , ρ0) where ρ0, a density operator, denotes an initial state of

a quantum system, and E is a trace-preserving quantum operation that char-

acterizes the dynamics of the quantum system. This resembles very closely a

classical Markov chain represented by a pair (P, π0). Indeed, in the textbook

[19], when quantum operations were introduced, they were viewed as a quantum

analogue of Markov processes. In [17, 28], a quantum Markov chain means the

same thing as mentioned here, while it mainly means a quantum walk in [1].

In this paper, we focus on the quantum Markov model reported in [9, 8]

which is greatly different from the one mentioned above but will be shown to be

very suited to describe hybrid systems that consist of a quantum component and

a classical one. Such a quantum Markov chain can be roughly represented by a

pair (M,µ0) where M is a transition matrix resembling P in a classical Markov

chain but replacing each transition probability with a quantum operation and

satisfying the condition that the sum of each column of M is a trace-preserving

quantum operation. µ0, standing for the initial state of the model, is a vector

with each entry being a density operator up to a factor. This model looks very

strange at first glance, but it has the same expressive power as the conventional

one given by (E , ρ0). Specially, we will show that this model is very suited to

describe hybrid systems that consists of a quantum component and a classical

one. Indeed, hybrid systems are often encountered in quantum computing and

quantum information, varying from quantum Turing machines [26] and quan-

tum finite automata [14, 22] to quantum programs [24] and quantum protocols

1In this paper, a matrix is said to be a stochastic matrix if each column of it is a probabilistic

distribution.
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such as BB84. Quantum engineering systems developed in the future will most

probably have a classical human-interactive interface and a quantum processor,

and thus they will be hybrid models. Therefore, it is worth developing a theory

for describing and verifying hybrid systems.

In order to describe hybrid systems that receive inputs or actions from the

outer world, we propose the notion of hybrid quantum automata (HQA) that

generalize semi-quantum finite automata or other models studied by Ambainis

and Watrous, and Qiu etc (see e.g. [3, 5, 21, 30, 31, 29]). In fact, these au-

tomata in the mentioned references as hybrid systems have been described in a

uniform way by the authors [14]. When viewing HQA as language acceptors,

we show their language equivalence problem is decidable in polynomial time by

transforming this problem to the equivalence problem of probabilistic automata.

Furthermore, we apply this result to the trace equivalence problem of quantum

Markov chains, showing the trace equivalence problem is also decidable in poly-

nomial time.

Finally, we consider model checking linear-time properties of hybrid systems

that are modeled by quantum Markov chains. We show that the quantitative

analysis of regular safety properties can be addressed as done for stochastic

systems, by transforming it to the reachability problem that can be addressed

by determining a least solution of a system of linear equations. For general ω-

regular properties, the similar technical treatments used for stochastic systems

no longer take effect for our purpose, and some new techniques need to be

explored in the further study.

2. Preliminaries

A Hilbert space is usually denoted by the symbol H. dim(H) stands for the

dimension of H. Let L(H) be the set of all linear operators from H to itself.

A∗, A† and A⊤ denote respectively the conjugate, the conjugate-transpose, and

the transpose of operator A. The trace of A is denoted by Tr(A). A ∈ L(H) is

said to be positive, denoted by A ≥ 0, if 〈ψ|A|ψ〉 ≥ 0 for any |ψ〉 ∈ H. A ≥ B

if A−B is positive. Let

P(H) = {A ∈ L(H) : A ≥ 0}.

Given a nonempty and countable set S, let

DistH(S) = {µ : S → P(H) :
∑

s∈S

Tr(µ(s)) = 1}.

Elements in DistH(S) are called positive-operator valued distributions.
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The detailed background on quantum information can be referred to the

textbook [19] and lecture notes [27]. Here we just introduce briefly some nec-

essary notions. States of a quantum system are described by density operators

that are positive operators having unit trace. Let

D(H) = {A ∈ P(H) : Tr(A) = 1},

which denotes the set of all density operators on Hilbert space H. An element

in D(H) is generally indicated by the symbol ρ. A positive operator with trace

less than 1 is called a partial quantum state.

A mapping E : L(H) → L(H) is called a super-operator on H. E is said to be

trace-preserving if Tr(E(A)) = Tr(A) for all A ∈ L(H). Let IH and 0H denote

the identity and zero super-operators, respectively, and if H is clear from the

context the subscript H is omitted. For two super-operators E and F , their

summation, subtraction and multiplication, denoted by E+F , E −F and E ◦F ,

respectively, are defined by

(E + F)(A) = E(A) + F(A),

(E − F)(A) = E(A)−F(A),

E ◦ F(A) = E(F(A))

for all A ∈ L(H). We always omit the symbol ◦ and write EF simply for

E ◦ F . The relation h between super-operators on H is defined by: E h F if

Tr(E(ρ)) = Tr(F(ρ)) for all ρ ∈ D(H).

The evolution of a quantum system is characterized by completely positive

super-operators (CPOs) . Here we do not recall the original definition of “com-

pletely positive”, but give an equivalent characterization. A super-operator E :

L(H) → L(H) is said to be completely positive if and only if it has an operator-

sum representation (also called Kraus representation) as

E(A) =
∑

k

EkAE
†
k,

where the set {Ek ∈ L(H)} are called operation elements of E . E is trace-

preserving if and only if its operator-sum representation satisfies the following

completeness condition

∑

k

E†
kEk = I. (1)

If Eq. (1) is replaced by
∑

k E
†
kEk ≤ I, then E is said to be trace-nonincreasing.

By SI(H) we mean the set of all trace-nonincreasing CPOs on H. Here the
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reason why we used the notation SI(H) is to keep up with the one in [8].

Elements in SI(H) are called quantum operations [19]. Trace-preserving CPOs

are called trace-preserving quantum operations.

Here we recall the concept of selective quantum operations [26] that are

actually trace-preserving quantum operations equipped with a physical inter-

pretation. A selective quantum operation is a mapping that takes as input

ρ ∈ D(H) and outputs a probability over pairs of the form (τ, ρτ ), where τ ∈ ∆

and ρτ ∈ D(H). We refer to τ as the classical output of the operation; this

may be the result of some measurement performed on ρ, but this is not the

most general situation. A selective quantum operation E is described by a set

of operation elements

{Eτ,k : τ ∈ ∆, k ∈ Kτ}

which satisfy the completeness condition
∑

τ∈∆

∑
k∈Kτ

E†
τ,kEτ,k = I. For each

τ ∈ ∆, we defined Φτ as follows:

Φτ (ρ) =
∑

k∈Kτ

Eτ,kρE
†
τ,k.

Then E is represented by E = {Φτ : τ ∈ ∆}. For τ ∈ ∆, let pτ = Tr(Φτ (ρ)) and

ρτ = Φτ (ρ)/pτ (in case pτ = 0, ρτ is undefined). Now, on input ρ, the output

of E is defined to be (τ, ρτ ) with probability pτ .

In the following, we recall a useful linear mapping vec from [27] which maps

a matrix A ∈ Cn×n to an n2-dimensional column vector, defined as follows:

vec(A)((i − 1)n+ j) = A(i, j).

In other words, vec(A) is the vector obtained by taking the rows of A, trans-

posing them to form column vectors, and stacking those column vectors on top

of one another to form a single vector. For example, we have

A =

(
a b

c d

)
and vec(A) =




a

b

c

d


 .

If we let |i〉 be an n-dimensional column vector with the ith entry being 1 and

else 0’s, then {|i〉〈j| : i, j = 1, · · · , n} form a basis of Cn×n. Therefore, the

mapping vec can also be defined as vec(|i〉〈j|) = |i〉|j〉.

Let A,B,C be n× n matrices. Then we have

vec(AXB) = (A⊗B⊤)vec(X), (2)

Tr(AB) = vec(A⊤)⊤vec(B). (3)
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Throughout this paper, we use |S| to denote the cardinality of the set S.

3. Quantum Markov chains and hybrid systems

As mentioned in Introduction, it is natural to propose the quantum analogue

of Markov chains, while Markov chains have been shown to play a fundamental

role in information science and quantum information processing has attracted

more and more attention from the academic community. In the literature, there

are several notions of quantum Markov chains defined from different perspec-

tives, but in this paper we focus mainly on the one reported in [9, 8]. In the

following, we show that the quantum Markov model given in [9, 8] is very suited

to describe hybrid systems, although it has the same expressive power as the

conventional one given in [17, 28]. Before that, we recall some necessary defini-

tions below.

One natural viewpoint is to regard a quantum Markov chain as a pair of a

trace-preserving quantum operation and a density operator. Here we keep up

with the notations used in [28].

Definition 1. A quantum Markov chain (qMC) is a triple M = (H, E , ρ0)

where:

• H is a Hilbert space;

• E is a trace-preserving quantum operation over H;

• ρ0 is the initial density operator over H.

M is said to be finite if dim(H) is finite.

The physical interpretation of qMC M is: a quantum system with Hilbert

spaceH starts in the initial state ρ0, and at each step the state evolves according

to E . Usually, we do not give explicitly the underlying Hilbert space H, and

thus a qMC is simply denoted by the pair (E , ρ0). The state at the nth step is

denoted by ρn. Then we have

ρn = En(ρ0) (4)

where En is inductively defined by: (i) E0 = I and (ii) En = EEn−1 for n =

1, 2, · · · .

Another quantum analogue of Markov chains was reported in [9, 8], and we

call it hybrid quantum Markov chain (hqMC). The reason why we called them

“hybrid” will get clear soon. The definition is as follows.
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Definition 2. An hqMC is represented by a tuple M = (H,S,M, µ0) where:

• H is a Hilbert space;

• S is a nonempty and countable set of states;

• M : S×S → SI(H) such that
∑

t∈S M(t, s) is a trace-preserving quantum

operation for each s ∈ S.

• µ0 ∈ DistH(S) denotes the initial distribution.

M is said to be finite, if S and dim(H) are finite.

Visually, hqMC M can be represented by a transition graph (a digraph)

where states from S act as vertexes and there is an edge from s to t with label

M(t, s) if and only if M(t, s) 6= 0. For example, Fig. 1 represents an hqMC

whose state set is S = {s0, s1, s2} and whose transition function M is given by

M(s1, s0) = E01,M(s2, s0) = E02,M(s2, s2) = E22,M(s1, s2) = E21,M(s1, s1) =

I where all given quantum operations are nonzero.

0
s

1
s

2
s

01 02

21

22

Figure 1: Transition graph of an hqMC.

In the sequel, we identify the transition functionM with a |S|×|S| matrix of

which each entry is a quantum operation and the sum of each column is a trace-

preserving quantum operation. M(t, s) denotes the entry in the tth row and

the sth column. Similarly, µ0 is viewed as a |S|-dimensional column vector with

each entry being a positive operator and their sum being a density operator.

µ0(s) denotes the sth entry. A rough interpretation of hqMC M is: the system

first starts in µ0 and then at each step evolves according to M . At the nth step,

the state is denoted by

µn =Mnµ0

whereMn is inductively defined by: i)M0 is a diagonal matrix with the diagonal

entries being I and other entries being 0, and ii)Mn =MMn−1. Note that the

multiplication of an entry inM and an entry in µn is in the sense of performing a
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quantum operation on a partial quantum state. For example, for µ1 =Mµ0 we

have µ1(s) =
∑

t∈SM(s, t)(µ0(t)) for s ∈ S where quantum operation M(s, t)

is performed on the state µ0(t).

In the following, we show that the model of hqMC M = (H,S,M, µ0) is

very suited to describe hybrid systems that are dynamic systems consisting of

two interactive components: a quantum one and a classical one, although this

might not be clearly noticed when the model was proposed at the beginning. As

shown in Fig. 2, there is a hybrid system consisting of a quantum component

whose state space is H and a classical component whose state set is S. The

behavior of this system is exactly described by M. More specifically, at each

step the hybrid system evolves as follows.

(i) Firstly, depending on the current classical state s, quantum state ρ evolves

according to Ms. Ms denotes the selective quantum operation described

by the sth column of M , that is, Ms = {M(t, s) : t ∈ S}. Thus, on input

ρ, the output is (t,M(t, s)(ρ)/pt) with probability pt = Tr(M(t, s)(ρ)).

(ii) Secondly, the classical state s evolves into state t, where t is the output

of the above quantum evolution. Equivalently, a transition function Ft :

S → S changes each state to t. If S is finite, then the classical component

can be viewed as a DFA whose state set and input alphabet are both S and

whose transition function maps the current state to the state indicated by

the current input symbol.

The initial state of the hybrid system is (s, µ0(s)/ps) with probability ps =

Tr(µ0(s)) where s ∈ S denotes the classical state.

s t

( , )
t

t
s

M

t

quantum

classical

Figure 2: An hqMC describing the behavior of a hybrid system.
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As shown above, the hqMC model is suited to describe hybrid systems. In-

deed, hybrid systems are often encountered in quantum information processing.

For example, quantum programs can be regarded as hybrid systems, since as

stated by Selinger [24], quantum programs can be described by “quantum data

with classical control flows”. Quantum data are represented by states of the

quantum component and classical control flows are state evolutions of the clas-

sical component. Also note that the quantum Turing machines defined in [26]

and quantum finite automata studied in [14] are all hybrid systems. In addition,

as shown in [8], quantum cryptographic protocols such as BB84 protocol can be

described by hqMC. We think that hybrid systems will be encountered more of-

ten as the study of quantum information goes ahead. In fact, since what we can

observe are classical, the quantum engineering systems developed in the future

will most probably have a classical human-interactive interface and a quantum

processor, and thus they will be hybrid systems.

On should distinguish “hybrid systems” in this paper from those in [10, 23].

Hybrid systems in [10, 23] are digital real-time systems embedded in analog en-

vironments. Those systems combine discrete and continuous dynamics. There

have been a long list of publications devoted to the verification of these hybrid

systems. Hybrid systems in our paper are such systems that combine classi-

cal discrete dynamics and quantum discrete dynamics (it is also possible to

consider quantum continuous dynamics), and in the sequel, when mentioning

“hybrid systems” we always adopt this meaning. As mentioned above, hybrid

systems often present in quantum information processing. Therefore, it could

be meaningful and interesting to develop a theory of describing and verifying

these systems; Feng et al’ s work [8] can be seen as a first step toward this

direction.

In the following, we clarify the relationship between the two models of quan-

tum Markov chains presented in this section. First, a qMC is obviously a special

hqMC, since when there is only one classical state in an hqMC, it reduces to a

qMC. On the other hand, we will show that each hqMC can also be simulated

by a qMC. This is formally expressed in the following theorem.

Theorem 1. Given an hqMC M = (H, S,M, µ0), there exists a qMC M′ =

(H′, E , ρ0) such that the states ρn and µn of M′ and M at the nth step, respec-

tively, satisfy:

ρn =
∑

s∈S

|s〉〈s| ⊗ µn(s)

for n = 0, 1, · · · .
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Proof. The qMC M′ = (H′, E , ρ0) is constructed as follows:

• H′ = HS ⊗H where HS = span{|s〉 : s ∈ S};

• ρ0 =
∑

s∈S |s〉〈s| ⊗ µ0(s);

• E is a trace-preserving quantum operation on H′ which is constructed to

simulate the interactive actions between the quantum component and the

classical one in Fig. 2.

More specifically, E is described by the set of operation elements

{|t〉〈s| ⊗Mk
ts : s, t ∈ S, k ∈ Kts} (5)

where for each pair t, s ∈ S, {Mk
ts : k ∈ Kts} are operation elements of the

quantum operation M(t, s).

Then E is trace-preserving since we have

∑

s,t∈S

∑

k∈Kts

(|t〉〈s| ⊗Mk
ts)

†(|t〉〈s| ⊗Mk
ts)

=
∑

s,t∈S

(
|s〉〈s| ⊗

∑

k∈Kts

(Mk
ts)

†Mk
ts

)

=
∑

s∈S

(
|s〉〈s| ⊗

∑

t∈S

∑

k∈Kts

(Mk
ts)

†Mk
ts

)

(a)
=
∑

s∈S

|s〉〈s| ⊗ IH = IHS
⊗ IH

where IHS
and IH denote identity operators on HS and H, respectively. In the

above, equation (a) holds because {Mk
ts : k ∈ Kts, t ∈ S} are operation elements

of the selective quantum operation Ms.

Furthermore, for ρ⊗ ̺ ∈ L(HS ⊗H), by a direct calculation we have

E(ρ⊗ ̺) =
∑

s,t∈S

〈s|ρ|s〉|t〉〈t| ⊗M(t, s)(̺) (6)

=
∑

s,t∈S

〈s|ρ|s〉Ft(|s〉〈s|)⊗M(t, s)(̺). (7)

From the above, it can be seen that the intuitive idea of E is as follows: i)

first perform the measurement {Es = |s〉〈s| : s ∈ S} on the classical system

to observe its state; ii) if s is the result, then perform the selective quantum

operation Ms = {M(t, s) : t ∈ S} on the quantum system; iii) if the classical

output of Ms is t, then perform Ft on the classical system changing its state to

10



t. Note that Ft is a trace-preserving quantum operation for each t ∈ S, since

it has operation elements {F s
t = |t〉〈s|, s ∈ S} that satisfy the completeness

condition.

Now by induction on n we prove ρn =
∑

s∈S |s〉〈s| ⊗ µn(s) for n = 0, 1, · · · .

First when n = 0, we have ρ0 =
∑

s∈S |s〉〈s| ⊗ µ0(s). Suppose it holds for n.

Then from Eq. (6) we have

ρn+1 = E(ρn) = E

(
∑

t∈S

|t〉〈t| ⊗ µn(t)

)

=
∑

s,s′∈S

∑

t∈S

〈s|t〉〈t|s〉|s′〉〈s′| ⊗M(s′, s)(µn(t))

=
∑

s′∈S

|s′〉〈s′| ⊗
∑

t∈S

M(s′, t)(µn(t))

=
∑

s′∈S

|s′〉〈s′| ⊗ µn+1(s
′).

Thus, we have completed the proof.

From the above discussion, we know that qMC and hqMC have the same

expressive power. However, they are suitable for describing different systems.

While it is natural to describe a purely quantum system using the qMC model,

it is convenient to describe a hybrid system using the hqMC model.

4. Hybrid quantum automata

Based on the hqMC model, we propose an automaton model—hybrid quan-

tum automata, which generalizes the models in [14] and can be used to describe

hybrid systems that receive inputs (or actions) from the outer world.

First, some notations are explained below. As usual, for nonempty set Σ,

by Σ∗ we mean the set of all finite-length strings over Σ. Let Σ+ = Σ∗ \ {ǫ}

where ǫ denotes the empty string. For u ∈ Σ∗, |u| denotes the length of u. Let

Σn = {u ∈ Σ∗ : |u| = n} and Σ≤n = {u ∈ Σ∗ : |u| ≤ n}.

Definition 3. A hybrid quantum automaton (HQA) is a tuple

A = (H, S,Σ, µ0, {Mσ}σ∈Σ)

where

• H is a Hilbert space;

• S is a countable nonempty set of states;

11



• Σ is an alphabet of symbols;

• µ0 ∈ DistH(S) is the initial distribution;

• For each σ ∈ Σ, Mσ : S × S → SI(H) such that
∑

t∈SMσ(t, s) is a

trace-preserving quantum operation for each s ∈ S;

A is said to be finite, if S, Σ and dim(H) are finite.

The behavior of A is roughly as: A starts in µ0, and at each step, it scans

the current input symbol σ ∈ Σ, and then updates its state according to Mσ.

In this paper, we regard HQA A as a language acceptor, that is, for each input

w ∈ Σ∗, A observes its final state after scanning all input symbols and accepts if

the final state satisfies some given property. Generally, the accepting behavior

is probabilistic, because of the inherent probabilism of quantum mechanics.

Here, we have two basic approaches to defining the automaton’s accepting

fashions. One is based on classical states: A accepts its input w ∈ Σ∗, if its

classical state after scanning the whole input belongs to a subset F ⊆ S. In this

case, the model is represented by a tuple A = (H, S,Σ, µ0, {Mσ}σ∈Σ, F ), A is

said to accept with classical fashion, and we call it a C-HQA for short. Then

C-HQA A defines a function PA : Σ∗ → [0, 1] as

PA(w) =
∑

s∈F

Tr((Mwµ0)(s))

where Mσ1σ1···σn
= Mσn

· · ·Mσ2
Mσ1

and Mǫ is a diagonal matrix with the

diagonal entries being I and others being 0. PA(w) denotes the probability

that A accepts w.

Also, we can define that HQA A accepts its input if its final quantum state

belongs to a subspace of H, say Hacc. Let Pacc be the projector onto Hacc. In

this case, the model is given by A = (H, S,Σ, µ0, {Mσ}σ∈Σ, Pacc), A is said to

accept with quantum fashion, and we call it a Q-HQA for short. The probability

that A accepts its input w ∈ Σ∗ is given by

PA(w) =
∑

s∈S

Tr(Pacc(Mwµ0)(s)).

Based on the above two basic accepting fashions, HQA can generally have a

mixed accepting fashion. In this case, the model is called M-HQA for short and is

represented by A = (H, S,Σ, µ0, {Mσ}σ∈Σ, F, Pacc). The accepting probability

on input w ∈ Σ∗ is give by

PA(w) =
∑

s∈F

Tr(Pacc(Mwµ0)(s)).

12



Remark 1. (i) It is obvious that a probabilistic automaton is a degenerate C-

HQA in which M(s, t) = ps,tI for all s, t ∈ S with (ps,t)s,t∈S being a stochastic

matrix, and µ0(s) = psρ for some density operator ρ and s ∈ S with (ps)s∈S

being a probabilistic distribution. (ii) Note that we characterized three models

of quantum finite automata in the framework of hybrid systems in [14]; all of

them can be regarded as a concrete implementation of the HQA model defined

in this paper. For example, CL-1QFA [5] and 1QCFA [30] are instances of C-

HQA, and 1QFAC [21] are instances of Q-HQA. Thus, the HQA given by us is

a generalized model.

Associated with the qMC model, there is another quantum automaton model

that was studied in [15, 11].

Definition 4. A quantum automaton (QA) is a tuple A = (H,Σ, ρ0, {Eσ}σ∈Σ, Pacc)

where H is a Hilbert space, Σ is an alphabet, ρ0 ∈ D(H) is the initial state, Eσ is

a trace-preserving quantum operation for each σ ∈ Σ, Pacc denotes a projector

onto a subspace of H (called an accepting subspace). A is said to be finite, if

Σ and dim(H) are finite. For each input w = σ1 · · ·σk ∈ Σ∗, the accepting

probability is given by PA(w) = Tr(PaccEw(ρ0)) where Ew = Eσk
· · · Eσ1

.

Implied by Theorem 1, we have the following result.

Lemma 1. For each HQA A over alphabet Σ, there is a QA A′ such that

PA(w) = PA′ (w) for all w ∈ Σ∗.

Proof. The idea is similar to the procedure of simulating hqMC by qMC, and we

sketch it as follows. Given an HQA A = (H, S,Σ, µ0, {Mσ}σ∈Σ), we construct a

QAA′ = (H′,Σ, ρ0, {Eσ}σ∈Σ, P
′
acc) whereH

′ = HS⊗H, ρ0 = Σs∈S |s〉〈s|⊗µ0(s),

and for each σ ∈ Σ, Eσ is constructed from Mσ as done in Theorem 1. Let

ρw = Ew(ρ0) and µw = Mwµ0 with w ∈ Σ∗. Then as shown in Theorem 1 we

have ρw =
∑

s∈S |s〉〈s| ⊗ µw(s). The last step is to construct P ′
acc, which is

dependent on the accepting fashion of A:

(a) If A is a C-HQA and assume that its classical accepting set is F ⊆ S, then

we let P ′
acc =

∑
s∈F |s〉〈s| ⊗ IH.

(b) If A is a Q-HQA with projector is Pacc, then we let P ′
acc = IHS

⊗ Pacc.

(c) If A is an M-HQA, then let P ′
acc =

∑
s∈F |s〉〈s| ⊗ Pacc.

In any case, it is easy to verify that PA(w) = PA′(w) for all w ∈ Σ∗.
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Remark 2. From the above result it follows that HQA do not surpass QA in

the sense of language recognition power. Note that it has been shown that finite

QA recognize with bounded error exactly the family of regular language[15].

In the following we introduce another model that was called bilinear machine

in [16].

Definition 5. A bilinear machine (BLM) is a tuple A = (n,Σ, {Mσ}σ∈Σ, π, η)

where n ∈ N is called the state number of A, Σ is a finite alphabet, Mσ ∈ Cn×n

is a transition matrix for each σ ∈ Σ, π ∈ Cn is a column vector, and η ∈ Cn is

a row vector. Automaton A assigns each w = σ1 · · ·σk ∈ Σ∗ a weight PA(w) as

PA(w) = ηMσk
· · ·Mσ1

π. A is a probabilistic automaton if it is further required

that each Mσ is a stochastic matrix, π is a probabilistic distribution, and η has

entries being 1 or 0.

Every finite QA can be simulated by a BLM, which is stated formally as

follows.

Lemma 2. For each finite QA A over alphabet Σ, there is a BLM A′ such that

PA′(w) = PA(w) for all w ∈ Σ∗.

Proof. Let finite QA A = (H,Σ, ρ0, {Eσ}σ∈Σ, Pacc). For each σ ∈ Σ, suppose

that Eσ(ρ) =
∑

k E
σ
k ρE

σ
k
†, and denote

Aσ =
∑

k

Eσ
k ⊗ Eσ

k
∗.

Then by Eq. (2), we have

vec(Eσ1
(ρ)) = Aσ1

vec(ρ),

vec(Eσ2
Eσ1

(ρ)) = Aσ2
Aσ1

vec(ρ).

As a result, the probability of A accepting w = σ1 · · · , σk ∈ Σ∗ can be rewritten

in the following:

PA(w) = Tr(PaccEσk
· · · Eσ1

(ρ0))

= vec(Pacc)
⊤vec(Eσk

· · · Eσ1
(ρ0))

= vec(Pacc)
⊤Aσk

· · ·Aσ2
Aσ1

vec(ρ0)

where the second equality follows from Eq. (3). Therefore, we construct

BLM A′ = (n,Σ, {Mσ}σ∈Σ, α, η) with n = dim(H)2, Mσ = Aσ for σ ∈ Σ,

π = vec(ρ0), and η = vec(Pacc)
⊤.
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In classical automata theory, it is a fundamental problem to decide wether

two probabilistic automata have the same accepting probability for each input

(that is known as the equivalence problem) [20, 25, 13]. This problem has some

nontrivial applications; for example, [6] applied it to verification of equivalence

between processes, and [18, 12] applied it to verification of equivalence between

probabilistic programs. Taking account into that the model of HQA is suited

to describe hybrid systems (including quantum programs), it is meaningful to

consider the equivalence problem for HQA. Formally, the equivalence problem

is as follows.

Definition 6. Two HQA (QA, BLM) A1 and A2 over the same alphabet Σ are

k-equivalent, if PA1
(w) = PA2

(w) for all w ∈ Σ≤k. Furthermore, they are said

to be equivalent if PA1
(w) = PA2

(w) holds for all w ∈ Σ∗.

The history for the equivalence problem of probabilistic automata is as fol-

lows. Paz [20] proved that two probabilistic automata are equivalent if and only

if they are (n1 + n2 − 1)-equivalent, where n1 and n2 are state numbers of the

two automata. Afterwards, this result was improved by Tzeng [25] who pro-

posed a polynomial-time algorithm determining whether two given probabilistic

automata are equivalent or not, and the time complexity is O(|Σ|(n1 + n2)
4).

Recently, an improved complexity O(|Σ|(n1 + n2)
3) was reported in [13]. As

mentioned in [16], all these results are based on some ordinary knowledge about

matrices and linear spaces rather than on any essential property of probabilistic

automata; as a result, they also hold for BLM. We summarize these results as

follows.

Lemma 3. Two BLM A1 and A2 over Σ are equivalent if and only if they are

(n1 + n2 − 1)-equivalent, and there exists a O(|Σ|(n1 + n2)
3) time algorithm

deciding whether they are equivalent or not, where n1 and n1 are state numbers

of A1 and A2, respectively.

For the sake of completeness, we present an algorithm for BLM’s equivalence

problem in Algorithm 1. For algorithmic purposes we assume that all inputs

consist of complex numbers whose real and imaginary parts are rational numbers

and that each arithmetic operation on rational numbers can be done in constant

time. Let Q be the set of vectors that have been added into queue, and let

S = span

{(
M1

wπ1

M2
wπ2

)
: w ∈ Σ∗

}

where M1
w = M1

wk
· · ·M1

w2
M1

w1
for w = wk · · ·w2w1 and it is similar for M2

w.

Then the relationship among B, Q and S is: Q can be proved to be a basis for
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S, and B is obtained from Q by the Gram-Schmidt procedure and thus is an

orthonormal basis for S. Therefore, A1 and A2 are equivalent (i.e., η1u1 = η2u2

holds for all elements

(
u1

u2

)
∈ S) if and only if η1u1 = η2u2 for all elements

(
u1

u2

)
∈ Q. Let n = n1 + n2. Then |Q| = |B| is at most n and the procedure

b := u−
∑

bi∈B(u
∗bi)bi takes at most O(n2) time. The total time complexity is

thus O(|Σ|n3).

Input: Ai = (ni,Σ, {M
i

σ}σ∈Σ, πi, ηi) for i = 1, 2.

Output: A1 and A2 are equivalent or not.

B := ∅; queue := ∅; π :=

(

π1

π2

)

;

If η1π1 6= η2π2 then

return “A1 and A2 are not equivalent”;

If ||π|| = 0 then

return “A1 and A2 are equivalent”;

B := { π

||π||
}; add π to queue;

while queue 6= ∅ do

begin take

(

v1

v2

)

from queue;

for all σ ∈ Σ do

begin

u1 = M1

σv1; u2 = M2

σv2;

if η1u1 6= η2u2 then

return “A1 and A2 are not equivalent”;

u :=

(

u1

u2

)

;

b := u−
∑

bi∈B(u
∗bi)bi;

if ||b|| 6= 0 then

add u to queue;

B := B ∪ { b

||b||
};

end;

end;

return “A1 and A2 are equivalent”;

Algorithm 1: Determining whether two BLM are equivalent or not.

Remark 3. In Definition 6, if it is required that PA1
(w) = PA2

(w) holds for
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all w ∈ Σ+ instead of for all w ∈ Σ∗, then the algorithm almost keeps the same

and the complexity has no change. This case will be used in the next section

for the trace equivalence problem of quantum Markov chains.

Now it follows from Lemmas 1, 2 and 3 that the equivalence problem of finite

HQA is decidable in polynomial time.

Theorem 2. Two finite HQA Ai = (H(i), S(i), µ
(i)
0 ,Σ, {M

(i)
σ }σ∈Σ) (i = 1, 2)

are equivalent if and only if they are ((n1k1)
2 + (n2k2)

2 − 1)-equivalent where

ni = dim(H(i)) and ki = |S(i)|. Furthermore, there exists a polynomial-time

algorithm deciding whether they are equivalent or not.

In the next section, we will show that the trace equivalence problem of

quantum Markov chains can be transformed in linear time to the equivalence

problem of QHA, and thus is also decidable in polynomial time.

5. Trace equivalence of quantum Markov chains

Feng et al [8] used the model of hqMC for model-checking quantum protocols

where the purpose is to check whether the classical component of a hybrid

system satisfies some given property. To that end, a labeling function was used

to associate each classical state a set of atomic propositions that are satisfied

at that state. In this paper, we called such an hqMC equipped with a state

labeling function a state-labeled hybrid quantum Markov chain (SL-hqMC, for

short). Also, we require that the hqMC is finite, although finiteness is not

a necessary requirement for a general definition. The formal definition is as

follows.

Definition 7. A state-labeled hybrid quantum Markov chain (SL-hqMC) is a

tuple

M = (H, S,M, µ0, AP, L),

where

1. (H, S,M, µ0) is a finite hqMC;

2. AP is a finite set of atomic propositions;

3. L : S → 2AP is a labeling function. L can be extended to finite sequence

of states as L(s0s1 . . . sn) = L(s0)L(s1) · · ·L(sn).

In the sequel, for the sake of simplicity we let Σ = 2AP , and call it a labeling

set. Then L assigns each state s ∈ S a symbol σ ∈ Σ. For s̄ = s0s1 · · · sk ∈ S+,
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let

ρs̄ =

k∏

i=1

M(si, si−1)(µ0(s0)) (8)

where
∏n

i=1 Ai = An · · ·A2A1. Then Tr(ρs̄) gives the probability of visiting the

sequence of states s0s1 · · · sk when M starts in the initial distribution µ0. Thus,

SL-hqMC M defines a function PM : Σ+ → [0, 1] by

PM(w) =
∑

s̄:L(s̄)=w

Tr(ρs̄).

This gives the probability of observing w ∈ Σ+ when M starts in the initial

distribution µ0.

In the following, we consider the trace equivalence problem of SL-hqMC. As

shown in [4], the issue of trace equivalence is closely related to model checking

linear-time properties of nonprobabilistic transition systems. For probabilistic

systems, this problem was also discussed in [7]. The definition of trace equiva-

lence is as follows.

Definition 8. Two SL-hqMC M1 and M2 with the same labeling set Σ are

trace equivalent if PM1
(w) = PM2

(w) for all w ∈ Σ+.

In the following, we transform the trace equivalence problem of SL-hqMC to

the equivalence problem of finite C-HQA that is decidable in polynomial time

as shown in Theorem 2.

Lemma 4. For every SL-hqMC M with labeling set Σ, we can construct in

linear time a finite C-HQA A such that PA(w) = PM(w) for all w ∈ Σ+.

Proof. Let M = (H, S,M, µ0, AP, L) be an SL-hqMC. Note that Σ = 2AP .

We construct C-HQA A = (H, S′,Σ, µ′
0, {Mσ}σ∈Σ, F ) as follows.

• S′ = S ∪ {τ};

• µ′
0(s) = µ0(s) for all s ∈ S and µ′

0(τ) is the zero operator in P(H);

• F = S;

• For each σ ∈ Σ, Mσ is constructed as

Mσ = M̂Dσ
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where M̂ is a block matrix:

M̂ =

(
M 0

0 I

)
.

That is, M̂(s, t) = M(s, t) for s, t ∈ S, M̂(τ, τ) = I, and others are 0. Dσ is

given by

Dσ =




δL(s1),σI 0 . . . . . . 0

0 δL(s2),σI 0 . . . 0

... 0
. . . 0

...

0 . . . 0 δL(sn),σI 0

δL(s1),σI δL(s2),σI . . . δL(sn),σI I



.

That is, Dσ(s, s) = δL(s),σI, Dσ(τ, s) = δL(s),σI for all s ∈ S, Dσ(τ, τ) = I,

and others are 0. In the above, for s ∈ S and σ ∈ Σ, the meaning of δL(s),σ is

δL(s),σ =

{
1, if L(s) = σ;

0, otherwise.

In addition, δL(s),σ = 1− δL(s),σ.

It is obvious that M̂ andDσ satisfy the property that the sum of each column

is a trace-preserving quantum operation, and their multiplication also satisfies

this property.

By the above construction, A satisfies the following property.

Proposition 1. Let w = σ0σ1 · · ·σk ∈ Σk+1 and µ′
w = Mwµ

′
0. Then for any

s ∈ S, we have

µ′
w(s) =

∑

L(s0···sk)=w

M(s, sk)

k∏

i=1

M(si, si−1)(µ
′
0(s0)), (9)

where L(s0 · · · sk) = w stands for “s0, · · · , sk ∈ S : L(s0 · · · sk) = w” and we

will always adopt this succinct notation in the sequel.
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Proof. We prove it by induction on k. When k = 0, for s ∈ S we have

µ′
σ0
(s) = (Mσ0

µ′
0)(s) = (M̂Dσ0

µ′
0)(s)

=
∑

s0∈S′

M̂(s, s0)(Dσ0
µ′
0)(s0)

=
∑

s0∈S

M(s, s0)(Dσ0
µ′
0)(s0)

=
∑

s0∈S

δL(s0)σ0
M(s, s0)(µ

′
0(s0))

=
∑

L(s0)=σ0

M(s, s0)(µ
′
0(s0)).

Suppose the result holds for k. Then for s ∈ S and σk+1 ∈ Σ we have

µ′
wσk+1

(s) = (Mσk+1
µ′
w)(s) = (M̂Dσk+1

µ′
w)(s)

=
∑

sk+1∈S′

M̂(s, sk+1)(Dσk+1
µ′
w)(sk+1)

=
∑

sk+1∈S

M(s, sk+1)(Dσk+1
µ′
w)(sk+1)

=
∑

sk+1∈S

δL(sk+1)σk+1
M(s, sk+1)(µ

′
w(sk+1))

(b)
=

∑

sk+1∈S

δL(sk+1)σk+1
M(s, sk+1)

∑

L(s0···sk)=w

M(sk+1, sk)

k∏

i=1

M(si, si−1)(µ
′
0(s0))

=
∑

L(s0···sk+1)=wσk+1

M(s, sk+1)

k+1∏

i=1

M(si, si−1)(µ
′
0(s0))

where (b) is achieved by substituting Eq. (9) for µ′
w(sk+1). Thus we have

proved Proposition 1.
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Now for w = σ0σ1 · · ·σk ∈ Σ+, the accepting probability of A is

PA(w) = Tr

(
∑

s∈S

µ′
w(s)

)

=Tr



∑

s∈S

∑

L(s0···sk)=w

M(s, sk)
k∏

i=1

M(si, si−1)(µ
′
0(s0))




=
∑

L(s0···sk)=w

Tr

(
∑

s∈S

M(s, sk)

k∏

i=1

M(si, si−1)(µ
′
0(s0))

)

(c)
=

∑

L(s0···sk)=w

Tr

(
k∏

i=1

M(si, si−1)(µ
′
0(s0))

)

=PM(w)

where (c) holds because
∑

s∈S M(s, tk) is trace-preserving. This completes the

proof of Lemma 4.

Therefore, based on Theorem 2 and Lemma 4, we obtain the following result.

Theorem 3. The trace equivalence problem of SL-hqMC is decidable in poly-

nomial time.

6. Quantitative analysis of linear-time properties

Recall that T ∗ denotes the set of all finite-length sequence over nonempty set

T . We also need another notation Tω that stands for the set of all infinite-length

sequence over T . Let M = (H, S,M, µ0, AP, L) be an SL-hqMC. A path π of

M is an infinite sequence of states s0s1 · · · ∈ Sω where M(si+1, si) 6= 0H for all

i ≥ 0. A finite path π̂ is a finite prefix of a path. The sets of all infinite and

finite paths of M starting in state s are denoted by PathM(s) and PathMfin(s),

respectively.

6.1. Super-operator valued measure

It is a central problem to determine the accumulated super-operator along

certain paths for reasoning about the behavior of an SL-hqMC. For example, if

we can first determine the accumulated super-operator
∏k

i=1M(si, si−1) in Eq.

(8), then it is easy to compute the state ρs̄ for an arbitrarily given initial state µ0.

To this end, the super-operator valued measure (SVM for short) was proposed in

[8], which plays a similar role as probability measure for probabilistic systems.

We recall the definition of SVM and some related facts as follows.
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Definition 9. Let (Ω,Σ) be a measurable space; that is, Ω is a non-empty set

and Σ a σ-algebra over Ω. A function ∆ : Σ → SI(H) is said to be a super-

operator valued measure (SVM for short) if ∆ satisfies the following properties:

1. ∆(Ω) h I;

2. ∆(
⊎

iAi) h
∑

i∆(Ai) for all pairwise disjoint and countable sequence A1,

A2, . . . in Ω.

We call the triple (Ω,Σ,∆) a (super-operator valued) measure space.

Given an SL-hqMC M and a state s ∈ S, for any finite path π̂ = s0 . . . sn ∈

PathMfin(s), we define the super-operator

Q(π̂) =

{
I, if n = 0;

M(sn, sn−1) · · ·M(s1, s0), otherwise.

Next we define the cylinder set Cyl(π̂) ⊆ PathM(s) as

Cyl(π̂) = {π ∈ PathM(s) : π̂ is a prefix of π};

that is, the set of all infinite paths with prefix π̂. Let

SM(s) = {Cyl(π̂) : π̂ ∈ PathMfin(s)} ∪ {∅}.

Qs is a mapping from SM(s) to SI(H), defined by letting Qs(∅) = 0H and

Qs(Cyl(π̂)) = Q(π̂).

Then we have the following result.

Lemma 5 ([8]). The mapping Qs defined above can be extended to a SVM,

denoted by Qs again, on the σ-algebra generated by SM(s). Furthermore, this

extension is unique up to the equivalence relation h.

6.2. Linear-time Properties

A linear-time (LT) property over the atomic proposition set AP is defined

to be a subset P of (2AP )ω. In the remainder of this section, we consider some

special classes of linear-time properties. Safety is one of the most important

kinds of linear-time properties. A safety property specifies that “something bad

never happens”.

Definition 10. An LT property P over AP is called a safety property if for all

words σ ∈ (2AP )ω \ P there exists a finite prefix σ̂ ∈ (2AP )
∗
of σ such that

P ∩ {σ′ ∈ (2AP )ω : σ̂ is a finite prefix of σ′} = ∅.
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Any such finite word σ̂ is called a bad prefix of P . We write BPref(P ) for

the set of bad prefixes of P . Note that BPref(P ) is a language over Σ = 2AP .

A safety property P is called a regular safety property, if its bad prefix set

BPref(P ) is a regular language.

As we know, for each regular language there exists an NFA accepting it. An

NFA is a tuple A = (Q,Σ, δ, Q0, F ) where Q is finite state set, Σ is a finite

alphabet, δ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q denotes a set of

initial states, and F ⊆ Q is called the accepting set. We often write q
a
→ p if

p ∈ δ(q, a) where q, p ∈ Q and a ∈ Σ. A string w = a1a2 · · · an ∈ Σ∗ is said

to be accepted by A, if there exists a finite state sequence q0q1 · · · qn such that

q0 ∈ Q0, qi−1
ai→ qi for 1 ≤ i ≤ n, and qn ∈ F . The language accepted by A,

denoted by L(A), is the set of strings over Σ that are accepted by A.

A DFA is a special NFA A = (Q,Σ, δ, Q0, F ) where |Q0| = 1 and |δ(q, a)| ≤ 1

for all q ∈ Q and a ∈ Σ. Then a DFA is usually denoted by A = (Q,Σ, δ, q0, F )

where q0 is the unique initial state. If it is further required that |δ(q, a)| = 1

for all q ∈ Q and a ∈ Σ, then A is called a total DFA. Note that NFA, DFA

and total DFA accept the same language class, i.e., regular languages. In the

sequel, when mentioning a DFA, we always assume it is total.

Therefore, a safety property can be characterized by a DFA.

6.3. Quantitative analysis of regular safety properties

Given an SL-qhMC M = (H, S,M, µ0, AP, L), a state s ∈ S, and an LT

property P , let

Qs(s |= P ) = Qs{π ∈ PathM(s) : L(π) ∈ P}

where L(π) = L(s0)L(s1) · · · is called the trace of path π = s0s1 · · · . In the fol-

lowing we show how to determine this quantity if P is a regular safety property.

First we note that Qs(s |= P ) +Qs(s 6|= P ) h I where

Qs(s 6|= P ) = Qs{π ∈ PathM(s) : L(π) 6∈ P}

= Qs{π ∈ PathM(s) : pref(L(π)) ∩ L(A) 6= ∅}

where pref(A0A1 · · · ) denotes the set of all finite prefixes of A0A1 · · · ∈ (2AP )ω,

and A is a DFA accepting BPref(P ). In order to get the quantity Qs(s 6|= P ),

we need the concept of product between SL-hqMC and DFA.

Definition 11. Let M = (H, S,M, µ0, AP, L) be an SL-hqMC and A = (Q, 2AP , δ, q0, F )

be a DFA. Then product M⊗A is the SL-hqMC:

M⊗A = (H, S ×Q,M ′, µ′
0, {accept}, L

′)
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where L′(〈s, q〉) = {accept} if q ∈ F and L′(〈s, q〉) = ∅ otherwise, and

µ′
0(〈s, q〉) =

{
µ0(s), if q = δ(q0, L(s));

0, otherwise.

The transition mapping in M⊗A is given by

M ′(〈s′, q′〉, 〈s, q〉) =

{
M(s′, s), if q′ = δ(q, L(s′));

0, otherwise.

For each path π = s0s1s2 · · · in M, there exists a unique sequence of states

q0q1q2 · · · in A for L(π) = L(s0)L(s1)L(s2) · · · such that

q0
L(s0)
−→ q1

L(s1)
−→ q2

L(s2)
−→ · · ·

and

π+ = 〈s0, q1〉〈s1, q2〉〈s2, q3〉 · · ·

is a path in M ⊗ A. Vice versa, every path in M ⊗ A which starts in state

〈s, δ(q0, L(s))〉 arises from the combination of a path in M and a corresponding

state sequence in A. The corresponding relation between the states are depicted

in Fig. 3.

0
s

0
q

0
( )L s

1
s

1
q

1
( )L s

2
s

2
q

2
( )L s

3
q

Figure 3: States in M⊗A.

Note that the DFA A does not affect the accumulated super-operator along

a path. That is, for each measurable set Π ⊆ PathM(s),

QM
s (Π) = QM⊗A

〈s,δ(q0,L(s))〉{π
+ : π ∈ Π︸ ︷︷ ︸

Π+

}

where the superscripts M and M ⊗ A are used to indicate the underlying

systems. In particular, if Π is the set of paths that start in s and refute regular

safety property P , i.e.,

Π = {π ∈ PathM(s) : pref(L(π)) ∩ L(A) 6= ∅}

where A is a DFA accepting BPref(P ), then Π+ is the set of paths in M⊗A

that start in 〈s, δ(q0, L(s))〉 and eventually reach an accept state of A:

Π+ = {π+ ∈ PathM⊗A(〈s, δ(q0, L(s))〉) : L
′(π+) ∈ ♦accept}.

24



Here the linear temporal logic notation “♦accept” is used to denote the LT

property over AP = {accept} consisting of sequence A0A1 · · · ∈ (2AP )ω for

which there exists a finite index i such that Ai = {accept}. This shows that

Qs(s 6|= P ) can be derived from the accumulated super-operator for M ⊗ A

reaching the set B = S × F starting from 〈s, δ(q0, L(s))〉. The latter problem,

known as the reachability problem, can be solved by using Theorem 2.5 in [8].

This is formally stated as follows.

Theorem 4. Let P be a regular safety property, A a DFA for the set of bad

prefixes P , M an SL-hqMC, and s a state of M. Then:

Qs(s |= P ) h I −Qs(s 6|= P )

h I −QM⊗A
〈s,qs〉

(〈s, qs〉 |= ♦accept)

where qs = δ(q0, L(s)).

Remark 4. Note that in the above procedure, we used an assumption that

ǫ 6∈ L(A). Otherwise, the proof would fail. However, this is not a severe

restriction since if ǫ ∈ L(A), then all finite words over 2AP are bad prefixes, and

hence, P = ∅. In this case, Qs(s |= P ) = 0.

6.4. Questions on quantitative analysis of ω-regular properties

In the above, we have taken a quantitative analysis of regular safety proper-

ties. Then it is natural to consider the quantitative analysis of more general LT

properties; for example, how about ω-regular properties? ω-regular properties

are a much larger family of LT properties than regular safety properties, and

they are characterized by Büchi automata.

A nondeterministic Büchi automaton (NBA) is represented by the same

tuple A = (Q,Σ, δ, Q0, F ) as an NFA, but with a different accepting condition.

An infinite string w = a1a2 · · · ∈ Σω is said to be accepted by NBA A, if there

exists a sequence q0q1 · · · ∈ Qω such that q0 ∈ Q0, q0
a1→ q1

a2→ q2 · · · , and qi ∈ F

for infinitely many indexes i ≥ 0. The language accepted by NBA A, denoted

by, Lω(A), is the set of all infinite strings over Σ that are accepted by A. The

class of languages accepted by NBA are called ω-regular languages. An NBA is

called a deterministic Büchi automaton (DBA) if its underlying automaton is a

DFA. Note that DBA can only accept a proper subset of ω-regular languages.

An LT property P over AP is called a ω-regular property, if P is a ω-regular

language over the alphabet Σ = 2AP . If P is a ω-regular property, then its

complement (2AP )ω \ P is also a ω-regular property. Note that the regular
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safety property discussed before is a special case of ω-regular properties. The

reader can refer to [4] for the details about ω-regular properties.

Now we consider the problem of quantitative analysis of ω-regular properties.

Formally, given a state s of SL-hqMC M and a ω-regular property P , how to

determine the following value:

Qs(s |= P ) = Qs{π ∈ PathM(s) : L(π) ∈ P}.

Here we consider a relatively simple case, that is, assume P = Lω(A) for a DBA

A. Then by similar technical treatments as before, we get that

Qs(s |= P ) = QM⊗A
〈s,qs〉

(〈s, qs〉 |= �♦accept)

where qs = δ(q0, L(s)), and “�♦accept” denotes the LT property over AP =

{accept} consisting of sequence A0A1 · · · ∈ (2AP )ω for which there exist infinite

many indexes i such that Ai = {accept}. Intuitively, it means that the product

system M⊗A starts in 〈s, qs〉 and visits the set S × F infinitely often.

At first glance, one many think this quantity can be determined as done

for probabilistic systems [4]. It is, however, not so easy as it looks like. In the

probabilistic case, M is a Markov chain and the SVM measure Qs is replaced by

the probability measure Ps. Then, calculating Ps(s |= P ) is finally reduced to

finding bottom strongly connected components (SCCs that once entered cannot

be left anymore) in the underlying graph (a digraph obtained by erasing the

edge labels from the transition graph) of Markov chain M ⊗ A. The latter

problem depends only on the topological structure and has no relation with the

actual transition probability, and thus can be solved by using graph-theoretical

searching algorithms. However, this method no longer takes effect in quantum

cases, since two states connected in the underlying graph are not necessarily

connected in the corresponding quantum Markov chain. In order to explain this

point more clearly, we have a look at an example below.

In Fig. 4 the two systems have the same underlying graph. It can be seen

that the reachability in MC is consistent with that in its underlying graph. For

example, s3 is reachable from s0 by passing s2 in the underlying graph, and at

the same time s3 can be reached from s0 with probability 1
4 in MC. However,

this consistency no longer holds for hqMC. For instance, s3 is not reachable from

s0 in qMC, since the accumulated super-operator along s0s2s3 is 0. Therefore,

the quantitative analysis of general ω-regular properties for quantum Markov

chains cannot be addressed by using graph-theoretical algorithms. Whether this

problem is solvable or not is currently not clear and needs further exploration.
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Figure 4: Difference between MC(left) and hqMC (right): Both are given by their transition

graphs and the middle is their underlying graph that is obtained by erasing the edge labels.

The underlying space of hqMC is a qubit and E0 and E1 have operation element sets {|0〉〈0|}

and {|1〉〈1|}, respectively.

7. Conclusion

In this paper, we have studied a novel model of quantum Markov chains.

Although this model has the same expressive power as the conventional one,

we have shown that it is very suited to describe hybrid systems that consist

of a quantum component and a classical one. Based on the quantum Markov

chain model, we have further proposed an automaton model called hybrid quan-

tum automata that can be used to describe hybrid systems that receive input

(or actions) from the outer world. The language equivalence problem of hy-

brid quantum automata has been shown to be decidable in polynomial time,

and furthermore we have applied this result to the trace equivalence problem

of quantum Markov chains which is thus also decidable in polynomial time.

Finally, we have discussed model checking linear-time properties of hybrid sys-

tems, showing that the quantitative analysis of regular safety properties can

be addressed successfully as done for stochastic systems, but the problem for

general ω-regular properties is more difficult and needs further exploration.

Hybrid systems modeled by quantum Markov chains have already been often

encountered in quantum information processing, and the quantum engineering

systems developed in the future will most probably be hybrid systems. There-

fore, it is worth developing a theory for describing and verifying these hybrid

systems. We hope this work can stimulate further discussion.
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