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Abstract

Variations of target appearances due to illumination

changes, heavy occlusions and abrupt motions are the ma-

jor factors for tracking failures. In this paper, we show that

these failures can be effectively handled by exploiting the

trajectory consistency between the current tracker and it-

s historical trained snapshots. Here, we propose a Scale-

adaptive Multi-Expert (SME) tracker, which combines the

current tracker and its historical trained snapshots to con-

struct a multi-expert ensemble. The best expert in the en-

semble is then selected according to the accumulated tra-

jectory consistency criteria. The base tracker estimates the

translation accurately with regression based correlation fil-

ter, and an effective scale adaptive scheme is introduced to

handle scale changes on-the-fly. SME is extensively evalu-

ated on the 51 sequences tracking benchmark and VOT2015

dataset. The experimental results demonstrate the excellent

performance of the proposed approach against state-of-the-

art methods with real-time speed.

1. Introduction

Visual tracking is one of the fundamental problems a-

mong numerous research topics in computer vision. A com-

mon tracking scenario is to track the unknown object given

only the initial bounding box of the target. This problem

is a challenging task due to target deformations, illumina-

tion variations, abrupt motions, partial occlusions and back-

ground clutters.

To handle tracking failures caused by the above men-

tioned factors, a commonly used strategy is to design an

online model that evolves forward to adapt to the target ap-

pearance changes. The main drawback of this method is

that online models tend to drift with the time passing by.

The drift happens even more easily due to large appear-

ance changes of the object, abrupt motions and heavy oc-

clusions. To tackle the model drift problem, many meth-
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Figure 1: Four typical sequences (Coke, Lemming, Tiger1,

Shaking) show the importance of exploiting the historical

tracker snapshots. The cyan bounding box is the tracking re-

sult of our base tracker, while the yellow box is the selected

tracker historical snapshot by the multi-expert framework.

The tracker snapshots are stored at the pre-defined inter-

val, and the corresponding response maps are illustrated at

the bottom-right of the image (listed in chronological order

from left to right). The color brightness of the response map

indicates the confidence degree of the tracker snapshot. The

number at the top-left corner is the frame count.

ods propose to use tracker ensembles which are composed

of more than one base trackers to determine the target po-

sition [17, 18, 25, 15, 24]. One strategy is to establish a

tracker pool and choose the most appropriate tracker each

frame to make the best decision [17, 18, 25]. Others use

multiple experts working parallel to better discriminate the

target from the background [15, 24]. One of the represen-

tative work is that in [29], Zhang et al. propose to use the

multi-expert restoration scheme to address the model drift

problem, where an entropy based loss function is defined to



determine whether the current tracker is reliable and should

be restored to the historical tracker. The proposed tracking

framework adopts online SVM as the base tracker, which

shows very robust performance. The work by Zhang in-

dicates that, to some extent, the historical trained tracker-

s, also called tracker snapshots, can be used to prevent the

model drift.

The key motivation of our method is the observation that

tracking failures can be effectively handled by exploiting

the historical tracker snapshots. As shown in Fig. 1, dur-

ing the tracking process, the object goes through significan-

t appearance variation, occlusion and illumination change.

Therefore, the current tracker tends to drift (the response

map is framed by the cyan box). However, it is observed

that the target location can be accurately estimated by most

of the historical tracker snapshots. For example, in se-

quence Coke, after the object having been occluded by the

leaves, the current tracker is distracted by the background,

but its three past snapshots are all able to identify the true

target. The same phenomenon is shown in sequence Lem-

ming and Tiger1. In addition, as illustrated in sequence

Shaking, we will show that by designing the appropriate s-

napshot selection criteria, the early period tracking failure

can also be avoid.

The above phenomenon gives the main insight of our

work. During the tracking process, single tracker is easy to

overfit when there is target partial occlusion, abrupt motion,

background clutter and other factors lead to object appear-

ance variation. However, the above moments are relative-

ly short during the whole tracking process. On the other

hand, the diversity of target appearance is usually limited,

and cannot be varying significantly all the time without re-

store to is past appearance. Therefore, sometimes the past

tracker snapshot is capable to recognize the object better

than the current tracker. Particularly, the past snapshot can

re-identify the target after its occlusion and abrupt motion,

which is naturally to rescue the tracking failure. As a result,

in this paper, we exploit the historical tracker snapshots and

show that tracking performance can be effectively promoted

by exploiting the relationship between them.

The main contribution is that we propose a trajecto-

ry consistency based Scale-adaptive Multi-Expert (SME)

tracking framework. The multi-expert ensemble is consti-

tuted by the current tracker and its past trained snapshots.

Moreover, we adopt the regression model based correlation

filter as the base tracker, which is used to learn the temporal

context correlation of the target. Benefit from the Discrete

Fourier Transform, correlation filter learns all the circular

shift of the extended image patches containing the target,

while maintains low computation load. On the widely used

51 sequences benchmark [27], SME gives significant im-

provement against other state-of-the-art methods. The pro-

posed tracker is further tested on the new VOT2015 dataset,

which also shows its excellent performance.

2. Related Work

Visual tracking has been extensively studied [20, 28].

Recent public available benchmark and evaluation have also

accelerated the development of this field [27, 23, 16].

The tracking-by-detection method plays a key role a-

mong numerous recent tracking methods. Under this frame-

work, a discriminative classifier is trained to classify the

foreground and background features [1, 2, 3, 30, 10]. For in-

stance, Avidan [1] integrates the SVM classifier into the op-

tical flow to establish the online target discriminative mod-

el. Babenko et al. [3] introduce multiple instance learning

to collect positive and negative samples into bags to avoid

model drift. In [30], random projection is used to reduce

feature dimension which achieves real-time tracking. Par-

ticularly, Hare et al. [10] use structured output SVM and

trains samples with structured labels, which shows excel-

lent performance in the benchmark [27].

Recently, correlation filter based tracking methods have

attracted great attention due to its high efficiency [4, 11, 12,

7, 6, 22]. Since Bolme et al. [4] propose a minimum out-

put sum of squared error filter for tracking, correlation filter

began to re-attract attention as a commonly used method

in signal processing. After that, Henriques et al. [11] pro-

pose to use circular image patches as dense samples to train

the correlation filter in kernel space with low computation

load. The above methods are based on gray-level feature.

The work is further extended to HOG feature in the KCF

tracking algorithm [12]. In [7], color attributes are added to

the framework of [11], and an adaptive dimension reduction

technique is proposed, which demonstrates the importance

of color feature in visual tracking. Other extended work,

such as in [6, 21, 13, 22], the scale variation, long term

tracking, even long short term memory scheme are added

to the correlation filter tracker. In [6], the accurate scale

estimation is obtained by treating translation and scale cor-

relation separately, and a one-dimensional scale correlation

filter is used to measure scale change.

Some tracking algorithms adopt tracker ensemble to

achieve more robust tracking performance. For example, K-

won [17] decomposes traditional Bayesian recursive frame-

work into basic models, and uses the MCMC sampling to

integrate them. In [18], the proposed method not only sam-

ples the target state space but also the tracker space to han-

dle challenging tracking scenes. Kalal et al. [15] address

the long term tracking problem by designing two comple-

mentary experts, one estimates missed detections and the

other estimates false alarm, apart from this, a re-detection

scheme is designed to achieve long term tracking. In [25],

a sparsity-based collaboration of discriminative and gener-

ative modules are proposed. Hong et al. [14] adopt the hi-

erarchical appearance model to track object through multi-



level. In MEEM tracker [29], multiple experts are used to

handle the model drift problem, which shows high tracking

efficiency.

Our work is most close to MEEM [29], but with signif-

icant differences summarized as follows. Firstly, in [29],

the online SVM method is adopted as the base tracker, and

the grid searching method is used to sample image patch-

es. Our method introduces the ridge regression model to

learn the temporal context correlation of the object rather

than the binary classifier (online SVM). Secondly, in [29],

multiple experts are regarded independently, and the en-

tropy based loss function is defined on the single expert.

Furthermore, since our base tracker of correlation filter us-

es the regression model with dense sampling scheme, the

response map shows much less ambiguity than the binary

classifier. Therefore, only the entropy based loss function

will not work in our method. As a result, in this paper,

we further pay more attention to the collaborative efforts

of multi-expert rather than the single one, and propose the

trajectory consistency based multi-expert selection criteri-

a. Finally, we additionally take target scale variation into

consideration which [29] cannot deal with.

3. The proposed tracker

In this section, we first introduce the multi-expert ensem-

ble framework and the expert selection criteria, and then

presents the base tracker of scale adaptive correlation filter.

3.1. MultiExpert Selection

Given a base tracker which updates every frame, let Tt
denotes the tracker snapshot (expert) trained up to time t
(In the following, we do not differentiate tracker snapshot

from expert). Until time T , we have an expert ensemble

E := {Tt1 , Tt2 , ..., TT }, where TT represents the tracker at

the current time. At each time step, a score is calculated and

assigned to each expert in the ensemble, the best expert is

determined by its accumulative score within a pre-defined

temporal window:

T ∗ = argmax
T ∈E

∑

t∈[T−∆,T ]

StT , (1)

where StT is the score of expert T at time t, and ∆ is the

temporal window size.

It is very important to define the expert score. Trajectory

analysis is an effective method used in tracking. Kalal [15]

proposes to use the forward-backward trajectory consisten-

cy of the optical flow to determine the robustness of the

tracker. In [19], multiple trajectories obtained by differen-

t features are used and the best tracker is selected by their

reliability, which achieves very good performance. Inspired

by these work, we define the trajectory consistency score of

the expert. Let −→x T (t) denotes the position of the bounding

box center determined by expert T at time step t, then the

trajectory from time t1 to t2 is be denoted by:

−→
XT (t1 : t2) = {

−→x T (t1),
−→x T (t1 + 1), ...,−→x T (t2)}. (2)

We measure the consistency of trajectories according to

their position similarity. Given two trajectories determined

by expert T1 and expert T2, their position similarity at time

t is defined as:

CtT1:T2
= exp(−

‖−→x T1
(t)−−→x T2

(t)‖2

σ2
). (3)

Assuming there are n experts, then the trajectory consisten-

cy score of expert T at time t is the mean of its position

similarity relative to all the other experts:

Ct
T =

1

n− 1

∑

(Ti∈E)
⋂
(Ti 6=T )

CtT :Ti
. (4)

The above score definition favors the expert whose trajecto-

ry is more consistent with the other experts. In actual track-

ing scenario, the expert tends to be ambiguous due to suc-

cessive target appearance variations, especially when there

is background clutter, heavy occlusion and abrupt motion.

To further enhance the expert selection criteria, we add the

entropy based regularization term in the score as the pri-

or [9, 29], so as to give penalty to the tracker ambiguity.

For convenience, we omit the superscript of time t in the

following equations. Taken the entropy prior into consid-

eration, the whole score represents the log posterior of the

expert is denoted by:

ST = LT − ηHT (Y |X,Z), (5)

where LT is the natural logarithm of the trajectory consis-

tency score denoted in Eq. 4, which can be regarded as the

log likelihood, the scalar η is the regularization coefficient

to control the tradeoff between the two terms, and the en-

tropy regularization is computed by:

HT (Y |X,Z) = −
∑

Y ∈Z

P (Y |X; θT ) logPT (Y |X; θT ).

(6)

In the above equation, X is the possible target candidates

proposed by the expert ensemble E, and Z represents the

possible label set containing the true label Y of X .

To be more specific, at each time step, the expert ensem-

ble E proposes a target candidates set X = {x1, x2, ..., xn},
each xi is an image patch sampled within the search win-

dow, which is labelled by li, where li ∈ {1,−1} denotes

the foreground and background label. The candidates are s-

parsely distributed and do not heavily overlap with each oth-

er, so it is assumed one of the samples in X is the true target.

Therefore, the ground truth Y is included in a small possible



label set Z = {Y 1, Y 2, ..., Y n}, where Y j = (lj1, l
j
2, ..., l

j
n),

and lji is the positive label only when i = j, meaning that

only one sample in X is the true target. Since the target

candidates do not substantially overlap with each other, we

assume the decision of the expert to them are independent.

Therefore, in Eq. 6, the probability in the entropy is calcu-

lated by:

P (Y |X; θT ) =
∏

i

P (li|xi; θT ). (7)

The entropy regularization term describes the degree of

ambiguity of the tracker for the target candidate set. By

adding the entropy prior, the score favors the expert with

less ambiguity with respect to the possible label set Z. We

state that the trajectory consistency plays the main role in

the whole score ST , and the entropy is the sufficient com-

plement to it.

3.2. Correlation Tracking

Recently, correlation filter based trackers have draw

much attention due to its high efficiency and robustness.

And correlation trackers have show their outstanding per-

formance in public evaluation dataset and benchmark [16,

27]. For the accuracy and low computational cost pur-

pose, we train the correlation filter as the base tracker in

our framework. We use the ridge regression model to learn

the correlation of the temporal target context [12, 11]. In ad-

dition, by taking all the circular shift of image patches into

consideration, the model produces less ambiguous response

map than the binary classifier, which is more suitable to our

tracking framework.

Correlation filter tracker models the appearance of the

target on an extended M ×N image patch x which is cen-

tered by the target position. The goal is to find a classifier

f(x) = 〈w, φ(x)〉 to make prediction for the probability of

image patch. Instead of sampling image patch with step, the

classifier is trained with all the circular shift of xi, where

i ∈ {0, ...,M − 1} × {0, ..., N − 1}. Each training ex-

ample xi is assigned a training label generated by Gaussian

function yi. The training goal is to minimize the regression

error:

min
w

∑

i

(〈w, φ(xi)〉 − yi)
2 + λ‖w‖2, (8)

where φ is the mapping to the kernel space, and λ is the

regularization parameter that controls overfitting. With k-

ernel trick, w can be denoted by a linear combination of

the training samples: w =
∑

i αiφ(xi), where α is the

dual space coefficients of w. Given the kernel defined

by κ(x, x′) = 〈φ(x), φ(x′)〉, the classifier is derived by

f(x) =
∑

i αiκ(xi, x). Then the optimization problem is

transformed under α instead of w. Let the hat symbol “ˆ”

denotes the Discrete Fourier Transform (DFT). According

to [12], for a unitarily invariant kernel, α is derived as:

α̂ =
ŷ

k̂xx + λ
, (9)

where k̂xx is the so-called kernel correlation whose i-th ele-

ment is κ(xi, x). The kernel correlation can also be com-

puted efficiently in the Fourier domain. Particularly, for

the Gaussian kernel, when the input patch x has multiple

channels, which is concatenated by individual vectors of C
channels, i.e. x = [x1, ..., xC ], the kernel correlation can be

computed by:

kxx′ = exp(−
1

σ2
(‖x‖2 + ‖x′‖2 − 2F−1(

∑

c

x̂
∗
c ⊙ x̂

′
c))),

(10)

where F−1 is the Inverse DFT (IDFT), and ⊙ denotes the

element-wise product.

After the above training procedure, the detection task is

carried out on an image patch z in the new frame within the

M×N window, which is centered at the last target position.

The response map can be evaluated by:

f(z) = F−1(k̂xz ⊙ α̂). (11)

Therefore, the new position of the target is determined by

the maximum of f(z). To move discontinuities at the image

boundaries of the response map, the input feature channel-

s are weighted by a cosine window [4]. To adapt to the

appearance change of the target, the linear interpolation s-

trategy is conducted on α and x:

α̂
t = (1− γ)α̂t−1 + γα̂, (12)

x̂
t = (1− γ)x̂t−1 + γx̂, (13)

where γ is the learning rate.

In our tracker, we employ the PCA-HOG feature de-

scribed in [12]. Besides the HOG feature which puts more

emphasis on the object shape, we further add the color fea-

ture to promote the tracker performance. Here we apply

color attribute feature to map the RGB values to the proba-

bilistic 11 dimensional color representation [26, 7].

In order to deal with the scale variation of the target, we

adopt a scale adaptive method to our tracker. Unlike [6, 22],

our method estimates the translation and target scale simul-

taneously. Let Mt × Nt denotes the search window size at

time t, we first establish a target pyramid through cropping

image patches, all of which are centered at the target posi-

tion of time t − 1, each of size (1 + as)Mt × (1 + as)Nt,

where a is a constant scalar of the scale factor, and s ∈
{⌊−Ns−1

2 ⌋, ⌊−Ns−3
2 ⌋, ..., ⌊Ns−1

2 ⌋} is the scale index. Then

all the Ns image patches are resized to the target template

size. After that, the response map of each cropped image

patch can be evaluated according to Eq. 11, all of which



constitute the response pyramid. Finally, the accurate scale

index is indicated by the maximum of the response pyra-

mid, as well as the translation (which should multiply by its

ratio relative to the template size).

3.3. Scaleadaptive MultiExpert (SME) Tracker

Given the above expert selection criteria and the base

tracker of correlation filter, we propose our tracker, named

Scale-adaptive Multi-Expert (SME).

The snapshots in the expert ensemble are stored chrono-

logically at intervals of Ω frames. When the number of ex-

perts exceeds the maximum number NE, the oldest expert is

discarded. At each frame, each expert in the ensemble get-

s its own decision of the target position by calculating the

maximum value of the correlation filter response map. In

addition, the expert ensemble proposes the potential target

candidates X . After that, expert scores are calculated each

frame by Eq. 5. Whenever there is a disagreement among

the experts, the best expert is selected according to their

accumulative score define by Eq. 1, and displaces the cur-

rent expert to be the current tracker. Otherwise, the target is

tracked by the current expert TT . Note that only expert TT
is updated, so the whole algorithm has low computation.

At the same time, target scale is estimated according to

the method described in Section 3.2. Generally, scale vari-

ation is much smaller than that of translation. For compu-

tation efficiency, the scale estimation is only conducted on

the current expert TT . We find this strategy very effective in

practice.

4. Implementation

The whole algorithm procedures of our SME tracker is

shown in the following Algorithm flowchart. Some imple-

mentation details are discussed below.

The target position used for calculating the trajectory

consistency score is given by the global maxima of the re-

sponse map of each expert. The target positions decided

by each expert are then processed by hierarchical clustering

according to their spatial distribution. If the clustering re-

sult has more than one class, a disagreement is reported. In

order to obtain the target candidate set X , we first get all

the samples proposed by every expert whose response val-

ues are greater than the pre-defined threshold ε. And then

merge the samples at their mean position if their distance is

smaller than δ to avoid heavily overlap. The sample prob-

ability P (+1|xi; θT ) in Eq. 7 is naturally obtained by the

response map of the base tracker, and P (−1|xi; θT ) is got

by 1− P (+1|xi; θT ).
The parameters setup are as follows. The max number

of experts NE is set to 4. The window size ∆ and frame

interval Ω are set to 4 and 50 respectively. Let the template

target size denoted by l. We set the cutoff distance of the hi-

erarchical clustering and merge threshold δ equally by l/2.

The parameter σ of trajectory consistency score in Eq. 3 is

l/3, which is set according to the 3-sigma rule of Gaussian

distribution. Note that all the response maps of the expert

ensemble (including each layer of response pyramid gener-

ated by the current expert) are of the same template size.

Therefore the above parameters are not influenced by target

size. The tradeoff parameter in Eq. 5 is η = 15, and the

candidate selection threshold ε = 0.8.

For the base tracker, we adopt the Gaussian kernel

κ(x, x′) = exp(−‖x−x′‖2

σ2 ), and its kernel width is set to

0.5. The regularization parameter λ in Eq. 8 is set to 10−4.

The padding size and learning rate γ are set to 1.8 and 0.01
respectively. The number of target pyramid layers Ns is 9,

and the scale factor a is 0.005. The template size is set to

the initial target size.

Algorithm 1: SME Tracker

input : Initial target bounding box x1
output: The estimated target state xt = (x̂t, ŷt, ŝt)

E← T1
repeat

Get the target candidate set X by E;

for T ∈ E do

if T = Tt then

Build the target pyramid at (x̂t−1, ŷt−1);
Get the response pyramid, estimate the

target position (xTt
.yTt

) and scale ŝt;

else
Get the response map and estimate the

target position (xT , yT );

Compute the expert score StT ;

if expert disagreement is reported then

Select T ∗ ∈ E according to Eq. 1;

xt = (xT ∗

t
, yT ∗

t
, ŝt);

Tt ← T
∗;

else

xt = (xTt
, yTt

, ŝt);

if mod (t,Ω) == 0 then

E← E ∪ Tt;
discard the oldest snapshot when |E| > NE;

Update Tt;
until Last frame of video sequences;

5. Experiments

In this section, we evaluate our SME tracker on two

large dataset, one is the 51 sequences Visual Tracker Bench-

mark [27], the other is the 60 sequences VOT2015 Chal-

lenge dataset. On the former dataset, we compare the pro-

posed tracker with state-of-the-art trackers to demonstrate

its excellent performance. Then, the tracker is tested on



sequences of eight main attributes to analysis the perfor-

mance of SME in different scenarios. We also decompose

SME into different parts to analysis the effectiveness of the

proposed framework. To further verify the efficiency of our

tracker, we test SME on the new VOT2015 dataset, which

contains 60 sequences, the experimental result of the VOT

dataset is reported for evaluation. The implementation and

more experimental results are publicly available1.

5.1. Experiment Setup

The proposed SME tracker is implemented in Mat-

lab&C. Although with multiple experts, our tracker runs

at roughly 37.5fps on the 3.20GHz CPU with 8GB RAM,

mostly due to the efficiency of the correlation filter. The

parameters setup is in accordance to the description in Sec-

tion 4.

In the 51 sequences Visual Tracker Benchmark, the

quantitative analysis is illustrated on two evaluation plots:

(i) the success plot and (ii) the precision plot. The success

plot is based on the bounding box overlap metric, and shows

the percentage of successful frames at the overlap threshold

varies from 0 to 1. The ranking is according to the area

under curve (AUC) score. The precision plot shows the ra-

tio of frames whose center location error (CLE) is within a

given threshold.

The VOT2015 dataset contains 60 short challenging se-

quences. The sequences are annotated using rotated bound-

ing box in order to provide highly accurate ground truth,

which is different from the 51 sequences benchmark an-

notated by rectangles. The VOT2015 dataset is evaluated

by two criteria: (i) accuracy and (ii) robustness. The accu-

racy measures the overlap between the tracking result and

ground truth. The robustness measures how many times the

tracker loses the target.

5.2. Visual Tracker Benchmark

Overall performance. Besides the 29 trackers provid-

ed by [27], we add four recently state-of-the-art trackers in-

cluding KCF [12], CN [7], MEEM [29], and TGPR [8]. Ac-

cording to the evaluation methods by Visual Tracker Bench-

mark, the one-pass evaluation (OPE) performance is illus-

trated in the Success Plot and Precision Plot shown in Fig. 2.

For clear illustration, we plot the top-10 among all the

compared trackers. As shown in the plots, our tracker

achieves 0.628 success score and 0.836 precision score,

both of which rank first among all the trackers. Particu-

larly, MEEM is most similar to our tracker. Compared to

MEEM, SME surpasses it with large margin, especially ex-

ceeds in the success score by 11.5%. KCF is the also the

correlation filter based method, which can be regard as our

base tracker. Compared to KCF, our tracker improves the

1https://sites.google.com/site/jiatonglihome/

research/sme-tracker
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Figure 2: The success plot and precision plot over 51 se-

quences Visual Tracker Benchmark using one pass eval-

uation (OPE). The legend illustrates the area under curve

(AUC) for the success plot, and the score of the threshold

20 for the precision plot.

overlap success and precision score by 22.2% and 12.97%
respectively. The overall plots demonstrate our tracker is

effective and promising.

Attribute-based performance. In this experiment, the

benchmark sequences are divided into 8 main attributes to

evaluate the tracker in different scenarios. As described

in [27], the AUC score of success plot measures the track-

er performance more accurate than precision plot of one

threshold, so the success plot is the main analysis evalua-

tion. Therefore, we report the eight main attributes of suc-

cess plots in Fig. 3. As illustrated in the plots, SME ranks

first in all the attributes.

SCM shows high score of 0.518 in the scale vari-

ation attribute, while SME performs better with 0.585
success scores. The MEEM performs well with 0.557
points in background clutter, 0.560 in motion blur, and

0.647 in out-of-view scenario. While SME shows more

preferable performance in all these scenarios. Partic-

ularly, in the attributes of scale variation, occlusion,

out-of-plane rotation, deformation and illumination vari-

ation, SME exceeds the second rank tracker by around

10%. In detail, SME has improved all the attributes by

13.3%, 17.6%, 9.7%, 5.0%, 0.7%, 9.3%, 13.1% and 0.15%
respectively compared to the second rank tracker. Among

all the attributes, the scale variation performance is im-

proved significantly, which shows our scale scheme is very

effective. In addition, SME also gets more favorable scores

than other correlation filter based trackers, KCF [12] and

CN [7], which demonstrates the effectiveness of the multi-

expert framework.

Component analysis. To further demonstrate the ef-

fectiveness of the proposed tracker, we decompose our ap-

proach into two trackers with part of the features of the o-

riginal SME: (i) SME-base, the base correlation tracker. (ii)

SME-sfix, the original SME without scale estimation. We

summarize their success and precision score in Table. 1.

https://sites.google.com/site/jiatonglihome/research/sme-tracker
https://sites.google.com/site/jiatonglihome/research/sme-tracker
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SME [0.564]

MEEM [0.560]

KCF [0.497]

TGPR [0.463]

Struck [0.433]

CN [0.427]

TLD [0.404]

CXT [0.369]

TM-V [0.362]

DFT [0.333]

Overlap threshold

0 0.2 0.4 0.6 0.8 1

S
u

c
c
e

s
s
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Figure 3: The success plots of eight attributes of the benchmark, i.e. scale variation, occlusion, out-of-plane rotation, back-

ground clutter, motion blur, deformation, illumination variation and out of view. The legend illustrates the AUC score for

each tracker.

Table 1: Success and Precision Score of the SME Analysis

SME SME-base SME-sfix

Success 0.628 0.608 0.598

Precision 0.836 0.792 0.812

From the table, both the success and precision score of

SME are higher than its counterparts. Moreover, the pre-

cision score of SME-base decreases from 0.836 to 0.792

compared to original SME, which means that the multi-

experts framework is important in improving the CLE s-

core in tracking. On the other hand, when remove the scale

estimation, the success score of SME-sfix declines imme-

diately. However, the precision of SME-sfix falls relatively

smaller compared to SME-base. It is reasonable since the

multi-expert framework pays more attention to correct the

estimation error of target translation by selecting reliable

historical tracker snapshots, while the scale estimation is

more related to overlap metric. Therefore, the combination

of the two gives satisfactory effect.

Finally, some of the typical tracking results from the top

7 trackers are shown in Fig. 4, including SME, TGPR [8],

MEEM [29], KCF [12], CN [7], SCM [25] and Struck [10].

The sequences are Singer1, Soccer, Dog1, Jogging, Skat-

ing1, Bolt, Trellis and Walking2. Among all the test se-

quences, Singer1 and Dog1 have significant scale changes,

and Soccer, Jogging, Skating1 and Walking2 go through

part or whole occlusion. In addition, Singer1 and Skating1

also have illumination variation due to the stage light, as

well as Trellis due to the sunshine. From Singer1 and Dog1,

we can see that SME performs well in handling scale vari-

ation. Especially in Dog1 with large scale change in frame

1046 and frame 1275, the proposed algorithm gives accu-

rate scale estimation compared to SCM. In Soccer, where

most of the compared trackers fail, SME is able to catch the

target despite of its significant background clutter. This is

because our tracker combines both the HOG and color fea-

ture, so as to adapt to the target blur caused by background

clutter. When there is large object appearance changes, like

in frame 412 of Trellis, most of the compared algorithm-

s start to drift, but our tracker is capable to deal with the

challenge. The same phenomenon can be found in Bolt. In

the Walking2 sequence, when another pedestrian with same

appearance appears in frame 262, CN, MEEM and TGPR

cannot distinguish between them and start to track the dis-

tractor, however, our tracker with multi-expert can handle

this scenario well.

5.3. VOT2015 Challenge Dataset

The number of sequences in VOT2015 Challenge

Dataset has been enlarged to 60 compared to VOT2013 and

VOT2014, whose numbers of sequences are 16 and 25 re-

spectively. On this dataset, we compare the performance

of SME with three trackers, DSST [6], MEEM [29] and

KCF [12]. MEEM, TGPR [8] and KCF are the top-3 track-

ers besides SME in the 51 sequences benchmark. TGPR is

not compared in this dataset because of its high computa-
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Figure 4: Tracking results of the top seven algorithms (TGPR [8], MEEM [29], KCF [12], CN [7], SCM [25] and Struck [10])

in Fig. 2 over eight sequences. The illustration example videos from top-left to bottom-right are Singer1, Soccer, Dog1,

Jogging, Skating1, Bolt, Trellis and Walking2.

Table 2: The results of VOT2015 Challenge Dataset.

A-Rank R-Rank Accuracy Robustness

SME 2.00 2.27 0.50 1.98

DSST 2.41 2.65 0.49 2.31

MEEM 2.70 2.47 0.44 2.41

KCF 2.91 2.61 0.43 2.53

2 red: rank 1, blue: rank 2, green: rank 3

tion cost . Since DSST is the winner of the VOT2014 chal-

lenge [16], the comparison with it can validate the perfor-

mance of our tracker to a large extent. In addition, MEEM

is close to our work. To verify the superiority of SME to

MEEM, we choose to compare with it further in this larger

dataset.

According to the VOT evaluation criteria [16], the over-

all experimental results are illustrated in two plots: (i)

accuracy-robustness (AR) ranking plot and (ii) AR plot, as

shown in Fig. 5, and the AR ranking plot is the main eval-

uation criteria. The AR ranking plot shows average rank-

ing score of all the sequences for each tracker in the joint

accuracy-robustness rank space. The AR plot is the data vi-

sualization shows the average accuracy-robustness data of

each tracker. For both plots, the tracker is better if the leg-

end resides closer to the top-right corner of the plots. The

details about the evaluation method is referred to [16, 5].

From the plots, it is indicated that SME ranks higher than

all the other compared trackers. DSST ranks second and

MEEM ranks third. The data in the plots are listed in Ta-

ble. 2, which also demonstrates the excellent performance

of the proposed tracker.

(i) AR ranking plot (ii) AR plot

Figure 5: The AR ranking plot and the AR plot for

VOT2015 Challenge Dataset. The tracker is better if its leg-

end resides closer to the top-right corner of the plot. S is

the data visualization parameter.

6. Conclusions

In this paper, we propose an effective scale adaptive

multi-expert tracker. The multi-expert is composed of both

the current tracker and its historical snapshots. The best ex-

pert is selected by the proposed trajectory consistency score.

Each expert is learned by the discriminative correlation fil-

ter, while the scale is estimated by searching the target pyra-

mid. The experiments are conducted on two large tracking

datasets, which demonstrate the proposed tracker performs

favorably against state-of-the-art methods.
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