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Abstract. We present QPMC (Quantum Program/Protocol Model Checker), an
extension of the probabilistic model checker ISCASMC to automatically verify
quantum programs and quantum protocols. QPMC distinguishes itself from the
previous quantum model checkers proposed in the literature in that it works for
general quantum programs and protocols, not only those using Clifford opera-
tions. A command-line version of QPMC is available at http://iscasmc.
ios.ac.cn/tool/qmc/.

1 Introduction and Motivation

Although commercial quantum computers are still in their infancy, rapid progress has
been made in building reliable and scalable components for quantum computers. In
particular, quantum cryptographic systems are already commercially available by com-
panies such as Id Quantique, Cerberis, MagiQ Technologies, SmartQuantum, and NEC.
The security of quantum cryptographic protocols is mathematically provable, based on
the principles of quantum mechanics, without imposing any restrictions on the com-
putational capacity of an attacker. In practice, however, security analysis of quantum
cryptographic protocols is notoriously difficult; for example, the manual proof of BB84
in [15] contains about 50 pages. It is hard to imagine such an analysis being carried
out for more sophisticated quantum protocols. Thus, techniques for automated or semi-
automated verification of these protocols will be indispensable.

In the last decade, researchers started to explore the possibility of applying model
checking, one of the dominant techniques for verification which has a large number of
successful industrial applications, to the verification of quantum programs as well as
quantum protocols. The main obstacle is that the set of all quantum states, traditionally
regarded as the underlying state space of the model to be checked, is a continuum.
Hence, the techniques of classical model checking, which normally work only for a
finite state space, cannot be applied directly. Gay et al. [10] provided a solution to
this problem by restricting the state space to a set of finitely describable states called
stabiliser states, and restricting the quantum operations applied on them to the class of
Clifford group. By doing this, they were able to obtain an efficient model checker [11]
for quantum protocols, employing purely classical algorithms.

There is one limitation of the approach by Gay et al.: since only quantum proto-
cols expressible in stabiliser formalism are considered, so that the state space can be
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encoded in a classical way, their model checker does not work for general protocols. To
deal with this problem, one of the authors of the current paper and his colleagues pro-
posed a novel notion of super-operator weighted Markov chain in which the state space
is taken classical (and usually can be finite), while all quantum effects are encoded in
the super-operators labelling the transitions [9]. This model is especially suited for veri-
fication of classical properties for which only the measurement outcomes as well as the
probabilities of obtaining them are relevant, and the quantum effects caused by superpo-
sition, entanglement, etc., are merely employed to increase the efficiency or security of
the protocol. Typical examples include super-dense coding [6], quantum coin-flipping
protocol [4], and quantum key distribution protocols [3, 4].

The distinct advantage of super-operator weighted Markov chains, for model check-
ing purpose, is twofold: (1) It provides a way to check once for all in that once a property
is verified, it holds for all input quantum states. This is especially important for the ver-
ification of quantum programs. For example, for the reachability problem we calculate
the accumulated super-operator, say E , along all valid paths. As a result, the reachabil-
ity probability when the program is executed on the input quantum state ρ is simply the
trace tr(E(ρ)) of E(ρ); (2) As the state space is usually finite, techniques from classical
model checking can be adapted to verification of quantum systems.

The contribution of this paper is the development of a software tool that imple-
ments the techniques and algorithms proposed in [9]. The implementation is based on
ISCASMC [12], a web-based model checker for probabilistic systems.

Other related works. Besides the model checker proposed by Gay et al. [11], recently
Ardeshir-Larijani et al. developed equivalence checkers for deterministic quantum pro-
tocols [1] as well as concurrent quantum protocols that behave functionally [2]. As
for [11], these tools work only within the stabiliser formalism, and the generalisation to
general quantum protocols seems difficult.

2 The QMC Model and the Logic QCTL

In this section, we recall the notion of quantum Markov chains that serves as the se-
mantic model of quantum programs and protocols. We assume the readers are familiar
with the basic notions of quantum information theory [9, 16].

Let S(H) be the set of super-operators over a Hilbert space H. Here a super-
operator is a completely positive linear operator from L(H) to itself, where L(H) is
the set of linear operators onH. In particular, we denote by IH and 0H the identity and
null super-operators in S(H), respectively. For any E ,F ∈ S(H), let E . F if for any
quantum state ρ in H, tr(E(ρ)) ≤ tr(F(ρ)). Note that the trace tr of a (unnormalised)
quantum state denotes the probability that the (normalised) state is reached [17]. Intu-
itively, E . F means that the success probability of performing E is always not greater
than that of performing F , whatever the initial state is. Let h be . ∩ &.

We denote by SI(H) the set of trace-nonincreasing super-operators over H; that
is, SI(H) = { E ∈ S(H) | 0H . E . IH }. Observe that E ∈ SI(H) if and only
if for any quantum state ρ, tr(E(ρ)) ∈ [0, 1]. It is natural to regard the set SI(H) as
the quantum correspondence of [0, 1], the domain of traditional probabilities. This is
exactly the key to the notion of quantum Markov chains defined in [9].
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Definition 1 (Quantum Markov Chain [9]). A super-operator weighted Markov chain,
also referred to as quantum Markov chain (QMC) for simplicity, over a Hilbert space
H is a tuple (S,Q, AP, L), where

(1) S is a countable (typically finite) set of classical states;
(2) Q : S × S → SI(H) is called the transition matrix where for each s ∈ S, the

super-operator
∑
t∈SQ(s, t) is trace-preserving;

(3) AP is a finite set of atomic propositions; and
(4) L : S → 2AP is a labelling function.

From the above definition, a QMC is simply a discrete time Markov chain (DTMC)
with all traditional probabilities replaced by quantum probabilities from SI(H). The
properties are expressed using the quantum computation tree logic (QCTL) proposed
in [9], which is a natural extension of PCTL. The syntax of QCTL is as follows:

Φ ::= a | ¬Φ | Φ ∧ Φ | Q∼E [φ]
φ ::= XΦ | ΦU≤k Φ | ΦU Φ

where a ∈ AP is an atomic proposition, ∼ ∈ {.,&,h}, E ∈ SI(H), and k ∈ N.
We call Φ a state formula and φ a path formula. We use the following abbreviations:
Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2), tt ≡ a ∨ ¬a, FΦ ≡ ttU Φ, and F≤kΦ ≡ ttU≤k Φ.

Note the essential difference between QCTL and the traditional PCTL:

– in PCTL we have the probabilistic operator formula P∼p[φ] with ∼ ∈ {≤,≥},
which asserts that the probability of paths from a certain state satisfying the path
formula φ is constrained by ∼ p where 0 ≤ p ≤ 1,

– in QCTL, P∼p[φ] is replaced by Q∼E [φ], which asserts that the accumulated super-
operators corresponding to paths from a certain state satisfying the formula φ is
constrained by ∼ E where 0H . E . IH.

Note that P∼p[φ] is a special case of Q∼E [φ] by taking E = pIH.

Example 1. A simple quantum loop program goes as follows:

l0 : q := A(q)
l1 : whileM [q] do

l2 : q := G(q)
l3 : end

where for E0 = |0〉〈0| + 1√
2
|1〉〈1| and E1 = 1√

2
|0〉〈1|, A = {E0, E1} is the 1

2 -
amplitude damping channel, M = λ0|0〉〈0| + λ1|1〉〈1|, and G is the Hadamard super-
operator. In this program, we first applyA on the quantum system q for the initialisation.
At line l1, the two-outcome projective measurement M is applied. If the outcome λ0
is observed, then the program terminates at line l3; otherwise it proceeds to l2 where
the super-operator G is performed, and then the program returns to line l1 and another
iteration continues.
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The QMC for this program, depicted on the right, is con-
structed as follows. Let S = AP = { li | 0 ≤ i ≤ 3 },
L(li) = {li} for each i, and Q be defined as Q(l0, l1) = A,
Q(l1, l3) = E0 = {|0〉〈0|}, Q(l1, l2) = E1 = {|1〉〈1|},
Q(l2, l1) = G, and Q(l3, l3) = I.

The QCTL formula Q&E [F l3] asserts the probability that
the loop program terminates is lower bounded by E , that is,
for any initial quantum state ρ, the termination probability is not less than tr(E(ρ)).
In particular, the property that it always terminates for any input can be described as
Q&I [F l3].

3 The Tool QPMC

The QPMC model checker is the extension to QMCs of the web-based model checker
ISCASMC [12]. In order to support quantum operations, ISCASMC has been enriched
with the data structures for matrices and super-operators as well as the algorithms to
manipulate them. Correspondingly, we have extended the PRISM [14] language used
for modelling classical MCs with new keywords and operations specific for QMCs.

Implementation Aspect. ISCASMC is written in Java with a few optional parts (which
are not used for QMCs) being written in C. While the syntax of models is very close to
the one of PRISM, the code of ISCASMC is not based on the former.

The integration of QMCs into ISCASMC has been possible because the underlying
algorithms integrated into our model checker work with generic values rather than, for
instance, being restricted to computations with IEEE 754 double values. Thus, by defin-
ing the way of how mathematical operations are to be performed on super-operators,
how they can be compared and how they can be displayed to the user, we are able
to use algorithms already implemented in ISCASMC. Thus, we can for instance use
a variant of the well-known value iteration algorithms. Because QMCs do not behave
exactly as DTMCs, some care has to be taken. Multiplication of super-operators is not
commutative which needs to be taken into account in the value iteration. Also, the pre-
computation of states which reach target states with probability 1 has to be adapted.

Complex numbers, matrices and super-operators are stored using IEEE 754 doubles
and manipulated using standard operations. QPMC could be extended to instead use
representations of numbers with higher or infinite precision (using symbolic represen-
tations) e.g. for stiff models. Doing so would not affect the rest of the implementation.

ISCASMC is split into several packages, to allow a clear separation between, for
instance, the user interface, operations on mathematical objects, syntax trees of models
and properties, etc. This way, extensions of one part are possible without interfering
with the other modules. This allows for instance to quickly integrate additional opera-
tions on super-operators if they turn out to be useful for end users.

QPMC is available at http://iscasmc.ios.ac.cn/tool/qmc/ where it
is possible to download the latest stable version, together with a brief summary on the
required dependencies and on the usage.
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qmc // model type

c o n s t v e c t o r | p> 2 = (|0> 2 + |1> 2 ) / s q r t ( 2 ) ;
c o n s t matrix E0 = |0> 2 <0| 2 + |1> 2 <1| 2 / s q r t ( 2 ) ;
c o n s t matrix E1 = |0> 2 <1| 2 / s q r t ( 2 ) ;
c o n s t superoperator ( 2 ) ampdamp = << E0 , E1 >>;

module l oop
s : [ 0 . . 3 ] i n i t 0 ;
[ ] ( s =0) −> ampdamp : ( s ’ = 1 ) ;
[ ] ( s =1) −><< M1 >> : ( s ’ = 2 ) + << M0 >> : ( s ’ = 3 ) ;
[ ] ( s =2) −><< HD >> : ( s ’ = 1 ) ;
[ ] ( s =3) −> ( s ’ = 3 ) ;

endmodule

Fig. 1. Source code for the QMC in Example 1

Modeling Language. We extend the well-known PRISM [14] guarded-command
based language to model QMCs. Fig. 1 depicts the source code in our language that
describes the quantum loop program in Example 1:

– The keyword qmc specifies the model type.
– In addition to the constants definable in PRISM, one can specify constants of types

vector, matrix, and superoperator. Notably, QPMC supports the use of bra-ket
notation which is standard for describing quantum states in quantum mechanics.
Specifically, |v>_n denotes a vector in Hn, the n-dimensional Hilbert space. To
ease notations, we have predefined the computational basis |0>_n, . . . , |n-1>_n
forHn; that is, for each 0 ≤ i < n,

|i>_n = (0, · · · , 0, 1, 0, · · · , 0)T

where 1 appears at the (i + 1)-th entry. These vectors can be used for free. The
operations such as inner product, outer product, and tensor product over bra-ket
vectors are denoted in the normal way. For example, <0|1>_2 stands for 〈0|1〉,
|0>_2 <1|_2 for |0〉〈1| in H2, and |0>_2 |1>_2 means |01〉 = |0〉 ⊗ |1〉 in
H2 ⊗ H2. We use Kraus operators collected in a pair of double angle brackets to
represent a super-operator. For example, the following statement

const superoperator ( 2 ) ampdamp = << E0 , E1 >>;

defines a super-operator named ampdamp in the Hilbert space H2 with the Kraus
operators {E0, E1}. For convenience of the users, we predefined some useful ma-
trices listed below:
• the n-dimensional identity matrix ID(n) = diag(1, . . . , 1);

• the Pauli matrices PX =
(
0 1
1 0

)
, PY =

(
0 −i
i 0

)
, PZ =

(
1 0
0 −1

)
, the Hadamard

matrix HD = 1√
2

(
1 1
1 −1

)
, and the phase-shift matrix PS(θ) =

(
1 0
0 eiθ

)
. We

also predefined the measurement operators with respect to the computational

basis inH2: M0 =

(
1 0
0 0

)
and M1 =

(
0 0
0 1

)
;
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• the control-not matrix CN = ID(2) ⊕ PX, and the swap matrix SW = ID(1) ⊕
PX ⊕ ID(1),

• the Toffoli matrix TF = ID(4) ⊕ CN, and the Fredkin matrix FK = ID(4) ⊕
SW.

– The main behavior of the QMC is described in the module environment. It has a
state variable s, and several guarded commands representing the system transitions.
As in PRISM, each guarded command has a precondition, and a sum of updates.
The only difference is that each update is associated with a super-operator instead
of a probability. We always omit the identity super-operators along the updates.

Properties. To help reasoning, besides the logical operators presented in QCTL, we
also support an extended operator Q=?[φ], where φ is a path formula, to calculate (the
matrix representation1 of) the super-operator of satisfying φ. We further provide a func-
tion qeval(Q=?[φ], ρ) to compute the density operator obtained from applying the re-
sultant super-operator on a given density operator ρ, and

qprob(Q=?[φ], ρ) = tr(qeval(Q=?[φ], ρ))

to calculate the probability of satisfying φ, starting from the quantum state ρ.

Quantum loop program. For the quantum program in Example 1, we check the follow-
ing properties

Q>=1 [ F ( s=3) ]
qeval (Q=?[F ( s=3) ] , | p> 2 <p | 2 )
qeval (Q=?[F ( s=3) ] , ID ( 2 ) / 2 )

where the first one checks if l0 |= Q&I [F l3] and the last two show the output states

when the inputs of the program are the pure state |+〉〈+| where |+〉 = |0〉+|1〉√
2

and the
maximally mixed state I/2, respectively. QPMC returns true for the first property and(
1 0
0 0

)
for the last two, as expected.

It is worth noting that the termination properties we checked here cannot be verified
by the previous tools in [1, 2, 11] for the following two reasons: (1) the loop program
employs an amplitude damping operation which does not belong to the Clifford group;
(2) the program is an open system which takes an arbitrary quantum state as its input,
and we are checking the termination for any input state.

Superdense coding protocol. Another protocol we analysed is the superdense coding
protocol [6] that permits to use a single qubit to faithfully transmit two classical bits,
under the hypothesis that a maximally entangled state is already shared between the

1 The matrix representation of a super-operator {Ei | i ∈ I } in an n-dimensional Hilbert space
H is an n2 by n2 matrix

∑
i∈I Ei ⊗ E∗i , where the complex conjugate is taken according to

some orthonormal basis ofH. See [9] for more details.



QPMC: A Model Checker for Quantum Programs and Protocols 7

sender and the receiver. As for the quantum loop example, QPMC establishes the cor-
rectness of the protocol by returning true for the property Q>=1 [ F (succ) ] . That is,
the success state, where the original message has been transmitted from Alice to Bob
faithfully, will be reached for sure.

Quantum key distribution protocol. The third protocol we considered is the quantum
key distribution protocol [4] that allows Alice and Bob to create and share a private key
between them, in a provably secure way, without interacting with a trusted third party
for the exchange. For simplicity, we only consider the basic version of BB84 where
the channels used are perfect, and no eavesdropper exists. Then the correctness of the
protocol can be described by the properties Q<=0 [F (fail ) ] and Q=0.5 [F (succ)], mean-
ing that BB84 never fails (i.e., it always generates identical keys between Alice and
Bob), and with probability exactly 0.5 (the best success probability one can achieve), it
successfully terminates at a shared key. QPMC returns true for both the properties.

Performance of the tool. Each experiment has been performed on a MacBook Pro with
a 2.9 GHz Intel Core i7 processor with 8 GB 1600 MHz DDR3 RAM, taking an overall
time of less than 1 second per model.

4 Conclusion and Future Work

Based on the theoretical work in [9], we have presented QPMC, a model checker aim-
ing at verification of quantum programs and quantum protocols. Compared with the
existing model checkers for the same purpose in the literature, our tool is able to verify
more general programs and protocols which are beyond the stabiliser formalism.

For further studies, we are going to use qCCS, a quantum extension of CCS devel-
oped by one of the authors and his colleagues [7,8,19], as our modelling language. This
will make the protocol description more intuitive and more readable. We also plan to
consider analysis of LTL properties. Classical decision algorithms check acceptance of
bottom strongly connected components and then compute reachability probabilities for
transient states. We would like to see how this technique can be extended to QMCs.
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