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Calculation of Symbolic Sensitivities for Large-Scale Circuits in the Sequence
of Expressions Form via the Transimpedance Method

Franciszek Balik and Benedykt Rodanski

Abstract - In this paper  we descr ibe a new method for  obtaining, in symbolic form, the
network functions and their  small- and large-change sensitivities.  Our  method is based on
the two-por t transimpedance concept and the sequence of expressions approach to
calculation of matr ix determinant.  We show that the network functions as well as their
sensitivities can be expressed by appropr iate transimpedances.  Each transimpedance is
given by an algebraic sum of at most four  elements of the inverse of the circuit’s reduced
node admittance matr ix.  In our  method the complexity of the sequence of expressions
grows linear ly with the circuit size.  The extra effor t required to obtain sensitivities is
minimal and, more importantly, independent of the circuit size.

I .  INTRODUCTION

Sensitivity analysis, an important step in most circuit design, calculates the sensitivity of  the
circuit performance to variations in the values of the circuit components (parameters).  Due to
manufacturing process fluctuations, modelling and measurement errors, biasing and
environmental (e.g. temperature) changes, these variations are unavoidable in practical
realizations.  Sometimes, the parameter changes can be large, as in the case of a circuit
component exchange or failure, or changes caused by large temperature variations.  As a result,
the circuit performance can deviate from intended and simulated behaviour.  In this paper we will
present an unified approach to calculation of both small- and large-scale sensitivities in the
frequency domain.

The small-change (differential) sensitivity is a measure of variation in the circuit performance
due to an infinitesimally small variation in a circuit parameter (e.g. component value).  The circuit
performance is simply some network function H(s, p), where s is the complex frequency and
p = [p1, p2, ..., pm]T is a vector of circuit parameters.  The most widely used definition of the
differential sensitivity of H(s, p) to changes in a parameter pk is [1]:

By analogy, the large-change relative sensitivity can be defined as:

If  the network function, H(s, p), is given symbolically, the required small-change sensitivity
to any parameter variation can be obtained in symbolic form by differentiating the expression
with respect to the circuit parameter pk.  This direct approach works well only for the relatively
small circuits, for which the network function does not have unreasonably large number of terms.
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The well known drawback of symbolic methods, when applied to large-scale circuits, is the
exponential growth of the number of terms in the network function with circuit size [2]. Important
developments in the symbolic analysis of large-scale circuits have been achieved with the
introduction of hierarchical decomposition [3] and the concept of the sequence of expressions
(SOE) [4].  The basic idea is to produce a succession of simple expressions with a backward
hierarchical dependency on each other.  It was shown [4] that the growth of the number of
expressions (and thus the number of arithmetic operations - flops - required for numerical
evaluation) is linear for practical circuits.  Until recently it was believed that in order to minimise
the SOE complexity, the circuit must be first partitioned into smaller sub-circuits. In [5, 6] the
arguments were presented to the contrary.  Partitioning imposes restrictions on the order in which
internal variables are suppressed, leading to sub-optimal solutions.  When the SOE concept was
combined with the technique of (locally) optimal reduction of the modified node admittance
matrix (MNAM) to a two-port matrix, it produced sequential formulae of considerably lesser
complexity [7].

Once the circuit equations are derived, the relevant derivatives of each equation can be
computed symbolically, and then the differential sensitivity can be calculated using the chain rule
of differentiation.  This solution was first proposed in [8].  It was extended in [9, 10] by
representing a SOE as a directed acyclic graph (DAG) and providing an algorithm for analysing
the DAG and reducing the number of additional expressions generated.  Although the method is
conceptually simple, it does not always generate the optimal sequence [10].  This is due to the fact
that the number of additional expressions (derivatives), required for sensitivity calculations,
heavily depends on the position of the symbol with respect to which the derivatives are calculated.
If the symbol appears near the top of the SOE, the number of additional expressions may be much
larger than if the symbol is near the bottom (in the worst case, doubling the computing effort).
It is possible to re-order the equations as to move the symbol close to the bottom of the SOE.  The
new ordering may, however, be no longer optimal from the point of view of the initial SOE
complexity.  Additional computational effort is also required to create and analyse the DAG.

The large-change sensitivity can be calculated by evaluating the network function twice: at the
nominal and perturbed value of parameter pk.  This brute force approach is very inefficient, as it
doubles the calculation time.

The purpose of this paper is to present a new method of obtaining small- and large-change
symbolic  sensitivities in the SOE form.  Rather than generating a SOE for a network function
and differentiate it symbolically to obtain the required differential sensitivity (or evaluate it twice,
to get the large-change sensitivity), we calculate both the network function and its sensitivities
simultaneously.  This is achieved by the use of the two-port transimpedance  concept [11] and
an efficient method of symbolic calculations of the elements of the inverse of the reduced node
admittance matrix (RNAM).  We will show that the network functions as well as their derivatives
and large-change increments can be expressed by various transimpedances which in turn are
represented by linear combinations of elements of the inverse of the RNAM.  Symbolic
calculation of the inverse of a large matrix is a formidable task and the result is usually a
complicated and lengthy expression.  It is possible, however, by suppressing internal variables,
to reduce the problem to no more than six variables (four in most practical cases), thus reducing
the node admittance matrix (NAM) to a matrix of at most sixth order.  Moreover, because
network functions are always expressed as ratios of various cofactors of a circuit matrix, it is
possible to remove factors common to both the numerator and the denominator, further reducing
the complexity of the final expression.  Apart of being capable of producing less complex results,
the new method has other advantages over direct differentiation of the SOE.  The most important



3

i1

0
IS

VI VO

+

-

+

- i2

Yk

k1 k2 o1

o2

Fig. 1.  A general two-port for sensitivity calculations.
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of them are:
1. SOE complexity is only weakly dependent on the element’s position in the circuit.
2. The extra effort required to obtain sensitivities is minimal and, more importantly, independent

of the circuit size; it means that the larger the circuit the (relatively) less expensive it becomes
to calculate sensitivities.

3. The use of transimpedance concept allows to simultaneously compute many network functions
and their sensitivities at minimal additional cost.

4. Using transimpedances it is possible to obtain both small- and large-change sensitivities.
5. Higher-order differential sensitivities [12] and multiparameter large-change sensitivities [13]

can also be obtained using our approach.

The paper is organised as follows.  In section II we formulate the problem.  Section III
introduces the transimpedance concept.  Using this concept we derive the network function and
sensitivity formulae in section IV.  Section V details the algorithm and software developed to
implement our technique.  Two circuit examples, illustrating the effectiveness of the new method,
are presented in section VI.

I I .  PROBLEM  FORMULATION

Consider a lumped, linear, time-invariant circuit depicted in Fig. 1.

The circuit nodes are numbered with natural numbers, starting from 0 (the reference node).  The
three pairs of terminals (ports) of interest are numbered as follows: the input port i = (i1, i2) with
an independent current source IS, the output port o = (o1, o2) and the port k = (k1, k2), terminated
with admittance Yk,  whose effect on a network function is to be calculated.  We assume that the
circuit is described by a node equation:

where: Y is a n×n node admittance matrix (NAM) of the circuit,
V is an n-vector of node potentials, possibly augmented by additional variables, e.g.,
inductor currents, currents in (dependent) voltage sources, etc., and
I  is an n-vector of terminal currents.
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Note that n may be less than, equal to or greater then the number of circuit nodes, depending on
the circuit and the variation of the nodal method used.  The most commonly used method of
circuit equation formulation is the modified nodal method.  It introduces additional (current)
variables to handle circuit components like op amps, controlled sources other than VCCS, etc.,
which are not allowed in the classical nodal analysis.  The matrix created with this method is
usually referred to as the modified node admittance matrix (MNAM).  In the modified nodal
formulation inductors are usually entered into the MNAM as impedances, thus ensuring that all
entries are of the form ±A±sB.  The various ways of formulating the MNAM are described in [1,
14].  When ideal op amps (nullors) and other ideal elements are present in the circuit, the MNAM
can be compacted, e.g., for each ideal op amp one variable and one equation is removed from the
set of node equations.  The matrix thus obtained is referred to as the compacted MNAM or
CMNAM.  The compacting procedure is detailed in [14].  Because the methods and algorithms
described in this paper work equally well with any type of the nodal matrix, to avoid using
lengthy acronyms we will simply refer in the remainder to the node admittance matrix (NAM).

Our aim is to symbolically calculate the sensitivities (1) and (2) of a network function H(s, p)
to changes of circuit parameter pk.  Usually the circuit parameter in question is the value of a
circuit component: resistance Rk, capacitance Ck, inductance Lk, conductance Gk, transconductance
gmk, etc. To maintain generality we will consider network function sensitivity to variation of
admittance parameter Yk.  Depending on the particular type of circuit parameter, the required
sensitivity can be easily obtained using the chain rule of differentiation:

where:

We will also limit our derivations to two most commonly used network functions: the voltage
transmittance TV(s, p) = VO(s, p)/VI(s, p) and the input impedance Zin(s, p) = VI(s, p)/IS(s, p).  Other
network functions and their sensitivities can be obtained using similar procedures.
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I I I .  THE TWO-PORT TRANSIMPEDANCE AND ITS PROPERTIES

3.1 Definitions

In order to simplify the notation we will introduce a new function, called the two-port
transimpedance (or simply transimpedance).

Definition 1

Let Z denote the inverse of the (nonsingular) NAM: Z = Y-1; let also �  = (� 1, � 2), 
�

 = (� 1, � 2)
be pairs of natural numbers, representing circuit nodes.  We define the transimpedance of  the
first order as:

where zij represents the element from the i-th row and the j-th column of Z.

Definition 2

Let S = { s1, s2, ..., sn+1}  be an ordered set of pairs of natural numbers.  We define the
transimpedance of the n-th order as:

where si is the i-th pair of natural numbers (representing nodes incident to the i-th two-terminal
circuit element).

3.2 Some properties of the transimpedance

Definition 2 implies the following property of the transimpedance of the n-th order.

Property 1

Any transimpedance of the n-th order, defined on an ordered set S = { s1, s2, ..., sn+1} , can be
represented as a product of two transimpedances: of order k and n-k, respectively, defined on
the ordered subsets S�  = { s1, s2, ..., sk, sk+1}  and S�  = { sk+1, sk+2, ..., sn+1) of S. We can write:

Element sk+1 is common to both subsets: sk+1 = S� �S� .

The transimpedance (6) has the following differential property.

Property 2

The derivative of a first-order transimpedance, defined on a set S = { � , 
�

} , with respect to an
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admittance Y�  [connected to a pair of nodes: �  = (� 1, � 2)] is equal to the second-order
transimpedance defined on a set �  = { � , � , 

�
}  taken with the negative sign:

Proof of this important property is given in Appendix A.  Similar formulae can be obtained
for derivatives of Z(� ,

�
) with respect to parameters of four types of controlled sources

(transconductance gm of a VCCS, voltage gain µ of a VCVS, etc.).

3.3 Large-change increment of the transimpedance

Suppose that an admittance Y�  has changed, and its new value is Y�  + 
�

Y� .  This change causes
the admittance matrix to change accordingly, and in consequence, also its inverse:

Using Householder formula, it has been shown [15] that

Hence

where e�  is a column vector (1×n) containing +1 at position � 1, -1 at position � 2 and zeroes
everywhere else.

The increment of the transimpedance can be now defined as:

Each element 
�

zrs of the matrix 
�

Z can be determined from the following relationship:

where:
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� �Z(i,k,i) . (20)

Substituting (14), with appropriate coefficients (r,s) =  (� i,� j), into (13) and taking into account
the relationship (9), one obtains the increment of the transimpedance:

As can be seen, the increment of a two-port transimpedance due to large change of an admittance
is proportional to the derivative of this transimpedance  with respect to the admittance changed.

IV.  APPLICATION OF THE TRANSIMPEDANCE TO CALCULATION OF
NETWORK FUNCTIONS AND THEIR SENSITIVITIES

4.1 Calculating network functions

Using transimpedances it is possible to express the required network functions.  Potential at
any node j of a circuit in Fig. 1 can be calculated as Vj = (zj,i1 - zj,i2)IS and the voltage
transmittance:

Analogically, the input impedance can be expressed as:

Other network functions can be obtained in a similar way.

4.2 Obtaining network function sensitivities

A.  Small-change sensitivities

Differentiating (17) and (18) with respect to admittance Yk and using Property 2 we can write:

and

Now, utilising Property 1 (8) and Definition 2 (7), we can re-write (19) and (20) in terms of the
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elements of Z:

Substituting (21), (17) and (22), (18) into (1), we obtain the relative differential sensitivities to
Yk:

Finally, utilising (4) and (5), one can obtain expressions for small-change sensitivities to circuit
components: Rk, Ck, Lk, etc.  For example, when pk = Lk we have Yk = 1/(sLk) and:

B.  Large-change sensitivities

If admittance Yk undergoes a large change 
�

Yk, the resulting change in the voltage transmittance
is:

Taking (16) into account, one obtains:

The large-change sensitivity measure can now be expressed in a straightforward manner:

Utilising (21), we can write finally:
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where:  is the relative differential sensitivity, given by (23), andS
TV

Yk
�
�TV

�Yk

Yk

TV

K0�
1

1�
�

YkZ(k,k)
.

As can be seen, only one additional transimpedance, namely Z(k,k), is needed to obtain the large-
change sensitivity when the voltage transmittance and its derivative have been already calculated.

In similar way the increment and large-change sensitivity for the input impedance can be
expressed with appropriate transimpedances:

In practice it may be more convenient to work with component variations: 
�

Rk, 
�

Lk, 
�

Ck, etc.,
rather then admittance variations 

�
Yk.  To facilitate this requirement, one of the simple conversion

formulae can be used:

4.3 Expressing transimpedances in terms of elements of NAM

In order to calculate the elements of the inverse of Y we will use the well-known formula:
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Thus the elements of Z are obtained from:

where:
�

ji is the ji-th minor of Y - the determinant of a matrix obtained from Y by deleting row
j and column i,
�

 = |Y| =/  0 is the determinant of Y.

Utilising (36) a transimpedance (6) can be rewritten as

For large circuits, symbolic expressions for the cofactors in (37) could be unacceptably long,
rendering the method impractical.  It is, however, possible to suppress all internal variables of (3),
leaving at most six variables associated with the external terminals.  The reduced set of equations
is called the reduced node equation (RNE) and the coefficient matrix is appropriately termed the
reduced node admittance matrix (RNAM).  Formulae derived above are also valid for the RNAM.
The last statement is true because of the following RNAM property:

The determinant and each cofactor of RNAM are equal to the determinant and the
corresponding cofactor of NAM divided by the product of pivots used in the reduction process.
The reduced set of nodal equations can be obtained in the SOE form by symbolic Gaussian

elimination.  Although this technique has been recently described in [7, 16], for completeness,
a brief outline is presented in the following paragraph.

4.4 Symbolic suppression of internal var iables

In order to illustrate the internal variable suppression process in a concise manner, we need to
further simplify the problem.  Consider again the circuit shown in Fig. 1.  Let us assume that the
input and output ports, and the admittance Yk share a common terminal which is grounded.
Furthermore, since node numbering is arbitrary, let i = (1,0), o = (2,0) and k = (3,0).  The circuit
can be described by the set of symbolic equations:

where  yij  are symbolic entries of general form: ±G ± sC,  and some of the internal variables V4,
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..., Vn  may represent currents in certain circuit elements.  It is important to note that the first
entry, IS, of the right-hand-side vector is its only nonzero.  This form of the node equation will
enable us to eliminate all internal variables without modifying the rhs vector, i.e., we will be able
to work with the coefficient matrix only.

Since we are only interested in the three external variables (V1, V2 and V3), all other (internal)
variables can be suppressed.  Suppose that we wish to suppress the variable Vp.  To achieve this
we can use any equation from the set (38), except the first three equations, that has a nonzero
coefficient at Vp.  Let us choose it to be equation q > 3 (the method of selecting the right variable
and the right equation at each elimination step is called pivoting; it plays crucial role in achieving
efficiency of the technique [7, 16]).  The qth equation can be written in the expanded form:

Provided that |yqp| =/  0, we can calculate Vp from (39) as

Substituting (40) into (38) will eliminate the variable Vp and equation q from the set.  During the
elimination, each element yij of Y undergoes the transformation:

where: i,j = 1, 2, ..., n;  i=/ q, j=/ p.  This process of suppression of a variable is the very well known
Gaussian elimination.  The only difference from the usual appearance of the elimination formula
(41) in the literature is the fact that the pivot, yqp, may be off-diagonal (p=/ q).  In practice, the
transformation (41) is only applied to the matrix elements yij for which |yqj|·|yip| =/  0.  Every
application of the Gaussian elimination formula (41) produces a symbolic expression.  This
procedure is carried out until all internal variables are suppressed and  we obtain a set of three
equations (the reduced node equation):

where each element yij is calculated by a sequence of expressions.

V.  IMPLEMENTATION

A.  The Algorithm

The process of obtaining sequential symbolic formulae for network functions and their
sensitivities can be easily automated.  The algorithm is presented below.
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1. Obtain the small-signal equivalent circuit.
2. Get the information about the network function required and the element(s) with

respect to which the sensitivity is to be calculated.
3. Formulate the symbolic NAM using the element stamp method.
4. If there are ideal op amps then compact the NAM (NAM � CNAM).
5. Perform symbolic reduction of the CNAM to a matrix containing only rows and

columns associated with the external nodes (CNAM � RNAM).
6. Calculate the relevant cofactors and the determinant of the RNAM.
7. Apply the appropriate formulae to obtain the required network functions [e.g., (17)

and (18) for the voltage transmittance and input impedance].
8. Calculate the differential sensitivity of the transfer function(s) by applying (23), (24).
9. Calculate the large-change sensitivity of the transfer function(s) using (29), (31).

B.  Software

Due to its excellent user interface, ability to display and handle large symbolic arrays and ease
of programming (in VBA and/or C/C++), we have chosen Microsoft Excel as a software platform
to test our algorithm.  Circuit data can be either generated automatically from the output file of
Cadence PSpice or entered manually onto an input spreadsheet in the familiar Spice-like format.
The user then selects the pivoting criteria, the way the output is to be presented, the required
network function and the circuit component with respect to which the sensitivity is to be
calculated.  The CNAM and the calculated expressions are displayed on another spreadsheet.
Three text files may also be created.  They are: component values (if any), CNAM elements and
the sequence of expressions.  These files can be used for further processing (e.g., by MATLAB,
Maple, Mathematica, etc.).  Our implementation, which is essentially an Excel workbook, is
called STAINS 3 - Symbolic Two-port Analysis via Internal Node Suppression. STAINS can
handle any linear circuit that can be described by the MNAM.  Theoretically, the size of the
circuit is only limited by the available computer memory.  Our programme, however, has a size
limit of 256 nodes due to maximum  number of columns on the Excel spreadsheet.  A copy of the
software can be obtained via Internet from the authors (benr @eng. ut s. edu. au).

VI .  CIRCUIT EXAMPLES

To illustrate the effectiveness of our approach to sensitivity calculations we present two circuit
examples.
Example 1.  Consider a circuit in Fig. 2.  The circuit is deliberately small to allow for inclusion
of the entire SOE.  We wish to obtain a sequential expression for the voltage ratio, TV = Vo/Vi

(Tv ) and its sensitivity to R1 (STvR1).  Here we have: i = (1,2), o = (3,4) and k = (1,3); there is
only one internal variable to eliminate (V5).  The result generated by STAINS 3 is shown in Fig.
3.  The first six expressions suppress V5.  Then the cofactors required to calculate the
transimpedances Z(o,i) and Z(i,i) are expressed in terms of the elements of the RNAM.  Note that
the division by the RNAM’s determinant is not performed, as the terms cancel out in the formula
for TV.  This determinant (D00) is only used in the final sensitivity formula.  Numerical
evaluation of this sequence requires 97 flops.  To compare our method with the direct
differentiation of sequential formulae, the compact SOE was first generated by our other
programme, STAINS 2 [7], and then the relevant derivatives were inserted manually.  The
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Fig. 2.  Small example circuit for sensitivity analysis.
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Fig. 4.  Notch filter.

resulting sequence is not presented here due to space restrictions.  It requires 149 flops.  (It should
be noted that the number of flops is only an approximate measure of computational complexity,
especially when operations are performed with complex numbers.  Issues related to SoE
computational efficiency are discussed in [17].)
Example 2.  Consider a notch filter shown in Fig. 4.  Both op amps are modelled at the device
level with the full small-signal model of µA 741 (the details of the model can be accessed at
http://www.eng.uts.edu.au/~benr/symbolic/index.htm).  Thus, the equivalent circuit has more than
150 nodes and more than 440 symbolic components.  Our goal is to find the sequence of symbolic

d1 = ( Gm1- G2) / ( G2+G5) ;
x1 = G1+G2+G2* d1;
x2 = G5* d1;
d2 = - ( G5+Gm1) / ( G2+G5) ;
x3 = G2* d2;
x4 = G4+G5+G5* d2;
Z31 = G1* ( x4* ( G4+G6) - G4* G4) ;
Z32 = - ( G4+G6) * x3* G1;
Z41 = - ( G1+G3) * x2* G4;
Z42 = G4* ( x1* ( G1+G3) - G1* G1) ;
Zoi  = Z31+Z42- Z32- Z41;
Z11 = ( G1+G3) * ( x4* ( G4+G6) - G4* G4) ;
Z12 = - ( G4+G6) * x3* ( G1+G3) ;
Z21 = - ( G1+G3) * x2* ( G4+G6) ;

Z22 = ( G4+G6) * ( x1* ( G1+G3) - G1* G1) ;
Zi i  = Z11+Z22- Z12- Z21;
Tv = Zoi / Zi i
Z13 = G1* ( x4* ( G4+G6) - G4* G4) ;
Z23 = - G1* x2* ( G4+G6) ;
Zi k = Z11+Z23- Z13- Z21;
Z33 = x1* ( x4* ( G4+G6) - G4* G4) - . . .
      x2* ( G4+G6) * x3;
Z43 = - G1* x2* G4;
Zok = Z31+Z43- Z33- Z41;
Zki  = Z11+Z32- Z12- Z31;
D00 = ( G1+G3) * Z33- G1* Z13;
STvR1 = G1* Zki * ( Zok- Tv* Zi k) / ( Zoi * D00)

Fig. 3.  The SOE generated by STAINS 3 for the voltage transmittance of the circuit in Fig. 2 and its sensitivity
to R1 (note: Gi  = 1/Ri, i = 1, 2, ..., 6).
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expressions allowing us to calculate the voltage transmittance, its differential sensitivity, , andS
TV

R3

large-change sensitivity, , with respect to resistance R3.  Since the two op amps are identical,
� TV

R3

the symbolic reduction process can be simplified considerably.  This is achieved by representing
each op amp with a 2×2 RMNAM (parameters y11,  . . . ,  y22 in Fig. 5), obtained by
suppressing all internal nodes of the small-signal model of µA 741.  These reduced matrices are
then incorporated into a 6×6 MNAM of the filter.  Then, another sequence of expressions is
generated for suppressing all internal variables (potentials at nodes other than input, output and
the node to which R3 is connected), reducing the MNAM of the circuit to a 3×3 RMNAM.  The
second reduction process suppresses the remaining three internal nodes, resulting in a SoE with
over 600 expressions.

Next, the formulae for all required cofactors and the determinant of the RMNAM are
generated.  Finally, the requested network function and its small- and large-change sensitivities
are calculated.  A small fragment of the SOE, generated by STAINS, is presented in Fig. 5.  This
SoE, augmented by circuit component values (not shown), can be used in MATLAB (or other
mathematical/visualisation software) to gain insight into circuit behaviour unattainable in purely
numerical simulators.  As an example, we can examine the magnitude of voltage gain variations,

�
TV, as a function of frequency f and large changes of R3.  The result is shown in Fig. 6.  As can

be seen, the maxima of |
�

TV| follow their characteristic paths, different for positive and negative
variations of R3.

The advantage of such an approach to gaining insight into circuit behaviour cannot be
overemphasised.  Firstly, additional cost incurred by calculating sensitivities directly is minimal
and, more importantly, independent on circuit size (circuits with hundreds of symbolic
components have been successfully analysed using this method).  Secondly, once the desired
circuit parameters are expressed by a SoE, visualising complex relationships is made simple by
utilising powerful mathematical software.

% OpAmp reduction to a two-port
d1 = -Gx11/(Gp11+Gx11+s*(Cp11+Cu11));
x1 = G5o+Gx10+Gx11+Gc11+Gx11*d1;
x2 = (s*Cu11-Gm11)*d1-Gc11;
d2 = -s*Cu11/(Gp11+Gx11+s*(Cp11+Cu11));
...
d160 = x387/(x393);
y11 = x385-x391*d160;
y21 = x386-x392*d160;
d161 = x390/(x393);
y12 = x388-x391*d161;
y22 = x389-x392*d161;
% Filter reduction to a 3x3 matrix
d1 = -s*C1/(G2+y11+s*C1);
x1 = G1+G3+s*(C1+C2)+s*C1*d1;
x2 = (G2-y21)*d1-s*C2;
d2 = (y12-G2)/(G2+y11+s*C1);
x3 = s*C1*d2-s*C2;
x4 = G2+G4+y22+s*C2+(G2-y21)*d2;
d3 = x2/(x4);
x5 = x1-x3*d3;
x6 = G4*d3;
d4 = -G4/(x4);
x7 = -x3*d4;
x8 = G4+G5+G6+y11+G4*d4;
d5 = -G6/(x8);
x9 = G1+G6+G6*d5;

x10 = (G5-y21)*d5;
x11 = -G1-x7*d5;
d6 = (y12-G5)/(x8);
x12 = G6*d6;
x13 = G5+y22+(G5-y21)*d6;
x14 = -x7*d6;
d7 = x6/(x8);
x15 = G6*d7-G1;
x16 = (G5-y21)*d7;
x17 = x5-x7*d7;
% Voltage Transmittance
Z21 = x11*x16-x10*x17; Zoi = Z21;
Z11 = x13*x17-x14*x16; Zii = Z11;
Tv = Zoi/Zii;
% Differential sensitivity to R3
Z13 = x12*x16-x13*x15; Zik = Z13;
Z23 = x10*x15-x9*x16; Zok = Z23;
Z31 = x10*x14-x11*x13; Zki = Z31;
D00 = x9*Z11+x12*Z21+x15*Z31;
STvR3 = G3*Zki*(Zok-Tv*Zik)/(Zoi*D00);
% Large-change sensitivity to R3
Z33 = x9*x13-x10*x12; Zkk = Z33;
DYk = -DR3/(R3*(R3+DR3));
K0 = 1/(1+DYk*Zkk/D00); K = -DYk*K0;
DTv = K*Zki*(Zok-Tv*Zki)/...
      (Zii*D00+K*Zik*Zki);
DTvR3 = DTv*R3/(Tv*DR3);

Fig. 5.  Fragment of SOE generated for the notch filter in Fig. 4.
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Fig. 6.  Variation of the voltage gain as a function of frequency and large changes of R3 for the
notch filter in Fig. 4.

VI I .  CONCLUSION

In this paper we have shown that using the two-port transimpednace concept, the network
functions together with their differential and large-change sensitivities can be easily obtained in
sequential symbolic form.  Furthermore, we have demonstrated that once the network function
is obtained, very little additional effort is needed to calculate its differential sensitivity.  If the
sequence of expressions for the network function and its differential sensitivity have been already
generated, only a few additional expressions are needed to determine the large-change sensitivity.
This additional effort to calculate sensitivities (both small- and large-change) is practically
independent of circuit size, making our approach attractive for large-scale circuits.  The technique
is particularly effective if it is combined with the use of powerful mathematical/visualisation
packages, like MATLAB, to gain insight into circuit behaviour unattainable with numerical
simulators.  It can be applied in circuit optimization, statistical analysis, fault diagnosis,
systematic exploration and similar tasks requiring large number of repetitive calculations.
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APPENDIX A
Proof of Proper ty 2 (der ivative of the transimpedance)

Consider an admittance Y� , connected to a pair of nodes �  = (� 1, � 2).  In the modified nodal
formulation the element stamp for this admittance is:

The derivative of MNAM with respect to the admittance Y�  is a n×n matrix (n is the total number
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of variables in the modified nodal formulation) with only four nonzero entries:

where vector e�  is given by:

If Z is the inverse of the MNAM (Z = Y-1), then the theorem of the derivative of the matrix
inverse gives:

where the vectors zc and zr are given by:

From (A4) and (A5) the expression for the derivative of any matrix element, zpq, with respect to
an admittance Y�  can now be derived as:

Using (A6) and (6) we will calculate the derivative of a transimpedance Z(� ,� ):

�

Formulae for derivatives of the transimpedance with respect to values of other circuit
components, especially four controlled sources: VCCS (gm), VCVS (µ), CCCS (� ) and CCVS
(rm), can be derived using identical technique.
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