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Abstract. Significant characteristics of cloud computing such as elasticity, 

scalability and payment model attract businesses to replace their legacy infra-

structure with the newly offered cloud technologies. As the number of the cloud 

users is growing rapidly, extensive load volume will affect performance and 

operation of the cloud. Therefore, it is essential to develop smarter load man-

agement methods to ensure effective task scheduling and efficient management 

of resources. In order to reach these goals, varieties of algorithms have been ex-

plored and tested by many researchers. But so far, not many operational load 

balancing algorithms have been proposed that are capable of forecasting the fu-

ture load patterns in cloud-based systems. The aim of this research is to design 

an effective load management tool, characterized by collective behavior of the 

workflow tasks and jobs that is able to predict various dynamic load patterns 

occurring in cloud networks. The results show that the proposed new load bal-

ancing algorithm can visualize the network load by projecting the existing rela-

tionships among submitted tasks and jobs. The visualization can be particularly 

useful in terms of monitoring the robustness and stability of the cloud systems. 

Keywords: cloud computing, load balancing, collective behavior, dynamic pat-

tern recognition 

1 Introduction 

Over the last decade, business and academic requirements from technology perspec-

tive have changed substantially with a greater emphasis on more powerful computing 

techniques. In IT, much of these changes have been driven by prompt success in In-

ternet improvement and economical IT infrastructure development, which resulted in 

novel structured computational models [1]. Cloud computing is one of these newly 

emerged paradigms for hosting and delivering services over the Internet.  

In cloud computing mapping a proper load-balancing algorithm was always an im-

portant challenge. The load on the network can be forced by CPU load, memory load, 

bandwidth load and tasks load [2]. Therefore due to the extensive load volume, the 

load balancer should prioritize the information using the distributed and heuristic 

algorithms. Moreover, the load should be managed in a real time manner to prevent 



the overloaded pipelines and respond to the user requirements as quick as possible 

[3].Reviewing the literature, different collections of algorithms have been proposed 

by researchers.  Although the algorithms can optimize the load balancing methods, 

still there is a need for designing a method that can forecast the load patterns accord-

ing to application types. 

The purpose of this research is to architect a nature base heuristic load balancing 

algorithm, which can anticipate the fluctuation and magnitude of the load with various 

mathematical apparatus. The proposed approach can help to alleviate the problem of 

un-balanced load by visualizing the task dependencies pattern that can result in effec-

tive load management and resource monitoring.  

2 Problem Formulation 

There is a need to develop an efficient load management tool in cloud computing that 

can monitor the load in an elastic and scalable cloud. The load monitoring tool must 

not only consider the optimization method to distribute the load effectively, but also it 

should have anticipatory characteristics that can perform an optimal decision making. 

Different types of load balancing methods have been designed using static, dynam-

ic and hybrid algorithms. However, there are limited numbers of examination on load 

balancing algorithms with dependent patterns. This could be due to the complex na-

ture of the workflow tasks and its vague behavior in terms of resource management 

[4]. Despite of the limited number of the works, valued solutions have been proposed 

which shaped the research direction in workflow load scheduling and highlighted the 

main gaps and their possible solutions.  

Today, workflow scheduling is considered to be a key tool for automating the e-

business and e-science applications. Critical applications such as earthquake model-

ing, climate forecasting and online booking systems for hotels and aircrafts are the 

example of these groups [5]. Therefore due to the complex procedure of data pro-

cessing in these applications there is a need to architect a comprehensive tool incorpo-

rated with the heuristic algorithms to predict the direction and magnitude of the load 

changes on workflow structured applications. 

3  Proposed Solution: Generalized Spring Tensor Model 

(STeM) 

     In this research we aim to evaluate the fluctuation and magnitude of the load 

changes in cloud computing through generalized spring Tensor algorithm. The scope 

of the experiment will be limited to workflow tasks, where tasks and jobs have certain 

dependencies to each other. Generalized spring tensor (STeM) is part of the coarse 

gained models. It is composed of two main components [6-7]: 

 Gaussian Network Model (GNM)  

 Anisotropic Network Model (ANM) 



GNM is designed to predict the magnitude of the load while ANM is concentrating 

on the direction of the fluctuation.  

Basically GNM will be effective if the tasks are located in certain distances, or in 

other words they are connected to each other in somehow [8].  

From mathematical point of view this connectivity can be explained with Kirchhoff 

Matrix, also illustrated in equation 1 where    is representing the cut-off distance. 
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ANM, however, was suggested as a coarse gained model which is using the sim-

pler Hookian potentials to bypass the energy minimization needed for measuring the 

direction of the load [9].  

ANM is using Hessian matrixes shown in equation 2 with      super elements, 

where each element is a     tensor and     is the interaction tensor between   

and   [10-11]. 
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Both ANM and GNM models have their own advantages and disadvantages. They 

are considered as croase-gained models which do not require any energy minimiza-

tion techniques. However as it is described earlier, ANM is focusing on direction of 

the fluctuation, while GNM is highlighting the magnitude of that.  

Therefore to take the advantages of these two coarse-gained models and overcome 

their limitations, generalized spring tensor (STeM) was proposed, as a result of ANM 

and GNM combination. STeM can calculate the magnitude and direction of the load 

fluctuation in multi-dimensional environment base on nodes interactions [12]. 

To explore STeM model on cloud computing, a simple workflow application in a 

static structure should be considered. As shown in figure 1, each node in this work-

flow structure is representing a particular task, while combination of the tasks are 

representing group of jobs.  

 

 

 

 

Fig. 1. - Simple workflow job modeling 



  

Fig. 2. - Go-Like potentials main parameters on workflow job modeling 

STeM algorithm is functioning base on Go-like model. In this model, it is recog-

nized that each task has a defined location comparing to other neighbors while they 

are connected to each other by a single spring [13].  

Therefore in early step of applying the STeM algorithm, the first derivative of the 

Go-like potential will be determined. “Chain connectivity”, “Bond Angle”, “Bond 

dihedral” and “Non-local” interaction between tasks are the main parameters that 

should be computed using equation 3. 
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Figure 2 is interpreting the main parameters of Go-like potential; bond, Angle, Di-

hedral and non-local interactions; on workflow tasks model. Details of each parameter 

are illustrated in table 1.  It should be mentioned that, each task is composed of differ-

ent threads with variety of commands and functionalities. Each of these threads 

should have priority numbers while they should start and finish by a certain time. 

Therefore in workflow model each task has its own depth, start-time and finish-time. 

Depth is depicting task’s priorities in terms of execution, while start-time and finish-

time show the period needed to lock a particular resource for task completion. Figure 

3 is interpreting the workflow model in hierarchical time slots. 

 

 

 

 

 

 

 

Fig. 3. – Workflow job modeling in hierarchical time manner 



In next step, the second derivative of the obtained Go-like model will be calculated 

to determine the projection of the magnitude and direction of the load fluctuation on 

workflow load balancing [14]. This value can be obtained using equation (4). 

 

    

[
 
 
 
 
 
          

      

          

      

          

      

          

      

          

      

          

      

          

      

          

      

          

      ]
 
 
 
 
 

 

[
 
 
 
 
 
          

     

          

      

          

      

          

      

          

      

          

      

          

      

          

      

          

      ]
 
 
 
 
 

 

[
 
 
 
 
 
          

      

          

      

          

     

          

     

          

     

          

      

          

      

          

      

          

      ]
 
 
 
 
 

 

[
 
 
 
 
 
 
   

 (         )

      

   
 (         )

      

   
 (         )

      

   
 (         )

      

   
 (         )

      

   
 (         )

      

   
 (         )

      

   
 (         )

      

   
 (         )

      ]
 
 
 
 
 
 

  (4) 

 

Table 1. - Interpretation of Bond, Angle, Dihedral and non-local connections between task on 

workflow model 

Model Description  

 

Bond: This parameter is defining the chain 

connectivity between tasks in workflow 

models. It will mainly highlight the potential 

connections between a task and its neighbors 

[15]. 

 

Angle: This parameter is defining the an-

gles between tasks in workflow model. The 

angle can be interpreted as the interval be-

tween finishing time of one task comparing 

with starting time of the neighbor task.  

 

Dihedral: The parameter is describing the 

location of the tasks after they forced by 

external load. Torsion can disconnect the 

current connections between two nodes and it 

can substitute that with a new relation be-

tween non-neighboring nodes [16].  

 

Non-local interaction: The parameter is 

defining the task’s connectivity with other 

tasks through non-local interactions. With 

this model it is implied that, the forces of 

changes between non-neighboring tasks can 

be calculated.  



4 Results and Discussion 

In this work, we simulated a deployment of homogenous set of nodes to capture the 

global behavior of cloud load. Using Matlab, simulation was performed and evaluated 

for hundreds of nodes that represent the masses of the workflow tasks. Figure 3 is 

representing 100 workflow tasks, recognized by their depth, start-time, and finish-

time. This workflow task has 8 main levels of time slots. The details of the first and 

the last time-slots of the tasks are shown in table 2.  

Table 2. -Depth, start-time and finish of the selected tasks in 8 time slots 

Cloud-
Let ID 

Depth 
Start-
Time 

Finish 
Time 

100 0 0.1 0.21 

1 1 0.21 13.34 

40 1 0.21 14.08 

22 2 13.48 24.7 

78 2 45.36 56.17 

79 3 56.17 61.13 

85 4 61.13 66.47 

82 5 66.47 77 

96 5 66.47 77.45 

97 6 77.45 85.71 

98 7 85.71 95.13 

99 8 95.31 102.22 

 

 

 

 

Fig. 4. -Simulated workflow tasks with depth, start time, finish time 



 Applying the STeM algorithm, figure 4 shows the determinant values of the ana-

lyzed Hessian for the data set of 100 tasks in one set of job. It shows the direction of 

the load on each task. The magnitude of the load is shown with red color, illustrating 

the greater value of change. As the future work, several scenarios will be considered 

to evaluate the behavior of the load in cloud. 

 

Fig. 5. -Determinant values of analyzed Hessian for data set of 100 tasks in one set of job 

5 Conclusion 

This research explores the adoption of STeM algorithm for visualizing the behavior of 

the load fluctuations on workflow tasks, in localized and globalized pattern.  

In our study, Elastic Network Model (ENM) analysis was selected to evaluate the 

dynamics of the cloud load. Amongst the popular algorithms of ENM, Generalized 

Spring Tensor (STeM) was adopted to satisfy our objectives.  

The foundation of STeM algorithm is based on Gaussian Network Model (GNM) 

and Anisotropic Network Model (ANM) which is able to detect of the motions of 

tasks in cloud network. The approach helps us to identify and model the magnitude 

and direction of the load fluctuations at a single task in a workflow application model. 

Simulation result tested on 100 tasks demonstrates that STeM algorithm can visualize 

the tasks connectivity with both local and non-local interactions. The expected benefit 

of our proposed model shows that STeM algorithm can be applied in designing an 

effective, dynamic and autonomous load balancer that is able to support optimal deci-

sion making in critical situations. 
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