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Abstract - In this paper we describe a new method for obtaining, in symbolic form, the
network functionsand their small- and lar ge-change sensitivities. Our method isbased on
the two-port transmpedance concept and the sequence of expressions approach to
calculation of matrix determinant. We show that the network functions as well as their
senditivities can be expressed by appropriate transsimpedances. Each transimpedanceis
given by an algebraic sum of at most four elements of the inver se of the circuit’sreduced
node admittance matrix. In our method the complexity of the sequence of expressions
grows linearly with the circuit size. The extra effort required to obtain sensitivities is
minimal and, moreimportantly, independent of the circuit size.

|. INTRODUCTION

Sengitivity analysis, an important step in most circuit design, calculates the sensitivity of the
circuit performance to variations in the values of the circuit components (parameters). Due to
manufacturing process fluctuations, modelling and measurement errors, biasing and
environmental (e.g. temperature) changes, these variations are unavoidable in practical
realizations. Sometimes, the parameter changes can be large, as in the case of a circuit
component exchange or failure, or changes caused by large temperature variations. Asaresullt,
thecircuit performance can deviate from intended and simul ated behaviour. Inthispaper wewill
present an unified approach to calculation of both small- and large-scale sensitivities in the
frequency domain.

The small-change (differential) sensitivity isameasure of variationinthecircuit performance
duetoaninfinitesimally small variationinacircuit parameter (e.g. component value). Thecircuit
performance is simply some network function H(s, p), where s is the complex frequency and
P =[P, P, -, Pl iS avector of circuit parameters. The most widely used definition of the
differential sensitivity of H(s, p) to changesin a parameter p, is[1]:

i _ olnH _ oH Py
) dinp,  dp, H @

By analogy, the large-change relative sensitivity can be defined as:

H AH pk

of = 20 Tk
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If the network function, H(s, p), is given symbolically, the required small-change sensitivity
to any parameter variation can be obtained in symbolic form by differentiating the expression
with respect to the circuit parameter p,. This direct approach works well only for the relatively
small circuits, for which the network function does not have unreasonably large number of terms.
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The well known drawback of symbolic methods, when applied to large-scale circuits, is the
exponential growth of the number of termsinthe network function with circuit size[ 2]. Important
developments in the symbolic analysis of large-scale circuits have been achieved with the
introduction of hierarchical decomposition [3] and the concept of the sequence of expressions
(SOE) [4]. The basic ideais to produce a succession of simple expressions with a backward
hierarchical dependency on each other. It was shown [4] that the growth of the number of
expressions (and thus the number of arithmetic operations - flops - required for numerical
evauation) islinear for practical circuits. Until recently it wasbelieved that in order to minimise
the SOE complexity, the circuit must be first partitioned into smaller sub-circuits. In [5, 6] the
argumentswere presented to thecontrary. Partitioning imposesrestrictionsontheorder inwhich
internal variables are suppressed, leading to sub-optimal solutions. When the SOE concept was
combined with the technique of (locally) optimal reduction of the modified node admittance
matrix (MNAM) to a two-port matrix, it produced sequential formulae of considerably lesser
complexity [7].

Once the circuit equations are derived, the relevant derivatives of each equation can be
computed symbolically, and thenthedifferential sensitivity can becal culated usingthechainrule
of differentiation. This solution was first proposed in [8]. It was extended in [9, 10] by
representing a SOE as adirected acyclic graph (DAG) and providing an agorithm for analysing
the DA G and reducing the number of additional expressions generated. Although the methodis
conceptually simple, it doesnot always generate the optimal sequence[10]. Thisisduetothefact
that the number of additional expressions (derivatives), required for sensitivity calculations,
heavily dependson theposition of the symbol with respect to which the derivativesare cal cul ated.
If the symbol appears near thetop of the SOE, the number of additional expressionsmay bemuch
larger than if the symbol is near the bottom (in the worst case, doubling the computing effort).
Itispossibleto re-order the equations asto movethe symbol closeto the bottom of the SOE. The
new ordering may, however, be no longer optimal from the point of view of the initial SOE
complexity. Additional computational effort is also required to create and analyse the DAG.

Thelarge-change sensitivity can be cal cul ated by eval uating the network function twice: at the
nominal and perturbed value of parameter p,. Thisbrute force approachisvery inefficient, asit
doubles the calculation time.

The purpose of this paper is to present a new method of obtaining small- and large-change
symbolic sensitivitiesin the SOE form. Rather than generating a SOE for a network function
and differentiateit symbolically to obtain therequired differential sensitivity (or evaluateit twice,
to get the large-change sensitivity), we calculate both the network function and its sensitivities
simultaneoudly. Thisis achieved by the use of the two-port transimpedance concept [11] and
an efficient method of symbolic calculations of the el ements of the inverse of the reduced node
admittancematrix (RNAM). Wewill show that the network functionsaswell astheir derivatives
and large-change increments can be expressed by various transimpedances which in turn are
represented by linear combinations of elements of the inverse of the RNAM. Symbolic
calculation of the inverse of a large matrix is a formidable task and the result is usually a
complicated and lengthy expression. It is possible, however, by suppressing internal variables,
to reduce the problem to no more than six variables (four in most practical cases), thus reducing
the node admittance matrix (NAM) to a matrix of at most sixth order. Moreover, because
network functions are always expressed as ratios of various cofactors of a circuit matrix, it is
possibleto remove factors common to both the numerator and the denominator, further reducing
the complexity of thefinal expression. Apart of being capable of producing lesscomplex results,
the new method has other advantages over direct differentiation of the SOE. Themost important



of them are:

1. SOE complexity is only weakly dependent on the element’ s position in the circuit.

2. Theextraeffort required to obtain sensitivitiesisminimal and, moreimportantly, independent
of thecircuit size; it meansthat thelarger the circuit the (relatively) lessexpensive it becomes
to calculate sensitivities.

3. Theuseof transimpedance concept allowsto simultaneously compute many network functions
and their sensitivities at minimal additional cost.

4. Using transimpedances it is possible to obtain both small- and large-change sensitivities.

5. Higher-order differential sensitivities[12] and multiparameter |arge-change sensitivities[13]
can aso be obtained using our approach.

The paper is organised as follows. In section Il we formulate the problem. Section IlI
introduces the transimpedance concept. Using this concept we derive the network function and
sensitivity formulae in section IV. Section V details the algorithm and software developed to
implement our technique. Two circuit examples, illustrating the effectiveness of the new method,
are presented in section V1.

1. PROBLEM FORMULATION

Consider alumped, linear, time-invariant circuit depicted in Fig. 1.
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Fig. 1. A genera two-port for sensitivity calculations.

The circuit nodes are numbered with natural numbers, starting from O (the reference node). The
three pairs of terminals (ports) of interest are numbered as follows: the input porti = (i, i,) with
an independent current source I, the output port o = (0,, 0,) and the port k = (k;, k,), terminated
with admittance Y,, whose effect on anetwork function isto be calculated. We assume that the
circuit is described by a node equation:

YV =1, 3)

where: Y isanxn node admittance matrix (NAM) of the circuit,
V is an n-vector of node potentials, possibly augmented by additiona variables, e.g.,
inductor currents, currents in (dependent) voltage sources, etc., and
| isan n-vector of terminal currents.



Note that n may be less than, equal to or greater then the number of circuit nodes, depending on
the circuit and the variation of the nodal method used. The most commonly used method of
circuit equation formulation is the modified nodal method. It introduces additional (current)
variables to handle circuit components like op amps, controlled sources other than VCCS, etc.,
which are not allowed in the classical nodal analysis. The matrix created with this method is
usually referred to as the modified node admittance matrix (MNAM). In the modified nodal
formulation inductors are usually entered into the MNAM asimpedances, thus ensuring that all
entriesare of theform £A+sB. The variousways of formulatingthe MNAM aredescribed in[1,
14]. Whenideal op amps(nullors) and other ideal elementsarepresent inthecircuit, the MNAM
can be compacted, e.g., for each ideal op amp one variable and one equation isremoved from the
set of node equations. The matrix thus obtained is referred to as the compacted MNAM or
CMNAM. The compacting procedureisdetailed in [14]. Because the methods and algorithms
described in this paper work equally well with any type of the nodal matrix, to avoid using
lengthy acronyms we will simply refer in the remainder to the node admittance matrix (NAM).

Our amisto symbolically calculate the sensitivities (1) and (2) of anetwork function H(s, p)
to changes of circuit parameter p,. Usually the circuit parameter in question is the value of a
circuit component: resistance R, capacitance C,, inductanceL,, conductance G,, transconductance
O €tC. To maintain generality we will consider network function sensitivity to variation of
admittance parameter Y,. Depending on the particular type of circuit parameter, the required
sensitivity can be easily obtained using the chain rule of differentiation:

dH(sp) _ dH(sp) 9Yk

) 4
ap, aY, dp, (4)
where:
1 1 pk = Gk! gnk
-1
— 0 P = R,
% = < Rk (5)
ap, f?mzq
— 0 B = Ly
sLy

We will aso limit our derivations to two most commonly used network functions: the voltage
transmittance T,(s, p) = Vo(S, p)/V,(s, p) and theinput impedance Z; (s, p) = V,(s, p)/14s, p). Other
network functions and their sensitivities can be obtained using similar procedures.



[1l. THE TWO-PORT TRANSIMPEDANCE AND ITS PROPERTIES

3.1 Definitions

In order to simplify the notation we will introduce a new function, caled the two-port
transimpedance (or simply transimpedance).

Definition 1
Let Z denote theinverse of the (nonsingular) NAM: Z =Y™; let dso a = (ay, 0,), B = (B., B.)

be pairsof natural numbers, representing circuit nodes. We define the transimpedance of the
first order as:

Z((l, B) - Z“1|31_ Z“lﬁz_ Z“‘2|31Jr Z“zﬁz ’ (6)
where z; represents the element from the i-th row and the j-th column of Z.

Definition 2

Let S={s, S, ..., S.1} be an ordered set of pairs of natural numbers. We define the
transimpedance of the n-th order as.

n

Z(8,,850-+8y1) = 1Z(Sw5.+1)’ (7)

wheres isthei-th pair of natural numbers (representing nodesincident to thei-th two-terminal
circuit element).

3.2 Some properties of the transimpedance
Definition 2 implies the following property of the transimpedance of the n-th order.
Property 1
Any transimpedance of the n-th order, defined on an ordered set S={s,, S,, ..., S,.1},» Can be
represented as a product of two transimpedances: of order k and n-k, respectively, defined on
the ordered subsets S, = {s;, S, ... S St AN §; = {Ss1s Sees -0 Siea) OF S We can write:
Z(S,,S5 18,1 = Z(S;;Sy 1 S.1) Z(Se. 11 S0 -1 Siyi) - (8)
Element s,,, is common to both subsets: s,; = §NS,.
The transimpedance (6) has the following differential property.

Property 2

The derivative of afirst-order transimpedance, defined on aset S={a, B}, with respect to an



admittance Y, [connected to a pair of nodes: § = (&;, &,)] is equa to the second-order
transimpedance defined onaset £ = {a, &, p} taken with the negative sign:

Z(a,B) _

N, © e - Zeyzep. ©

Proof of this important property is given in Appendix A. Similar formulae can be obtained
for derivatives of Z(a,B) with respect to parameters of four types of controlled sources
(transconductance g,,, of a VCCS, voltage gain L of aVCVS, etc.).

3.3 Large-change increment of the transmpedance

Suppose that an admittance Y, has changed, and its new valueis Y, + AY,. This change causes
the admittance matrix to change accordingly, and in consequence, also itsinverse:

(Y +AY)1=Z +AZ. (10)

Using Householder formula, it has been shown [15] that

.
(Y +AY)1=Z —AY§%. (11)
é il
Hence
.
Az - -y, 22 (12)

LAY, ZEE)

where €, is a column vector (1xn) containing +1 at position &;, -1 at position &, and zeroes
everywhere else.
The increment of the transimpedance can be now defined as:

AZ(a,B) = Azulﬁl—Az -Az ot Azazﬁz, (13)

B, Q)

Each element Az, of the matrix AZ can be determined from the following rel ationship:

A7 =Kz, -2 )(Z 2%, (14)
where:
= ——AY"; = ~AYK,. (15)
1+AY, Z(E.E)



Substituting (14), with appropriate coefficients (r,s) = (a;,p;), into (13) and taking into account
the relationship (9), one obtains the increment of the transimpedance:

AZ(0,p)-K 20,26 - K L. (16)

Ascan be seen, theincrement of atwo-port transimpedance dueto large change of an admittance
isproportional to the derivative of thistransmpedance with respect to the admittance changed.

V. APPLICATION OF THE TRANSIMPEDANCE TO CALCULATION OF
NETWORK FUNCTIONSAND THEIR SENSITIVITIES

4.1 Calculating network functions
Using transimpedances it is possible to express the required network functions. Potential at

any node j of a circuit in Fig. 1 can be caculated as V, = (z;, - z;,)ls and the voltage
transmittance:

T = & - Vol_voz _ Z°1i1_Z°1i2_202i1+Z°2i2 _ Z(0,1) (17)
\Y —
Vi Vi -V 4,74, 4,14, (i, 1)
Analogically, the input impedance can be expressed as:
Vv, i, Vi, .
Zin = |_ = = Z(i,i) . (18)

Other network functions can be obtained in asimilar way.
4.2 Obtaining network function sensitivities
A. Small-change sensitivities

Differentiating (17) and (18) with respect to admittance Y, and using Property 2 we can write:

9Ty _ Z(i,k,i)Z(o,i) - Z(o, k,i) Z(i, i)
Y Z3(i,i)

(19)

and

Ziy i
N, (i.k,i). (20)

Now, utilising Property 1 (8) and Definition 2 (7), we can re-write (19) and (20) in terms of the
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elementsof Z:

Ty [Z(i,k) Z(0,i) - Z(0,K) Z(i, )] Z(k,i) _ Z(k,1)
N 20 [T Z(i,k) - Z(o, k)] 26.3)" (21)
"= -Z(,k) Z(k, ). (22)

k

Substituting (21), (17) and (22), (18) into (1), we obtain the relative differential sensitivitiesto

Y,
T, dnT, dT, Y, Z(k,i)
Svk = m = a—YkT_V = [T Z(i,k) - Z(o, k)] Z(0.)’ (23)
z, _dnZ, 0L, Y, Z(iKZk,)
C Ay, vz, Yz (24)

Finaly, utilising (4) and (5), one can obtain expressions for small-change sensitivitiesto circuit
components: R, C,, L,, etc. For example, when p, = L, we have Y, = 1/(sL,) and:

_|
<
o
<
QO
=
A
x~
H

Z(ki) _

L RO Soh -5, (25)

=~
=~
<
=~

B. Large-change sensitivities

If admittance Y, undergoes alarge change AY,, the resulting change in the voltage transmittance
is:
_ Z(0,)+AZ(0)i) Z(oj) _ AZ(0))-T,AZ)

Voo ZG,)+AZG)  Z( ) Z(i,1)+AZ(i,i) (26)
Taking (16) into account, one obtains:
AT - [Z(o,k)—TVZ(i,k)]Z(k,i). 27

v Z(i,1)+K Z(i k) Z(k,i)

The large-change sensitivity measure can now be expressed in a straightforward manner:
T, K Y, [Z(0k)-T, Z(i,k)]Z(k,i)
YT AY,  Z(3)KZ3KZ(k,i)

(28)

Utilising (21), we can write finally:



.
T, K Y 0Ty Z(i i) . KoSy'

%% Ty AY, 3Y, Z(i.,))+KZ(i K)Z(k,i) 2002k o
Z(i.0)

1-AY, K,

Ty aTV Yk . . . . . .
where: S\(k = T isthe relative differentia sensitivity, given by (23), and
k "V
G-t
1+AY, Z(kK)
Ascan be seen, only one additional transimpedance, namely Z(k k), is needed to obtain thelarge-
changesensitivity when thevoltage transmittance and its derivative have been already cal cul ated.

In similar way the increment and large-change sensitivity for the input impedance can be
expressed with appropriate transimpedances:

AZ_=KZ(i,k)Z(k,i),
e A (RaY4(3) (30)
z zG,i)

n

Zo o Y ZG.RZ(KD) _ e oo
o, KAYk Z(i,i) oS (D

In practiceit may be more convenient to work with component variations: AR, AL,, AC,, etc.,
rather then admittancevariationsAY,. Tofacilitatethisrequirement, oneof thesimpleconversion
formulae can be used:

1 -A
Yk:_ = AYk:—Rk’ (32)
Re R(R+AR)
1 -AL,
Y =— = AY,=— K
< s, “ s, (L +ALY) (33)
Y, =sC, = AY, =sAC,. (34)

4.3 Expressing transimpedances in terms of elements of NAM

In order to calculate the e ements of the inverse of Y we will use the well-known formula:

(35)



Thus the elements of Z are obtained from:
(D'

Z; — (36)

where: A; istheji-th minor of Y - the determinant of amatrix obtained from'Y by deleting row
j and columnii,
A =|Y|# 0isthe determinant of Y.

Utilising (36) atransimpedance (6) can be rewritten as

o, +f o, +f o, +f o, +f
(D" PA, - (DA, - (1) A (-1)% A
A

Z(a,B) - icicY (37)

For large circuits, symbolic expressions for the cofactorsin (37) could be unacceptably long,
rendering themethodimpractical. Itis, however, possibleto suppressall internal variablesof (3),
leaving at most six variables associated with the external terminals. Thereduced set of equations
iscalled the reduced node equation (RNE) and the coefficient matrix isappropriately termed the
reduced nodeadmittancematrix (RNAM). Formulaederived aboveareasovalidfortheRNAM.
The last statement is true because of the following RNAM property:

The determinant and each cofactor of RNAM are equal to the determinant and the

corresponding cofactor of NAM divided by the product of pivotsused inthereduction process.

The reduced set of nodal equations can be obtained in the SOE form by symbolic Gaussian
elimination. Although this technigue has been recently described in [7, 16], for completeness,
abrief outline is presented in the following paragraph.

4.4 Symbolic suppression of internal variables

In order to illustrate the internal variable suppression process in a concise manner, we need to
further simplify the problem. Consider again the circuit showninFig. 1. Let usassumethat the
input and output ports, and the admittance Y, share a common terminal which is grounded.
Furthermore, since node numbering isarbitrary, leti =(1,0), 0=(2,0) and k =(3,0). Thecircuit
can be described by the set of symbolic equations:

Yii Yo Yiz3 ylp “ Yin V1 _| ]
Yor Yo2 Yo3 - y2p w Yon Vz 0
Yar Ya2 Yaz v Yap o Yan|| Vs 0
. . . . . =|:], (38)
Yao Y Yo = Yoo = Yan||Ve 0

_ynl Yo Y3 ynp ynn_ _Vn_ 'O'

where y; are symbolic entries of general form: +G £ sC, and some of theinternal variablesV,,
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..., V,, may represent currents in certain circuit elements. It is important to note that the first
entry, I, of the right-hand-side vector isits only nonzero. Thisform of the node equation will
enableusto eliminateall internal variableswithout modifying therhsvector, i.e., wewill beable
to work with the coefficient matrix only.

Sincewe are only interested in the three external variables (V,, V, and V,), al other (internal)
variables can be suppressed. Suppose that we wish to suppressthe variable V. To achievethis
we can use any equation from the set (38), except the first three equations, that has a nonzero
coefficient at V,,. Let uschooseit to be equation > 3 (the method of selecting theright variable
and theright equation at each elimination stepiscalled pivoting; it playscrucial rolein achieving
efficiency of the technique [7, 16]). The gth equation can be written in the expanded form:

yqlV1 + yq2V2 + ngV3 T YoV et yann =0. (39)
Provided that |y,,| # 0, we can calculate V, from (39) as

Y., Yo
v =2ty IRy

Y Y,
) ——q3V3—...—ﬂV . (40)
Yo Yo Yo Yoo

n

Substituting (40) into (38) will eliminate the variable V,, and equation g from the set. During the
elimination, each element y; of Y undergoes the transformation:

YqYip

ap

where i,j =1, 2, ..., n; i#q, j£p. Thisprocess of suppression of avariableisthevery well known
Gaussian elimination. Theonly differencefrom the usual appearance of the elimination formula
(41) in the literature is the fact that the pivot, y,,, may be off-diagonal (p#q). In practice, the
transformation (41) is only applied to the matrix elements y; for which |y,|-|y,,| # 0. Every
application of the Gaussian elimination formula (41) produces a symbolic expression. This
procedure is carried out until al internal variables are suppressed and we obtain a set of three
equations (the reduced node equation):

Yiu Yo Yas||Va I
Yor Yoo Yas|{V| = 0], (42)
Yar Ya Ya3||Va 0

where each element y; is calcul ated by a sequence of expressions.

V. IMPLEMENTATION
A. The Algorithm

The process of obtaining sequential symbolic formulae for network functions and their
sengitivities can be easily automated. The algorithm is presented below.
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1. Obtain the small-signal equivalent circuit.

2. Get the information about the network function required and the element(s) with
respect to which the sensitivity is to be calculated.

3. Formulate the symbolic NAM using the element stamp method.

4. If there are ideal op amps then compact the NAM (NAM - CNAM).

5. Perform symbolic reduction of the CNAM to a matrix containing only rows and
columns associated with the external nodes (CNAM - RNAM).

6. Calculate the relevant cofactors and the determinant of the RNAM.

7. Apply the appropriate formulae to obtain the required network functions [e.g., (17)
and (18) for the voltage transmittance and input impedance].

8. Calculate the differential sensitivity of the transfer function(s) by applying (23), (24).

9. Calculate the large-change sensitivity of the transfer function(s) using (29), (31).

B. Software

Dueto its excellent user interface, ability to display and handle large symbolic arrays and ease
of programming (in VBA and/or C/C++), wehave chosen Microsoft Excel asasoftware platform
to test our algorithm. Circuit data can be either generated automatically from the output file of
Cadence PSpice or entered manually onto an input spreadsheet in the familiar Spice-likeformat.
The user then selects the pivoting criteria, the way the output is to be presented, the required
network function and the circuit component with respect to which the sensitivity is to be
calculated. The CNAM and the calculated expressions are displayed on another spreadsheet.
Threetext files may also be created. They are: component values (if any), CNAM elements and
the sequence of expressions. Thesefiles can be used for further processing (e.g., by MATLAB,
Maple, Mathematica, etc.). Our implementation, which is essentially an Excel workbook, is
caled STAINS 3 - Symbolic Two-port Analysis via Interna Node Suppression. STAINS can
handle any linear circuit that can be described by the MNAM. Theoreticaly, the size of the
circuit isonly limited by the available computer memory. Our programme, however, has asize
[imit of 256 nodes due to maximum number of columnson the Excel spreadsheet. A copy of the
software can be obtained via Internet from the authors (benr @ng. ut s. edu. au).

VI. CIRCUIT EXAMPLES

To illustrate the effectiveness of our approach to sensitivity calculations we present two circuit
examples.

Example 1. Consider acircuitin Fig. 2. Thecircuit is deliberately small to allow for inclusion
of the entire SOE. We wish to obtain a sequentia expression for the voltage ratio, T, = V /V,
(Tv) and its sensitivity to R, (STVR1). Herewe have: i = (1,2), 0 = (3,4) and k = (1,3); thereis
only oneinternal variable to eliminate (V). Theresult generated by STAINS 3isshownin Fig.
3. The first six expressions suppress V.. Then the cofactors required to calculate the
transimpedances Z(0,i) and Z(i,i) are expressed in terms of the elementsof the RNAM. Notethat
thedivision by the RNAM'’ s determinant is not performed, asthe terms cancel out intheformula
for T,. This determinant (DOO) is only used in the final sensitivity formula. Numerical
evauation of this sequence requires 97 flops. To compare our method with the direct
differentiation of sequential formulae, the compact SOE was first generated by our other
programme, STAINS 2 [7], and then the relevant derivatives were inserted manually. The
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Fig. 2. Small example circuit for sensitivity analysis.

dl = (G- RXR)/ (XR+ED) ; 222 = (A+&X) *(x1*(GL+&3) - GL*GL) ;
x1l = Gl+&+&*d1; Zii = Z11+722-712-721;

x2 = Gb*dl; Tv = Zoil Zii

d2 = - (G+GMl) / (KR+Gh) ; Z13 = Gl*(x4*(A+GB) - A*A) ;

x3 = &*d2; 223 = -Gl*x2* (G4+3H) ;

x4 = A+&G+EG*d2; Zik = 711+723-713-721;

Z31 = Gl*(x4*(A+&B)-HA*HA) ; Z33 = X1*(x4*(A+&HB)-A*HA) -. ..
732 = - (A+GB) *x3*Gl; x2* (A+EB) *x3;

Z41 = - (Gl+@&B) *x2* A; Z43 = - Gl*x2*A4;

7242 = A*(x1*(GLl+G3) - GL* QL) ; Zok = Z31+743-Z733-741;

Zoi = Z31+Z42-732-741; Zki = Z11+Z32-712-731;

Z11 = (Gl+&RB) *(x4*(A+B) - A*A) ; D00 = (GL+&3) *Z33- GL*Z13;

Z12 = - (A+&B) *x3* (GL+&3) ; STVR1 = GL* Zki * ( Zok- Tv*Zi k) / ( Zoi * DOO)
221 = - (Gl+&R3) *x2* (A+CD) ;

Fig. 3. The SOE generated by STAINS 3 for the voltage transmittance of the circuit in Fig. 2 and its sensitivity
toR, (note G =1R,i=1,2,..,6).

resulting sequenceisnot presented heredueto spacerestrictions. It requires 149flops. (It should
be noted that the number of flopsis only an approximate measure of computational complexity,
especialy when operations are performed with complex numbers. Issues related to SoE
computational efficiency are discussed in[17].)

Example 2. Consider a notch filter shown in Fig. 4. Both op amps are modelled at the device
level with the full small-signa model of pA 741 (the details of the model can be accessed at
http://www.eng.uts.edu.au/~benr/symbolic/index.htm). Thus, theequivalent circuit hasmorethan
150 nodes and morethan 440 symbolic components. Our goal isto find the sequence of symbolic

C
I___
R
=3 C: i Rs
IN R,
R, -
ouT
Rs
[

Fig. 4. Notch filter.
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expressionsallowing usto cal culatethevoltagetransmittance, itsdifferential sensitivity, SR3V, and

large-change sensitivity, SRZ, with respect to resistance R,. Since the two op amps areidentical,

the symbolic reduction process can be simplified considerably. Thisisachieved by representing
each op amp with a 2x2 RMNAM (parameters y11, ..., y22 in Fig. 5), obtained by
suppressing all internal nodes of the small-signal model of HA 741. These reduced matrices are
then incorporated into a 6x6 MNAM of the filter. Then, another sequence of expressionsis
generated for suppressing al internal variables (potentials at nodes other than input, output and
the node to which R; is connected), reducing the MNAM of the circuit to a3x3 RMNAM. The
second reduction process suppresses the remaining three internal nodes, resulting in a SoE with
over 600 expressions.

Next, the formulae for al required cofactors and the determinant of the RMNAM are
generated. Finally, the requested network function and its small- and large-change sensitivities
arecalculated. A small fragment of the SOE, generated by STAINS, ispresented in Fig. 5. This
SoE, augmented by circuit component values (not shown), can be used in MATLAB (or other
mathemati cal/visualisation software) to gaininsight into circuit behaviour unattainablein purely
numerical simulators. Asan example, we can examine the magnitude of voltage gain variations,
AT,, asafunction of frequency f and large changes of R,. TheresultisshowninFig. 6. Ascan
be seen, the maximaof |AT, | follow their characteristic paths, different for positive and negative
variations of R;.

The advantage of such an approach to gaining insight into circuit behaviour cannot be
overemphasised. Firstly, additional cost incurred by calculating sensitivities directly isminimal
and, more importantly, independent on circuit size (circuits with hundreds of symbolic
components have been successfully analysed using this method). Secondly, once the desired
circuit parameters are expressed by a SOE, visualising complex relationships is made simple by
utilising powerful mathematical software.

% OpAmp reduction to a two-port x10 = (G5-y21)*d5;

dl =-Gx11/(Gpl1l+Gx11+s*(Cpll+Cull)); x11 = -G1-x7*d5;

x1 = G50+Gx10+Gx11+Gcl11+Gx11*d1; d6 = (y12-G5)/(x8);

X2 = (s*Cull-Gm11)*d1-Gcll; x12 = G6*d6;

d2 =-s*Cull/(Gpl1+Gx11+s*(Cpl1+Cull)); x13 = G5+y22+(G5-y21)*d6;

Xx14 = -x7*d6;

d160 = x387/(x393); d7 = x6/(x8);

y11 = x385-x391*d160; x15 = G6*d7-G1,;

y21 = x386-x392*d160; x16 = (G5-y21)*d7;

d161 =x390/(x393); X17 = x5-x7*d7;

y12 = x388-x391*d161; % Voltage Transmittance

y22 = x389-x392*d161; Z21 = x11*x16-x10*x17; Zoi = Z21;
% Filter reduction to a 3x3 matrix Z11 = x13*x17-x14*x16; Zii = Z11;
dl =-s*C1/(G2+y1l1l+s*Cl); Tv = ZoilZii;

x1 = G1+G3+s*(C1+C2)+s*C1l*d1; % Differential sensitivity to R3

x2 = (G2-y21)*d1-s*C2; Z13 = x12*x16-x13*x15; Zik = Z13;
d2 = (y12-G2)/(G2+y11+s*Cl); 723 = x10*x15-x9*x16; Zok = Z23;
x3 = s*C1*d2-s*C2; Z31 = x10*x14-x11*x13; Zki = Z31,
x4 = G2+G4+y22+s*C2+(G2-y21)*d2; D00 = x9*Z11+x12*Z21+x15*Z31;
d3 =x2/(x4); STvR3 = G3*Zki*(Zok-Tv*Zik)/(Zoi*D00);
x5 = x1-x3*d3; % Large-change sensitivity to R3
X6 = G4*d3; Z33 = x9*x13-x10*x12; Zkk = Z33;
d4 = -G4/(x4); DYk = -DR3/(R3*(R3+DR3));

X7 = -x3*d4; KO = 1/(1+DYk*Zkk/D00); K = -DYk*KO;
x8 = G4+G5+G6+y11+G4*d4; DTv = K*Zki*(Zok-Tv*Zki)/...

d5 =-G6/(x8); (Zii*D00+K*Zik*Zki);

X9 = G1+G6+G6*d5; DTvR3 = DTv*R3/(Tv*DR3);

Fig. 5. Fragment of SOE generated for the notch filter in Fig. 4.
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Motch filter: voltage gain magnitude variation

DT [Wiv]
(R

o]

: A K
s
# %:W:M‘ i
s g TSRS ] L
= P S ;
o s 4000

DR3 [kohrm] 0.1 2000

Frequency [Hz]

Fig. 6. Variation of the voltage gain as a function of frequency and large changes of R; for the
notch filter in Fig. 4.

VIlI. CONCLUSION

In this paper we have shown that using the two-port transimpednace concept, the network
functions together with their differential and large-change sensitivities can be easily obtained in
sequential symbolic form. Furthermore, we have demonstrated that once the network function
is obtained, very little additional effort is needed to calculate its differential sensitivity. If the
sequence of expressionsfor the network function and itsdifferential sensitivity have been already
generated, only afew additional expressionsareneededto determinethelarge-changesensitivity.
This additional effort to calculate sensitivities (both small- and large-change) is practically
Independent of circuit size, making our approach attractivefor large-scalecircuits. Thetechnique
is particularly effective if it is combined with the use of powerful mathematical/visualisation
packages, like MATLAB, to gain insight into circuit behaviour unattainable with numerical
simulators. It can be applied in circuit optimization, statistical analysis, fault diagnosis,
systematic exploration and similar tasks requiring large number of repetitive calculations.
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APPENDIX A
Proof of Property 2 (derivative of the transmpedance)

Consider an admittance Y,, connected to a pair of nodes § = (§,, &,). In the modified nodal
formulation the element stamp for this admittanceis:

& &

G |Ye Y (A2)
Y, = v oyl
Y Y

Thederivative of MNAM with respect to the admittance Y, isanxn matrix (nisthetotal number
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of variablesin the modified nodal formulation) with only four nonzero entries:

& &
- 2 [11 )| 42
where vector €, is given by:
e - [0 - DT q. (A3)

If Z isthe inverse of the MNAM (Z = Y™), then the theorem of the derivative of the matrix
inverse gives.

oz oY T
— = Z2—27 =-Z Z=-z7,
v, 3, %% c“r (A4)

where the vectors z, and z, are given by:
Z; = Zeg - [Zlgl_zlgz Lp "L, - Dy, _anz]T

(A5)
2, =&z - [Zéll_zézl %o %2 - Zil”_zizn}

From (A4) and (A5) the expression for the derivative of any matrix element, z,,, with respect to
an admittance Y, can now be derived as:

9
a—zz = (%, %)(%0 %) (AB)

Using (A6) and (6) we will calculate the derivative of atransimpedance Z(a,p):

aZ(‘LB) _ aZ"‘lﬁl _ aZ"‘zﬁl B az‘llﬁz 4 az“zﬁz

Y, dY, IY, I, I,

- 2“1‘51 - 2“1‘52 25151 - Z§2B1 i Zﬂz§1 - Zﬂz"iz Zilﬁl - Zigﬁl
i Z‘3'1‘5»1 - Z‘3'1‘5»2 25152 - z§252 N 2“2‘51 N Zﬁz&z 25152 N z§232
- 2“1‘51 - ZO‘1"32 - ZO‘2"31 " Z“zﬁz 25151 - Zilﬁg - Zizﬁl - Z§2B2
_Z(a1§) Z(§1B) = —Z((l,g,ﬁ)

i
Formulae for derivatives of the transimpedance with respect to values of other circuit

components, especially four controlled sources. VCCS (g,), VCVS (1), CCCS (o) and CCVS
(r.), can be derived using identical technique.
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