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Abstract We consider a timetabling and rostering problem involving periodic re-
training of large numbers of employees at an Australian electricity distributor. This
problem is different from traditional high school and university timetabling prob-
lems studied in the literature in several aspects. We propose a three-stage heuristic
consisting of timetable generation, timetable improvement, and trainer rostering.
Large-scale integer linear programming (ILP) models for both the timetabling and
the rostering components are proposed, and several unique operational constraints
are discussed. We show that this solution approach is able to produce good solu-
tions in practically acceptable time.
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1 Introduction

Ausgrid, Australia’s largest electricity distributor, is responsible for building,
repairing, and maintaining all electricity distribution equipment that service their
operational area of about 22,275km?. The voltages on Ausgrid’s electricity network
range from 230V to 132kV, and there is an extreme risk of electrocution if works
are not performed carefully and with strict safeguards in place. Other hazards
Ausgrid workers face include falling from heights, having objects dropped on them
from above, working in confined spaces, and working in the presence of hazardous
materials such as toxic gas, asbestos, or other harmful substances. Having such
a hazardous working environment and supplying such an essential service to the
population, it is among Ausgrid’s highest priorities to deliver safety and technical
training promptly and efficiently to all people where required, including employees,
contractors, and to third parties, working on or near the electricity network as
required by Australian industry law.

Most training delivered by Ausgrid has a limited validity period after which
it is considered no longer valid unless “refreshed”. Most courses have a validity
period of 1 year, while others can last 3 or 5 years, and some have unlimited
validity periods. Validity periods are subject to change as industry legislation is
occasionally revised. If a worker does not successfully refresh training for a job
role before it expires, they are not permitted to work on or near the electricity
network in that role until they have successfully completed the required training.

Ausgrid delivers many different training courses, each of which is composed of one
or more modules. Each student enrolled in a course must successfully complete all
the modules in that course. Each module has a duration and a maximum number
of students that it can accommodate. The modules of a course can be run in any
order, however they must be run back-to-back with no gaps between the modules
of a course. The only exception is lunch time, which is fixed to 12:00 to 12:30. The
modules of courses that run for longer than a day must be arranged such that the
modules do not overrun the length of any day. Courses run for a maximum of five
days, and may not be interrupted by the weekend. If a course has a total duration
of half a day or less, it may start first thing in the morning or immediately after
lunch, otherwise if a course’s duration is longer than half a day, it may only start
first thing in the morning. Each course may be run an arbitrary number of times,
perhaps several times in a single day, and each individual run is known as a course
instance.

Ausgrid’s operational area can be partitioned into a number of regions, each
containing one or more training facilities, which we refer to as locations. Each
location contains one or more rooms, which come in various sizes. Some rooms
have a removable divider that allows them to be split into two separate, smaller
rooms. Each module of each course instance is run in a room. Each room has a list
of compatible modules and a maximum number of students it can accommodate.
Since both modules and rooms have a limitation on the number of students, each
module-room pair has a maximum number of students given by the minimum of
these two values. Different modules of a course can be assigned to different rooms,
but all the modules of a course instance must be assigned to a single location.
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Modules are taught by trainers, each of whom has a location to which they are
regularly assigned, and trainers may travel to other locations when required. All
trainers work a standard 8 hour work day with a half hour lunch break. Trainers
have other responsibilities aside from teaching, therefore the proportion of working
time each trainer is assigned to teaching should be as close as possible to a value
determined by the type of trainer.

Certain modules require shared, mobile resources which can be relocated from
location to location. The total number of these modules that can run at any given
time in any given location is limited by the quantity of the required equipment
present.

Because training is delivered not only to Ausgrid employees, but also contractors
and third parties, Ausgrid cannot schedule individual participants into classes in
advance, as is the case in most high school and university timetabling. Instead,
Ausgrid schedules classes to run at times and places where people are expected
to need training, and those people are then booked into a suitable class at a time
they are able to attend. Since most of the courses have a regular validity period,
Ausgrid can anticipate how many people will require certain types of training in
particular locations at particular times. Ausgrid should schedule at least enough
capacity for each course in each region across the planning horizon to cater for the
expected demand, wherever possible.

The robustness of the training plan is of great importance to Ausgrid. A robust
timetable will not need to be significantly changed in the event of unexpected
circumstances such as room or trainer unavailability. One feature of a timetable
which detracts from its robustness is a room swap, which is where the class must
move from one room to another throughout the course instance. In addition to
being inconvenient and time consuming, if one of the rooms assigned to a course
instance become unexpectedly unavailable and no substitute can be found, the
course instance may need to be cancelled. Courses should be uniformly distributed
throughout the planning horizon to maximise the likelihood that people will be
able to find a class at a suitable time.

It is desirable for trainers not to have to travel excessively, as the further a
trainer has to travel, the more cost is incurred by Ausgrid, and the greater the
likelihood the trainer will be unexpectedly delayed. Additionally, for the same
reasons outlined previously in regards to room swaps, having trainer swaps detracts
from the robustness of the trainer roster as any unexpectedly unavailable trainer
may jeopardise a course if no substitute can be found.

Certain rooms can be rented out to third parties if not in use for an extended
period of time, generating some revenue for Ausgrid. Currently, due to adminis-
tration costs, only a few rooms have the option to be rented out to third parties,
however if the potential revenue generated can be shown to be substantial, Ausgrid
may expand their room rental program.
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Until recently, Ausgrid designed training timetables by hand, requiring an expe-
rienced person at least three days to produce the timetable for one month. Ausgrid
currently uses a software tool to generate their training plans on a month-by-month
basis. This software is able to rapidly generate feasible timetables and rosters, how-
ever it does not contain any optimisation functionality. Due to changing industry
regulations related to safety and technical training, as well as long-term fluctua-
tions of demand, Ausgrid needs a tool to manage and optimise their training plan
that is capable of handling these changes in a flexible way.

Ausgrid’s timetabling and rostering problem is a large-scale, multi-objective op-
timisation problem. It has many similarities to typical high school and university
timetabling problems, but is distinguished from them in a number of important
ways. The goal of the research in this paper is to investigate a flexible software
tool incorporating mathematical optimisation techniques to help solve Ausgrid’s
timetabling and rostering problem. Due to the large-scale nature of the considered
problem, we have so far been unable to produce an optimal solution in practically
acceptable time. In this paper we propose a three-stage heuristic procedure con-
sisting of an initial timetable generation stage, an iterative timetable improvement
stage, and finally a trainer rostering stage. Integer programming (IP) models are
developed for each stage, which address all the current practical requirements, and
are also flexible to changes in requirements.

The remainder of the paper is organised as follows: Section 2 gives an outline of
the current state of research in the area of academic timetabling. Section 3 de-
scribes the three-stage heuristic in detail. Section 4 describes the class timetabling
ILP model, and Section 5 describes the trainer rostering ILP model. Section 6 dis-
cusses some important details about the implementation of the approach. Section 7
describes our computational experimentation and results. Finally, our conclusions
are given in Section 8.

2 Literature Review

The literature review in this section gives a brief overview of the types of problems
that have been solved in the field of academic timetabling. Comparisons with Aus-
grid’s problem are made, and highlights of important similarities and differences
are presented.

Problems in the area of academic timetabling have attracted a great deal of re-
search attention in recent decades [26]. In many cases the problem has been shown
to be NP-hard [8], often by relating it to the graph colouring problem [18]. For
the classroom assignment problem (CAP)—the problem of assigning n classes to
a set of m classrooms, in such a way that each class is run exactly once and each
room can be used at most once at any given time—Carter [8] proposes that there
are three possible objectives: Feasibility, Satisfiability, and Optimisation. Feasi-
bility asks whether there is any feasible solution given the constraints mentioned
before, Satisfiability asks whether there is a feasible solution that puts each class
into a satisfactory room, and Optimisation is the objective of minimising some
linear cost function. Carter showed that the interval CAP satisfiability for even as
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little as two time periods, as well as the feasibility of the non-interval CAP, are
NP-complete.

Researchers in large-scale timetabling generally do not attempt to find optimal
solutions to problems as they cannot be found in practically acceptable time. In-
stead, much of the recent research has been focused on approximation algorithms
including metaheuristics [20][6], and decomposition methods such as Lagrangian
relaxation [13] and column generation [27][25]. Some timetabling problems can be
expressed as graph colouring problems [21], and there has been some research activ-
ity in using graph colouring heuristics to solve timetabling problems [24][22][29](5].

A recent trend has been to develop so-called “hybrid heuristics” that combine
certain features of one heuristic with another, with the aim of improving perfor-
mance by overcoming the heuristics’ weaknesses. In [14], attempts were made to
improve the convergence rate of Simulated Annealing (SA) by implementing the
memory property of Tabu Search (TS) to solve a university course timetabling
problem. The annealing rate in SA can have a dramatic influence over the perfor-
mance of an SA implementation [31]. It is not uncommon for people to implement
complex reheating rules to help the heuristic avoid being trapped in local min-
ima prematurely. A novel hybrid heuristic was presented in [4], where the authors
propose a Genetic Program (GP) to optimise the annealing schedule in SA. They
presented the dedicated cooling schedules found by GP that converge fastest for
particular problems, and they also provided the cooling schedule that converges
fastest across all problems they tested.

Despite the difficulty in solving large-scale IP-based models, several researchers
have had some success. Perhaps the earliest examples are [19] from 1969 and [1]
from 1973. A more recent example of IP-based university course and examina-
tion timetabling is presented in [10], where the authors augmented an IP with a
heuristic improvement stage. A high school timetabling problem is presented in [3],
where the authors were able to solve the IP directly. An ILP was presented in [28],
which had, amongst others, 99 teachers, 156 courses, and 181 teaching groups.
The model had 35,611 rows, 91,767 integer variables, and 662,824 non-zeroes in
the co-efficient matrix. An optimal solution was obtained in just 10 seconds using
IBM ILOG CPLEX 9.1.2, or about 2 minutes with Coin-OR Branch-and-Cut.

The vast literature produced on university and high school timetabling does not
address the problem considered in our paper. More specifically:

— The timetabling problem considered in this paper has different objectives to
that of traditional university and high school class timetabling problems. In-
deed, in our problem the focus is on satisfying demand, which fluctuates over
the planning horizon, whereas in all publications of university and high school
timetabling problems there is no fluctuation in demand, and typically the main
focus is on the minimisation of teacher and student preference violations.

— Another objective of our problem is to strengthen the robustness of the timetable
over long periods of time by levelling the utilisation of resources, whereas in
university and high school timetabling problems, the goal is to construct a
timetable for one or two weeks that repeats throughout the semester or year.
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Fig. 1 A high-level view of the three-stage approach.

— The timetabling problem considered in our paper is intended for a commer-
cial organisation, where the ability to rent out available rooms is important.
The consideration of such opportunity for renting out rooms is not found in
university and high school timetabling.

— University and high school timetabling problems require the allocation of a
given set of classes to locations and times, whereas in our problem, the number
of classes and their sizes is part of the decisions which are to be made.

— In our problem the timetable should satisfy rigorous restrictions on how courses,
which are composed of several modules, are scheduled. This is in contrast to
university timetabling, where there are no comparable restrictions on the time
and location for the assignment of different activities, such as lectures, com-
puter laboratories, tutorials, etc.

— The problem considered in this paper requires decisions on the movement of
scarce mobile resources between different locations, which is very unusual in
university and high school timetabling.

The above-mentioned differences make the mathematical models commonly used
in university and high school timetabling unapplicable to our problem, which
causes the necessity to develop new mathematical models together with new opti-
misation procedures that address the specific features and objectives of the prob-
lem on hand.

Being new and interesting from a mathematical point of view, the considered
problem is also important from a practical perspective. Indeed, training and re-
training of employees is an important and costly component of the business for
many organisations. For example, according to a 2013 report from the Minerals
Council of Australia, the vast majority of mining training in 2012 was conducted
by the Australian mining industry, with over $1.1 billion spent. The report states
that the training expenditure is almost 5.5% of total payroll, and that almost 98%
of training expenditure is industry-funded with only 2% coming from government
subsidies. [23]

The areas where research on timetabling for training and retraining can be of
significant benefit also include other utility companies, forestry companies, oil and
gas companies, construction companies, etc., to mention a few.

3 Optimisation Procedure

In order to improve tractability and simplify the modelling of Ausgrid’s problem,
we have divided it into two related sub-problems: a class timetabling problem
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and a trainer rostering problem. The former is the problem of allocating modules
to rooms forming classes, where the objectives are that the unsatisfied student
demand is minimised, room swaps are minimised, and the potential to rent out
rooms is maximised. The latter is the problem of, subject to an existing timetable
of classes, allocating trainers to modules where the objective is to minimise trainer
travel and minimise trainer swaps. Aggregated trainer numbers, as opposed to
individual trainers, are included for capacity purposes only, in order to improve the
likelihood that the timetable will allow for a feasible trainer roster. The combined
solution to both sub-problems results in a complete timetable and roster.

To have a flexible tool that is able to solve these complex sub-problems, we
have developed two IP models: one for the class timetabling sub-problem and
one for the trainer rostering sub-problem. IP is flexible in the sense that one
can simply add, remove, or substitute constraints to modify the model in various
ways. Decomposing a larger, integrated problem into multiple sub-problems, such
as Ausgrid’s training problem into the timetabling and rostering sub-problems,
often results in substantially faster optimisation, although usually at the cost of
solution quality. In our case, even after decomposing the problem into two sub-
problems, the timetabling IP model was still too large to be solved in practically
acceptable time given real world data for organisations such as Ausgrid.

In order to produce a complete, usable timetable and roster for Ausgrid in prac-
tically acceptable time, we propose a three stage heuristic approach (see Figure 1).
The first two stages tackle the class timetabling sub-problem, while the third stage
tackles the trainer rostering sub-problem. The first stage produces an initial feasi-
ble class timetable, the second stage attempts to improve the class timetable, and
the third stage allocates individual trainers, subject to the timetable produced in
the second stage, to form a roster.

3.1 Stage 1: Initial timetable construction

The considered class timetabling problem is NP-hard [30][8]. We choose to con-
struct the initial class timetable using the class timetabling IP model rather than
using metaheuristics, as each generated solution is guaranteed to be optimal with
respect to the model being solved, even though the constructed initial timetable
as a whole is unlikely to be optimal.

The first stage constructs an initial feasible timetable incrementally. This is ac-
complished by successively solving the class timetabling IP model for one course
instance at a time. Each time a course instance is scheduled, the rooms and other
resources it occupies become unavailable for subsequent course instances for its du-
ration. As more course instances are present in the partial schedule, more rooms
become unavailable at certain times, and more resources and trainers are con-
sumed in particular locations at particular times. In each subsequent iteration,
variables corresponding to the occupied rooms, resources, and trainers in the par-
tial solution are fixed when creating the IP model. As less rooms, resources, and
trainers become available in each subsequent iteration, the resulting models have,
in general, fewer decision variables.
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Fig. 2 A buffer added to either end of the reduced planning horizon.

The order of the list that determines the sequence in which course instances are
to be scheduled can be arbitrary. Scheduling courses one by one using different
sequences likely results in different timetables with different objective values. It is
reasonable to assume that if the most demanding courses—those which have longer
durations, with many modules, and very specific room and resource requirements—
are scheduled first, and the least demanding courses are scheduled last, then a
better quality initial timetable can be constructed. Based on similar ideas in [7]
and [17], a scheduling complexity value should be estimated for each course, and
course instances should be scheduled in decreasing order of these values. If the
courses are scheduled in descending order of their estimated scheduling complexity,
we can reasonably expect there to be a greater likelihood that an initial timetable
can be constructed in the first stage that minimises unsatisfied demand than if the
course instances were scheduled in a very different order. The course scheduling
complexity value can be estimated by considering:

— The total duration of the course;

— The number of unique mobile resources required by the modules of the course,
and the duration for which they are needed; and

— The room specificity of the modules in the course, i.e. how few rooms the mod-
ules are compatible with, and how many unique, specific rooms are required.

Several initial timetables can be constructed by considering the above-mentioned
order with minor perturbations, such as swapping two course instances in the list.
The timetable with the best objective value can be used in subsequent stages.

To further reduce the size of the IP model, we can add additional restrictions
based on the course instance being solved. We can determine when each course in-
stance should run in order for them to be uniformly distributed along the timeline.
Then, when allocating a single course instance, we can consider a much shorter
planning horizon centred around this time instead of considering the whole plan-
ning horizon. Since we cannot guarantee that the course can be scheduled at ex-
actly the times we want, the restricted planning horizon may need to be extended
to allow some freedom in scheduling (see Figure 2). The shorter the considered
planning window, the more control we have over the position of the course and
the smaller the IP model will be, however a feasible solution may not exist. The
buffer in the planning horizon can start out small, and be incrementally increased
if no solution can be found.

When scheduling course instances one by one, it is also possible to consider only
a single region in the IP model. Looking at the demand of a course, together with
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the state of the current partial solution, we decide in which region the next course
instance should be placed, and include only that region in the IP model. Moreover,
any room incompatible with all of the course’s modules should also be excluded
from the IP model.

The final IP for each iteration of the first stage becomes substantially smaller
and can be typically solved in a few seconds. Given data from Ausgrid, it contains
one course instance with 1 to 5 modules; a planning horizon of between 24 and
144 time periods; and one region with a 1 to 4 locations, each with 1 to 15 rooms.

3.2 Stage 2: Timetable improvement

The first stage constructs an initial feasible timetable that it is unlikely to be
optimal, since poor decisions made at the early stages of the process can have a
compounding effect on the remaining allocations. The second stage attempts to
improve the timetable using a Large Neighbourhood Search (LNS) heuristic. As
with the first stage, the second stage makes use of the timetabling IP model to
produce new solutions.

In each iteration, the components of the incumbent solution whose change may
improve the objective value are identified. For example, suppose one course in-
stance affects the objective value because it contains some room swaps. Perhaps
these room swaps were necessary at the time the initial timetable was constructed
as there was no other way to fit it in, but can now be eliminated. To attempt to
improve the timetable in this regard, the identified course instance, together with
at least one other course instance, should be removed from the timetable and the
class timetabling IP model should be re-solved for the removed course instances,
subject to the remaining timetable. The more course instances are considered si-
multaneously, the better the outcome is likely to be, however the computational
effort required grows rapidly in the number of selected instances.

See Figure 3 for an illustration of a poorly constructed timetable, where three
courses are scheduled one by one, in order. Due to the limited compatibility be-
tween modules and rooms, and poor decisions early in the process, the modules of
Course 3 have been assigned to three separate rooms. During stage 2, the instance
for Course 3 is identified as impacting the objective value due to the room swaps.
Solving the timetabling IP model for only Course 3 alone cannot produce a better
solution as it is already in the optimal position subject to Courses 1 and 2. If the
timetabling IP model is solved for Courses 1, 2, and 3 simultaneously, then the
timetable shown in Figure 4 can be produced, eliminating the room swap cost of
Course 3 entirely.

In each iteration, the only variables present in the IP are those pertaining to the
selected course instances; all other variables are fixed to a constant value deter-
mined by the state of the remainder of the timetable. The “large neighbourhood”
in the LNS heuristic is the set of all feasible solutions to the IP model. Stage 2
continues until any stopping criterion has been reached, such as a time limit or
failure to improve the timetable after a certain number of iterations.
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Rm 2 Course 1 | |Crs 3| | Course 2

Time

Fig. 3 An example of a timetable with unnecessary room swaps.

Rm 1 | Course 2
Rm 2 | Crs3|Crs 3| Crs 3|
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Time ]

Fig. 4 Unnecessary room swaps in Figure 3 avoided.

Stage 2 attempts to improve situations where there are:

1: courses where not all demand has been satisfied,
2: course instances with many room swaps, and
3: course instances occupying rooms that could otherwise be rented out.

We identify several course instances to be rescheduled, which are relevant to one
another with respect to opportunity to make improvements. In the case of 1, the
instances of a selected course whose demand has not been satisfied in a given
region and time period should be paired with other course instances that have
an overlapping set of compatible rooms with the selected instances. If necessary,
additional instances can be created for the courses with insufficient capacity. In
the case of 2, a course instance which contains room swaps should be paired with
one or more other course instances in the same region and time period, and that
have an overlapping set of compatible rooms with the selected instance. In the case
of 3, a set of selected course instances that occupy rooms that could otherwise be
rented out should be paired with one or more other course instances in the same
region and time period, and that have an overlapping set of compatible rooms with
the selected instances, and that are not currently occupying the rentable rooms.
It is important to balance the need to make improvements by selecting as many
course instances as possible, with the need to keep size of the IP model manageable
by selecting as few courses as possible. The procedure in Stage 2 is heuristic, and
therefore cannot guarantee an optimal solution. The algorithm is also vulnerable to
becoming stuck in a local minimum if the selected neighbourhood is not sufficiently
large.

Dorneles et. al. [11] solve a Brazilian high school timetabling problem with a
similar IP-based “fix-and-optimize” heuristic that is conceptually very similar
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to the Stage 2 (improvement) approach discussed here. In their implementation,
they select one of three possible neighbourhood types: classes, teachers, or days.
They explore the set of neighbourhoods by means of a Variable Neighbourhood
Descent (VND) method, in which they limit the size of the neighbourhood by
some predefined parameter, and the neighbourhoods are selected randomly. The
sizes of their sub-problems are sufficiently small to enable repeated solution by
a general-purpose MIP solver in acceptable time. Our Stage 2 approach is sim-
ilar in that we also solve sub-problems, defined by a subset of all variables of
the whole timetabling problem, with respect to the remaining class timetable. In
contrast, our neighbourhoods are selected by analysing the incumbent timetable
and identifying which scheduled course instances negatively affect the objective
value. Of the neighbourhood types discussed in [11], the ‘classes’ neighbourhood
type is the only type applicable in our case, as our timetabling sub-problem only
includes aggregate trainers, and the length of courses relative to time granular-
ity make the ‘days’ neighbourhood computationally impractical. The size of our
neighbourhoods is adaptive, based on analysis of which other course instances are
most relevant with respect to opportunity to make improvements, to the course
instances being improved in a particular iteration.

3.3 Stage 3: Rostering

In the third stage, the rostering IP model is used to allocate specific trainers to
each module on the timetable. While the IP for the timetabling sub-problem can-
not be solved directly for Ausgrid data due to the size of the model, the IP model
for the rostering sub-problem, subject to the produced timetable, is considerably
smaller and can be solved to optimality, typically in under a minute.

Research in rostering has spanned several decades and has steadily been gaining
research attention. The workforce rostering problem can be formulated and solved
in many different ways including Artificial Intelligence, Constraint Programming,
Metaheuristics, and Mathematical Programming approaches [12]. A commonly
used model for scheduling and rostering comes from Dantzig’s set covering formu-
lation [9][12]. We found that the network model in [2] provides an efficient solution
approach for our rostering problem, which is represented as a one minimum cost
flow networks for each trainer, together with some non-network side constraints.
The objective of the rostering IP model is to minimise the total flow cost. The
structures of the networks are given by the timetable for which the roster is being
generated. Flow along a particular arc on a particular network corresponds to a
particular trainer being allocated to a particular module. Since the locations of
trainers and the locations of scheduled modules are known, it is simple to deter-
mine the distance each trainer will need to travel in order to teach a given set
of modules. Moreover, determining the number of trainer swaps is as simple as
counting the incidences where the ith trainer differs from the (i + 1)th trainer for
a given course instance. Flow along each arc on each network therefore represents
some amount of travel distance and the possibility of a trainer swap. The flow cost
of each arc is given by a linear combination of the travel cost and trainer swap cost.
While worker pay is often a high priority in many other rostering problems, we do
not consider it in our rostering sub-problem as Ausgrid trainers are paid a fixed
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salary regardless of what modules they teach. The case of considering workforce
pay may be a consideration in future research.

If the produced timetable has no feasible solution with respect to trainer ros-
tering, the reason must be determined and the problem should be corrected in
the timetable. Due to the nature of the rostering sub-problem, infeasibility always
arises when there are insufficient compatible trainers to teach the modules on the
timetable. If there are n trainers capable of teaching a particular set modules,
however there are m > n of those modules running at a particular time period in
a particular location, then there clearly can be no feasible roster. In this case, we
return to stage two and solve the timetabling model with the additional constraint
that, at all times, the total number of times modules requiring this type of trainer
running at any given time must not exceed n. If this approach continues to fail
to allow a feasible roster can be found, some course instances may need to be
removed from the timetable resulting in some unmet course demand.

4 Timetabling Model
4.1 Time Discretisation

In the timetabling model, time is discretised into half-hour periods. Periods that
are not available for training are not considered, which include lunch times and
any time outside working hours. Periods are grouped into coarser intervals called
days, each of which contain exactly 15 periods. Multiple days are grouped together
into time windows, which represent longer durations such as a week or a month. In
practice, we generally consider a window to span from the first to the last working
day of a calendar month. Finally, periods are grouped together into rental windows.
A rental window represents a set of consecutive periods in which rooms may be
rented out to a third party. Rental windows range from being half a day to several
days long. Rental windows may overlap with one another, such as a morning, an
afternoon, and a whole day rental window on a given day. If a rentable room is
unoccupied for one or more rental windows, it may be rented out to a third party,
potentially bringing in additional revenue to Ausgrid.

4.2 Input Data Set-up

Some pre-processing on the input data can reduce the size of the resulting IP
models. For the purpose of the class timetabling model, we fix the number of
instances of each course to a practical estimation. While in practice each individual
module can exist in many different courses, for the purposes of the IP model we
require each module to be part of exactly one course instance - we refer to these as
module instances. Each module in each course must therefore be duplicated such
that each course instance has a set of unique modules.

Each location may have several rooms, however some rooms may be regarded as
identical, i.e. they have the same list of compatible modules, the same capacity,
the same rental income, etc. In this case, we can group identical rooms into room
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types, where each room type represents a set of rooms in a given location that are
functionally identical. Rooms in different locations are never grouped together,
and each compound room—room with removable dividers—has its own, unique
room type.

Compound rooms can be modelled using a set of mutually exclusive room pairs.
Suppose room C' can be split into two smaller rooms A and B. Rooms A and B
can be used simultaneously, however the use of A is mutually exclusive with that
of C', as is the the use of B with that of C.

4.3 List of Symbols

Sets of primary objects:
The indexed set of periods.
The indexed set of days.
The indexed set of time windows.
The indexed set of rental windows.
The set of locations.
The set of regions.
The indexed set of module instances.
The set of courses.
The set of room types.
The set of resource types.
The " element of any indexed set S.

N QDN ss DT

n
=

8
<

Sets of derived objects:
I. The indexed set of instances for course ¢ € C.
B.; The indexed set of modules instances for course ¢ € C instance
1€ L.
P; The indexed set of periods in day d € D.
P, The indexed set of periods in time window w € f2.
Py The indexed set of periods in rental window A € A.
P.  The set of periods in which course ¢ € C' may start.
Le The set of locations in region £ € =.
R The set of mutually exclusive room pairs.
Rl The set of room types in location [ € L.
R, The set of room types suitable for module m € M.

Primary decision variables:
Xmrp €{0,1} 1 if module m € M runs in a room of type r € R starting
at period p € P, or 0 otherwise.
Yeip €{0,1} 1if course ¢ € C instance @ € I. starts at period p € P, or
0 otherwise.
Y1 €40,1} 1if course ¢ € C instance i € I. runs in location | € L, or
0 otherwise.
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Yt,1k,p

Vi,lk,d

1,4

Ot
Otk

01,4

emax

ezt

ezt

ezt

€ {0,1}

€ {0,1}
ezt

ezt

€ {0,1}

ezt

eR

c Z++
VAl

ezt
ezt
ezt
ez”"
€RT
c Z++
c Z++
c Z++

ezt

The quantity of resource t € T moving from location | € L
to location k € L (I and k may be the same), starting at
period p € P.

The quantity of resource t € T moving from location | € L
to location k € L (I and k may be the same), overnight at
the end of day d € D.

The number of trainers assigned to location I € L on day
deD.

Auxiliary variables:
1 if module m € M runs in a room of type r € R during
period p € P, or 0 otherwise.
1 if course ¢ € C' instance i € I, runs, or 0 otherwise.
The number of students expected to sit in course ¢ € C
instance i € I. during time window w € {2 in region £ € =.
The number of students not accommodated for course ¢ € C
during window w € {2 in region £ € =.
The new room flag for module m € M. If the room type for
this module is that same type of room as for the previous
module, if applicable, then t¢,, = 0, otherwise t,, = 1.
The number of rooms of type r € R occupied during rental
window A € A.
The ith goal term in the objective function.

Constants:
The quantity available of resource t € T'.
The time required (in periods) for a unit of resource t € T'
to move from location [ € L to location k € L.
The number of trainers normally allocated to location I € L
onday d € D.
The maximum number of additional trainers permitted to
any location on any given day.
The maximum number of subtracted trainers permitted
from any location on any given day.
The quantity of room type r € R available at period p € P,
or 0 otherwise.
The expected revenue from renting out a unit of room type
r € R during rental window \ € A.
The length (in periods) of course ¢ € C.
The length (in periods) of the rolling time window used to
compute the minimum and maximum number of times a
course ¢ € C' should be run.
The maximum number of times a course ¢ € C should be
run in any given time window of length 7.
The minimum number of times a course ¢ € C' should be
run in any given time window of length 7.
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Sewe €2 The demand (in students) for course ¢ € C' during window
w € 2 in region £ € =.
a; €RT The coefficient of the ith goal in the objective function.
Um € ZTT The maximum number of students module m € M can
hold.
v €zt The maximum number of students room type r € R can
hold.

4.4 Core Timetabling Constraints

The following constraints express the core requirements of the timetabling prob-
lem and are likely to appear in many similar timetabling problems:

dpm—1
Xm,’r,p = Z Xm,'r,(p—q) VYm € M,T S Rm,p epP (1)
q=0
Z Xm,r,p < Qr,p VreR,peP (2)
meM
Z meup + Z mez»? <1 v{flaFQ} € Rvp S (3)
meM meM
SN Xy = Yeu Vee Cyi€Ieym € By (4)
reRpeP
Yei= > Yeip Vee Ci€ I, (5)
peP,

The auxiliary variables X, rp are set up from X, ,p according to (1). The
constraints (2) express the requirement that rooms should not be double-booked,
however since identical rooms within a single location are aggregated together, the
right-hand-side is given by the quantities of the aggregated rooms. The constraints
(3) also express the requirement that splittable rooms should not be double-
booked, however since splittable rooms are never aggregated together, the right-
hand-side remains 1. The constraints (4) ensure that each module of a course is run
exactly once if the course is run, or not at all. The expressions (5) set up the Y, ;
variable, which is a sum over all periods of Y¢ ; , and also imply > Yeip <1
for all course instances.

pEP,

4.5 Characteristic Constraints

The remaining constraints express the operational requirements that are rarely
found in traditional timetabling problems.
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4.5.1 Module Positioning Constraints

l.—1
S>> Xowp= Yeipq Ve€Ci€l,peP (6)

meEB. ; TERy, q=0
S 3> Xorp = |Beil x Yoy VeeCriele,lel (7)

mEB.; reR, PEP

The constraints (6) expresses the requirement that the modules for a course run
back-to-back, and (7) expresses the requirement that all the modules for a course
must be run in exactly one location.

4.5.2 Capacity Constraints

The following constraints determine the capacity of each course instance in each
time window and region based on the values of the X and Y variables:

Yeiwe < Meg Y Yeip Ve€Cicl,weREES (8)
peP,
Veiwe < Meg » Yeir VeeCiicl,weNEEs (9)

leL,

Yeiwe < Mee(l= Y Xonrp) + min{um, vr}
pEP, (10)
Vee Ci € Ieyw € 2,6 € 5,m € Bey,l € Le,m € Ry

The constraints (8)-(10) set up the Y ; ., ¢ variables given some sufficiently large
constant ./, ¢. For best IP performance, the value of .#. ¢ should be chosen to be
as small as possible, which is the largest course capacity for the course ¢ in the
rooms available in region .

4.6 Trainer Movement Constraints

Trainers are considered in a generalised, aggregated way for capacity purposes
only. Nevertheless, we permit the quantity of these generalised trainers to change
per location per day to give a coarse representation of trainer movements. Each
trainer has a location where they are normally based, however they may be required
to travel to other locations. The total quantity of trainers at location | € L on day
d € D, by default, is given by the constant 6; 4.

Gra <0,q4+6"* VieLdeD (11)
Gra > 01,a—0™" Vi€ LdeD (12)
Z 1,4 = Z&,d Yd € D (13)
leL leL
S Xy < 1a Vie L,de D,pe Py (14)

meM reR,
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Period p —1 Period p Period p+1
Yt11p-1 —~ Ve11p N PH11pt1

Location 1:

Location 2:

¢t,2,2,p—1u Vt,2,2,p U¢t,2,2,p+1

Fig. 5 A sample flow network for some resource t about period p with 2 locations.

The constraints (11) and (12) establish the minimum and maximum number of
trainers permitted to be at a given location on a given day, and the constraints
(13) ensure that the total number of trainers allocated to each location is equal to
the total number of trainers expected to be working company-wide on that day.
The constraints (14) express the requirement that, at any given time, the total
number of modules run in a location concurrently must not exceed the number of
generalised trainers we have chosen to allocate there.

4.7 Resource Movement Constraints

A network formulation can be used to represent the flow of resources between
locations across time. Resources, in this context, refer to shared, mobile pieces
of equipment that are required for teaching particular modules. For each type of
resource for each day, we construct a flow network with the nodes arranged in a
rectangular lattice (See Figure 5). The horizontal axis represents time, and the
vertical axis represents the various locations. Each node represents the end points
of a time period at a given location. Adjacent nodes are connected by directed
arcs horizontally and pointing forward in time, with the flow along those arcs
representing the quantity of the resource available at a particular location at a
particular time. Nodes are also connected between different locations by directed
arcs in such a way that the time interval from the source node to the destination
node is given by the time required to move the resource from the source location
to the destination.

We permit resources to move from any location to any other other location
overnight at no cost, therefore the initial condition for each resource network for
each day is simply that the sum across all locations must equal the available quan-
tity of that resource.

If | = k, the variables v ; 1, represents the quantity of resource ¢ € T" available
at location [ € L during time period p € P. If | # k, the variable represents the
quantity of the resource moving from location [ € L to location k € L starting its
journey at p € P. Since the transport time of resource t € T from [ € L to k € K
is given by ¢ 1%, the arc represented by 11, Will be connected to the node that
represents the start of period p + 6+ ,%.
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The flow balance equations for the networks are expressed as follows:

Z Z djt,l,k:,P(l) =0t VteT,de D (15)
leL keL .

Z Vi kel (p=5e0) = Z Viikp VEET, L€ L dED,pe (Py)\ pdgl)) (16)
keL kel

We ensure that the number of times resources are used is limited by the number
available at the time:

S>> Xy <thriiy VIELteT,peP (17)
meM, reR,

4.8 Spreading Constraints
For each course, we have a defined minimum and maximum number of instances

that may be run in any arbitrary set of consecutive periods of a predetermined
length:

e
ST Yeiptg 2w VeeCpePe (18)
i€l q=0
3o Yeiptg <nd VeeCpe Pe (19)
i€l. g=0

The constraints (18) and (19) establish the minimum and maximum number of
instances, respectively, that must be run across all regions for each course. Selection
of the 7. and the 7, and 77 constants is made given the problem data.

4.9 Objective Function

Being a large-scale industrial problem, there are many potential objectives we can
consider. In this paper, we consider three objectives in a weighted linear function:

— Minimise the number of expected students not accommodated;
— Maximise the rental revenue; and
— Minimise the number of room swaps in the timetable.

The first objective, denoted by Z1, is to minimise the number of students not
accommodated:

I

Z Veiwe + Ucwe =Scwe VeECweREE
icl.

(20)

n

Ue,we >0 Vee C,we 2,6 € (21)

DD D uewe=2 (22)

ceCweNéez
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The second objective, denoted by Za2, is to maximise the rental revenue:

Z Xm,'r,p < Pr,\ Vr e Ra A€ Avp S ]5>\ (23)
mEM

Z2 = Z Z [—dyx X (Qrx — pra)] (24)

reRAEA

where QT,A is the smallest value of Q, p, Vp € P, for each \ € A.

The last objective, denoted by Z3, is to minimise the number of room swaps
across all courses:

Xmorp— Y, Xnrp-1) <tm Ve € Cyi € Ie,m € Bei,v € Rin,p € P
n€B. ;,m#n
(25)
Zy= Y tm (26)
mEM

The objective function is a weighted linear sum of the the individual objectives:
minimise: Z = 121 + a2Z2 + a3 Z3 (27)

with weights a1, a2, and as.

In reality, Ausgrid’s timetabling problem has an ordered bi-criteria objective: the
goal is to maximise the potential room rental revenue and minimise the number
of room swaps (Z2 and Z3) over the set of timetables that minimise the num-
ber of unsatisfied students (Z1). This can be achieved by solving the timetabling
sub-problem for the primary objective of minimising Z;, and then solving the
timetabling sub-problem again for the secondary objectives of minimising over Z»
and Zs3, but with the additional constraint that Z; must assume the optimal value
determined previously. A simpler way of achieving the same result is to give a
sufficiently large coefficient to Z; with respect to the coefficients of Z3 and Zs.

5 Rostering Model

Given a solution to the class timetabling problem from Section 4, the rostering
model describes the problem of allocating specific trainers to modules resulting
in a complete timetable and roster. A minimum cost network flow approach, to-
gether with some side constraints, can be utilised to give a simple and convenient
representation of the rostering problem.
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Day 1 Day 2 Day 3 Day 4
Location 1 Course 1 Crs 4 Crs 4 Crs 6 Crs 6
Module 1 Mod 1 Mod 2 Mod 1 Mod 2
Location 2 Course 2 Crs 5 Crs 5
ocatio Module 1 Mod 1 | | Mod 2
A Course 3 Crs 7
A & Module 1 Mod 1

Fig. 6 A sample timetable, simplified for viewing in this format, showing 4 days, 3 locations,
and 7 courses each with 1 or 2 modules.

Given a timetable, a flow network is constructed for each trainer. There are two
different types of nodes, and four different types of arcs in the networks: home
nodes, activity nodes, commencement arcs, transition arcs, return arcs, and by-
pass arcs. Home nodes represent the location where the trainer starts and ends
their work day. Activity nodes represent specific modules that can be taught by
the trainer. Commencement arcs—representing the trainer commencing training
for a particular day—originate from home nodes and end at activity nodes. Tran-
sition arcs—representing trainer finishing teaching one module and then teaching
another, with or without a break—originate from activity nodes and end at ac-
tivity nodes. Return arcs—representing the trainer completing their training for
a particular day—originate from activity nodes and end at home nodes. Bypass
arcs—representing a particular day when a trainer will not deliver any training—
originate at home nodes and end at home nodes.

As an example, Figure 6 shows a simplified view of a timetable with 7 courses, and
the corresponding flow network is shown in Figure 7. In Figure 7, flow along any of
the arcs from (4:1)—(5:2), (H2)—(4:2), (H2)—(5:2), (5:1)—(4:2), or (H3)—(6:2)
indicate the presence of a trainer swap. Care should be taken not to double-count
trainer swaps. The convention we use is to count only instances where the incoming
trainer differs from the preceding trainer, not when the outgoing trainer is different
from the proceeding trainer. For our incoming-only convention, we do count flow
along the arcs (4:1)—(H3), (5:1)—(H3), or (6:1)—(H4) when determining the
number of trainer swaps.

Flow costs on the arcs of the network are determined by two factors. The first
factor is determined by the distance the trainer needs to travel for the allocation,
including travel to the first module taught in a day, travel from the last module
taught in a day, and also travel from module to module. The second factor is the
trainer swap cost. A trainer swap happens if the arc starts with an activity node
which is not the last module of a course instance, but ends with a home node or
an activity node from a different course instance.

We introduce the following symbols for the rostering model:



A Multi-Stage IP-Based Heuristic for Class Timetabling and Trainer Rostering 21

Day 1 Day 2 Day 3 Day 4

@ —(s2) @@‘

@@@@?@

Time

Fig. 7 The flow network corresponding to the sample timetable shown in Figure 6. (Home
nodes are hatched, and activity nodes are solid)

Sets of objects:
D  The indexed set of days.
M  The indexed set of module instances.
Mg The set of modules that run within day d € D
T  The set of trainers.
T,, The set of trainers capable of teach module m & M.
pred(m)  The set of predecessors of module m € M.

succ(m)  The set of successors of module m € M.

Variables:
Yrm € {0,1} 1 if trainer 7 teaches module m as their first module on
that day, or 0 otherwise.
Yrm,n € {0,1} 1 if trainer 7 teaches module m followed by module n,
or 0 otherwise.
Vrom € {0,1} 1 if trainer 7 teaches module m as their last module on
that day, or 0 otherwise.
1&T,d € {0,1} 1 if trainer T doesn’t teach any modules on day d, or 0
otherwise.
Xm,r €{0,1} 1 if trainer 7 teaches module m, or 0 otherwise.

The flow balance equations for the network are as follows:

Yrat Y, Grm=1 VreT,deD  (28)
meMy
rm+ >, Yram= Y, YrmatPrm VTeET,meM  (29)
neEpred(m) n€succ(m)

where (28) ensures that, at the start of each day, the trainer either teaches one or
more modules or does not teach any modules; and (29) conserves flow throughout
the day. Since the flow for each day is implicitly conserved by (28) and (29), we
do not require any additional equations to balance the flow from day to day.
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Any integral flow is always a feasible schedule for a single trainer, i.e. the network
is constructed in such a way the trainer can never be required to be in two places at
once, nor can they be required to teach a module they are not capable of teaching.

The individual trainer networks on their own cannot guarantee a feasible solu-
tion to the rostering problem, as multiple trainers could be allocated to the same
module, or modules may be left with no trainer at all. We introduce some side
constraints that integrate the many trainer networks into a single IP model.

’[l_JTym + Z wT,n,m = Xm,T Ym € M, reT (30)
nepred(m)
Z Xm,‘r =1 Ym € M (31)
T€T,,

where (30) sets up the auxiliary variable X,,;, which is 1 if trainer ¢ teaches
module m or 0 otherwise, and (31) ensures that every scheduled module is taught
be exactly one trainer.

In order to ensure fairness, we wish to avoid, wherever possible, the situation
where one trainer is scheduled to train much more or less than their peers.

Uf <Y (Wm X Xmr) SUF VreT (32)
mGM

where U, and Uj are the minimum and maximum number of periods, respectively,
that we permit trainer ¢t € T' to teach.

The objective of the rostering problem is to minimise the flow cost all networks
simultaneously.

min Z Z [e1(T,m) X thr m] + Z Z Z [c2(T,m,1) X Pr,m,n]+

T€T menr TET meM neM (33)
ST leslrm) x el + D00 fea(r d) X - d]
T€T men TeT deD

where ¢1(+), c2(+), e3(+), and c4(-) give the flow costs of the commencement, tran-
sition, return, and bypass arcs, respectively, where the flow costs are characterised
by any applicable trainer travel costs and trainer swap costs.

6 Implementation

As a result of the back-to-back restriction when scheduling the modules of a
course instance, there is an implied set of feasible start times for each module
instance. These can be determined by permuting the order of the modules of the
course, and determining the start time of each module relative to the course start
time. Clearly, if no module permutation can allow for certain modules to start at
certain times, then those variables can be eliminated from the model.
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Fig. 8 Typical yearly training volume at Ausgrid.

The solution space of the timetabling model exhibits some symmetry, as, for a
given timetable, the indices of the instances of any course can be permuted without
affecting the objective value. There are n! ways of indexing the n instances of
a single course across an existing timetable. We can eliminate many symmetric
solutions by introducing the following constraints:

P
> Yeiq>Ye(isr), Ve€Cicl,peP (34)
q=0

which ensures that, for any given course, instance ¢ must be run in order to run
instance 7 + 1, and also that instance ¢ must be run no later than instance 7 4+ 1.

In Stage 2 (improvement), since the solution at iteration i is feasible at iteration
i+ 1, it can be provided to the IP solver as a “warm start” or “advanced start”
to begin the search procedure [16].

7 Computational Experiments

Ausgrid’s supplied both current and historical data related to class timetabling
and trainer rostering. The overwhelming majority of their training volume comes
from the eight most frequently run courses, which have between one and four mod-
ules and needed up to 26 instances each for a monthly timetable. There were five
regions and 15 locations, and room counts ranged from one to eight per location.
There were 21 trainers in 11 of the 15 locations, and each trainer could teach
between 8 and 14 modules. There were eight working hours per day, split into
half-hour periods. There were three rental windows per day, one in the morning,
one in the afternoon, and one for the whole day. There was one demand window
in each month that encompassed the entire planning horizon.

Training volume at Ausgrid fluctuates from month to month, following a yearly
pattern. Since most courses are valid for 12 months, students who complete a
course in a particular month are likely to request the same course again around
the same time the following year. Figure 8 shows typical training volume by
month. February—the busiest month—is usually about twice as busy as June
or December—the least busy months.
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Test Case Cols Rows Test Case Cols Rows Test Case Cols Rows
(L]10]2) 13261 18565 14427 20730 16267 23869
(L]10]3) 29215 31393 33099 37108 36605 42592
(L|10]4) 56253 49907 61749 57005 10]4) 69639 66068
(L]10]5) 83383 64823 93693 77022 10]5) 106155 | 91076
(L]15]2) 23246 36118 26284 41816 15]2) 29976 48737
(L]15]3) 52356 58944 60013 70093 15]3) 70050 84574
(L|15]4) 103785 93173 121753 113339 15]4) 134357 127404
(L|15]5) 147920 | 124199 178637 | 159168 15]5) 200594 | 185017
(L]20]2) 35802 56074 41623 66586 47713 78115
(L]20]3) 83827 100481 96509 120324 20]3) 115221 148142
(L]20]4) 153137 150021 178934 180809 20(4) 206623 214455
(L]20]5) 253259 223389 299697 | 275786 20]5) 347315 | 327884
(L]25]2) 52191 82204 60888 97115 25]2) 72637 117327
(L]25]3) 121575 | 151682 149025 | 193513 253) 174001 | 229970
(L]25]4) 225070 | 226831 273907 | 282633 25(4) 321000 | 338276
(L]25]5) 352849 | 322377 421138 | 399011 25|5) 507011 | 493472
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Table 1 The number of variables (Cols) and constraints (Rows) for the timetabling IP model

for each test case.

—~

We generated a series of 48 test cases with similar properties to the supplied data.
All test cases and solution files can be downloaded from https://goo.gl/zUWYV2.
The test cases had planning horizons ranging between two and five weeks, between
two and five regions each with two locations per region, and between two and four
rooms per location. The courses were generated to be between one and five days
long, with up to 15 modules per course. Each of the test cases target one of three
timetable densities: Low (L), Medium (M), and High (H). The course demand values
in the L, M, and H test cases were tuned so that, if all course instances are run at
80% of their student capacity, the resulting timetable will be %, %, and % full,
respectively, where a full timetable is one where every room is occupied at every
time slot. For brevity, we refer to each test case by their target timetable density,
number of days, and number of regions. For example, (L|10|2) is the smallest test
case with low target timetable density, 10 days and 2 regions, whereas (H|25|5) is
the largest test case with high target timetable density, 25 days and 5 regions.

The smallest test case, (L|10]2), had 13261 variables and 18565 constraints for the
complete timetabling sub-problem, and the largest test case (H|25|5) had 507011
variables and 493472 constraints. The number of variables (columns) and con-
straints (rows) for each of the test cases can be seen in Table 1.

We used IBM ILOG CPLEX 12.5.0.0 [15] 64-bit on an Intel i7-4790K quad-core
4.00Ghz system with 16GB of RAM, running Windows 7 Professional. Our code
was written in C# 4.0, and interacted with CPLEX using the IBM ILOG Concert
API. We used default CPLEX settings, except we increased the maximum allowed
memory usage to the total amount of free physical memory.

We chose the weights in the class timetabling objective function to be a; = 10°,
a2 = 5, and az = 1, based on empirical testing and Ausgrid’s inspection of the
produced timetables. For the rostering objective, we gave each km travelled an
objective weighting of 1, and each trainer swap an objective weighting of 5.
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Test Case S1 S2 Test Case S1 S2 Test Case S1 S2
(L[10]2) 13 12 (M[10]2) 22 12 (H[10]2) 43 13
(L]10]3) 44 28 (M]10]3) 103 27 (H|10]3) 168 9550

(L|10[4) 195 | 11634 || (M[104) 287 | 12227 || (H|10/4) 481 | 13075
(L|10[5) 420 | 14549 || (M[10]5) 571 | 15660 || (H|10]5) | 1015 | 16999
(T]15[2) 15 25 (M15]2) 102 31 (H[15[2) 167 34
(T|15[3) 146 62 (M[15[3) 239 86 (H[153) 554 83
(L|15[4) 565 | 19226 || (M|15]4) | 1116 | 18734 || (H|15[4) | 1714 | 20107
(L|15]5) | 1146 | 21492 || (M[15[5) | 2347 | 24786 || (H|155) | 3986 | 27158

(L]20]2) 103 9 (M]20]2) 158 282 (H[202) 339 66
(L[20]3) 443 129 (M[20[3) 589 165 (H[20]3) | 3779 | 18129
(L|20[4) | 1413 | 820 (M[20[4) | 3964 | 28955 || (H[20]4) | 6377 | 28961
(L|20]5) | 6084 | 36161 || (M[205) | 8558 | 42273 || (H|20[5) | 19297 | 71159
(L|25]2) 232 94 (M]25]2) 331 109 (H[252) 805 107
(L]25]3) 888 273 (M25]3) | 1916 | 907 (H[25]3) | 7410 | 24196

(L]25]4) 3006 1492 (M]25]4) 7962 38773 (H|25]4) 17354 | 43881
(L]25]5) 10768 | 48409 (M]25]5) 12577 | 54548 (H]25]5) 43749 | 60956

Table 2 The amount of time, in seconds, the algorithm spent in Stage 1 (S1) and Stage 2
(S2) for each test case.

Test Case || 20 [ 20V [ 200 [[ 2@ | 2B [ 20
(L[102) 0 | 8i31 | 42 0 | 9455 | 42
(L[10]3) 0| -11773 | 54 0 [ -13991 | 56
(L[10[4) 9 [ -14398 | 105 || 9 | -16184 | 92
(L[10]5) 3 | -15668 | 112 || 3 | -21403 | 111
(L[15]2) 0| -i1327 | 65 0| -13632 | 66
(L[15]3) 0 | -16389 | 98 0 | 22053 | 87
(L[15]9) 0 | -21551 | 146 || 0 | -25096 | 156
(L[155) || 34 | -27153 | 156 || 12 | -24446 | 166
(L[20]2) 0| -15804 | o1 0| -20507 | 89
(L[20]3) 0 | -22585 | 139 || 0 | -28911 | 125
(L[20]9) 0 | -34912 | 160 || 0 | -40988 | 158
(L[2005) 0 | 43984 | 257 || 0 | -45091 | 251
(L[252) 0 | -i6621 | 115 || 0 | -20060 | 106
(LZ5[3) 0 | -33200 | 135 || 0 | -39603 | 143
(L[25/%) 0 | 38811 | 250 || 0 | -54119 | 207
(L[Z5]5) 0 | -50316 | 274 || 0 | -62890 | 277

Table 3 The objective value components for stages 1 and 2 for the test cases with low target
timetable density.

The time the algorithm spent in Stage 1 (construction) and Stage 2 (improve-
ment) is shown in Table 2. During timetable construction in the first stage, no
time limit is imposed. During Stage 2, there are two termination criteria: the LNS
algorithm terminates if it is unable to improve the solution after a number of iter-
ations or if a time limit is reached. The time limit was chosen to be 1000-|D|-|Z|- &
seconds and the number of iterations at which to terminate if no improvement can
be made was chosen to be 10 - |D| - |Z] - k, where, for a given test case, D is the
set of included days (as defined in Section 4), = is the set of included regions (as
defined in Section 4), and & is %, %, and % for test cases with low, medium, and
high target density, respectively. Due to the time required to solve each individual
IP model, the the total time sometimes exceeds the time limit slightly.
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Test Case | 20 | 280 [ 20 [ 2P | 29 | z¥
M[10[2) 0 | 6477 | b4 0 | -7682 | 49
(M[10]3) 0 | 6715 | 83 0| -10070 | 72
(M[10[4) 14 | 9884 | 122 || 14 | -12894 | 116
(M[10]5) 5 | -11353 | 140 || 4 | -13897 | 114
(M[15[2) 0 | 6937 | ®4 0 | 9989 | 93
(M[15]3) 0| -16667 | 89 0| -20669 | 90
(M[15[4) 35 | 17520 | 168 || 15 | -22039 | 173
(M[15]5) 18 | 21380 | 182 || 18 | -22456 | 174
(M[20]2) 0 | -15756 | 89 0 | -19439 | 01
(M[20]3) 0 | -16910 | 163 || 0 | -27363 | 129
(M[20[4) 6 | 23372 | 218 || 6 | -24548 | 208
(M[20]5) 8 | 33400 | 312 || 0 | -35073 | 298
(M]25[2) 0 | -15625 | 121 0 | -18673 | 111
(M[25]3) 0 | 21981 | 183 || 0 | -28373 | 18
(M[25]4) 2 | -37006 | 29 2 | 38862 | 281
(M[25]5) 4 | 53925 | 318 || 4 | -56626 | 303

Table 4 The objective value components for stages 1 and 2 for the test cases with medium
target timetable density.

The solution quality results for Stage 1 (construction) and Stage 2 (improvement)
for the test cases with low target timetable density are given in Table 3. Stage 1
was able to construct timetables that satisfied all demand for 13 of the 16 cases. Of
the three cases where not all demand could be satisfied, Stage 2 was only able to
improve one of them with respect to the number of unsatisfied students, bringing
the number of unsatisfied students from 34 down to 12 for that test case. Due to
the room compatibility, course spreading, resource movement, and trainer capacity
constraints, not all test cases have feasible timetables where all student demand
can be satisfied. Stage 2 was able to improve the rental revenue objective by about
18% on average, with a maximum improvement of about 39%. Stage 2 was able to
reduce the number of room swaps by about 4 swaps per test case on average with
a maximum improvement of 43 eliminated room swaps, or about 3% on average
with a maximum improvement of 20%.

The solution quality results for Stage 1 (construction) and Stage 2 (improvement)
for the test cases with medium target timetable density are given in Table 4.
Stage 1 was able to construct timetables that satisfied all demand for 8 of the
16 cases. Of the eight cases where not all demand could be satisfied, Stage 2 was
able to improve three of them with respect to the number of unsatisfied students,
bringing the total number of unsatisfied students from 48 down to 19 for those
three cases. Stage 2 was able to improve the rental revenue objective by about
23% on average, with a maximum improvement of about 62%. Stage 2 was able to
reduce the number of room swaps by about 8 swaps per test case on average, with
a maximum improvement of 34 eliminated room swaps, or about 6% on average
with a maximum improvement of 26%.

The solution quality results for Stage 1 (construction) and Stage 2 (improvement)
for the test cases with high target timetable density are given in Table 5. Stage 1
was able to construct timetables that satisfied all demand for 9 of the 16 cases.
Of the seven cases where not all demand could be satisfied, Stage 2 was able
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Test Case | 20 | 280 [ 20 [ 2P | 29 | z¥
(H[10[2) 0 | 4516 | o4 0 | 5939 | o4
(H[10]3) 8 | 5700 | o4 2 | -8i10 | 81
(H[10[4) 29 | 8914 | 124 || 17 | -10856 | 126
(H[10]) 34 | -9460 | 155 5 | -10587 | 141
H[15]2) 0 | 5539 | 93 0 | 9338 | 08
(H[15]3) 0 | -7822 | 131 0 | -15269 | 127
(H[15[4) 19 | -20583 | 191 || 49 | -21617 | 182
(H[15]5) 10 | -20922 | 233 || 40 | -21976 | 222
(H[20]2) 0 | 8298 | 136 || 0 | -12972 | 1%
(H[20]3) 0 | 9299 | 209 || 0 | -18822 | 190
(H[20[4) 23 | -19805 | 254 || 23 | -20818 | 242
(H[20[5) 0 | -21448 | 314 || 0 | 21443 | 314
(H[25]2) 0 | -8529 | 161 0 | -13369 | 168
(H[25]3) 0 | -17871 | 210 || 0 | -24004 | 231
(H[25]4) 0 | 29399 | 350 || 0 | -30873 | 334
(H[25]5) 26| 36185 | 393 || 26 | -37999 | 37

Table 5 The objective value components for stages 1 and 2 for the test cases with high target
timetable density.

Test Case | S3 Test Case | S3 Test Case S3
(L[I0[2) | 0.1 || (Mi0j2) | 0.1 || (@[i0]2) | 0.3
(L]10]3) 0.2 (M]10]3) 0.3 (H|10]3) 0.5
(L]10]4) 6.2 (M]10]4) 8.6 (H|10]4) 10
(L|10/5) | 18 (M[105) | 16 ([10[5) | 21
T|15)2) | 0.1 || (M15]2) | 0.2 || (H|15]2) | 0.4
(T|I5[3) | 04 || (M[15]3) | 05 || (H153) | 0.5
(T|I5[4) | 25 M[I5[4) | 27 H[I5[4) | 27
(L[15[5) | 22 M[15[5) | 31 (H[15]5) | 38
(L[20]2) | 0.3 || (M20[2) | 1.6 || (H20]2) | 0.3
(L[20]3) | 0.4 || (M[20[3) | 0.5 || (H20]3) | 4.7
(L[204) | 10 (M[20[4) | 12 (H20]1) | 15
(L]20]5) | 25 (M[205) | 29 (H[20]5) | 41
(L[25]2) | 04 || (M252) | 05 || (H25]2) | 0.6
(L[25]3) | 04 || (M25[3) | 4.3 || (H253) | 1L
(L[25[4) | 10 M[25]4) | 17 (H[25]1) | 22
(L|25]5) 29 (M]25]5) 33 (H|25]5) 39

Table 6 The amount of time, in seconds, the algorithm spent in Stage 3 (S3) for each test
case.

to improve three of them with respect to the number of unsatisfied students,
bringing the total number of unsatisfied students from 71 down to 24 for those
three cases. Stage 2 was able to improve the rental revenue objective by about 34%
on average, with a maximum improvement of about 202%. Stage 2 was able to
reduce the number of room swaps by about 6 swaps per test case on average, with
a maximum improvement of 19 eliminated room swaps, or about 3% on average
with a maximum improvement of 16%.

The amount of time, in seconds, the algorithm spent in Stage 3 (rostering) for
each test case is shown in Table 6. The test case that required the longest time
to produce an optimal roster required only 41 seconds, and the largest test case
required only 39 seconds to produce an optimal roster.
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Test Case Cols Rows Test Case Cols Rows Test Case Cols Rows
(L]10]2) 2533 2085 (M]10]2) 2756 2287 (H|10]2) 3495 2854
(L]10]3) 4154 3238 (M]10]3) 4998 3848 (H|10]3) 5862 4538
(L]10]4) 10086 8015 (M|101]4) 12159 9464 (H|10]4) 13337 | 10285
(L]10]5) 13284 9945 (M]10]5) 14941 | 11187 (H|10]5) 17969 | 13391
(L]15]2) 3385 2706 (M]15]2) 4559 3603 (H|15]2) 4808 3786
(L]15]3) 6513 5107 (M]15]3) 6766 5264 (H|15]3) 9093 7064
(L]15]4) 17939 | 13850 (M|15]4) 19070 | 14675 (H|15]4) 19283 | 14743
(L]15]5) 20955 | 15562 (M]15]5) 22425 | 16507 (H|15]5) 27700 | 20106
(L]20]2) 4874 3902 (M]20]2) 4929 3925 (H|20]2) 9771 5352
(L]20]3) 9164 6996 (M]20]3) 9478 7207 (H|20]3) 13400 | 10000
(L]20]4) 18323 | 13831 (M]20]4) 24231 | 18227 (H|20]4) 27456 | 20529
(L]20]5) 32205 | 23638 (M|2015) 37657 | 27487 (H|20]5) 40842 | 29757
(L|25]2) | 5983 | 4811 (M25]2) | 6164 | 4948 (5[25]2) | 9101 | 7200
(L]25]3) 10178 7619 (M]25]3) 13269 9852 (H|25]3) 16155 | 11881
(L]25]4) 23550 | 17618 (M]25]4) 31560 | 23417 (H|25]4) 37222 | 27483
(L]25]5) 34816 | 25222 (M|2515) 37397 | 26970 (H|25]5) 46211 | 33073

Table 7 The number of variables (Cols) and constraints (Rows) for the roster IP model,
subject to the final generated timetable, for each test case.

Test Case | Travel | Swaps Test Case | Travel | Swaps Test Case | Travel | Swaps
(L[T0]2) | 209.7 1 (M[10]2) 0.0 0 (|[10]2) | 419.3 1
(L|10]3) 1045.7 1 (M]10]3) 378.6 0 (H|10]3) 1723.1 1
(L]10]4) 233.0 0 (M]10]4) 490.6 0 (H|10]4) 388.3 1
(L|10]5) 322.3 1 (M]10]5) 177.6 0 (H|10]5) 391.2 2
(L]15]2) 1512.6 1 (M]15]2) 1629.0 1 (H|15]2) 1803.5 1
(L|15]3) 266.1 0 (M]15]3) 105.6 0 (H|15]|3) 853.1 1
(L[T5[4) | 1505.6 0 (M[15[4) | 1887.1 1 (H[15[4) | 1887.1 1
(L|15]5) 3343.1 0 (M]15]5) 4193.0 0 (H|15]5) 4172.1 0
(L[20]2) 20.1 1 (M[20]2) 20.1 1 (H[20[2) 20.1 1
(L]20]3) 0.0 0 (M]20]3) 0.0 0 (H|]20]3) 0.0 0
(L]20]4) 22.3 2 (M]201]4) 0.0 1 (H|20]4) 0.0 1
(L]20]5) 269.2 1 (M]20]5) 669.1 0 (H|2015) 1056.2 0
(L]25]2) 1569.2 7 (M]25]2) 1024.9 3 (H|25]2) 3546.1 4
(L]25]3) 0.0 1 (M]25]3) 0.0 0 (H|25|3) 0.0 0
(L]25]4) 1399.4 1 (M]25]4) 2896.9 1 (H|25]4) 3665.0 1
(L]25]5) 0.0 1 (M]2515) 0.0 4 (H|25]5) 50.9 3

Table 8 The total trainer travel distance and number of trainer swaps for each roster pro-
duced.

The number of variables (columns), and constraints (rows) for the rostering IP
model for each test case, subject to the final generated timetable is given in Ta-
ble 7. The rostering IP model, subject to the final generated timetable has, on
average, about 13% as many variables and about 9% as many constraints as the
complete timetabling TP model for problem described the test case. Moreover, the
complete timetabling TP model has about 16% more constraints than variables,
whereas the rostering IP model has about 23% fewer constraints than variables.
The dominant network flow structure of the rostering model, together with these
substantial differences may explain, in part, why the rostering model is compu-
tationally tractable even for the largest of the test cases, while the timetabling
model remains intractable for all but the smallest test cases.

The total distance travelled by trainers, in kilometres, and the total number of
trainer swaps present in each of the produced rosters is shown in Table 8. Rosters
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TestCase 71 72 73 DT TS | Time T-Ratio | TT-Opt | TT-Heur | R-Opt | R-Heur
(L[10]2) 0 -9455 42 209.7 1 48 0.52 -47233 -47233 1049.3 | 1049.3
(L]10]3) 0 | -13991 56 | 1045.7 1 93 0.73 -69899 -69899 5229.4 | 5229.4
(L]15]2) 0 | -13660 | 67 1454.5 1 171 0.41 -68233 -68094 7273.3 | 7564.2
(L[15]3) 0 | -22053 | 87 371.7 0 597 0.35 -110178 -110178 1858.5 | 1330.4
(L]20]2) 0 | -20576 | 89 20.1 1 1460 0.10 -102791 -102446 101.7 101.7
(L]25]2) 0 | -20060 | 106 | 1390.3 5 8173 0.04 -100194 -100194 | 6956.3 | 7852.8
(M[10]2) 0 -7682 48 0.0 1 862 0.04 -38362 -38361 1.0 0.0
(M]10]3) 0 | -10070 | 72 677.4 0 349 0.37 -50278 -50278 3387.0 | 1893.1
(M[15]2) 0 | -10265 | 90 1745.3 1 1974 0.07 -51235 -49852 8727.7 | 8146.0
(M]15]3) 0 | -20669 | 90 0.0 0 2865 0.11 -103255 -103255 0.0 528.1
(M]20]2) 0 | -19439 | 90 20.1 1 1594 0.28 -97105 -97104 101.7 101.7
(H]10]2) 0 -5939 64 629.0 0 177 0.32 -29631 -29631 3145.0 | 2097.7
(H]10]3) 2 -8416 82 1643.2 1 35168 0.28 1958002 | 1959531 | 8217.0 | 8616.4
(H[15]2) 0 -9373 99 | 1745.3 1 909 0.22 -46766 -46592 8727.7 | 9018.6
(H]15|3) 0 | -15270 | 124 | 7434 0 81161 0.01 -76226 -76218 3716.9 | 4266.4
(H]20]2) 0 | -13041 | 127 20.1 1 41349 0.01 -65078 -64735 101.7 101.7

Table 9 Results related to the optimal solutions for some of the smaller test cases.

which had zero trainer travel and swaps were found in 23 of the 48 test cases.
There was an average of about 18km travelled and about 0.02 trainer swaps per
location per day, which is consistent with Ausgrid’s previous training rosters.

CPLEX was able to find optimal solutions to the full timetabling models de-
scribed in Section 4 and rostering models described in Section 5 to 16 of the 48
test cases, and the results are compared with those from the three-stage heuristic in
Table 9. The columns from left to right are the test case name, the optimal values
for Z1, Z2, and Z3 in the timetabling sub-problem, the optimal values for trainer
travel distance (DT) and trainer swaps (TS) in the rostering sub-problem subject
to the optimal timetable, the time required to find the optimal solution (Time),
in seconds, the ratio of total time required by our heuristic to total time required
for CPLEX to find the optimal solution (T-Ratio), the optimal objective value for
the timetabling problem (TT-Opt), the objective value for the timetabling sub-
problem our heuristic found (TT-Heur), and the optimal (R-Opt) and heuristic
(R-Heur) values for the rostering sub-problem, subject to the optimal and heuris-
tic timetables, respectively. Our heuristic was able to find the optimal timetable
for 7 of the 16 cases. Since the rostering sub-problem is based on the produced
timetable, different timetables yield a different set of feasible rosters and optimal
solutions. The optimal roster, subject to the optimal timetable, had a worse ob-
jective value in five cases, had the same objective value in five cases, and a better
objective value in six test cases.

Ausgrid does frequently engage in long-term strategic planning, where the pur-
chase and sale of organisational resources must be investigated, specific trainer
specialisations must be determined, and the structure of courses must be adjusted
to meet the changing needs of the organisation and the requirements of chang-
ing safety laws. For long-term strategic planning purposes, having high quality
timetables and rosters is of paramount importance to the organisation and the
time requirements of the three-stage heuristic are within acceptable limits. It is a
matter of ongoing research to further improve the process and reduce total com-
putation time where possible.
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8 Conclusions

In this paper we studied an academic timetabling and rostering problem involving
periodic retraining of large numbers of employees at Ausgrid, an Australian elec-
tricity distributor. We developed an IP model to solve the timetabling of course
instances, and an IP model to solve the rostering of trainers to an existing class
timetable. Both models were developed so that they can deal with all the practical
requirements in a flexible manner given the changing nature of the organisation
and industry laws.

Due to the size of the problem, given Ausgrid’s data, it was not possible to solve
to optimality in practically acceptable time. A three-stage heuristic framework has
been presented, which consists of an initial timetable generation stage, an iterative
timetable improvement stage, and a trainer rostering stage. All three stages utilise
the IP models that were developed to produce solutions. The computational results
show that the proposed approach is able to generate solutions for the problem
sizes typical for training at Ausgrid, and that the approach is effective for both
operational and strategic planning purposes. The proposed LNS algorithm is easily
generalisable to many other class timetabling problems from other institutions.

In the few cases where we were able to solve the timetabling sub-problem to op-
timality, the optimal rosters occasionally yielded poorer solutions compared with
the optimal rosters to timetables produced by our heuristic. Even for different
timetables with identical objective values, the optimal rosters can have very dif-
ferent objective values. This reinforces that solving each sub-problem to optimality
does not always lead to a global optimum, which suggests an integrated model is
worth investigating.

Future research can investigate different modelling techniques and related so-
lution approaches to further reduce the required computation time. It can be
investigated whether replacement of the first stage with a different heuristic or
metaheuristic approach has a significant impact on solution time or quality. Oth-
ers can adapt the introduced techniques to other problems and determine whether
they are successful in other problem domains.
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