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Abstract 

Long-term continuous patient monitoring is required in many health systems for monitoring and analytical diagnosing purposes. 
Most of monitoring systems have shortcomings related to their functionality and/or patient comfortably. Non-contact monitoring 
systems have been developed to address some of these shortcomings. One of such systems is non-contact physiological vital 
signs assessments for chronic heart failure (CHF) patients. This paper presents novel real-time demodulation technique and 
estimations algorithms for the non-contact physiological vital signs assessments for CHF patients based on a patented novel non-
contact bio-motion sensor. A database consists of twenty CHF patients with New York Heart Association (NYHA) Heart Failure 
Classification Class II & III, whose underwent full Polysomnography (PSG) analysis for the diagnosis of sleep apnea, disordered 
sleep, or both, were selected for the study. The propose algorithms analyze the non-contact bio-motion signals and estimate the 
patient’s respiratory and heart rates. The outputs of the algorithms are compared with gold-standard PSG recordings. Across all 
twenty CHF patients’ recordings, the respiratory rate estimation median accuracy achieved 91.52% with median error of ±1.31 
breaths per minute. The heart rate estimation median accuracy achieved 91.29% with median error of ±6.16 beats per minute. A 
potential application would be home continuous sleep and circadian rhythm monitoring. 
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1. Introduction 

Obstructive sleep apnea (OSA) is a common and potentially lethal sleep disorder affecting 10 – 17% for males 
and 3 – 9% for females in the United States of America [1]. OSA is the cessation of airflow due to the collapse of 
the upper airway during sleep and can occur at any age, from infancy to old age. Research evidences have indicated 
that OSA is associated with ischemic heart disease, increased prevalence of stroke, coronary artery disease, atrial 
fibrillation, chronic heart failure (CHF) and cardiac sudden death [2]. Non-contact Doppler radar systems have been 
researched for the detection of physiological motions since 1970’s. The majorities of the published results to date 
have been focused on the estimations of physiological rates, such as, respiratory and heart rates for both healthy and 
sleep disordered breathing (SDB) subjects. However, the sleep application of non-contact physiological vital signs 
assessments for CHF patients has been limited. It is also important to emphasize that the majorities of current 
reported achievements for non-contact physiological vital signs estimations are based on ‘stationary’ and ‘direct-
facing’ subject measurements, which is not an ideal scenario for the complexity of sleep environment. This paper 
introduces novel real-time demodulation technique and respiratory & heart rates estimations algorithms applicable 
for embedded applications. This paper organized as follows: section 2 describes the non-contact bio-motion sensor 
that tracks a person’s movement while sleeping. Based on these signals, respiratory and heart rates can then be 
estimated using novel real-time demodulation technique and estimations algorithms as explained in section 3 and 4. 
While section 5 report the outputs of the algorithms as compared with gold-standard Polysomnography (PSG) 
recordings from a set of twenty CHF patients who presented at a hospital sleep laboratory for evaluation of SDB. 
Finally, section 6 concludes the work presented in this paper. 

2. Bio-motion Sensor and Patients Database 

SleepMinderTM (SM) is a ResMed patented novel sensor technology for contactless and convenient measurement 
of sleep and breathing in the home. SM is a dual pulse Doppler system designed to transmit two short pulses of radio 
frequency energy at 5.8 GHz and capable of measuring movements at distance between 0.5 – 3.0 meters, nominally. 
SM sensor also employed quadrature detection technique to overcome well known limitation in radio frequency 
sensing called the range-correlation effect, which leads to two estimates of the movements signals, called I and Q 
channels. In the case of two people lying on the bed, a combination of sophisticated sensor design and intelligent on-
board signal processing results in measuring only the motions of the person nearest to the sensor. The outputs I and 
Q channels are internally filtered by active analogue low-pass filters at 1.6 Hz and sampled at 64 Hz with 12 bits, 0 
– 3.2 Volts resolutions. The 64 Hz samples are then averaged over 4 samples, producing two 16 Hz channels and 
saved to the SM secure digital (SD) memory card in a proprietary binary format. 

A database consists of twenty chronic heart failure (CHF) patients with New York Heart Association (NYHA) 
Heart Failure Classification Class II & III were selected for the study. The patients groups are of 1 female, 18 males 
and 1 undisclosed, who were sequentially admitted in the Royal Brompton Centre for Sleep, London, UK, for the 
diagnosis of sleep apnea, disordered sleep, or both. The patients mean age is 68.89 years, with mean body weight of 
86.87 kg, mean BMI of 28.83 (obesity) and mean recorded sleep duration of 7.78 hours. The consented patients 
underwent full PSG analysis with manually scored by sleep experts. SM was installed in the sleep laboratory and its 
bio-motion signals were recorded simultaneously with the PSG signals. SM was placed facing the patient in line 
with chest at a distance of 0.5 meter and an elevation of 0.5 meter from the edge of the bed. 

3. Real-Time Relative Demodulation Technique 

This paper introduces novel real-time demodulation technique named ‘Relative Demodulation’. The name is 
given as an attribute to the application of ‘Relativity’ concept in the demodulation of the subject’s chest periodic 
motions. The novelty of this technique is that it pivoted from conventional displacement and/or phase-shift analysis 
to introduce derivatives analysis. This technique is real-time and provides the following advantages: 

 
 DC offset, clutter and null-point automatic eliminations. 
 Real-time approximations of the instantaneous derivatives of the subject’s chest periodic motions. 
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 Real-time approximations & separation of the instantaneous subject’s respiratory & heart periodic displacements. 

The non-contact Doppler radar system baseband quadrature outputs I and Q channels generally expressed as: 

                     VttytxdAVtQVttytxdAVtI QQII 
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Where ‘VI’ & ‘VQ’ are the DC offsets and ‘AI’ & ‘AQ’ are the amplitude gain constants of the channels. ‘θ0’ is 
the initial constant phase-shift of the system in radian. ‘λ’ is the wave length, which equal to the speed of light 
divided by the radar operating frequency. ‘d0’ is the initial distant between the radar and subject’s chest in meter. 
‘∆ϕ’ is the phase noise of the system oscillation in radian. Let ‘x(t)’ be the function of respiratory that causes 
changes in the chest displacement in meter. Let ‘y(t)’ be the function of heart that causes changes in the chest 
displacement in meter. For physiological vital signs monitoring, the subject’s chest distance usually within 0.5 – 3.0 
meters, which make ‘∆ϕ(t)’ approaches zero, therefore,  ‘∆ϕ(t)’ can be neglected. 

In context of ‘Relative Demodulation’, I and Q channels from this point onwards are to be referred to as 
‘Observer I’ and ‘Observer Q’. The subject’s chest periodic motions are to be referred to as ‘Observation Target’. 
The fundamental ‘Relative Demodulation’ concept for non-contact Doppler bio-motion system is as follows: 

 Both ‘Observer I’ and ‘Observer Q’ are moving at the same speed, however, at different phases. 
 The instantaneous derivatives of the ‘Observer I’ and ‘Observer Q’ are ‘relative to’ and ‘impacted by’ the 

instantaneous derivatives of the ‘Observation Target’. 
 At any given point in time, both ‘Observer I’ and ‘Observer Q’ observed the same ‘Observation Target’ 

instantaneous derivatives with respect to the other ‘Observer’. 

The ‘Observation Target’ instantaneous velocity as observed by ‘Observer I’ with respect to ‘Observer Q’ and 
‘Observer Q’ with respect to ‘Observer I’ can be expressed as: 
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As shown in (2) and (3), both ‘Observer I’ and ‘Observer Q’ observed the same ‘Observation Target’ 
instantaneous velocity. The null-points can be eliminated by averaging the observed instantaneous velocity of both 
‘Observer I’ and ‘Observer Q’. The resultant ‘Observation Target’ instantaneous velocity can be expressed as: 

       
  

 
    

Q

I

QI A
Akwherems

VtQk
tI

VtI
tQktytxtv 


















  :
8

1


  (4) 

As shown in (4) the DC offset of the channels are eliminated by both the subtraction of ‘VI’ & ‘VQ’ and the first 
derivative. The constant phase-shift and clutter are also eliminated by the first derivative. Let ‘hr(t)’ be the 
respiratory band-pass filter (RBPF). The RBPF filter type, gain and frequency bandwidth will be discussed in 
section 4. The ‘Observation Target’ instantaneous respiratory velocity and displacement can be expressed as: 

                mdttvthtxmstvthtx rr   1  (5) 

We learnt from pathophysiology and anatomy that respiration requires inspiration and expiration efforts, which 
contains both velocity and acceleration. The heart systole (contraction) and diastole (relaxation) also contains both 
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velocity and acceleration. The chest periodic displacements are caused by the velocity and acceleration of the 
inspiration-expiration and systole-diastole cycles in combination. We also learnt from physics that the third 
derivative, often referred to as ‘jerk’, describes the changes of acceleration. Therefore, to describe the changes that 
the heart acceleration acted on the respiration acceleration, the resultant ‘Observation Target’ instantaneous jerk has 
to be derived. The resultant ‘Observation Target’ instantaneous jerk can be expressed as: 
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Let ‘hh(t)’ be the heart band-pass filter (HBPF). The HBPF filter type, gain and frequency bandwidth will be 
discussed in section 4. The ‘Observation Target’ instantaneous heart jerk and displacement can be expressed as: 

                 mdttjthtymstjthty hh   3  (7) 

Backwards-difference and Trapezoidal integration with unit spacing numerical approximations has been selected 
for its simplicity in implementation to discretise the real-time ‘Relative Demodulation’ derivatives and 
displacements. The discretised ‘Relative Demodulation’ equations with ‘fs’ as the sample rate in Hertz are as 
follows: 
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4. Respiratory and Heart Rates Estimations Algorithms 

This paper also introduces novel real-time inspiration & expiration detection, systole & diastole detection and 
respiratory & heart rates estimations algorithms, pioneering the estimations of respiratory and heart rates for chronic 
heart failure (CHF) patients in the complexity of sleep environment. The novelty of these algorithms is that it is real-
time, fast, accurate, low computational and applicable for embedded applications. 

As indicated in section 2, the SleepMinderTM analogue-to-digital converter (ADC) voltage resolution is 0 – 3.2 
Volts. The voltage mean value, which is the reference DC offset, is equal to 1.6 V. Therefore, VI & VQ are 
approximately equal to 1.6 V. According to the undisclosed SleepMinderTM technical specifications, channels I and 
Q amplitude gain constants are approximately equal and are typically 15 – 20 dB. Therefore, the amplitude gain 
constants AI & AQ are approximately equal and their ratio ‘k’ is also approximately equal to 1.0. 

Butterworth band-pass filter has been chosen to implement both respiratory band-pass filter (RBPF) and heart 
band-pass filter (HBPF). The reason for choosing such type of filter is that the frequency response of Butterworth 
filter is maximally flat (i.e. has no ripples) in the pass-band and rolls off towards zero in the stop-band. In addition, 



51 Vinh Phuc Tran and Adel Ali Al-Jumaily  /  Procedia Computer Science   76  ( 2015 )  47 – 52 

the implementation of Butterworth filter is much simpler and performs much faster as compared to other FIR filters, 
which is more applicable for embedded applications. The selected frequency bandwidth for RBPF is 0.2 – 0.5 Hz 
corresponds to 12 – 30 breaths per minute. The selected frequency bandwidth for HBPF is 0.7 – 1.6 Hz corresponds 
to 42 – 96 beats per minute. The order of the Butterworth band-pass filter has been chosen to be at 6th order with 
unity gain. 

The key to inspiration & expiration detection algorithm relied on the discretised ‘Observation Target’ 
instantaneous respiratory velocity as specified in (9). The detection rules for inspiration ‘i[n]’ and expiration ‘e[n]’ 
can be expressed as: 
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 R1: The current detected inspiration/expiration index with value equal 1, subtracts the previous detected 
inspiration/expiration index with value equal 1, have to be greater or equal to ‘2fs’, where ‘fs’ is the ADC sample 
rate in Hertz. This allows up to a maximum of 0.5 Hz to be detected, any higher frequency will be ignored. 

 R2: The current detected inspiration/expiration index with value equal 1, subtracts the previous detected 
expiration/inspiration index with value equal 1, have to be greater or equal to ‘fs’. 

The key to systole & diastole detection algorithm relied on the discretised ‘Observation Target’ instantaneous 
heart jerk as specified in (11). The detection rules for systole ‘s[n]’ and diastole ‘d[n]’ can be expressed as: 
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 H1: The current detected systole/diastole index with value equal 1, subtracts the previous detected 
systole/diastole index with value equal 1, have to be greater or equal to ‘0.5fs’, where ‘fs’ is the ADC sample rate 
in Hertz. This allows up to a maximum of 2 Hz to be detected, any higher frequency will be ignored. 

 H2: The current detected systole/diastole index with value equal 1, subtracts the previous detected 
diastole/systole index with value equal 1, have to be greater or equal to ‘0.25fs’. 

The respiratory rate can be estimated from the averaged sum of the detected inspiration and expiration cycles per 
selected window-width. The heart rate can be estimated from the averaged sum of the detected systole and diastole 
cycles per selected window-width. For this research purpose, a fixed window-width of 60 seconds (2 epochs) and a 
sliding window-width of 30 seconds (1 epoch) are employed. 

5. Results and Discussions 

A patient (out of 20) was selected as an example to demonstrate the accuracy of the real-time ‘Relative 
Demodulation’ technique and estimations algorithms and is shown in “Fig. 2”. “Fig. 2 (a)” top and bottom left-side 
graphs with a data segment of 60 seconds shows that the respiratory displacement accurately demodulated as 
compared to the PSG RIP Thorax respiratory signal. The inspirations and expirations have also been accurately 
detected. “Fig. 2 (a)” top and bottom right-side graphs with a data segment of 10 seconds shows that the heart 
displacement accurately demodulated as compared to the PSG ECG signal. The systoles (troughs) and diastoles 
(peaks) have also been accurately detected. “Fig. 2 (b)” shows that the SM estimated respiratory and heart rates 
track along exceptionally well with the estimated RIP Thorax respiratory and ECG heart rates for the entire duration 
of the sleep recording of 6.39 hours. The differences in the x-axis for all graphs are due to the resampled PSG data. 

The performance measure was also obtained for all twenty chronic heart failure (CHF) patients and is shown in 
“Fig. 3”. Across all twenty CHF patients’ recordings, the respiratory rate estimation median accuracy achieved 
91.52% with median error of ±1.31 breaths/minute. The heart rate estimation median accuracy achieved 91.29% 
with median error of ±6.16 beats/minute. 
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Fig. 2. (a) SleepMinderTM demodulated respiratory & heart displacements; (b) SleepMinderTM vs. PSG estimated respiratory and heart rates. 
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Fig. 3. (a) SleepMinderTM estimated respiratory rate mean accuracy and error; (b) SleepMinderTM estimated heart rate mean accuracy and error. 

6. Conclusion 

The novel real-time ‘Relative Demodulation’ technique and respiratory & heart rates estimations algorithms have 
been demonstrated with good accuracy for twenty chronic heart failure (CHF) patients in the complexity of sleep 
environment. A potential application would be home continuous sleep and circadian rhythm monitoring. 
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