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Abstract

Color centers in diamond are becoming prime candidates for applications in pho-

tonics and sensing. In this work we study the time evolution of cathodoluminescence

(CL) emissions from color centers in a polycrystalline diamond film under electron irra-

diation. We demonstrate room temperature activation of several luminescence centers

through a thermal mechanism that is catalyzed by an electron beam. CL activation

kinetics were measured in realtime and discussed in the context of electron induced

dehydrogenation of nitrogen-vacancy-hydrogen clusters and dislocation defects. Our

results also show that (unintentional) electron beam induced chemical etching can take

place during CL analysis of diamond. The etching is caused by residual H
2

O molecules

present in high vacuum CL systems.
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1 Introduction

Optical properties of materials, particularly of point defects in solids, are increasingly im-

portant to our understanding of single photon emitters. The negatively charged nitrogen

vacancy (NV) center in diamond is an example of a color center that has been the subject of

intense research due to its photophysical properties.1–7 However, having a wide optical band

gap, diamond hosts many optically active defects and the interplay between them is still a

subject of debate. The behavior of various color centers under electron beam irradiation has

not been fully explored. An understanding of such phenomena will inform future work on

deterministic, nanometer-scale processing of diamond-based devices, and may become useful

in the context of bio-sensing and correlative microscopy.8 Here we investigated the lumines-

cence kinetics of several optical centers, including the nitrogen vacancy, in a polycrystalline

diamond (PCD) film during exposure to 20 keV electrons.

The majority of prior work has focused on luminescence properties of single crystal di-

amonds that have undergone high-energy irradiation to add vacancies.9–13 In our work, we

study as-grown polycrystalline diamond that had not been subjected to ion-bombardment or

annealing processes which are commonly used to induce the formation of nitrogen vacancy

defects. The time evolution of cathodoluminescence (CL) spectra from a PCD film and

several single crystal diamond control samples suggest that electron-catalyzed, thermally-

driven restructuring of extended defects activates luminescent NVs and A-band centers at

room temperature, without the need for thermal annealing. The defect restructuring can be

explained by electron beam induced dehydrogenation14–17 of non-luminescent dislocations,

and NVH
x

centers located at extended defects.

2 Methods and materials

A PCD thin film was deposited on a silicon substrate by microwave plasma-assisted chemical

vapor deposition (MWCVD) using a microwave power of 900 W, a H
2

:CH
4

ratio of 99:1,
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and a total pressure of 8 kPa. The film had a thickness of ⇠ 400 nm and a grain size of

⇠ 250 ± 50 nm. After synthesis, no further cleaning, annealing, or ion bombardment was

performed. The sample was analyzed in the as-grown state.

Three single crystal diamond samples were used for control experiments: a bulk CVD

sample purchased from Element 6, a high-pressure high-temperature (HPHT) diamond

(Sumitomo Inc.) and individual microdiamonds (Microdiamant). The HPHT diamond was

sputter-coated with a 12 nm film of silver to suppress charging artifacts during CL analysis.

Cathodoluminescence characterization was carried out using an environmental scanning

electron microscope (SEM)18 with a base pressure of ⇠ 10�4 Pa, equipped with a liquid

nitrogen cooling stage. A parabolic mirror situated over the sample directed light through

an ex-situ focusing lens onto a 600 nm optical fiber coupled to a spectrometer (OceanOptics

QE65000) with a bandpass of 6.5 nm. CL spectra were recorded continuously using an

integration time of 10 s per spectrum while exposing a sample area of ⇠ 20 µm2 to 20 keV

electrons using the beam currents shown in figure captions. The area sampled during CL

analysis was significantly larger than the grain size of the PCD film. Hence, each dataset

reflects the mean response of a number of individual crystallites and grain boundaries. Each

raw CL spectral kinetics profile was normalized and expressed as a color map (2(a), 3-5). A

CL generation depth-profile (calculated using standard Monte Carlo techniques19 for 20 keV

electrons incident on a 400 nm diamond film on Si) is shown in 1. The CL generation rate

is approximated by the total energy deposition rate20 (the dashed line shows the energy

deposition depth profile in the substrate).

Individual CL kinetics profiles were obtained for the A-band and H3 emissions (attributed

to dislocations, and nitrogen-vacancy complexes, respectively),21 and the NV0 emission from

the PCD film. 2b shows typical CL spectra and the corresponding peaks used to fit the three

emissions, while 2c shows the time evolution of the corresponding peak areas during electron

irradiation. The silicon vacancy (SiV) emission at 1.68 eV and an emission at 2.56 eV were

excluded from peak fitting because of their relatively small contributions to the total inte-
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grated intensity. In the PCD film, the H3 center was di�cult to resolve individually because

of peak overlaps. Hence, a sample of CVD microdiamonds showing only the H3 emission

(5c) was measured and the resulting spectra fit to an exponentially modified gaussian. The

resulting coe�cients were used to estimate the contribution of this defect to the PCD film

emission spectrum. This method of H3 fitting is similar to that utilized by Tizei et al.22,23

3 Results

The intensities of several luminescence centers varied with electron beam exposure time.

We first characterized the CL kinetics measured from the PCD film under various ambient

conditions. At room temperature, electron irradiation caused the NV0 luminescence intensity

to increase with time (3a). When residual water vapor was present in the high vacuum CL

chamber, this initial increase was followed by a subsequent decrease with continued electron

exposure (3a). However, when a liquid nitrogen cold trap was used to reduce the residual

H
2

O pressure, the subsequent decrease was suppressed (3b)a. Conversely, when the water

vapor pressure was increased to 47 Pa,18 the intensity of all CL emissions rapidly decreased

with irradiation time (3c).

The A-band luminescence exhibited two general trends during electron irradiation of

di↵erent regions of the PCD film. The signal intensity would either decrease with exposure
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Figure 1: CL generation rate in diamond calculated as a function of depth for 20 keV
electrons incident on a 400 nm diamond film on a silicon substrate. The dashed line shows
the electron energy deposition depth profile in the substrate.
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Figure 2: CL kinetics profiles recorded from a PCD film during a 20 min electron beam
irradiation treatment: a) a normalized color map representation of CL spectra acquired as
a function of time, b) corresponding CL spectra at electron exposure times of 0, 10 and
19 min, and c) time-evolution of the A-band, NV0, and H3 emissions, plotted as the area of
each of the peaks shown in (b) versus time. [Beam current = 23 nA.]
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Figure 3: CL kinetics profiles obtained from a PCD film under the following conditions of
temperature and humidity: a) room temperature with no measure taken to remove residual
water molecules from a high vacuum CL analysis chamber, b) room temperature with an
in-chamber liquid nitrogen-cooled trap used to cryo pump residual water vapor, and c) room
temperature with a water vapor pressure of 47 Pa. [Beam current = 52 nA (a), and 43 nA
(b, c).]

time (2), or an initial increase in intensity was followed by an eventual decay (3a, 3b, 4b).

We attribute this variability accross the PCD surface to a non-uniform distribution of the sp2

species associated with dislocations responsible for A-band luminescence21,24 in the as-grown

PCD film, and variations in the number of grain boundaries within the probed volume. All

other trends in CL kinetics profiles reported here for the polycrystalline sample were observed

in multiple locations and did not vary across the PCD film.

To characterize the e↵ects of sample temperature, CL kinetics were measured at -25� C

and -177� C (4). Sample cooling to -25� C reduced the magnitude of the electron beam in-

duced increase in the intensity of the NV0 CL emission. At -177� C, the e↵ect was suppressed

to below the detection limit and the entire CL spectrum decayed with electron exposure time

b.

Figure 5 shows reference data collected at room temperature from single crystal control

samples, each containing only one of the three CL emissions of interest: (a) bulk CVD

diamond enriched with NV centers, (b) HPHT diamond that exhibits A-band luminescence,

and (c) a single microdiamond that contains H3 centers. In single crystal diamond (i.e. in the

absence of grain boundaries), the NV0 emission did not change with electron exposure time

(5a). The A-band intensity shows an increase with irradiation time (5b), but the eventual
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Figure 4: CL kinetics profiles obtained from a PCD film cooled to: a) -177�C, and b) -25�C.
[Beam current = 33 nA (a), and 52 nA (b).]
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decrease in A-band intensity observed in the PCD film was not observed in the bulk, single

crystal diamond, due to negligible electron beam-induced etching (see discussion) of the bulk

diamond relative to that of the polycrystalline film. The H3 emission intensity exhibits an

initial decrease followed by an increase with time in both single-crystal microdiamonds (5c)

and the PCD film (2c). These results show that the H3 kinetics can occur in the absence of

NV0 kinetics, and are therefore not necessarily the consequence of competitive recombination.

We note that, in 5(c), the narrow line at 1.4 eV is associated with a Ni-related defect21,25,26

and decreases marginally with electron exposure. It serves as an internal control, showing

that the change in H3 CL intensity with irradiation time is not caused by an experimental

artifact such as beam drift or fluctuations in beam current.

Figure 5: CL kinetics profiles recorded from control samples that exhibit specific lumines-
cent features: a) bulk CVD single crystal diamond showing NV0 luminescence, b) HPHT
single crystal diamond showing A-band luminescence, c) single microdiamond showing H3
luminescence. [Beam current = 45 nA (a, b), and 3 nA (c).]

In all cases, the intensity of the SiV emission in the PCD film decreased with electron

irradiation time, as seen in 2b (the apparent increase seen in 3 is caused by an overlap

between the SiV and NV0 peaks). While uninteresting in isolation, this behavior acts as an

e↵ective control for experimental artifacts, analogous to the aforementioned Ni defect in the

microdiamond.
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4 Discussion

We now discuss possible mechanisms behind the changes in luminescence caused by electron

irradiation of the PCD film. In particular, we focus on the initial increase in the NV0 and

A-band intensity, and the eventual decay of most emissions caused by prolonged electron ex-

posure. The latter is attributed primarily to e�cient electron beam induced etching (EBIE)

of polycrystalline diamond,27–31 mediated by residual H
2

O molecules present in the high

vacuum SEM chamber32 used for CL analysis. EBIE is a dry etch process that proceeds

through electron induced dissociation of surface adsorbed precursor molecules (in this case

H
2

O). Dissociation yields fragments (e.g. O radicals) that react with the surface, producing

volatile species (e.g. CO) that desorb from and thereby etch the substrate.33,34 The most di-

rect evidence for the role of EBIE in CL kinetics is shown in 3b, where a liquid nitrogen cold

trap was used to reduce the residual H
2

O pressure in the high vacuum CL analysis cham-

ber. The cold trap was not in contact with the sample, but nonetheless caused a significant

reduction in the long term decay rate of most emissions (SiV, NV0 and A-band) present in

the PCD CL spectrum. Conversely, when the water vapor pressure was increased to 47 Pa

(in the absence of a cold trap; 3c), the CL decay rates increased dramatically, resulting in

rapid quenching of the entire CL spectrum with electron irradiation time. Furthermore, in

this extreme case, an etch pit was clearly visible in electron images of the sample region that

had been irradiated by the electron beam. The correlation between H
2

O pressure and the

CL decay rate is consistent with EBIE because the etch rate scales with precursor adsorbate

coverage28,33 at the diamond surface.

The long term decay of CL emissions ascribed to EBIE is not evident in CL kinetics

profiles acquired from bulk, single crystal diamond samples (5a,b). We attribute this to

the fact that the EBIE rate of polycrystalline diamond is greater than that of single crystal

diamond27,28 (i.e. etching is most e�cient at grain boundaries), and that etching has no

significant e↵ect on the thickness of the bulk, single crystal diamond. We note that when

the etch rate is low (as in the case of single crystal diamond), etching can be terminated
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entirely by a competing process of contamination buildup under the electron beam caused

by electron induced decomposition of hydrocarbon contaminants that are present in most

vacuum systems.32,35

The long term decay of CL emissions ascribed to EBIE is also not evident in the H3 CL

kinetics profiles acquired from the PCD film (2b) and the microdiamond (5c). In both cases,

the H3 CL intensity exhibits an initial decrease followed by an increase with irradiation

time, even when etching was observed in electron images taken after electron exposure. The

mechanism behind the increase in H3 CL intensity is not understood.

We now turn to the initial increase in NV0 and A-band CL emission intensities with

electron exposure time (see, for example, 3a,b). First, we exclude a number of potential

mechanisms that can not explain our results. The electron beam energy (of 20 keV) was well

below the threshold for knock-on generation of vacancy-interstitial pairs in bulk diamond.36,37

Direct generation of vacancies in bulk diamond (through knock-on or electron excitation

mechanisms15,38–41) is also inconsistent with the data presented in 5b. Such a process is

expected to create NV centers in HPHT diamond which contains nitrogen impurities but

few vacancies. Similarly, nitrogen di↵usion within or into bulk diamond is not supported

by our data, which show no indication of a direct relationship between the NV0 and H3

emissions (H3 centers are associated with nitrogen aggregates21), and no change in the NV0

emission intensity in single crystal diamond.

Electron induced dissociation of residual H
2

O adsorbates can, in principle, give rise to

oxidation42 of as-grown, H-terminated diamond surfaces. A change in surface termination

from H to O has been shown to switch the charge state of near-surface NV0 centers, causing

an increase the ratio of NV� to NV0 centers.43,44 However, this e↵ect can not explain the

increase in NV0 intensity reported here because the NV– emission is invisible in CL spectra.

Hence, if this process dominated CL kinetics, we would expect a decrease rather than an

increase in NV0 intensity with electron exposure time.

Electron beam heating is negligible13 because of the high thermal conductivity of dia-
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mond, and good thermal contact between the PCD diamond film, the Si substrate and the

specimen holder.

The last mechanism that we exclude as the cause of the observed CL kinetics is elec-

tromigration45–48 of point defects in the PCD film. The temperature dependencies seen in

4 show that sample cooling suppressed the magnitudes of the increase in the NV0 and A-

band CL intensitiesb. This behavior is the opposite of that expected for electromigration

(since thermal detrapping suppresses the charging e↵ects that cause electromigration45–48)c.

The observed temperature dependencies are, however, consistent with thermal restructuring

or di↵usion of defects in the sample. We therefore suggest that electron beam catalyzed,

thermally driven dehydrogenation activates NV and A-band luminescence centers, noting

that:

• We expect hydrogen to be present at the grain boundaries and dislocations of the

as-grown PCD film, due to the nature of the CVD growth process.49,50

• Introduction of hydrogen into a sample containing bright NV centers has been shown

to quench NV luminescence.51

• The A-band luminescence originates from certain types of dislocations21 and has been

associated with sp2 carbon,24 which can form upon hydrogen desorption due to the

restructuring of dangling bonds.52

Removal of hydrogen from NVH
x

centers located at or near grain boundaries, and from

non-luminescent dislocations is the simplest explanation that is consistent with our CL data,

and the aforementioned literature. Electron irradiation likely lowers the energy barrier for

thermal dissociation of the hydrogenated complexes, thereby catalyzing the dehydrogenation

process.

It is well known that electron beam irradiation in an SEM (and electron injection by a

scanning tunneling microscope) can give rise to the dissociation of hydrogenated complexes in

several materials.53–57 In the case of diamond, the dissociation kinetics of boron-hydrogen and
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boron-deuterium complexes have been characterized by CL analysis, and ascribed primarily

to cumulative vibrational (rather than electronic) excitation,14–17 a process whose e�ciency

scales inversely with temperature.17 In contrast, the CL activation process reported here is

suppressed by cooling, indicating a di↵erent excitation pathway. The data can not, however,

be used to deduce the exact nature of the excitation mechanism.

5 Conclusions

To summarize, we observed CL kinetics in a PCD film irradiated by a 20 keV electron beam.

The intensities of NV0, A-band, H3, and SiV CL emissions were shown to change with

time. To explain the increases in the intensities of NV0 and A-band emissions, we propose

electron beam induced dehydrogenation of CL centers at dislocations and grain boundaries

as a possible mechanism. Our results also show that CL emissions from diamond can be

quenched by electron beam induced etching caused by H
2

O molecules present in high vacuum

CL chambers. This e↵ect is generally undesirable and can be suppressed by minimizing the

partial pressure of residual H
2

O.
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Notes

aWe note that, in Fig. 4, the cold trap appears to decrease the NV center activation rate.

This e↵ect is not real, and is a consequence of the fact that each spectral CL kinetics profile

was normalized (in order to show clearly the changes in each dataset). The absolute change

in NV0 intensity seen in Fig. 4b is much greater than the corresponding change in Fig. 4a

bThe rapid decay of all CL emissions seen in Fig. 4a is attributed to electron beam induced

etching, accelerated by a high coverage of H
2

O molecules at the cold diamond surface

cCharging e↵ects were minimized by the use of a 20 keV electron beam. The electron

range was ⇠ 3.5 µm, and the beam therefore penetrated through the 400 nm PCD film, into

the conductive Si substrate (see Fig. 1)
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