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Key points summary: 

 The standard method of magnetic nerve activation using pulses of high current 

in coils has drawbacks of high cost, high electrical power (of order 1 kW), and 

limited repetition rate without liquid cooling. 

 Here we report a new technique for nerve activation using high speed rotation of 

permanent magnet configurations, generating a sustained sinusoidal electric field 

using very low power (of order 10 W). 

 A high ratio of the electric field gradient divided by frequency is shown to be the 

key indicator for nerve activation at high frequencies. 

 Activation of the cane toad sciatic nerve and attached gastrocnemius muscle was 

observed at frequencies as low as 180 Hz for activation of the muscle directly 

and 230 Hz for curved nerves, but probably not in straight sections of nerve. 

 These results, employing the first prototype device, suggest the opportunity for a 

new class of small low-cost magnetic nerve and/or muscle stimulators. 

 

Abstract:  

Conventional pulsed current systems for magnetic neurostimulation are large and 

expensive and have limited repetition rate because of overheating. Here we report a new 

technique for nerve activation, namely high-speed rotation of a configuration of 

permanent magnets. Analytic solutions of the cable equation are derived for the 

oscillating electric field generated, which has amplitude proportional to the rotation 

speed. The prototype device built comprised a configuration of two cylindrical magnets 

with antiparallel magnetisations, made to rotate by interaction between the magnets’ 

own magnetic field and three-phase currents in coils mounted on one side of the device. 

The electric field in a rectangular bath placed on top of the device was both numerically 

evaluated and measured. The ratio of the electric field gradient on frequency was 

approximately 1 Vm-2Hz-1 near the device. An exploratory series of physiological tests 

was conducted on the sciatic nerve and attached gastrocnemius muscle of the cane toad 

(Bufo marinus). Activation was readily observed of the muscle directly, at frequencies 

as low as 180 Hz, and of nerves bent around insulators, at frequencies as low as 230 Hz. 
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Nerve-muscles with the muscle elevated, to avoid its direct activation, were 

occasionally activated, possibly in the straight section of the nerve, but more likely in 

the nerve where it curved up to the muscle, at radius of curvature 10 mm or more, or at 

the nerve end. These positive first results suggest the opportunity for a new class of 

small, low-cost devices for magnetic stimulation of nerves and/or muscles. 

 

Abbreviations 

MQS, magnetoquasistatics; NdFeB, neodymium iron boron; TENS, transcutaneous 

electrical nerve stimulation. 
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Introduction  

Activation of nerves is being used, or trialled, for the treatment of many medical 

conditions including: pain (Johnson, 2014), epilepsy (Jobst, 2010), migraine (Schoenen 

et al. 2013), incontinence (Horrocks et al. 2014), muscle atrophy (Robinson & Snyder-

Mackler, 2007), depression and Parkinson’s disease (Kobayashi & Pascual-Leone, 

2003). Presently, there are three classes of neurostimulators. Transcutaneous electrical 

nerve stimulation (TENS) devices are widely used for masking pain with a tingling 

sensation and to produce muscle contraction (Robinson & Snyder-Mackler, 2007). They 

are low cost (ca. US$100) but they use surface electrodes to pass current through the 

skin, which can activate nociceptive nerves causing pain and burning sensations, or 

indeed burning (Gondin et al. 2011). Implanted electrical neurostimulators avoid this 

drawback and can activate specific nerves, but they are expensive (ca. US$10,000) and 

require surgery, with consequent infection risk. Devices of the third type activate nerves 

non-invasively by employing a changing magnetic flux density B penetrating the body 

to generate an electric field E via Faraday's Law: 

t


 


B

E .             (1) 

Existing magnetic neurostimulators repeatedly charge and discharge a capacitor bank to 

drive short pulses of high current in a coil placed outside the body (Barker, 1991). They 

are expensive (exceeding US$10,000), high power (of order 1 kW), and large (usually 

trolley-mounted) devices. The high current generates high Ohmic heating in the coil, 

and if a high pulse repetition rate is used, pumped liquid cooling is required through the 

coil, adding to complexity and cost. For example, the MagPro X100 can provide 100 

pulses per second, but only at 30% of full amplitude (MagVenture, 2007). 

In contrast, moving permanent magnets can provide a time-varying magnetic 

field without any heating. The latest high strength NdFeB magnets have magnetic 

remanence of 1.45 T and are equivalent to a 1.1 kA surface current density loop for 

every mm of magnet thickness (Watterson, 2000). However, there are no reports in the 

product or academic literature of nerve or muscle activation solely from the motion of 

permanent magnets. Nikken Inc. markets the “Biaxial Powermag” which spins a low-

strength barium ferrite spherical magnet about two axes (Nikken, 2014) at up to 1,500 
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rpm, but there is no claim of nerve activation in the related patent (Ardizzone, 2003) 

and the device does not cause “any discernible sensory effects” (Weintraub et al. 2009). 

A device which rotates three magnets positioned near a subject’s head to produce 

electromagnetic fields of frequency at the subject’s alpha-wave, 8-13 Hz, is being 

trialled as a treatment for major depression (Jin & Phillips, 2014; Leuchter et al. 2015). 

Jin and Phillips (2014) assert that “the energy of the sinusoidal magnetic field is 

estimated at less than 1% of a standard rTMS [repetitive Transcranial Magnetic 

Stimulation] device” (without giving details of how they calculated that estimate) and 

infer that the stimulation is “sub-threshold and does not cause neuronal depolarization, 

but instead uses low level alternating induced electric field to entrain neuronal firing”. 

Thus the authors assert that the imposed electric field modulates the endogenous alpha-

wave, but that the electric field if acting alone would not cause activation of any nerve 

cell.  

A complementary range of medical applications might arise if, for frequencies 

and electric field amplitudes which were sub-threshold for the activation of a particular 

nerve, the oscillating electric field was found to block an action potential travelling 

along the nerve. Such nerve conduction blocking by AC biphasic electrical stimulation 

generally requires frequencies greater than 1 kHz (Kilgore & Bhadra, 2014) but partial 

blocking has been observed at 600 Hz (Shaker et al. 1998). Applications could include 

the blocking of motor nerves to treat spasticity and the blocking of sensory nerves to 

treat peripheral nerve pain (Kilgore & Bhadra, 2014). 

Here we report a new technique for direct magnetic activation of nerves and 

muscles, namely the high speed rotation of a configuration of permanent magnets in a 

device which resembles a motor, but one with no mechanical output and no 

ferromagnetic material. The electromagnetic field theory is first developed and a new 

analysis is made of previously published data on magnetic nerve activation. The 

Methods section gives mechanical and electrical details of the prototype device made, 

as well as details of the physiological testing. The Results section compares the 

measured and calculated electric fields generated by the device and reports results from 

a range of in vitro experiments undertaken on the sciatic nerve and attached 

gastrocnemius muscle from cane toads (Bufo marinus). 
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Electromagnetic Field Theory 

Hereafter, we consider the electric field E generated inside the body by a 

rotating configuration of permanent magnets, which can be evaluated as the solution of 

eqn (1) of form: 

t


  

A

E ,            (2) 

where the magnetic vector potential A satisfies   B A and the Coulomb gauge 

. 0 A . In a conducting medium of isotropic electrical resistivity  , the electric field 

E drives a current density J obeying Ohm’s Law: 

E J .              (3) 

For an oscillation of frequency f, the penetration skin depth   of the magnetic field into 

the medium (assumed non-magnetic) is 

0f


 

 ,             (4) 

where 0  is the vacuum magnetic permeability (Lorrain & Corson, 1970). Over the 

range 0.1–1 kHz, the resistivity of human tissue can be stated as generally in the range 

1–10 m (Gabriel et al. 1996). The smallest implied penetration depth, for 1 kHz and 

1 m, is  = 16 m, which is very much larger than human anatomical dimensions. Thus 

the magnetic field generated by eddy currents is negligible relative to the applied 

magnetic field and A  can be approximated as that from the magnets alone, in vacuum. 

The components of A  can therefore be taken as constant when specified relative to a 

co-ordinate frame rotating with the rotating magnet configuration. Suppose the rotating 

cylindrical co-ordinate frame ( , , z )r     aligns with the fixed space frame ( , , z)r   at 

0t   and that the rotation angular velocity is r  so that r r  , z z  , and rt     . 

In terms of the initial magnetic vector potential ( , , z )r    A  = 
0

( , , z)
t

r 


A , the electric 

field component from the magnet configuration rotation alone, as if in vacuum, is 

   , , , ,

, , , ,
r

r z r z
m r

r z r t z

A AA A A A

t t t t
 

  


  

 



                           

A
E ,  (5) 

which is seen to be proportional to the rotational speed.  
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Away from the nerve fibre, the charge build-up needed to generate the potential 

field   is very small and the magnetoquasistatics (MQS) approximation (Larsson, 

2007) can be made, entailing: 

. 0 J .              (6) 

Substitution of J from eqns (2) and (3) into eqn (6) gives the equation to be solved for 

the potential external to a nerve fibre e : 

1 1
. .e t


 
    

          

A
,           (7) 

which simplifies to Laplace’s equation 2 0e   if   is uniform. The boundary 

condition assumed on the skin surface is that the normal component of current is 

negligible, 0n J , hence by eqns (2) and (3): 

  n
e n t

 
  


A

.             (8) 

The above approximations cannot be employed to determine the electric 

potential interior to the axon i  as the capacitive effect across the semi-insulating 

myelin membrane cannot be ignored. Instead, the potential difference across the nerve 

fibre membrane i ev     can be modelled prior to activation by the one-dimensional 

“cable equation” (Hodgkin & Huxley, 1952; Basser & Roth, 1991; Nagarajan & 

Durand, 1996):  

2
2 2

2
es

r

Ev v
v v

s t s
    

   
  

,          (9) 

where s  is distance along the nerve fibre, esE  is the tangential component along the 

nerve of the electric field external to the nerve,   is a length constant,   is a time 

constant, and rv  is a resting potential difference sustained by ion pumps in the 

membrane, typically ca. –70 mV. By eqn (3), the boundary condition of zero interior 

current from a nerve fibre end requires zero tangential component of the interior electric 

field at the fibre end, i.e. 0isE  . By eqn (2) and continuity of 
t



A

 across the nerve 
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fibre membrane, the boundary condition at the nerve fibre ends for any magnetic 

excitation is 

es

v
E

s





   at s a  and at s b  (with b a  assumed).    (10) 

This is a much simpler though equivalent condition to that used by Rotem & Moses 

(2008) who imposed 0
v

s





 at the nerve end but also applied a  -function esE

s




 at the 

end, which when eqn (9) is integrated infinitesimally in from the end results in eqn (10) 

as the effective boundary condition. Activation of a nerve action potential occurs when 

v  rises (is depolarised) to a threshold value, usually ca. 50 mV (Malmivuo & Plonsey, 

2009). The term esE

s





 is called the “activating function”. 

For any rotating magnet configuration (or any rotating current configuration 

with constant current amplitude), the amplitude of the electric field increases 

proportional to the rotation frequency, since by eqn (5) both the magnet in vacuum 

component mE  and the implied boundary forcing terms  m n
E  in eqn (8) are 

proportional to the rotation angular frequency r . If p magnet pole pairs are disposed 

around the configuration, then the electrical angular frequency is rp  , related to 

the frequency f (in Hz) by 2 f  . The ratio of the maximum amplitude of the 

activating function over a cycle at a point divided by frequency, 


esE

F f
s





,            (11) 

is thus independent of frequency for a rotating magnet configuration. 

For an electric field which is purely sinusoidal in time, solutions of the cable 

equation are sought via separation of variables. Using bold face italic upper case letters 

to denote complex phasors, in particular: 

 Re ( ) i t
rv v s e   V ,          (12) 

where Re denotes the Real part, the cable eqn (9) becomes the following complex linear 

diffusion eqn: 
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2
2 2

2
esdd

i
ds ds

    
EV

V V ,         (13) 

with boundary condition eqn (10) at the nerve fibre ends becoming: 

es

d

ds


V
E   at s a  and s b .         (14) 

For electric fields which are periodic in time but not purely sinusoidal, a Fourier series 

decomposition can be used and the solution can be obtained by summing over all 

harmonics. 

Analytic solutions to eqn (13) can be obtained by a convolution with a Green’s 

function obtained from the solution for delta function forcing, under given boundary 

conditions (Cole et al. 2011; Rotem & Moses, 2006). For example, if the nerve fibre is 

very long and the boundary conditions are taken as 

0
d

ds


V
 as s   and as s  ,       (15) 

then the solution to eqn (13) is 

   e
2

s sesd
s s ds

ds
 

 



   
E

V ,        (16) 

where   involves a principal complex square root: 

1 i







.           (17) 

For certain limits, explicit results can be established for eqns (13)-(14) by 

considering the order of magnitudes of the terms of eqn (13): 

2

2 mV
l


,  mV ,  mV ,  

2

2 mF



,          (18) 

where l is the length scale of variation of esd

ds

E
 (hence also of V), and mV  and mF  are 

the maximum magnitudes of V and F . 
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In the limit of low frequency, the scaling analysis (18) shows that providing 

either 1   or 
2

2l

  , the iV  term of eqn (13) becomes negligible compared 

to the other terms on the left hand side. There is no other dependence on   in eqns 

(13)-(14), other than dependence of esE  (and esd

ds

E
) on  . Thus, in the low frequency 

limit, mV  is governed by the activating function esd

ds


E
 and the boundary esE  with no 

other reference to  . Because of the 1 f  factor in eqn (11), for mV  to reach a given 

activation threshold magnitude thV  (e.g. 20 mV), the required maximum magnitude thF  

of F would have to increase inversely proportional to frequency as frequency 

approaches zero.  

An approximate analytic solution can be given to eqns (13)-(14) when the 

scaling analysis (18) suggests that the first term, the diffusion term, should be much 

smaller than the other terms on the left hand side of eqn (13), which is when the 

following condition applies: 

2
2 2

2
1

l

   .             (19) 

Boundary layer theory (Bender & Orszag, 1978) shows that the diffusion term can be 

neglected away from the ends, but forms a “dominant-balance” with the V terms over 

boundary layers at the ends in order that the boundary conditions (14) can be satisfied. 

The solution over each boundary layer is a steep exponentially decaying oscillation, and 

the global first-order solution can be written  

       2 s a s bes
es es

d
a e b e

ds
        

E
V E E ,    (20) 

where   is given by eqn (17). If the electric field at a nerve end is non-trivial, then by 

eqn (19) the boundary layer terms dominate at the ends and the maximum potential 

amplitude will occur at the end with the higher electric field amplitude and have 

amplitude 
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 1 42 21
m esV E



 



  at nerve end if eqn (19) holds.   (21)  

In the low frequency limit 0  , the limiting condition (19) applies if l  , and by 

eqn (17),    and eqn (21) simplifies to m esV E . This boundary layer solution 

   s a
es a e    E  with 0a   was noted by Miranda et al. (2007) for a semi-infinite 

nerve fibre in a steady state uniform electric field. In the high frequency limit   , 

the limiting condition (19) always applies, and by eqn (17), 
1

2

i


   
 

 and eqn 

(21) simplifies to 
1 2 1 2m esV E


 
 . Both these limiting mV  for low and high frequency 

were observed by Rotem & Moses (2008, p. 5077) in numerical solutions for low and 

high  . For a rotating magnet excitation in which esE  is proportional to  , 
1 2 1 2 esE


 

would increase as 1 2 . Thus in the high frequency limit, if the electric field is 

significant at an end of the nerve, then activation will first occur at the end with the 

higher electric field and the threshold amplitude of the electric field and its related thF  

would fall with frequency, scaling as 1 2f  . 

Assuming that eqn (19) holds and that the electric field is negligible at the nerve 

ends, then the boundary layer terms of eqn (20) vanish leaving  

2

1
esd

i ds




 


E
V ,          (22) 

showing that V depends on the local esd

ds

E
. To reach threshold amplitude thV  thus 

requires, in terms of the metric F defined by (11): 

2 2

1
1th bF F

 
      if eqn (19) holds,     (23) 

where 

2

2 th
b

V
F




 .            (24) 
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If 
2

2
1

l

  , then eqn (19) holds for all   and so eqn (23) holds for all  . In the limit 

  , eqn (19) holds whatever the value of 
l


, and thF  approaches a constant value: 

th bF F   as    .          (25) 

If 
2

2
1

l

   is not satisfied, i.e. if the diffusion term 
2

2
2

d

ds
 V

 is not negligible in (13), then 

the diffusion term can be expected to reduce the peak in V , hence the threshold thF  

should be greater than that given by eqn (23). Thus the high frequency limit value bF  

should be a base value for thF . 

In the low frequency limit, eqn (19) holds if 
2

2
1

l

  , and eqn (22) simplifies to 

2 esd

ds
 

E
V   as 0  ,         (26) 

showing the explicit dependence of V on the activating function with no other 

dependence on  . 

In the high frequency limit, eqn (19) always holds, and eqn (22) simplifies to 

2 1

2
esd

i
f ds




 
  

 

E
V   as   ,       (27) 

showing that the amplitude of the membrane potential depends only on the local value 

of the metric F, defined by eqn (11). For esd

ds

E
 real and negative, i.e. for esE

s




 a 

negative cosine wave, eqn (27) shows that rv v  is a positive sine wave. Thus 

activation should first occur near the end of a negative half cycle of esE

s




. This can be 

understood in terms of the cable eqn (9) which becomes a balance between the time 

derivative term 
v

t




 and the activating function esE

s





 in the high frequency limit. 

Since the change in v depends on 
v

t




 times its duration, it is not esE

s





 alone which 
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governs the change in v but the product of esE

s





 with its duration. Division of esE

s





 

by the frequency is equivalent to multiplying by the period, and so the metric F 

quantifies the electric field gradient times its duration (alternatives would have been to 

multiply by half the period, being the duration of a lobe of the sine wave, or to divide by 

angular frequency, but using frequency and introducing Hz in the metric’s unit ensures 

certainty in the metric’s evaluation). 

While the importance of the stimulus duration is well-known for electrical 

stimulation, it is often neglected in magnetic stimulation, with emphasis placed on the 

electric field gradient alone. For example, Davey et al. (1994) examined the threshold 

activation of an African bullfrog sciatic nerve threaded through the hole in a 

ferromagnetic toroidal core, wound by a coil excited sinusoidally. Based on pulsed 

current experimental results by Maccabee et al. (1993), Davey et al. had sought a 

threshold electric field gradient of 4 21.3 10 Vm  with no reference to frequency. 

However, the observed threshold electric field gradients for their large core (their Table 

II) ranged by factor 50 from 2 23 10 Vm  to 4 21.53 10 Vm  as the frequency varied 

from 102 Hz to 104 Hz, so no single threshold electric field gradient can be stated. 

Instead of using the electric field gradient as the metric, the observations can be much 

more clearly interpreted when plotted in terms of the metric F proposed above – see our 

Fig. 1. There is considerable experimental variation, but for each core, thF  is seen to 

decrease with f before settling, by about 1 kHz, to limiting values of about 

2 11.5 Vm Hz   for the large core (axial height 11 mm) and 2 12 Vm Hz   for the small 

core (height 6.35 mm). The approach of thF  to a constant base value is consistent with 

the conclusion eqn (25) above, given that the nerve ends can be inferred from Fig. 10 of 

Davey et al. (1994) to be in a region where the electric field is negligible. According to 

eqn (24), the limiting values for the two cores should be equal, dependent only on nerve 

properties, and given the uncertainty in numerical differentiation from measurements 

and the variability in the plotted F, their equality can be considered within the tolerance 

on their values. The observed increase in thF  at low frequency was never as fast as the 

1

f
 dependency established analytically above for 0f  , equivalently the threshold 
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electric field gradient never settled to a constant value with decreasing f. Lower f may 

have been needed but magnetic saturation of the core prevented such measurement (and 

may have also affected the lowest frequency reading since the cores were driven just up 

to saturation). 

For any rotating magnet configuration (or magnetic field driven by sinusoidal 

current if the current amplitude is independent of frequency), F given by eqn (11) is 

independent of frequency. The magnet configuration will either activate the nerve 

positioned along a certain path or not depending on whether F is above or below bF , if 

the rotation speed is taken sufficiently high. The simplicity of this criterion for 

activation makes F the most useful metric in assessing nerve activation by rotating 

magnets. A gradient of the parallel component of the electric field along the nerve can 

be achieved even for a uniform electric field if the nerve is curved, as has been 

examined for pulsed current magnetic induction (Maccabee et al. 1993; Rotem & 

Moses, 2006). But for straight nerves, a high straight-line gradient is needed. 

Methods 

Ethical approval 

The physiological testing reported here was approved by the University of 

Technology Sydney Animal Care & Ethics Committee and conformed to the Australian 

NHMRC Code of Practice for the use of animals in research. The authors understand 

the ethical principles under which the Journal of Physiology operates and confirm that 

this work complies with the Journal’s animal ethics checklist. 

Prototype device magnetic configuration 

A number of magnet configurations are proposed in the patent application 

(Watterson, 2012) for the creation of high electric field gradients. Here we report results 

on one of those configurations, called a “bipole”, comprising two diametrically 

magnetised cylindrical magnets placed adjacent to each other with opposite 

magnetisation directions (Fig. 2A). The electric field component mE  from the rotation 

of these cylindrical magnets is sinusoidal in time at any point. Large mE  in opposite 

directions are created below the oppositely directed magnets (Fig. 2A). Hence a high 
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gradient mzE

z




 is created on the mid-plane ( 0z  ) of the bipole, for z the axial co-

ordinate, axes shown in Fig. 2A. The use of two adjacent magnets doubles the electric 

field gradient created on the mid-plane, compared to one magnet cylinder acting alone. 

It also doubles the peak component of mE  perpendicular to the axis, m yE , on the mid-

plane line ( 0z  , x = constant), which occurs 90 out of phase with the peaks in m zE . 

The prototype bipole device used two NdFeB magnets, grade N52 from China Rare 

Earth Magnet Limited (2015), nominal remanence 1.43-1.48 T at 20C, each with 

diameter and axial length 30 mm.  

Prototype device mechanical aspects 

NdFeB magnets are brittle and the design of the device rotor must ensure its 

mechanical robustness. A 0.88 mm thick containment tube of Ti-6Al-4V was heat 

shrunk onto the magnets, interference fit in diameter approximately 0.06 mm. 

Calculations using formulae established by Pfister & Perriard (2008) show that this 

reduced the radial stress in the magnet on its axis for the rotor at 60,000 rpm and 60C 

to 17 MPa, less than one quarter of a typically quoted tensile strength for NdFeB of 

75 MPa (Neorem Magnets Oy, 2015). The actual stress resistance of NdFeB is more 

complicated than a simple tensile strength, with another NdFeB manufacturer 

(Vacuumschmelze GmbH & Co., 2014) quoting a minimum stress crack resistance 

factor (Sih & Macdonald, 1974) of 6 3/22.5 10 NmIC cK a      indicating that for 

stress 17 MPa  , an internal crack of width 2 13.8mmca   would grow. Such a flaw 

in the magnet is extremely unlikely, especially assuming inspection of each magnet 

surface. However, in any case, the chosen tube material yield strength of 880 MPa was 

safety factor 2 times higher than the stress in the sleeve at 60,000 rpm if the magnets 

were to split down the middle on a plane containing the axis. The rotor housing forms a 

primary physical safety barrier; however, as an additional safety precaution for this 

prototype, the tests reported here were conducted in an acrylic box. The prototype used 

end-plates incorporating stub shafts at each end of the rotor, with full ceramic bearings 

made of zirconia oxide (part number 625 ZRO2 T9 by Boca Bearing Company, 

Boynton Beach, FL, USA). Eddy currents would occur in the balls and stationary 
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bearing races if they were metallic. The dynamic stability against bending modes is not 

discussed here but is assured for the prototype rotor up to the desired maximum rotation 

speed of 60,000 rpm (even if the magnets and end-plates were not glued together or if 

the magnets were completely shattered and provided no bending stiffness). 

Prototype device motor drive 

One method of rotating the magnet configuration would be to couple the shaft to 

a drive motor but that method would have various problems including mechanical loss 

in the coupling, leakage of magnetic flux across to the drive motor, and increases in the 

overall device size and cost. Instead, it has been realised that the magnet configuration 

can be driven to rotate by electromagnetic interaction between its own magnet field and 

alternating currents in coils suitably positioned nearby. The particular coil configuration 

chosen to rotate the bipole is that depicted in Fig. 2B. The requirements sought were 

that the configuration be a balanced 3-phase winding with one side of the device free of 

coils so that the magnets could be as close as possible to the nerve. Though not 

essential, another objective was to minimise radial build-up by avoiding overlapping the 

coils. These objectives were met by using just one coil per phase, two coils at one end 

of the bipole and one at the other end, with each coil spanning approximately 120. For 

the low voltage sought, just three turns per coil were required. A highly stranded copper 

Litz wire was used to minimise the winding eddy loss. The coils were hand-wound into 

pockets on the outer surface of an inner housing tube made of ABSPlus thermoplastic 

by 3D printing. That tube was inserted into a thicker outer polycarbonate tube, which 

was screwed to polycarbonate end plates into which the outer bearing seats were 

machined. The housing was cut to a planar surface on one side making the magnet to 

surface separation nominally 2.9 mm. In Fig. 4A, the width of the lighter strip (of 

ABSPlus) spanning the device axial centre-line is 20 mm. 

A small commercial sensorless brushless DC motor electronic speed controller 

from the radio-controlled toy market was used to drive the motor, namely a Losi 

“Excelorin 1/36 Brushless ESC”, with speed varied by a Turnigy “CCPM” radio-control 

signal generator. The controller’s starting algorithm was not designed for a rotor inertia 

as high as this prototype, and an initial mechanical twist was needed via a rod pushed 

against the shaft end and rotated by hand or drill. In a custom-made controller, a 
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suitably long speed ramp can instead be introduced. Inductors of 52 H per phase were 

added to smooth the phase ripple current. Tests confirmed that a small battery is 

perfectly capable of powering the device, but for the results here a laboratory DC power 

supply with parallel 3.3 mF smoothing capacitor was used. 

For this “bipole” magnetic configuration, the rotation frequency, the 

electromagnetic field frequency and the coil current frequency are all identical since the 

number of pole pairs is 1p  . The frequency was measured using a flux pick-up coil 

positioned on the device housing surface, following the outline of the Phase C coil 

shown in Fig. 2B. The frequency of the voltage induced by the coil’s oscillating flux 

was inferred by an Agilent DSO6034A oscilloscope and/or an Agilent 34401A digital 

multimeter. The device was tested up to 60,900 rpm corresponding to 1,015 Hz, but was 

generally run up to 930 Hz requiring 9.24 V DC supply.  

The required total input power varied approximately as the frequency squared 

with coefficient 3 x 10-5 W/Hz2, for example 7.5 W at 500 Hz, primarily from windage 

loss and bearing loss (which was minimised by running the bearings unlubricated), but 

with contributions from inverter loss, copper loss, and inductor loss. No balancing 

machine able to handle the device’s high magnetic fields was available for the prototype 

manufacture; the bearing loss and noise were probably higher due to slight rotor 

imbalance. Optimisation such as balancing and increasing the winding copper area 

could reduce the power use, but it is already miniscule compared to pulsed current 

devices – for example, the 2.3 kW peak power used by the MagPro X100 (MagVenture, 

2007). 

Electric field measurement  

The measured electric field was inferred from voltage measurements made in a 

rectangular Perspex bath of inner dimensions 85 x 85 mm, floor thickness 0.6 mm over a 

trough 75 x 50 mm and 1.9 mm thick elsewhere, filled to depth 20.5 mm over the trough 

with 0.116 M NaCl solution, resistivity 0.78 m (measured by passage of DC current 

between aluminium plates in another rectangular container). The voltage probe 

comprised three twisted enamelled 0.67 mm copper diameter wires (overall diameter 

with enamel 0.78 mm), with the cut tips of two wires separated horizontally by 5.0 mm 

and the cut tip of the third wire positioned in the fluid approximately 30 mm away to act 
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as a ground point. The electric field was calculated as half the peak-peak difference 

between the front tip-to-ground tip voltage and the rear tip-to-ground tip voltage, 

divided by the front tip-to-rear tip 5 mm separation. The voltage difference 

measurement represents the integral of the electric field along the probe wires and so the 

wire to the front probe was made to pass as close as possible past the rear probe wire 

tip. The subtraction of the voltage difference for the front tip-to-ground tip from the 

voltage difference for the rear tip-to-ground tip was performed by a Tektronix 

ADA400A Differential Preamplifier using 10:1 gain, coupled with a Tektronix 1103 

Tekprobe Power Supply to an Agilent DSO1024A oscilloscope. To eliminate noise 

from the motor controller PWM switching, the voltage waveform was saved at 301 Hz 

while the speed decayed from about 320 Hz with the motor controller unpowered. For 

the electric field parallel to the device axis, the voltage waveform had a considerable 

third harmonic component approximately half the fundamental component, with a sign 

such as to increase the peak amplitude. Accurate modelling would require solutions of 

eqn (13) for each harmonic component. 

The measured electric field profiles given below are for the probe tips 

2.42.5 mm above the trough floor, which has thickness 0.6 mm, when the bath was 

separated (by graph paper and tape) 0.23 mm above the device, which has top plane 

nominally at x = 17.9 mm. The probe assembly was made to travel horizontally by 

attaching it to a rig with a sliding platform driven by a spring-loaded screw thread. The 

metallic rig was kept distant from the device to avoid eddy currents and so some 

imprecision in the probe location was inevitable. The tolerance on the profile location 

can be stated as x = 21.2  0.2 mm. Measurements on the same plane were made of the 

parallel electric field for fluid depths 10.5 mm and 28 mm, and the electric field was 

found to only very weakly increase with depth, and was about 5% lower for depth 

10.5 mm compared to 20.5 mm. 

Electric field calculation 

The electric field was calculated by Finite Element Analysis using ANSYS 

APDL for a rectangular bath with fluid between 18.9 mm  x  39.4 mm (ignoring the 

variable wall thickness in the actual bath base), 42.5 mm  y  42.5 mm, and 42.5 mm 

 z  42.5 mm. In brief, the electric field (eqn (2)) was calculated in two steps. First, the 
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electric field m t


 


A

E  in vacuum from the rotating magnet configuration was 

determined at a desired rotor angle by central-differencing of the calculated A  for the 

rotor at a small angle (5) either side of the desired position. After the normal 

component of mE  on the fluid boundaries was evaluated, the potential field  e   

was obtained as the solution of eqn (7) subject to eqn (8), i.e. with normal component 

on the boundary necessary to cancel the normal component of mE . The total E  was 

then obtained by the addition eqn (2). 

In the magnetoquasistatics approximation (Larsson, 2007), since 0J  outside 

the conducting medium, the normal current at the boundary is assumed negligible, 

0n J , but more precisely, a very small oscillating nJ  is required to supply the 

oscillating surface charge distribution to produce the boundary  e n
  assigned in eqn 

(8). It was confirmed that for the frequencies and the resistivity of our solution, the 

actual nE  needed to drive this small nJ  was indeed many orders of magnitude smaller 

than its components  e n
   and n

t





A

, confirming the validity of eqn (8). 

Physiological testing  

An exploratory series of physiological tests was conducted using the prototype 

device on six sciatic-gastrocnemius nerve-muscle preparations, one from each of six 

unsexed large cane toads (Bufo marinus). For one toad, the gastrocnemius muscle from 

the other leg was also used, with sciatic nerve severed. The toads were supplied by a 

commercial supplier, Peter Douch, Mareeba, QLD, Australia. The toads were housed 

for up to 14 days in glass aquariums within an atmospherically-controlled amphibian 

housing room. Water was provided in a large bowl and the toads were fed every 3-4 

days with crickets. Each toad was euthanased by cooling at 4C to a stupor and 

stunning, followed immediately by decapitation and rapid pithing. Anaesthetics were 

precluded as they would have degraded nerve function. The sciatic nerve and branches 

were dissected from the level of the posterior tibial and peroneal nerves at the ankle to 

their rootlets at the vertebral column. The nerve was typically of length 60 mm and 

diameter 1 mm and the attached muscle was typically of length 30 mm. Following 
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dissection, the nerve-muscle preparation was ligated using cotton thread around the 

nerve cut end and around the Achilles’ heel at the muscle end. The nerve-muscle 

preparation was then immersed in toad Ringer’s solution at ambient temperature and of 

the following composition (in mM): NaCl 79, NaHCO3 24, KCl 3.22, Na2HPO4 3.18, 

MgSO4 1, D-glucose 5.55, HEPES 10, CaCl2 1, with the pH adjusted to 7.4 using 1 M 

NaOH. In the tests described here, the nerve-muscle preparation was positioned in the 

rectangular Perspex bath described above, with toad Ringer’s solution generally of 

depth 11 mm, except for those tests where it is stated that the muscle was raised off the 

bath floor, for which the depth was 21 mm. The first nerve-muscle preparation was 

tested in the rectangular bath prior to the trough being machined in its base and those 

trials do not feature in the results described here, though one trial in a shallow circular 

Petri dish, base thickness 1 mm, is mentioned. The solution resistivity was 0.74 m, 

slightly lower than human tissue values. The change in power use with, and without, the 

bath present due to eddy currents generated in the solution was too low to be recorded 

within the measurement precision of approximately 1%. This was also the case for the 

Perspex dish containing a piece of rump steak. Similarly, when the device is placed 

against human tissue the heating of the tissue should be inconsequential. The nerve-

muscle was usually positioned as low as possible in the bath but in some tests the 

muscle was raised by placing it on a platform (see Supplemental Video S1) made of 

perforated synthetic resin-bonded paper (SRBP), height adjustable by plastic screws, 

with windows cut in the platform (allowing the nerve to be low and the muscle high at 

the perimeter, for example). The presence of this insulating platform will have distorted 

the local electric field. Muscle contraction was used as the indicator for nerve 

activation, though this could only indicate motor nerve activation, not sensory nerve 

activation. Electrical probes were deliberately not used in order to prevent the 

possibility of activation being caused by voltages induced on the probes from the 

oscillating electric fields. Without action potential voltage recordings it was not possible 

to determine the activation site. Experiments on a nerve-muscle preparation lasted up to 

6 hours, with a slight decline in responsiveness evident towards the end of the 

experiment. In all, 89 tests were undertaken, with recordings made using digital photos 

and video.  
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Testing the activation of curved nerves was undertaken by bending the nerve one 

half turn around an insulating pillar. The presence of the pillar distorts the local electric 

field due to boundary condition eqn (8) applying at the perimeter of the pillar, an effect 

not included in the analysis by Rotem & Moses (2006). Suppose an otherwise uniform 

electric field in the y direction, 0 ˆE y , must go around a pillar of radius R  with axis 

parallel to the x̂  axis, centred on 0y    and 0z  , then the irrotational and divergence-

free electric field with zero normal component on the pillar surface is given by 

 E             (28) 

where  

 0 cos
r R

RE
R r

     
 

         (29) 

in cylindrical co-ordinates  ,r  , measuring   from the ŷ  axis around towards the ẑ  

axis (Batchelor, 1967). For a nerve fibre touching the pillar, the tangential electric field 

is doubled from its value if the nerve executed the bend with no pillar present, and the 

maximum activating function is: 

02
max esdE E

ds R
 .          (30) 

 

Statistics 

To minimise the number of animals euthanased, and because this was an initial 

exploratory study, each experiment was repeated on only a low number of nerve-muscle 

preparations. In each test, the electromagnetic frequency was slowly raised and the 

frequency at which contractions commenced was noted. When repeated by lowering and 

again raising the frequency, the standard deviation of the activation frequencies had 

median value of 18 Hz and had almost no correlation with the mean frequency of the 

repeated values. Here, the lowest reading of the repeated readings is reported, rounded 

to the nearest 10 Hz. In some experiments on the same nerve-muscle preparation, 

activation did not occur in one test, but did occur in a repeated test, after a different 

intermediate experiment had caused activation. 
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Results 

Calculated and measured electric fields 

The electric field generated by the prototype device in the rectangular fluid bath 

placed on top of it was calculated and measured. The calculations showed that the effect 

of the conducting medium boundary condition was very significant for the electric field 

parallel to the axis, reducing the total field to about one third of the value obtained in a 

vacuum, mE , whereas the perpendicular electric field was only reduced by about 10%. 

Fig. 3A compares the measured results on the plane x = 21.2 mm (2.4–2.5 mm above the 

internal base of the dish) with the calculated results. Calculated curves have been 

slightly shifted to align with the measured curves because the measurement grid may 

not have aligned perfectly with the rotor centre. The curves are of similar shape but the 

measured curves are around 30% higher than the calculated curves. The discrepancy 

could be due to the probe wire configuration influencing the field. Fig. 3B of the electric 

field gradient inferred from the measured curves shows that the maximum parallel 

electric field gradient is about 1.0 Vm-2Hz-1 at the origin (after some smoothing of the 

central-differencing noise), and the maximum perpendicular electric field gradient is 

about 0.7 Vm-2Hz-1 at around y = 20 mm. At x = 20.2 mm, 1 mm closer to the device, the 

measured parallel electric field was about 13% higher and the measured perpendicular 

electric field was about 6% higher. Fig. 3C and 3D show the decay with height of the 

calculated electric field components parallel to, and perpendicular to, the bipole axis. By 

height 6.8 mm above the bath floor the fields dropped to just less than half their 

maximum values on the floor (assumed 1 mm from the device top).  

Physiological results 

The following results were obtained applying the prototype bipole device to the 

sciatic nerve and attached gastrocnemius muscle isolated from cane toads. Key 

experiments are summarised in Table 1, with the first column giving experiment 

numbers referred to below. A selection of the experiments is depicted in Fig. 4. In each 

experiment, the likely site of activation is suggested but this is highly uncertain because 

the nerve was of similar length to our device, making it impossible to eliminate any 

influence of nerve end effects in the experiments, which the limiting analytic solution 

(20) has shown may be significant. Thus it is often not possible to know with certainty 
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whether the activation site is: on a straight section of the nerve; at the nerve ligated end; 

due to curvature of the nerve in the vicinity of its entry to the muscle, especially when 

the muscle was raised; at the nerve end within the muscle; within small intramuscular 

nerves; or in the muscle tissue itself. The co-ordinates referred to below are as defined 

by the axes shown in Fig. 2A, though in this experiment the bath is above the device and 

so x, the direction toward the nerve, is upwards not downwards. The device “centre” 

refers to 0z  , 0y   (at any x). 

Expt 1. Activation of straight nerve-muscle preparations on the bath floor and 

aligned perpendicular to the bipole axis was observed in 1 of 2 nerve-muscle 

preparations tested. In the trial photographed in Fig. 4A and depicted schematically in 

Fig. 4B, activation was seen at 260 Hz. The peak in the perpendicular electrical field 

gradient spans roughly 10–25 mm horizontally from the centre plane (i.e. 

10mm 25mmy  ) (Fig. 3B) and it is uncertain whether the activation site was in the 

muscle located on 20mmy   , or within one of the straight nerve sections 

10mm 25mmy   or 20mm 10mmy    , or at the nerve ligated end at 

28mm.y   To rule out vibrations as the cause of the activation, the bath was then 

raised off the device by 0.9 mm at its closest using cotton thread (making the bath base 

3.8 mm from the magnets). Activation still occurred, albeit at a higher frequency of 800 

Hz.  

Expt 2. In a variation on Expt 1, with the nerve perpendicular to the axis 

spanning the device centre, the muscle was raised to 8 mm from the device on a 

platform, sufficiently high to rule out the muscle as the activation site. Activation was 

seen in 1 of 2 nerve-muscle preparations tested. In one trial, activation was seen at 

430 Hz, then the nerve was withdrawn from the bath floor and placed alongside the 

muscle on the platform. Activation did not occur, confirming that activation was 

previously in the nerve. In another trial with the nerve-muscle in its original position, a 

2.9 mm diameter insulating pillar was positioned adjacent to the nerve (at 5mmy  ). 

The pillar would have produced a localised increase in the electric field by its side as 

per eqn (29), implying a short +ve pulse then, close by, a short –ve pulse in the electric 

field gradient in the nerve. This seemed to have no significant net effect as the 

activation frequency was 610 Hz, probably within random variation from the 430 Hz 
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with no pillar present. The lowest activation frequency seen was 240 Hz for a nerve low 

from its ligated end at 10mmy  , passing a pillar at 10mmy   , then rising from 

25mmy   , initially at a radius of curvature about 10 mm, to the muscle with tip on 

44mmy   . It is uncertain whether the activation site was at the nerve ligated end, in 

the straight section of the nerve from 25mm 10mmy    , or in the curved section of 

the nerve over 25mmy   where it rose to the elevated muscle. In that curved section, 

the gradient of the parallel electric field component along the nerve has contributions 

from both the variation of the nerve angle to the electric field and from the reduction in 

electric field amplitude with increasing distance from the device. The activating 

function over both the straight and curved sections would have combined to contribute 

to the activation, if it occurred in either of these sections. 

Expt 3. In this variation on Expt 2, featuring the nerve perpendicular to the axis 

and muscle raised, the ligated end of the nerve was placed on the centre, where the 

perpendicular electric field was maximum. The nerve passed a pillar at 20mmy    

then curved up to the muscle over 29mmy   , initially at a radius of curvature about 

15 mm. The lowest activation frequency was 320 Hz.  

Expt 4. Activation of straight nerve-muscles on the rectangular bath floor 

spanning its centre and aligned parallel to the bipole axis did not occur in trials on 2 

nerve-muscles. In a trial on another nerve-muscle in a shallow circular Petri dish, 

activation did occur, probably of the muscle spanning 40mm 10mmz    , but trials 

using that dish have been excluded from Table 1 since it is a different nerve 

environment. 

Expt 5. In the experiment depicted in Fig. 4C, wherein the nerve parallel to the 

device axis spans the centre and the muscle was raised on to a platform of height 8 mm 

above the device, activation did occur, at 790 Hz, in 1 of 3 nerve-muscles tested. When 

the nerve was withdrawn and placed alongside the muscle on the platform, activation 

did not occur, indicating that the site of activation was within the nerve, but it is likely 

to have been where the nerve rose over 10 mmz   , initially at a radius of curvature 

about 15 mm. This activation was very marginal, as it did not occur in two earlier trials 

on the same nerve, including one taken to 950 Hz where the nerve rose over 
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14 mmz    with an initial radius of curvature 10 mm and with the ligated end at 

18 mmz  . 

Expt 6. In an attempt to minimise the end-effect for the case of the nerve parallel 

to the device axis, the ligated end of the nerve was positioned at the device mid-plane 

( 0)z  , where the parallel electric field component vanishes, 0zE  . By symmetry, the 

behaviour might equate to a nerve of twice the length along the axis. In such a test, in 

which the muscle was elevated and axially very distant, with tip at 52mmz   , and the 

nerve rose to it over 32mmz   , initially at a radius of curvature about 20 mm, the 

lowest activation frequency was 770 Hz. However, in that test, the positioning cotton 

had raised the nerve ligated end slightly over its last 6 mm, which would have perturbed 

the parallel electric field gradient, and the bath wall had been shifted to 27 mmz  , so 

that zE  would have been perturbed from zero at the centre given the resulting change to 

the boundary condition eqn (8). Activation did not occur in an earlier test of this expt to 

950 Hz on the same nerve though the bath wall was then at 15mmz  . 

Expt 7. One test was conducted for the nerve spanning the centre at 45 to the 

axis, from ligated end at 16 mm, 16 mmy z   to rising up to the elevated muscle from 

about 16 mm, 16 mmy z    , and activation was seen at 440 Hz. This was 

intermediate to the lowest activation frequencies seen for the perpendicular and parallel 

cases, Expt 2 and Expt 5, and shows that nerve activation does not require alignment 

either parallel or perpendicular with the device axis. 

Expt 8. The lowest frequency at which muscle contraction was observed was 

180 Hz. This occurred for a nerve-muscle preparation aligned parallel to the axis with 

muscle centred on the device with dorsal side (the more curved side, furthest from the 

toad tibiofibula) on the bath floor 0.7 mm from the device (Fig. 4D, Supplemental Video 

S1). The nerve was elevated approximately 6 mm above the device, making it unlikely 

that the nerve was the cause of activation. With the muscle dorsal side up and the nerve 

insertion point into the muscle low, the lowest activation frequency was higher, 410 Hz 

(cf. 180 Hz when the dorsal side was facing down and the nerve was high), suggesting 

that the muscle was more sensitive with dorsal side facing down and confirming that the 

nerve was not the cause of the activation. In the same bath was placed the 
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gastrocnemius muscle from the other leg of the toad with the sciatic nerve severed near 

the muscle. For the muscle with the severed nerve at the device centre (as in Fig. 4D but 

with the muscle positions swapped) the lowest activation frequency was 370 Hz, again 

showing that the sciatic nerve was not the activation site. Neither muscle, with or 

without the nerve, was activated when centred 18 mm axially from the mid-plane (i.e. at 

18mmz  ), approximately at the location of the highest parallel electric field (Fig. 3A). 

The muscle with severed nerve, dorsal side up, did not activate when displaced laterally 

16 mm from the 0y   plane. 

Expt 9. For the nerve-muscle just described, with the muscle centred on the 

device and with dorsal side up, the bath was raised using spacers to make the muscle 

base 4.8 mm from the top of the device (hence 7.7 mm from the magnets), and activation 

occurred at 590 Hz (Supplemental Video S2). This vertical separation from the device of 

4.8 mm was the highest for which activation was noted (though activation may have 

occurred at greater radius, for example at radius exceeding 27 mm in Expt 1 if activation 

was in the muscle then). There was no activation at a separation of 6.8 mm. In a related 

experiment in which the muscle was also raised to 5 mm from the device, but by placing 

it across bars of the platform with fluid underneath the platform, activation did not 

occur, but the platform may have affected the electric fields. 

Expt 10. For the nerve-muscle preparation aligned perpendicular to the axis, 

muscle centred on the device, dorsal side down, activation occurred at 480 Hz, a higher 

frequency than for the 180 Hz when the muscle was aligned parallel to the axis of the 

device (Expt 8). This suggests the muscle is more efficiently activated by the large 

parallel electric field gradient spanning the centre.  

Expt 11. This variation on Expt 8, with muscle centred on the device and dorsal 

side down, serves to further examine the location of the activation site. For the second 

of the 2 nerve-muscle preparations on which Expt 8 was trialled, activation occurred at 

320 Hz, illustrating the variability cf. 180 Hz for the nerve-muscle preparation described 

above. The nicotinic acetylcholine receptor antagonist d-tubocurarine (10 µM) was 

added to the toad Ringer’s solution to block nerve-evoked muscle contractions. After 

incubation for 65 min, when probes of a Digitimer DS9A electrical stimulator applied to 

the nerve were no longer able to activate the muscle, the magnetic bipole was still able 
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to activate the muscle, at 460 Hz. This indicates that the muscle itself was directly 

activated. 

Expt 12. Activation was readily achieved for nerves wrapped one-half turn 

around a 2.9 mm diameter insulating pillar located at the device centre. The lowest 

frequency of activation observed was 230 Hz which occurred for the nerve approaching 

perpendicular to the axis, and the muscle raised to 8 mm from the device (Fig. 4E, 

Supplemental Video S3). Given the measured peak perpendicular electric field on 

frequency of 1 10.024Vm Hz   (Fig. 3A), eqn (30) asserts that a nerve fibre which wraps 

around the pillar on its surface at radius 1.45 mmR  , would experience maximum 

2 133Vm HzmF   . A fibre on the outside limit of the nerve bundle of diameter 1 mm 

would experience maximum 2 113Vm HzmF   . 

Expt 13. For the 2.9 mm diameter pillar at the centre, with the nerve approaching 

the pillar parallel to the axis, the lowest activation frequency was 480 Hz. These results 

are consistent with the highest electric field being the perpendicular field at the centre. 

When the nerve approaches the 180 bend axially, the nerve still experiences the same 

peak perpendicular electric field at the mid-point of the bend. However, when the nerve 

approaches the bend perpendicularly (Expt 12), the induced gradient in the tangential 

component of the electric field is of the same sign over twice the span compared to 

when it approaches axially, leading to greater membrane potential change since the 

diffusion term in eqn (9) is less significant. 

Expt 14. For nerves approaching parallel to the axis and wrapped one half turn 

around the 2.9 mm diameter pillar placed at the point of attraction of a steel spike hung 

above the device, which was at 18mmz  , where the parallel electric field zE  was 

greatest, 2 of 3 nerves tested were activated (including the test of Expt 19). The peak zE  

may have varied slightly from that shown on Fig. 3 due to the bath wall being 

positioned at 26mmz   . The nerve which failed to activate also didn’t activate when 

approaching perpendicular to the pillar. 

Expt 15. This expt was as per Expt 14, a nerve wrapped around a pillar at the 

peak zE  point, but for a pillar diameter of 5.0 mm. Activation was seen at 360 Hz for the 
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one nerve tested, slightly higher than the lowest frequency seen for the smaller diameter 

2.9 mm pillar placed there. 

Expt 16. This expt was as per Expts 14 and 15, a nerve wrapped around a pillar 

at the peak zE  point, but for pillar diameter 8.5 mm. The lowest activation frequency 

was 350 Hz, surprisingly slightly lower than for the 5.0 mm pillar but in the second of 

the two nerves tested the lowest frequency was 900 Hz, when a very slight tail twitch 

commenced (which actually persisted for about 10 minutes after the test ceased). Given 

the measured peak parallel electric field on frequency of 1 10.013Vm Hz  , eqn (30) 

asserts that a nerve fibre which wraps around the pillar on its surface at radius 

4.25 mmR  , would experience a sinusoidal F profile with maximum 

2 16.1Vm HzmF   , between zeros spaced 13.4 mm apart. A fibre on the outside limit of 

the nerve bundle of diameter 1 mm would experience maximum 2 14.1Vm HzmF   . 

Initial tests were undertaken to investigate the possibility that magnetic 

excitation over an interval of the nerve below the threshold for nerve activation might 

block the passage of an action potential evoked by other means. An action potential was 

generated using electrical stimulation by draping the sciatic nerve near its ligated end 

over probes connected to a Digitimer DS9A electrical stimulator. Muscle contractions 

were evoked by electrical nerve stimulation at 1 pulse per second and a rising magnetic 

frequency was applied.  

Expt 17. In this attempt to block action potentials, the nerve was aligned parallel 

to the axis, spanning the centre by about 12 mm on either side before rising to the 

Digitimer probes at the nerve ligated end or, at the other end, to the muscle, elevated on 

a platform to avoid it being directly activated magnetically. There was no blocking of 

electrically evoked contraction up to the maximum magnetic oscillation frequency 

tested, 940 Hz. 

Expt 18. This expt was as per Expt 17 but with the nerve perpendicular to the 

axis. There was no blocking of electrically evoked action potentials up to 930 Hz. 

Expt 19. In this expt (Fig. 4F), high magnetically induced electric field gradients 

were imposed by bending a parallel nerve one-half turn around a 2.9 mm diameter pillar 

placed at 18mmz  , where the parallel electric field zE  was greatest. Action potentials 
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were not blocked by the magnetic field oscillations – and in this test magnetic 

stimulation of the nerve caused additional muscle contractions above 730 Hz. Electrical 

action potentials were also not blocked when the nerve was wrapped 1.5 turns around 

the pillar, and magnetic stimulation set in above 410-420 Hz, with or without the nerve 

over the Digitimer probes. 

A number of other experiments undertaken of lesser importance have not been 

described here for brevity. These include: tests in a circular Petri dish including one test 

on a whole cane toad leg (not activated); tests on nerve-muscles in some other 

alignments especially where the alignment was ill-defined or the nerve-muscle drifted 

during the test. 

A typical muscle contraction pattern, as seen in the Videos S1 to S3, comprised 

between 1 and 3 partial contractions sustained over 0.3-1 s, followed by a resting 

interval of 1-1.7 s, during which there was no muscle contraction even though the 

sinusoidal excitation was sustained. This fatigue behavior is of interest but is beyond the 

scope of this paper, which has focused on the activation threshold. 

Discussion 

It is believed that this is the first report of nerve or muscle activation being 

directly achieved using permanent magnets. The rotation of the magnet configuration 

produces an alternating electromagnetic field which is sustained, in contrast to 

conventional magnetic stimulation, in which the coil current is confined to pulses, with 

much longer zero intervals between the pulses. The magnetic field of the bipole 

prototype, Fig. 2A, bears resemblance to that produced by a figure-of-eight coil, with 

opposite magnetic polarity on adjacent lobes, though the figure-of-eight coil produces a 

stationary magnetic field pattern with time-varying amplitude, whereas the bipole 

configuration provides a rotating magnetic field pattern with constant amplitude. 

Our analysis of the cable eqn (9) for sustained sinusoidal magnetic excitation 

showed that in the limit of low frequency, activation should be governed by the electric 

field gradient and that thF , the threshold ratio F of the activating function divided by 

frequency eqn (11), should increase inversely with frequency. In the limit of high 

frequency, thF  should approach a constant, bF  given by (24), providing the electric field 
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is negligible at the nerve fibre ends. These two limiting behaviours at low and high 

frequency are consistent with those found for electrical nerve stimulation. Weiss’s law 

states that the threshold electric current thI  and its pulse width PW satisfy 

. 1th rh sd
sd

PW
I PW I 


 

  
 

,          (31) 

for rhI  and sd  constants (Holsheimer, 2003). The analogous relationship for sinusoidal 

magnetic excitation would be 

1 t
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,            (32) 

for thI  corresponding to the activating function 


esE

s


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, PW corresponding to 
1

f
, rh sdI   

corresponding to bF , and sd  corresponding to 
1

tf
. For a given magnetic spatial 

configuration and nerve alignment, eqn (32) will not follow exactly from the solution of 

eqn (13). In particular, in the case when diffusion is negligible, 
2

2
1

l

  , the dependence 

is instead given by eqn (23). Nevertheless, when diffusion is not negligible, eqn (32) 

might be found to be a useful approximation.  

Our reanalysis (Fig.1) of the experimental results by Davey et al. (1994) showed 

that the predicted high frequency threshold behaviour was observed, with limiting 

threshold base value bF  in the range 1.2–2.2 2 1Vm Hz  . thF  was rising with falling 

frequency (Fig 1), but it did not quite rise as steeply as 
1

f
, equivalently the threshold 

electric field gradient appeared to be still falling at 100 Hz for their large core and at 250 

Hz for their small core. 

The metric F can only be calculated for periodic excitation, when the frequency 

exists. While the metric cannot be applied to experiments using a monophasic or rapidly 

decaying biphasic current pulse, one can attempt to evaluate an effective frequency for 

such experiments to enable a rough comparison. For example, Maccabee et al. (1993, 

page 211) observed a threshold electric field gradient of 4 21.29 10 Vm  for straight 
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sheep nerves, near a figure-of-eight coil carrying a monophasic current pulse produced 

by damping a decaying polyphasic current wave of period 280 μs, or frequency 

33.57 10 Hz  (motivating Davey et al. (1994) to seek 4 21.3 10 Vm ). Though the 

electric fields do not establish a sinusoidal time dependence within the monophasic 

pulse, dividing the electric field gradient by that frequency would give 2 13.6Vm Hz  , 

which is larger than, but of similar magnitude to, the threshold thF  observed in Fig. 1. 

Our prototype bipole device produced a measured F near the bath floor of about 

0.91.1 Vm-2Hz-1 over a 10 mm straight line segment parallel to the axis spanning the 

centre and about 0.6–0.8 Vm-2Hz-1 over a 15 mm straight line segment perpendicular to 

the axis between 10–25 mm from the vertical plane which includes the axis (Fig. 3). 

These values are slightly below the limiting bF  inferred from the Davey et al. (1994) 

measurements on African bullfrog sciatic nerves. 

Direct activation of muscle was readily observed for the muscle at the maximum 

parallel electric field gradient at the centre, at lowest frequency 180 Hz for muscle 0.7 

mm from the device (Expt 8) and at 590 Hz for muscle separation of 4.8 mm from the 

device (Expt 9). 

Activation of nerves curved by wrapping one half turn around an insulating 

pillar was also readily observed, with full muscle contraction at lowest frequency 230 

Hz for a 2.9 mm diameter pillar placed at the point of the highest electric field, the 

centre for the perpendicular electric field (Expt 12). This could be expected given the 

peak electric field gradient on frequency there of 2 133 Vm HzmF    on the pillar 

surface. For the 8.5 mm diameter pillar at the lower peak of the parallel electric field, 

the maximum F was only 2 16.1Vm Hz   and activation was seen at 350 Hz in one nerve 

and 900 Hz in another (Expt 16). 

Initially it was thought that the results of Expts 1–6 indicated occasional 

activation of straight cane toad sciatic nerves. For example, in Expt 1 on a straight 

perpendicular nerve-muscle with the muscle tip at lateral distance 20 mm from the mid-

plane y = 0, it was initially thought that the activation was in the nerve because the 

muscle was at such a high radius, namely beyond 27 mm. However, the greater ease at 

which the muscle was directly activated, shown by Expt 8, and the fact that the 
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perpendicular electric field gradient was still significant beyond 20 mmy   (Fig. 3B) 

indicates that the activation may have been in the muscle. In Expts 2 and 6, the muscle 

was raised and placed even further from the device centre. This required shifting the 

bath and so the electric field is not known, but estimates can be made based on Fig. 3. In 

Expt 2, for the nerve perpendicular to the device axis, with lowest activation frequency 

240 Hz, if the activation was not triggered at the nerve ligated end, then it is likely to 

have been triggered in the nerve where it curved up to the muscle, as the electric field 

gradient on frequency was probably about 1.1 2 1Vm Hz   over the first 10 mm of that 

curved section, larger than the 0.7 2 1Vm Hz   of the straight section even though the 

curved section did not commence until 25 mm laterally. In Expt 6, for the nerve parallel 

to the device axis and with ligated end at the device centre, the electric field gradient on 

frequency of about 1.1 2 1Vm Hz   near the device centre was probably larger than in the 

rising curved section beyond z = –32 mm, but the ligated end was also slightly raised 

which may have assisted the activation via slight nerve curvature. Generally, nerves 

spanning the centre parallel to the axis were not activated (Expts 4 and 5). Although the 

electric fields generated appear to have been just below the threshold required for 

activation of straight cane-toad sciatic nerves, nerves with gradual radius of curvature, 

exceeding 10 mm, may have been marginally activated.  

However, there is a possibility that some activations were triggered either at the 

ligated end or at the nerve end in the muscle. For example, in Expt 2, the activation may 

have occurred at the ligated end at 10mmy  , where the measured perpendicular 

electric field at 240 Hz was approximately 5.6 Vm-1. This is of similar magnitude to the 

threshold value of 6.2 Vm-1 obtained by Reilly (1989) from numerical modelling of long 

monophasic pulses for a 20 m diameter nerve fibre. Nevertheless, other tests with a 

higher electric field at the nerve end did not activate. For example, in the Expt 5 test 

which had the nerve ligated end at 18 mmz   and did not activate, the measured 

parallel electric field there at 950 Hz was approximately 12 Vm-1. 

The variability in test results between nerves and even for the one nerve makes it 

difficult to infer nerve parameters, which must have a distribution of values, both from 

the range of nerve fibres within the sciatic nerve and from statistical variation. Different 

nerve fibres may activate in different experiments making it impossible to infer a single 
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set of parameters. Nevertheless, the following makes a first attempt at such an inference, 

based on the results of this initial study. Suppose the Expt 2 activation just mentioned 

was due to the end effect at the nerve ligated end. Given the low frequency, 240 Hz, 

assume that the   in the denominator of eqn (21) can be neglected, then it can be 

inferred that 15.6VmthV


 . The threshold potential for the cane toad sciatic nerve is 

not known, but if it were 0.02VthV  , then eqn (21) would imply 3.6mm  . This is 

less than the perpendicular electric field gradient length scale, of order 10mml  , and 

so condition (19) was met, justifying use of eqn (21). The measurements of Davey et al. 

(1994) were for the sciatic nerve of an African bullfrog, not a cane toad, but suppose the 

cane toad sciatic nerve has a high frequency base threshold of 2 11.2Vm HzbF   , at the 

low end of the range apparent in our reanalysis of the Davey et al. measurements (Fig.1) 

and consistent with our observation that straight parallel nerves were mostly not 

activated by our device at its centre where 2 11.1 Vm HzmF   . Then accepting the above 

values for thV  and  , eqn (24) would imply 41.24 10 s   . For a nerve configuration 

in which diffusion could be neglected, then at the rated maximum frequency of this 

device, 1 kHz, eqn (23) with the above values of   and bF  would suggest a threshold 

2 11.96 Vm HzthF    which would explain why the device struggled to activate straight 

nerves.  

The following suggests that the large diameter bent nerve Expt 16 result may be 

consistent with the above values of   and bF . If diffusion could be neglected, i.e. if 

condition (19) applied, then eqn (23), ignoring harmonic decomposition of the electric 

field, would suggest that for the peak 2 16.1 Vm HzmF   , activation should be reached 

at 31.62 10 rad/s   , i.e. at 258 Hzf  . However, the variation length scale l can be 

taken as equal to the pillar radius 4.25 mmR  , and the condition (19) is not satisfied 

for that   and 3.6 mm  . Thus diffusion would not be negligible and a higher 

frequency would be needed, perhaps in the range of the frequencies at which activation 

was observed in the two tests, 350 Hz and 900 Hz. Examining this further requires 

modelling of the cable eqn (13), including decomposition into the harmonics of the 

electric field.  
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The value 41.24 10 s    developed above is 3 times the value 53.88 10 s  

suggested by Basser & Roth (1991) and the value 3.6 mm   is 1.5 times the value 

2.34 mm suggested by Basser & Roth (1991) for an axon of diameter 20 m. These 

differences are not excessive but comparison with other assessments is needed, ideally 

for cane toad sciatic nerves.  

While the above can be considered an indicative model, it does not predict all 

observations. For example, in the Expt 5 test with no activation at 950 Hz for nerve 

ligated end subject to 12 Vm-1, assumed comprised of 8 Vm-1 at the fundamental 

frequency 950 Hz and 4 Vm-1 at the third harmonic, eqn (20) for the above parameters 

would predict 0.035 VmV  . This exceeds the assumed 0.02 VthV   and so activation 

should have occurred from the end effect, but it didn’t. The activation in Expt 6 is also 

not explained since there should not have been any end effect activation at the ligated 

end, as the axial electric field there is in principle zero, and the curvature was very 

gradual up to the muscle. The most significant assumption made was that the base 

threshold bF  was the same for cane toad sciatic nerves as that found by Davey et al. 

(1994) for African bullfrog sciatic nerves. If a lower value than 2 11.2Vm HzbF    

actually applied, then activations could be explained as being in straight or gradually 

curved nerves. Further experiments and numerical solutions of the cable eqn are needed 

to resolve these uncertainties and infer more reliable estimates of the nerve parameters. 

Initial attempts to block action potentials excited electrically were unsuccessful 

(Expts 17-19). It may be the case that frequencies higher than 1 kHz are required, as 

usually found for electrical stimulation (Kilgore & Bhadra, 2014). 

Each rotating magnet employed by Leuchter et al. (2015) was a diametrically 

magnetised neodymium cylinder of diameter and length each 1 inch (25.4 mm). In our 

bipole magnet configuration, each of the two NdFeB magnets were of diameter and 

length 30 mm, 18% larger, and the bipole configuration, featuring reversed magnet 

directions, approximately doubles the peak electric field gradient (which is for a path 

parallel to the axis) and approximately doubles the peak electric field (which is for a 

path perpendicular to the axis). (In both cases the peak is not quite doubled because the 

peak for the single magnet case is close to but not exactly on the magnet endplane.) The 
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lowest frequency of excitation we observed for cane-toad sciatic nerves was 230 Hz. 

While the properties and curvatures of human cortical nerves will differ from those of 

the cane-toad sciatic nerves used in our experiments, it seems most likely that at the 

order 10 Hz frequency used by Leuchter et al. (2015), the threshold thF  needed for 

activation would be in the 
1

f
 region required for activation (presuming the cable 

equation applies down to these frequencies) and that thF  would be much higher than 

that provided by each of their magnets, so their device would not cause activation, 

consistent with their expectation that their system was subthreshold.  

Our prototype device was designed and built to reach the very high rotation 

speed of 60,000 rpm, thus achieving 1,000 Hz excitation. This brings the excitation 

closer to the high frequency limit (how close depending on  ) where the threshold thF  

for a nerve configuration away from its ends approaches the base value bF , giving the 

device the greatest chance of activating the nerve. The novel method of driving the 

rotation via coils positioned adjacent to the magnet configuration, as depicted in Fig. 2B 

for the prototype, was a significant enabling technology to achieve such high rotation 

speed, overcoming dynamic issues of other rotation methods such as shaft or belt drive. 

An exciting field of theoretical work and experimental testing is opened up by 

this initial study. Further detailed testing is needed, ideally on longer nerves in vitro, but 

also on animals and humans in vivo (after ethical approval). The activation threshold 

will be different for human nerves than for the cane toad nerve used so far, and will vary 

with human nerve type and structure. Eqn (24) shows that in the limit of high frequency, 

the most critical nerve fibre property dictating its susceptibility to activation away from 

the nerve ends is its ratio 
2
thV


. Modelling of each test configuration should be 

undertaken including solution of the cable eqn (9) for the precise nerve path and electric 

field gradient along it to see how well that equation can describe the activation 

thresholds observed. An analytic solution, eqn (20), has been given for cases when eqn 

(19) applies, which is when the diffusion term is negligible except near the nerve ends. 

If the electric field is non-negligible at an end, the peak membrane potential will occur 

at the nerve end with higher electric field, and eqn (21) can be used to predict when 
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activation will occur. If the electrical field is negligible at the ends, then eqn (23) should 

predict activation. Generally, however, numerical methods will be needed to solve eqn 

(9). The range of new assessments of the cable eqn obtained for sinusoidal excitation, 

made possible by rotating magnet configurations, will increase our understanding of 

nerve physiology and, in particular, give more accurate estimates of nerve parameters. 

The interaction of the electromagnetic excitation with other nerve phenomena, 

especially a propagating action potential, remains to be studied, requiring modification 

of the pre-threshold cable eqn (9) to include active membrane effects (Roth & Basser, 

1990). 

The results presented here were obtained with a first prototype of the bipole 

magnet configuration (Fig. 2). Other magnet configurations such as those described in 

the patent application (Watterson, 2012) should be designed, built and tested. In 

particular, some configurations, including the “quadrupole”, will suffer less from 

reduction in the electric field due to charge build-up on the conducting region surface. 

The depth of penetration of the electromagnetic field into the body scales with the 

device dimension, but there is a tradeoff that the rotation speed and excitation frequency 

must be reduced inversely proportional to the length scale to maintain the same stresses 

in the containment sleeve and magnets (with the sleeve-magnet interference fit also 

having to be scaled proportional to the length scale). The metric F remains the same 

however, along a curve at the larger depth in the body, and applies for a corresponding 

greater length, increasing the membrane potential produced. 

After further fundamental studies on animal nerves using different devices, 

possible medical applications can be explored. Success appears most likely for 

activation of muscles or activation of nerves that lie close to the skin, especially at nerve 

ends and at nerve bends, particularly where the nerve turns inwards away from the skin 

or bends over non-conducting tissue or bone. The high frequency at which the nerve can 

be activated by the sustained sinusoidal excitation may be advantageous for some 

applications but deleterious for others. High frequency excitation of motor nerves could 

be advantageous in enabling maximum muscle contraction. If the method is able to 

penetrate to sufficient depth to activate cortical nerves, the high frequency may be 

generally precluded if it induces seizures (Rossi et al. 2009), though conversely, there 

may be therapeutic applications from inducing seizures under anesthesia (Luber et al. 
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2013). As well as applications entailing nerve activation, the alternative possibility of a 

travelling action potential being blocked by rotating magnet configurations should also 

be further investigated as this might have valuable applications, especially to pain relief. 

If successful, devices based on rotating magnets would be significantly smaller, 

cheaper, and lower in electrical power use compared to existing pulsed current devices. 
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Table 1.  Summary of magnetic activation experiments on cane toad sciatic-gastrocnemius nerve-muscle 
preparations 

Expt 
No. 

Experiment description 

Align-
ment 
with 

device 
axis 

Nerve 
vertical 

separation 
from 

device
(mm) 

Muscle 
vertical 

separation 
from 

device 
(mm) 

Lowest 
activation 
frequency

(Hz) 

Proportion 
of nerve-
muscle 

preparations 
activated 

Number of 
nerve-
muscle 

preparations 
tested 

(n) 

Likely activation site 

Fig. or 
Supp-
lem-
ental 
Video

1 
Nerve spanning centre, 
muscle low 

perpen-
dicular 

0.7 0.7 260 0.5 2 

uncertain, either in muscle 
over y  -20 mm or in nerve 

spanning 10 mm  y   
25 mm 

4A, 4B

2 
Nerve spanning centre, 
muscle high 

perpen-
dicular 

0.7  8 240 0.5 2 

nerve, either at ligated end 
or where rising over y   -25 
mm or where straight over -
25 mm  y  -10 mm 

 

3 
Nerve ligated end at 
centre, muscle high 

perpen-
dicular 

0.7  8 320 1 1 

nerve, either at ligated end 
or where rising over y  -29 
mm or where straight over -
25 mm  y  -10 mm 

 

4 
Nerve spanning centre, 
muscle low 

parallel 0.7 0.7 none 0 2 none  

5 
Nerve spanning centre, 
muscle high 

parallel 0.7  8 790 0.33 3 

nerve, either at ligated end 
or where rising over z  -10 

mm or at centre z = 0  
4C 

6 
Nerve ligated end at 
centre, muscle high 

parallel 0.7  8 770 1 1 
nerve, either near centre z = 

0  or where rising from z  -
32 mm 

 

7 Nerve spanning centre, 
muscle high 

45 to 
axis 

0.7 8 440 1 1 nerve  

8 Muscle at centre parallel 6 0.7 180 1 2 muscle 4D, S1

9 
Muscle at centre, bath 
raised 

parallel  4.8 4.8 590 1 1 muscle S2 

10 Muscle at centre 
perpen-
dicular 

6 0.7 480 1 2 muscle  

11 

Muscle at centre as in 
Expt. 6, d-tubocurarine 
blocking nerve-evoked 
activation 

parallel 9 0.7 460 1 1 muscle  

12 

Nerve wrapped one-half 
turn around 2.9 mm 
diameter pillar at device 
centre 

perpen-
dicular 

1.5 8 230 1 1 nerve bend 4E, S3

13 

Nerve wrapped one half-
turn around 2.9 mm 
diameter pillar at device 
centre  

parallel 1.5  8 480 1 3 nerve bend  

14 

Nerve wrapped one half-
turn around 2.9 mm 
diameter pillar at z = 18 
mm.  

parallel 0.7 11 

250 
(though 
slight 

twitching 
at 190) 

0.67 
3 

(includes 1 in 
Expt 19) 

nerve bend  

15 

Nerve wrapped one half-
turn around 5.0 mm 
diameter pillar at z = 18 
mm.  

parallel 0.7-2 11 360 1 1 nerve bend 
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16 

Nerve wrapped one half-
turn around 8.5 mm 
diameter pillar at z = 18 
mm.  

parallel 2 11 350 1 2 nerve bend 

 

17 

Nerve electrically activated 
at ligated end; nerve 
spanning centre, muscle 
raised 

parallel  1  5.4 

electrical 
activation 

not 
blocked 

to 940 Hz

0 2 none  

18 

Nerve electrically activated 
at ligated end; nerve 
spanning centre, muscle 
raised 

perpen-
dicular  1 5.4 

electrical 
activation 

not 
blocked 

to 930 Hz

0 1 none  

19 

Nerve electrically activated 
at ligated end; nerve 
wrapped one half-turn 
around 2.9 mm diameter 
pillar at z = 18 mm. 

parallel 1.5 5.4 

730, with 
electrical 
activation 

not 
blocked 

1 1 nerve bend 4F 
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Figure 1. Analysis of experimental results in Davey et al. (1994)  

Electric field gradient amplitude on frequency versus frequency for activation threshold 

of an African bullfrog sciatic nerve. 
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Figure 2. First prototype device  

A, schematic of the bipole magnet configuration; open arrows show magnetisation 

directions and solid arrows show directions of the magnet-induced electric field mE  

along a nerve parallel to the axis of the bipole; co-ordinate axes z along the device 

rotation axis, x towards the nerve, and y in a plane parallel to the skin. B, schematic of 

the 3-phase coil configuration used to drive the bipole magnet configuration. 
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A                                                                    B 

 

 

 

 

 

C                                                                   D 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Electric field in the test bath  

A, electric field amplitude divided by frequency, measured (full lines) and calculated on 

x = 21.2 mm (3.3 mm above the device top at x = 17.9 mm and 6.2 mm from the magnets 

of radius 15 mm), along lines parallel (on y = 0 mm, +ve z to the left) and perpendicular 

(on z = 0 mm, +ve y to the right) to the device axis. B, measured electric field gradient 

amplitude on frequency computed by central-differencing. C-D, calculated electric field 

amplitude on frequency at different heights in bath: C, parallel to axis; D perpendicular 

to axis.  
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A                                                B 

 
 
 
 
 
 
 
 
         

C                                               D 
 
 
 
 
 
     

E                                               F 
 
 
 
 
 
 
 
 
Figure 4. Experimental configurations using the cane toad sciatic-gastrocnemius 

nerve-muscle preparation  

A, photograph of the bipole device underneath the bath housing the nerve-muscle 

preparation, aligned perpendicular to the bipole axis (Expt 1). B-F, schematic diagrams. 

B, nerve perpendicular to the bipole axis as in panel ‘A’ (Expt 1). C, nerve parallel to 

the bipole axis, muscle raised on to a platform (Expt 5). D, nerve-muscle parallel to the 

bipole axis, muscle at its centre dorsal side down and nerve raised (Expt 8); a second 

muscle with nerve severed is centred on the point of highest parallel electric field. E, 

nerve wrapped one half-turn around an insulating pillar positioned at the device centre, 

nerve approaching pillar perpendicular to the axis (Expt 12). F, test of blocking of 
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action potential propagation created near the ligated end of the nerve by electrical 

stimulation (Expt 19). 
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Supporting Information: 

 

Video S1 

Activation at 180 Hz by rotating magnet bipole of cane-toad gastrocnemius muscle with 

elevated attached sciatic nerve, muscle and nerve aligned parallel with bipole rotation 

axis, muscle centred on device, where parallel electric field gradient maximal, muscle 

0.7 mm from device, nerve 6 mm from device (Expt 8, as depicted in Fig. 4D). Second 

gastrocnemius muscle with no sciatic nerve, centred where parallel electric field 

maximal, not activated.  

Video S2 

Activation at 590 Hz by rotating magnet bipole of cane-toad gastrocnemius muscle with 

low attached sciatic nerve, muscle and nerve aligned parallel with bipole rotation axis, 

muscle centred on device, where parallel electric field gradient maximal, bath raised 

placing muscle 4.8 mm from device, nerve 4.8 mm from device at the muscle and rising 

away from the muscle (Expt 9). Second gastrocnemius muscle with no sciatic nerve, 

centred where parallel electric field maximal, not activated. 

Video S3 

Activation at 230 Hz by rotating magnet bipole of cane-toad sciatic nerve, wrapped one 

half-turn around an insulating 2.9 mm diameter pillar positioned at the device centre, 

where perpendicular electric field maximal, nerve approaching pillar perpendicular to 

the axis, nerve approximately 1.5 mm from device at pillar, attached gastrocnemius 

muscle on a platform placing muscle 8 mm above device (Expt 12, as depicted in Fig. 

4E). 


