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Abstract 

Purpose: This study compared the acute inflammatory and glucose regulatory response within and between 

rugby specific small-sided games (SSG) and stationary cycling (CYC) in sedentary, middle-aged Caucasian 

men. 

Method: Nine middle-aged, sedentary men who were free from disease participated in 2 x 40 min exercise 

conditions (CYC and SSG) following a randomized, cross-over design. Heart rate (HR) and Rating of Perceived 

Exertion (RPE) were collected during each bout. Venous blood was collected at fasting, 0, 30, 60 and 240 min 

post-exercise for measurement of glucose, insulin, cortisol and inflammatory markers including tumor necrosis 

factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-1 receptor agonist (ra) and C-reactive protein (CRP).  

Results: No significant differences existed between conditions for HR and RPE (p>0.05). IL-6 was increased 

immediately post-exercise in both conditions (p<0.05), but greater in SSG at 240 min post-exercise compared 

with CYC (p<0.05). Glucose was lower in SSG than CYC at 30 and 240 min post-exercise (p<0.05). IL-1ra, 

insulin and cortisol showed an exercise-induced increase (p<0.05), with no significant differences between 

conditions (p>0.05). Results for CRP, TNF-α and IL-1β showed no significant exercise-induced changes within 

or between conditions (p>0.05). 

Conclusions: Both SSG and CYC conditions were sufficient to stimulate an acute anti-inflammatory response 

as indicated by the post-exercise elevation of IL-6, IL-1ra and cortisol. The novel findings are that an acute bout 

of SSG bout is capable of maintaining an elevated post-exercise IL-6 response and lowered blood glucose 

concentration, compared with intensity- and duration-matched CYC condition. 
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Introduction 

Chronic low-grade inflammation has been established as a predictor for the development of chronic diseases, 

such as type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) 1. An inactive lifestyle is proposed 

to lead to the accumulation of adipose tissue and is accompanied by the infiltration of adipose derived pro-

inflammatory proteins into the circulation 2. Conversely, increased physical activity has been reported as an 

effective preventative approach to reduce the inflammatory risks associated with these chronic metabolic and 

cardiovascular diseases 3, 4. Notably, the reduced inflammatory state from regular exercise is proposed to occur 

through the heightened anti-inflammatory environment induced by the acute bout 5-7.   

 

Acute exercise has been shown to stimulate glucose disposal and inhibit the release of pro-inflammatory 

cytokines 8. Indeed, the magnitude of the acute inflammatory and glucose regulatory response tends to be 

dictated by the cohort (trained and untrained), the muscle mass involved to complete the mechanical work, 

intensity and duration of the bout 2, 9, 10. Typically following exercise, the active skeletal muscle increases both 

cellular and circulating levels of interleukin (IL)-6 11. This acute increase in IL-6 is transient and produced 

independently to pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and IL-1β) 12. Moreover, IL-6 has 

been shown to be responsible for a successive rise in anti-inflammatory cytokine IL-1receptor agonist (ra) 

(agonist to IL-1β), hepatic synthesis of C-reactive protein (CRP), suppression of TNF-α and the release of 

cortisol 5, 9, 12.  Additionally, IL-6 has also shown to increase basal and insulin-stimulated glucose uptake in 

skeletal muscle via stimulation of the AMP-kinase pathway and associated increase in glucose transporter 4 

(GLUT4) translocation, while the increased release of cortisol stimulates endogenous glucose production from 

the liver 6, 13. The increased concentration of both cortisol and IL-6 collectively work to regulate blood glucose 

concentration during acute exercise by maintaining equilibrium between glucose disposal and production.  

 

Previous studies examining the acute exercise-induced inflammatory responses in sedentary populations have 

used gym-based methods of aerobic (cycling, running) and/or resistance (machine and free weights) exercises of 

differing intensities and durations 6, 10. However, group aerobic training sessions are reported to be more 

enjoyable than individualised training, which can potentially affect adherence and sustainability of an exercise 

training program 14. Recently, soccer specific small-sided games (SSG) training has been reported to incorporate 

high-intensity intermittent sprints into an endurance-based event, which was highlighted as  capable of inducing 

positive training adaptations (body composition, aerobic capacity, blood pressure, strength) either comparable 
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to, or better than, traditional continuous training modalities such as running 15, 16. To date, previous research on 

the acute post-exercise inflammatory response to SSG or intermittent sprint protocols has been specific to 

sedentary Indigenous Australians 17 or young athletic populations 7.  A further understanding of these acute 

inflammatory and glucose responses in a sedentary, middle-aged population may be beneficial to justify the 

prescription of SSG for long-term inflammatory and glucose regulatory health benefits. Accordingly, the present 

study aimed to quantify and compare the acute inflammatory and glucose regulatory response within and 

between rugby-specific SSG and CYC conditions in sedentary, middle-aged Caucasian men. It was 

hypothesised that when matched for intensity and duration between the conditions a similar inflammatory and 

glucose regulatory response will be evident.  

 

Methods 

The study population comprised of 9 sedentary, middle-aged men (48.8 ±1.7y) who were not clinically 

diagnosed with any pre-existing cardiovascular or metabolic disorders. The sedentary criteria ensured those 

completing no more than one regular exercise session per week (>20min) within the preceding 6 months. Those 

excluded were those with immunological irregularities, smokers (<2yrs cessation); those suffering from 

recurrent or recent influenza illness (including flu shot recipients); those on cholesterol lowering, anti-

inflammatory, or any other medication/condition reported to affect the inflammatory response (i.e. rheumatoid 

arthritis or periodontal disease). Prior to participant recruitment the study was approved by the Research in 

Human Ethics Committee of the University. All participants provided verbal and written consent prior to the 

commencement of testing procedures.  

 

In a randomised cross-over design participants completed CYC and SSG conditions, each separated by 21d to 

allow adequate recovery from an unaccustomed exercise session. Testing procedures commenced between 

standardised times (0600-0800h), following an overnight fast (10-12h). Physical activity and diet was controlled 

within each participant between conditions. Participants recorded physical activities 72h prior and food/fluid 

ingestion 24h prior to their first condition. Participants then replicated this diet and activity profile in preparation 

for the remaining condition. Diaries were inspected by the research team to ensure compliance with dietary and 

physical activity requirements. During each condition and 240min after all testing sessions participants 

remained fasted and consumed water ab libitum (~500mL).  
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At pre-intervention testing, stature (stadiometer: Custom CSU, Australia), body mass (HW 150 K, A&D, 

Japan), waist and hip girths (steel tape, EC P3 metric graduation, Australia) were obtained from all participants. 

Manual blood pressure was obtained with an aneroid sphygmomanometer and cuff (Welch-Allyn, Arden, USA) 

expressed as the mean of three measurements after being seated for 5-min. A supine whole body dual-energy x-

ray absorptiometry (DXA) scan (XR800, Norland, Cooper Surgical Company, USA) was conducted with 

scanning resolution set at 6.5x13.0mm, and scanning speed was set at 130mm.s-1. Scans were analysed 

(Illuminatus DXA, ver.4.2.0, USA) for total body fat-free mass (TB-FFM) and total body fat-mass (TB-FM) 18. 

Measurement of oxygen consumption (VO2; Parvo Medics, True2400, East Sandy, Utah, USA) during a 

submaximal graded exercise test (GXT) was used in preference to maximal testing to minimize associated risks 

in sedentary, middle-aged men 19. Prior to each session, the ventilometer was calibrated using a three-litre 

syringe, while gas analysers were calibrated for fractional gas concentration with a gravimetric gas mixture of 

known concentrations (CO2, 4.1±0.1%; O2, 15.7±0.2%), in accordance with the manufacturer’s instructions. The 

GXT was performed on an electronically braked cycle ergometer (LODE Excalibur Sport, LODE BV, 

Groningen, The Netherlands), which started at 25W and increased by 25W every minute. Heart rate (HR; 

Vantage NV, Polar, Finland) was continuously monitored, and participants exercised until attainment of 80% 

age-predicted (220-age) maximum heart rate (%HRmax).  

 

The SSG condition involved modified football (non-contact rugby league) as this is the most popular football code 

in this geographical region 20. Participants completed 40min of six-a-side on a reduced-size pitch (width: 40m; 

length: 60m) to induce a mean target HR zone ~80−85%HRmax. To ensure participant randomization between 

conditions, testing was conducted over 2 separate games (n=4 in game 1 and n=5 in game 2) with the same 

research assistants forming the remaining player numbers in each game. The session comprised of 4x10min 

bouts, interspersed by 2 min passive recovery. Speed was recorded every second using a 1Hz Global Positioning 

Satellite (GPS) device (SPIetite, GPSports, Australia). The GPS unit was worn in a customised harnesses 

between the scapulae to quantify distance and mean speed (m.min-1) of movement patterns during the session 21. 

At the end of each 10min period, HR and Rating of Perceived Exertion (RPE; Borg’s 6-20 scale) were recorded, 

as well as a session-RPE 30min post-exercise 22.  

 

The cycling condition was conducted on a Monark stationary cycle ergometer (Monark 828E, Varburg, Sweden) 

and comprised of 4x10min continuous, steady-state bouts, interspersed by 2min passive recovery. During the 
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session, cadence was maintained at 60-65rpm and individual resistance adjusted to maintain target HR zones 

(80−85%HRmax). At the end of each 10min interval HR and RPE were recorded, including session-RPE 30min 

following exercise. It is recognized the inherent difficulties of matching external training load or metabolic cost 

of two different exercise modes. Despite this limitation, in an attempt to match training load between conditions 

the respective exercise bouts were designed to elicit similar internal training loads. The intensity and duration of 

the cycling condition was designed to match the approximate mean target HR zone of 80−85%HRmax expected 

within the SSG condition 15. . 

 

Venous blood was collected at rest (pre), immediately post (0min), 30, 60 and 240min post exercise. Following 

collection whole blood was centrifuged at 3500rpm for 15min at 4°C. Aliquots were frozen at -80°C and -20°C 

for EDTA and SST, respectively. Whole blood in EDTA tubes were refrigerated (4°C) for a maximum of 6h 

until analysis for total leukocyte count and HbA1c. Fluoride oxalate tubes were refrigerated (4°C) for a 

maximum of 30min until analysis of glucose and lactate. Blood was collected during baseline testing for 

analysis of fasting total cholesterol, high density lipoprotein, triglycerides (Enzymatic Method: Dade Behring 

Dimension Xpand, Siemens, Australia), total leukocyte count (Cell Counter: Cell-Dyn 3200, Abbott 

Laboratories, USA) and glycosylated haemoglobin (HbA1c; Liquid Chromatography: Bio-Rad Variant, 

Australia). During each condition, 20mL was collected at each time point for analysis of glucose, lactate 

(ABL825 Radiometer, Denmark), insulin, cortisol (Chemiluminescent Immunometric Assay: Immulite 2000, 

Diagnostic Products Corp., USA) and CRP (Particle enhanced turbidimetric immunoassay Dade Behring 

Dimension Xpand, Siemens, Australia). Analysis of biochemistry variables glucose, insulin, lactate, cortisol and 

CRP showed intra and inter-assay coefficients of variation of 4.0-7.4%. IL-6, IL-1β, IL-1ra and TNF-α were 

measured at each time point (ELISA Immunoassay: R & D Systems, USA), with intra and inter-assay 

coefficients of variation of 4.3-5.6%. Insulin resistance: homeostasis model assessment (HOMA-IR) was 

calculated using the formula (fasting insulin x fasting glucose)/22.5 23. 

 

Statistical analysis  

All data are reported as mean ±SEM. Within and between condition and time-point differences were assessed 

using two-way repeated measures ANOVA (condition x time). When significant interactions were observed, 

Tukey’s pairwise comparisons were employed to assess the source of significance, which was set at p<0.05. All 

statistical analyses were performed using PASW™ for MS-Windows v17.0 (Statistical Package for the Social 
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Sciences, Chicago, IL, USA). Standard effect sizes (ES; Cohen’s d) analyses were used in interpreting the 

magnitude of difference between conditions at each time-point. An ES was classified as trivial (<2.0), small 

(0.20-0.49), moderate (0.50-0.89) or large (>0.90).    

 

Results 

All participant characteristics (anthropometry, body composition, VO2 and fasting blood chemistry) are 

presented in Table 1. Glucose, insulin and CRP concentration were collected prior to each exercise condition, 

thus, baseline values presented in Table 1 are the mean between the two respective pre-exercise time-points.  

 

Total distance covered during the SSG was 3173±104m, at a speed of 79±3m.min-1, with 146±91m of high-

speed running above 14km.h-1. Mean resistance for the CYC condition was 1.9±0.2kp. No significant 

differences were evident between conditions for %HRmax (SSG 86±2% HRmax; CYC 84±1% HRmax; p=0.22; 

d=0.04) and session-RPE (SSG, 13±1AU; CYC, 14±1AU; p=0.40; d=0.01). Blood lactate peaked immediately 

post-exercise at 2.3±0.4 and 2.1±0.5mmol.L-1 for CYC and SSG, respectively (p>0.05; d=0.15).   

 

The acute IL-6, IL-1ra, TNF-α and IL-1β response of SSG and CYC conditions are shown in Figure 1. The 

acute IL-6 response shows a significant increase immediately post-exercise within both conditions (p<0.05). 

Significant differences were evident between conditions at 240min post-exercise (p=0.04; d=0.53) with SSG 

remaining elevated above pre (p=0.005), though not in CYC (p=0.154). IL-1ra was significantly increased 

immediately post-exercise (p<0.05) and remained elevated above pre values at 240min in both SSG and CYC 

(p<0.05), without significant differences between conditions (p>0.05; d=0.00-0.55). Results for CRP, TNF-α 

and IL-1β showed no significant changes within or between conditions (p>0.05). Moderate ES were evident 

between conditions at 120min for TNF-α (d=0.57), and IL-1β (d=0.72).   

 

The acute cortisol, glucose, insulin and HOMA-IR responses of SSG and CYC conditions are presented in 

Figure 2. Cortisol was significantly increased in both conditions immediate post-exercise (p<0.05), though 

decreased at 60min (p<0.05) and remained below pre-values at 240min post-exercise (p<0.05), without 

differences between conditions (p>0.05; d=0.06-0.48). In both conditions glucose increased immediately post-

exercise (p<0.05) followed by a significant decline at 30min (p<0.05). Glucose concentrations for SSG were 

significantly lower than CYC at 30min (p=0.02; d=0.82) and 240min post-exercise (p=0.03; 0.98). Insulin 
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concentrations showed a significant decline below pre-values at 240min post-exercise in SSG (p=0.02) and 

CYC (p=0.01), with no significant difference between conditions (p=0.61). Moderate ES were evident between 

conditions for insulin at 0 (d=0.54) and 120min (d=0.59). HOMA-IR increased immediately post-exercise in 

SSG (p=0.028). Differences between conditions were evident in the change from pre to 0min (p=0.04; d=0.61) 

and 0min to 30min post-exercise (p=0.01) with a moderate trend between conditions at 0min (d=0.61). 

 

Discussion 

The sedentary, middle-aged men recruited for the present study can be classified as obese (n=8) or overweight 

(n=1), with elevated CRP (>2.0mg.L-1 n=6) and high cholesterol hazard ratio (≥4:1 n=6) 1, 24. These 

characteristics place the participants at ‘high risk’ of developing metabolic and cardiovascular diseases 24. The 

novel findings of the present study were that an acute bout of SSG is capable of inducing and maintaining a 

similar elevated post-exercise in IL-6, IL-1ra and cortisol as observed in CYC, although SSG lowered blood 

glucose concentration to a greater extent. Regardless, both SSG and CYC conditions lowered blood glucose 

concentration and provided a post-exercise anti-inflammatory milieu several hours after the exercise bout.  

 

During muscle contraction IL-6 is released into the circulation from the active myocytes, which initiates an anti-

inflammatory environment by stimulating the release of IL-1ra and cortisol into the circulation 2, 9, 11. The 

present findings showed that despite both conditions showing a similar response in IL-6 immediately post-

exercise, IL-6 remained elevated in the SSG compared to CYC at 240min. One other study has reported on the 

acute IL-6 response to SSG in untrained sedentary Indigenous Australian men and showed no differences 

between SSG and CYC 17. Given the current study attempted to match intensity and duration between 

conditions, the recruitment of greater muscle mass (i.e. both upper and lower body are involved) in the SSGs 

may explain sustained elevation in plasma IL-6. However, it should be recognised that these IL-6 responses 

could also be explained by the potential differences in energy cost (despite similar HR and RPE response) and 

the load-bearing (i.e. SSG on ground/direct impact) versus weight-supported nature of stationary cycling 25.  

Consistent with previous research, IL-1ra peaked at 60min post-exercise and remained elevated for up to 

240min in both conditions 5, 17. These results suggest the release of IL-6 and subsequent release of IL-1ra 

represents as an exercise-induced anti-inflammatory environment within both SSG and CYC conditions 9, 26. 

Differences between conditions for IL-6 occurred at 240min post-exercise; hence, the effect on IL-1ra is 

unknown because it is likely that any differences may occur after the 240min time-point. Regardless, both SSG 
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and CYC exercise modes stimulated positive acute anti-inflammatory response. Given the only difference 

between conditions in IL-6 occurred at an isolated time-point, future studies may be directed towards 

determining potential differences in inflammatory responses and ensuing adaptations between SSG and CYC 

conditions for the prevention and treatment of T2DM and CVD 4.  

 

The increased concentrations of IL-6 and IL-1ra create an anti-inflammatory environment which has been 

shown to inhibit the release of pro-inflammatory cytokines, such as TNF-α and IL-1β 12, 27. The present study 

showed no post-exercise change in plasma concentrations of pro-inflammatory (TNF-α and IL-1β) cytokines. 

These results are consistent with different models of moderate-intensity aerobic conditions (running, intermittent 

running, SSG and CYC) within sedentary populations 17, 28. The non-significant changes reported in the current 

and previous studies may be due to the sedentary characteristics of the participants restricting the intensity and 

duration of exercise that can be prescribed; as it is likely that more strenuous and longer duration exercise 

prescribed in active and athlete populations may be required to induce immunological strain and an elevated 

post-exercise IL-1β and TNF-α 5. These strenuous and long duration training methods are generally not 

prescribed within sedentary middle-aged cohorts, hence the lack of literature describing changes in pro-

inflammatory markers in response to acute exercise. Prolonged and intermittent exercise can also lead to the 

release of CRP within 24−48h following exercise - with the magnitude of increase dependant on the hepatic 

synthesis of IL-6 and/or muscle damage 7, 29. The present study showed no exercise-induced response to SSG or 

CYC in plasma CRP. A limitation is that CRP was only measured up to 240min post-exercise and may explain 

the negligible response observed within CYC and SSG conditions. Previous research has shown an increase in 

CRP 24h post-exercise in accordance with an increase in muscle damage from high-intensity resistance exercise 

compared with intensity and duration-matched cycling 10. As such, future research should assess the association 

between CRP and markers of muscle damage within the 24−48h period post SSG, when compared with CYC.  

 

Cortisol is known to have potent anti-inflammatory effects, which can also be augmented by the increase in IL-6 

and subsequent down regulation of pro-inflammatory cytokines (TNF-α and IL-1β) by immune cells 2, 5, 9. The 

cortisol response to both aerobic and resistance exercise is dependent on intensity and duration, more so than the 

exercise mode 10, 30. Accordingly, the current study showed a similar cortisol response between SSG and CYC 

conditions matched for duration and intensity. Specifically, cortisol functions as an energy sensor to augment 

hepatic glucose release and provide sufficient fuel for metabolic demands 9. In the present study a moderate 
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effect for increased insulin following SSG compared with CYC was evident, which may have contributed to a 

greater reduction in blood glucose concentration following SSG. As such, two potential reasons for the 

difference in post-exercise glucose concentration may relate to the respective differences and effects between 

conditions in the immediate post-exercise HOMA-IR and insulin responses. Taken collectively, the fluctuations 

in HOMA-IR between 0 and 30min post-exercise and the associated increase in circulating insulin, alongside an 

amplified IL-6 response simultaneously are likely to have caused an increase in peripheral glucose metabolism 

and thus a lower plasma glucose concentration in SSG compared an intensity- and duration-matched CYC 

condition. 

 

 

Conclusion 

Similar to an intensity and duration-matched CYC condition, an acute bout of SSG is capable of inducing and 

maintaining an anti-inflammatory milieu several hours after the exercise bout. Furthermore, both conditions 

stimulated lowered blood glucose concentration, although SSG lowered blood glucose concentration to a greater 

extent when compared with CYC. Given the lack of inflammatory based research within SSG training for 

sedentary populations, it is suggested future studies examine the chronic adaptations of SSG training and its role 

for long-term health benefits. 

 

Practical Implications 

• Rugby specific small-sided games (SSG) is a novel mode of intermittent exercise that stimulates a 

systemic anti-inflammatory milieu for several hours after the exercise bout.   

• An acute bout of SSG or CYC lowers blood glucose concentration, which has important implications 

for daily glucose regulation in sedentary, men at risk of developing metabolic abnormalities.  

• Group-based exercise through SSG can be utilised as a method for acute exercise prescription, within 

sedentary men 
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Figure Captions 

Figure 1. 

Mean ± SEM response of IL-6, IL-1ra TNF-α,IL-1β and CRP within and between the respective conditions. 

Significant difference from baseline within the cycling condition a P<0.05; Significant differences from baseline 

within the small-sided games condition b P<0.05; Significant difference between groups c P<0.05.  
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Figure 2. 

Mean ± SEM response of glucose, insulin, cortisol and HOMA-IR within and between the respective conditions. 

Significant differences from baseline within the cycling condition a P<0.05; Significant differences from 

baseline within the small-sided games condition b P<0.05; Significant difference between groups c P<0.05.  


