

Frequency Estimation for Low Earth Orbit Satellites

Elias Aboutanios (BE Hons 1)

A thesis submitted for the degree of Doctor of Philosophy

University of Technology, Sydney Faculty of Engineering (Telecommunications Group) 2002

CERTIFICATE

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

ACKNOWLEDGMENTS

This research would not have been possible without the support of a number of people and organisations.

Firstly, I would like to thank my former supervisor, A/Prof. Sam Reisenfeld, for his support and guidance throughout my research work. I would also like to thank my current superviser, Professor Robin Braun, for his valuable support for the past few months.

I would like to acknowledge The *Cooperative Research Centre for Satellite Systems* for the financial support during the course of this work.

I would like to express my appreciation for a number of people at UTS. Firstly Ms Rosa Tay for her kind administrative support, Dr Tim Aubrey and Mr Ray Clout who are part of the CRCSS team and Mr Robert Corran for his assistance in computer related issues.

My friend and colleague Dr Keith Willey for being able to put up with my sense of humour and for the friendship we share. I would also like to express my gratitude to Dr Michael Eckert for his valuable help and advice.

To my friends, at the university and outside, thank you for keeping a sanity check on my life.

My brother, Joseph, and sisters, Souraya and Rita, thank you for your love, support and encouragement, and for putting up with me all these years. I pray that I will always be there for you like you have been for me.

To my parents for all the sacrifices you made in order to give me the opportunity to get this far. I love you with all my heart. You are the shoulders that carried me so that I could see further than you could. It is to you that I dedicate this thesis. **To My Parents**

Table of Contents

Certific	ate	ii
Acknow	ledgements	iii
Table of	f Contents	iv
List of F	Figures	viii
List of 7	Tables	xiv
List of S	Symbols	xvi
List of A	Abbreviations	xix
Abstrac	t	xxi
Chapter	1 Introduction	
1.1	Motivation for thesis	1
1.1.	1 Doppler shifts and Local Oscillator Drift	
1.1.	2 The Application of Frequency Information to Spatial Tracking	
1.2	Research objectives	4
1.3	Thesis structure	4
1.4	Original contributions	8
1.5	Publications	
Chapter	2 Theory and Background	
2.1	Introduction	12
2.2	The Central Limit Theorem and Noise Properties	
2.3	The Cramer-Rao Lower Bound	14
2.3.	1 CRB for the Estimate of the Frequency of a Sinusoid	16
2.4	Kalman Filtering	
2.4.	1 The Kalman Filter – Linear, Time-Invariant Case	19
2.4.	2 Non-Linear Case – The EKF	
2.5	Frequency Estimation	
2.5.	1 Phase-Based Frequency Estimation	
2.5.	2 Correlation Based Frequency Estimation	
2.5.	3 Least Squares Frequency Estimation	
2.5.	4 Frequency Estimation Using ARMA Modeling	
2.5.	5 Kalman Filtering Frequency Tracking	

2.5.6 Frequency Domain Frequency Estimation	35
2.6 Conclusion	
Chapter 3 Complete Characterisation of Low Earth Orbits	
3.1 Introduction	
3.2 Angular Velocity of Satellite in ECEF Frame	
3.3 Orbital Propagation	
3.4 Satellite Velocity Approximations	
3.5 Spatial Characterisation	
3.5.1 Satellite Visibility Duration	49
3.5.2 Latitude and Longitude of the Sub-satellite Point S	51
3.5.3 Azimuth and Elevation	54
3.5.4 Azimuth-Elevation to X-Y Transformation	58
3.5.5 Off-Boresight Error	61
3.6 Doppler Shift and Doppler Rate	
3.7 Conclusion	
Chapter 4 Frequency Domain Frequency Estimation	
4.1 Introduction	
4.2 The DFT and FFT	
4.3 The Maximum Bin Search	
4.4 Threshold Effects	71
4.5 Approximate Expression for Threshold Onset	
4.5.1 Derivation of the Approximate Expression	76
4.5.1.1 Lemma	
4.5.1.2 Theorem	89
4.5.1.3 Proof	90
4.6 Conclusion	
Chapter 5 Frequency Estimation by Interpolation on Fourier Coefficients	
5.1 Introduction	
5.2 Existing Interpolation on Fourier Coefficients Techniques	
5.2.1 Theory	96
5.2.1.1 Theorem	98
5.3 Interpolation on Three Fourier Coefficients	100
5.4 Quinn's First Estimator	101
5.4.1 Motivation	102
5.4.2 Analysis	103

5.4.2.1 Theorem	103
5.4.2.2 Derivation of the Asymptotic Variance	103
5.4.3 Quinn's Second Estimator	111
5.4.4 Macleod's Three Coefficients Interpolator	114
5.4.5 Motivation	115
5.5 Interpolation on Five Fourier Coefficients	. 118
5.6 Interpolation Using the Moduli of Fourier Coefficients– The Rife-Vincen	t
Estimators	. 121
5.6.1 Rife-Vincent Estimator	122
5.6.2 Motivation	122
5.6.3 Modified Rife-Vincent Estimator	124
5.6.4 Performance of the Rife-Vincent Estimators	124
5.7 Conclusion	. 126
Chapter 6 Frequency Estimation by Interpolation on Fractional Fourier	
Coefficients	. 127
6.1 Introduction	. 127
6.2 Fractional Fourier Coefficients	. 128
6.3 Interpolation on Two Fractional Fourier Coefficients	. 129
6.3.1 Analysis	130
6.3.1.1 Theorem	133
6.4 Interpolation on the Magnitudes of Two Fractional Fourier Coefficients	137
6.4.1 Motivation	137
6.4.2 Analysis	139
6.4.2.1 Theorem	148
6.5 Interpolation on the Magnitudes Squared of Two Fractional Fourier	
Coefficients	. 150
6.5.1 Motivation	151
6.6 Modified Interpolation on the Magnitudes Squared of Two Fractional Fou	urier
Coefficients	. 155
6.6.1 Motivation	156
6.6.2 Analysis	157
6.7 Conclusion	. 159
Chapter 7 Iterative Frequency Domain Frequency Estimation	. 160
7.1 Introduction	160
7.2 Dichotomous Search of the Periodogram Peak	161

7.3	Modified Dichotomous Search of the Periodogram peak	168
7.4	Guided Search of the Periodogram Peak Algorithm	172
7.5	Other Hybrid Algorithms	175
7.6	Conclusion	177
Chapter	8 Iterative Interpolation on the Fractional Fourier Coefficients	178
8.1	Introduction	178
8.2	The Fixed Point Theorem and Algorithm Convergence	179
8.2.1	I Theorem	179
8.2.2	2 Proof	179
8.2.3	3 Definition	180
8.2.4	Fixed Point Theorem	180
8.2.5	5 Performance of Iterative Estimation and Number of Iterations	181
8.3	Iterative Implementation of Quinn's First Algorithm	182
8.3.1	I Theorem	187
8.4	Iterative Fractional Fourier Coefficients Interpolation	189
8.4.1	1 Theorem	192
8.5	Iterative Magnitudes Only Interpolation	194
8.5.1	1 Theorem	197
8.6	Iterative Magnitudes Squared Interpolation	199
8.6.1	I Theorem	202
8.7	Conclusion	205
Chapter	9 Frequency Assisted Spatial Tracking	206
9.1	Introduction	206
9.2	Doppler Based Position Determination	207
9.3	Satellite Orbit Determination	208
9.4	Frequency Assisted Spatial Tracking	209
9.5	FAST Implementations Based on Simplified Equations	212
9.5.1	One-sided FAST Approach	213
9.5.2	2 Calculation of the Expected Maximum Elevation Point	215
9.5.3	3 Extended Kalman Filter for the Simplified Model	221
9.	5.3.1 Derivation of the EKF with the Maximum Elevation assumed known	222
9.6	Conclusion	229
Chapter	10 Conclusion	230
10.1	Review of Research Results	230
10.1	.1 Orbital Characterisation	231

10.1.2	Frequency Estimation	231
10.1.3	Threshold effects	232
10.1.4	Interpolation on the Fractional Fourier Coefficients	232
10.1.5	Iterative Estimation Using the Dichotomous Search	233
10.1.6	Iterative Interpolation on the Fractional Fourier Coefficients	234
10.1.7	Frequency Assisted Spatial Tracking	235
10.2 S	uggestions for Future Work	236
10.2.1	A Study of the Threshold Properties of the Frequency Estimators	236
10.2.2	Implementation of the Algorithms Recursively	237
10.2.3	Extension of the Family of Interpolators on Fractional Fourier Coefficients.	237
10.2.4	Rigorous Analysis of the Estimators of Chapter 7	237
10.2.5	Strategies for the Doppler Shift Compensation	238
10.2.6	Development of a More Accurate Orbital Model	238
10.2.7	Implementation of a Two-dimensional Spatial Tracker	239
10.2.8	Frequency Rate Estimation	239
10.3 C	onclusion	239
Appendix .	A. Spherical Geometry	241
Appendix 1	B. Asymptotic Theory	242
B.1 T	he Notations o_p and O_p	242
B.1 T B.2 P	he Notations o_p and O_p	242
B.1 T B.2 P B.2.1	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma	242 243 243
B.1 T B.2 P B.2.1 B.2.2	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof	242 243 243 243
B.1 T B.2 P B.2.1 B.2.2 B.2.3	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries	242 243 243 244 244
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences	242 243 243 244 245 245
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences	242 243 243 244 245 245 246
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P B.4.1	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences	242 243 243 244 245 245 246 246
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P B.4.1 B.4.2	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences Lemma Proof	242 243 243 244 245 245 245 246 246
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P B.4.1 B.4.2 B.4.3	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences Lemma Proof Corollaries	242 243 243 244 245 245 245 246 246 247 248
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P B.4.1 B.4.2 B.4.3 Appendix (he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences Lemma Proof Corollaries Corollaries	242 243 243 244 245 245 245 246 246 247 248 248
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P B.4.1 B.4.2 B.4.3 Appendix C	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences Lemma Proof Corollaries C. Fourier Coefficients of AWGN	242 243 243 244 245 245 246 246 246 247 248 248 249
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P B.4.1 B.4.2 B.4.3 Appendix C C.1 P C.2 F	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences Lemma Proof Corollaries Corollaries C. Fourier Coefficients of AWGN roperties of AWGN Fourier Coefficients	242 243 243 244 245 245 246 246 246 247 248 249 249 249 251
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P B.4.1 B.4.2 B.4.3 Appendix C C.1 P C.2 F C.3 F	he Notations o_p and O_p roperties of o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences Lemma Proof Corollaries C. Fourier Coefficients of AWGN roperties of AWGN Fourier Coefficients ractional Fourier Coefficients of AWGN	242 243 243 244 245 245 246 246 246 247 248 249 249 251 253
B.1 T B.2 P B.2.1 B.2.2 B.2.3 B.3 C B.4 P B.4.1 B.4.2 B.4.3 Appendix C C.1 P C.2 F C.3 F Appendix D	he Notations o_p and O_p sequences Lemma Proof Corollaries onvergent and Bounded Deterministic Sequences roperties of Convergent and Bounded Sequences Lemma Proof Corollaries C. Fourier Coefficients of AWGN roperties of AWGN Fourier Coefficients ractional Fourier Coefficients of AWGN	242 243 243 244 245 245 246 246 246 247 248 249 249 249 251 253

List of Figures

Figure 3.1 – <i>Satellite position in ECI frame of reference</i>
Figure 3.2 – Orbit propagation algorithm results
Figure 3.3 – Angular velocity of satellite in ECEF frame as observed by an earth station
at a longitude of 10° west and latitude 33.5° north. The pass used has a maximum
elevation angle of 85.45° and is east of the earth station
Figure 3.4 - Orbital Geometry for a LEO with altitude h and inclination i
Figure 3.5 – <i>Enlarged view of sub-satellite path</i>
Figure 3.6 – <i>Plot of visibility duration as a function of the observed maximum elevation</i>
angle
Figure 3.7 – Plot of the calculated orbits in Lat-Long coordinates for a pass with
maximum elevation 85.45°. The earth station is at 10° west and 33.5° north 53
Figure 3.8 – Plot of the latitude and longitude errors for a pass with a maximum
elevation angle of 85.45°
Figure 3.9 – Plot of the azimuth (a), azimuth errors (b), elevation (c) and elevation
errors (d) as a function of time for a pass with a maximum elevation angle of
<i>85.45°</i>
Figure 3.10 – <i>Azimuth-Elevation to X-Y transformation</i>
Figure 3.11 – <i>Plot of the X and Y rotations for a pass with a maximum elevation angle</i>
of 85.45°
Figure 3.12 – Off-boresight error
Figure 3.13 – Plot of the off-boresight error curves for a pass with a maximum elevation
angle of 85.45° for both ECEF angular velocity approximation strategies
Figure 3.14 – Plot of the Doppler shift and Doppler rate for a pass with a maximum
elevation angle of 85
Figure 4.1 – Outlier probability versus signal to noise ratio for various sample block
<i>sizes.</i>
Figure 4.2 – Frequency RMSE versus signal to noise ratio for various sample block
sizes
Figure 4.3 – Plot of $f(v)$ Vs v for different values of ε . N was set to 8 (that is $K = 7$)81
Figure 4.4 – Plot Threshold SNRs (defined at the point where the total frequency RMSE
equals 2×CRB). The total RMSE is also shown Vs the signal to noise ratio91

Figure 5.1 – Plot of the amplitude spectrum of a sinusoidal signal with frequency =
0.2137. (a) shows the 0-padded spectrum with $N = 128$ and $L = 1024$. A zoomed
in version is shown in (b) along with the 128 sample FFT95
Figure 5.2 – Plot of the ratio of the asymptotic variance of the periodogram maximiser
using three coefficients to asymptotic CRB
Figure 5.3 – Plot of the theoretical and simulated ratios of the asymptotic variance of
Quinn's first algorithm to the asymptotic CRB. 10000 simulation runs were
averaged
Figure 5.4 – Plot of the standard deviation of the frequency estimates obtained using
Quinn's first algorithm Vs the signal to noise ratio. 10000 simulation runs were
averaged
Figure 5.5 – Plot of the ratio of the asymptotic variance of Quinn's second algorithm to
the asymptotic CRB as a function of δ_0 at 0 dB SNR and $N = 1024$. 10000
simulation runs were averaged
Figure 5.6 – Plot of the performance of Quinn's frequency estimation algorithms Vs
SNR. $N = 1024$, $f_s = 1MHz$. 10000 simulation runs were averaged
Figure 5.7 – Plot of the ratio of the variance Macleod's three coefficients interpolator to
the asymptotic CRB as a function of δ_0 . N was set to 1024 and SNR to 0 dB. 10000
simulation runs were averaged117
Figure 5.8 – Comparison of the performance of Quinn's second frequency estimation
algorithm and Macleod's three coefficients interpolator as a function of SNR. $N =$
$1024, f_s = 1MHz.$ 10000 simulation runs were averaged
Figure 5.9 – Plot of simulation results of the ratio of the variance Macleod's five
coefficients interpolator to the asymptotic CRB as a function of δ_0 . N was set to
1024 and SNR to 0 dB. 10000 simulation runs were averaged
Figure 5.10 – Plot of the performance of Macleod's three and five coefficients
interpolators as a function of SNR. $N = 1024$, $f_s = 1MHz$. 10000 simulation runs
were averaged
Figure 5.11 – Plot of simulation results of the ratio of the variance the Rife-Vincent
estimators to the asymptotic CRB as a function of δ_0 . N was set to 1024 and SNR
to 0 dB
Figure 5.12 – Plot of the performance of the Rife-Vincent as a function of SNR. $N =$
1024, $f_s = 1MHz$. 10000 simulation runs were averaged

Figure 6.1 – Plot of the ratio of the asymptotic variance of the interpolation on
fractional Fourier Coefficients estimator to the asymptotic CRB versus $\delta_{0.}$ 10000
simulation runs at 0 dB SNR were averaged
Figure 6.2 – Plot of the performance of the interpolation on fractional Fourier
coefficients algorithm as a function of SNR. $N = 1024$, $f_s = 1MHz$. 10000
simulation runs were averaged
Figure 6.3 – (a) <i>Plot of the theoretical ratio of the asymptotic variance to the asymptotic</i>
CRB. The curves for Quinn's first algorithm and the interpolation on fractional
Fourier Coefficients estimator are shown repeated periodically versus δ_0 . (b) A
shifted version
Figure 6.4 – (a) Plot of the ratio of the asymptotic variance of the MOI estimator to the
asymptotic CRB versus δ_0 . 10000 simulation runs at 0 dB SNR were used in the
simulation. (b) Zoomed version of (a) on the interval [0.4,0.5]
Figure 6.5 – Plot of the performance of the MOI algorithm as a function of SNR. $N =$
1024, $f_s = 1MHz$. 10000 simulation runs were averaged
Figure 6.6 – Plot of the estimator mapping function $\psi(\delta)$ of the MOI and MSI
estimators
Figure 6.7 – (a) Plot of the ratio of the asymptotic variance of the MSI estimator to the
asymptotic CRB versus δ_0 . 10000 simulation runs at 0 dB SNR and N=1024 were
used in the simulation. (b) Zoomed in version of (a)
Figure 6.8 – Plot of the performance of the MSI algorithm as a function of SNR. $N =$
1024, $f_s = 1MHz$. Note that the above figure shows the square root of the CRB. 155
Figure 6.9 – Plot of the ratio of the asymptotic variance of the MMSI estimator to the
asymptotic CRB versus δ_0 . 10000 simulation runs at 0 dB SNR and N=1024 were
used in the simulation
Figure $6.10 - Plot$ of the performance of the MMSI algorithm as a function of SNR. $N =$
1024, $f_s = 1MHz$. 10000 simulation runs were averaged
Figure 7.1 – Plot of ratio of the variance of the Dichotomous Search algorithm, with L
= $N = 1024$, to the ACRB as a function of δ_0 . (a) shows the performance for 1, 4
and 10 iterations. (b) is a zoomed in version of (a). 5000 simulation runs were
averaged
Figure 7.2 – Plot of the performance of the Dichotomous Search algorithm, with $L = N$
= 1024, as a function of SNR. 10000 simulation runs were averaged

Figure 7.3 – Plot of ratio of the variance of the Dichotomous Search algorithm to the
asymptotic CRB, with $L = 1.5N$, to the ACRB as a function of δ_0 . (a) shows the
performance for 1, 4 and 10 iterations. (b) is a zoomed in version of (a). 5000
simulation runs were averaged166
Figure 7.4 – Plot of the standard deviation of the frequency error of the zero-padded
dichotomous search algorithm, with $L = 1.5N$, as a function of SNR. 10000
simulation runs were averaged167
Figure 7.5 – Plot of rate of change of the differential, D as a function of the offset from
the bin centre δ_0
Figure 7.6 – Plot of standard deviation of the frequency error of the Modified
Dichotomous Search algorithm, with $\Delta = 0.75$ and $\Delta = 0.6$, as a function of SNR.
10000 simulation runs were averaged
Figure 7.7 – Plot of standard deviation of the frequency error of the Guided Search
algorithm as a function of SNR. The Guided Search was run for 4 iterations.
10000 simulation runs were averaged
Figure 8.1 – Plot of ratio of the variance of the iterative form of Quinn's first algorithm
to the asymptotic CRB. 5000 simulation runs were averaged at an $SNR = 0dB$. 188
Figure 8.2 – Plot of Standard Deviation of the Frequency Error of the iterative form of
<i>Quinn's first algorithm Vs Signal to Noise Ratio. 10000 simulation runs were averaged.</i>
Figure 8.3 – Plot of ratio of the variance of the iterative form of the FFCI algorithm to
the asymptotic CRB. 5000 simulation runs were averaged at an $SNR = 0dB. \dots 193$
Figure 8.4 – Plot of Standard Deviation of the Frequency Error of the iterative form of
the FFCI algorithm Vs Signal to Noise Ratio. 10000 simulation runs were
averaged
Figure 8.5 – Plot of ratio of the variance of the iterative form of the MOI algorithm to
the asymptotic CRB. 5000 simulation runs were averaged at a $SNR = 0dB$ 198
Figure 8.6 – Plot of Standard Deviation of the Frequency Error of the iterative form of
the MOI algorithm Vs Signal to Noise Ratio. 10000 simulation runs were
averaged
Figure 8.7 – Plot of ratio of the variance of the iterative form of the MSI algorithm to

the asymptotic CRB. 5000 simulation runs were averaged at a SNR = 0dB. 204

Figure 8.8 – Plot of Standard Devia	tion of the Fre	equency Error of the iterative form of
the MSI algorithm Vs Signal to	Noise Ratio.	10000 simulation runs were
averaged.		

- Figure 9.5 Actual and predicted maximum elevations for passes 1 and 2. 220
- Figure 9.6 Errors in the predicted maximum elevations for passes 1 and 2...... 220
- Figure 9.7 Error in the predicted locations of the maximum elevations for pass 2... 221

Figure 9.11 – *EKF spatial tracker performance at a SNR of 0dB with a 0.3° error in the assumed maximum elevation value.* 226

Figure 9.12 – *EKF spatial tracker performance at a SNR of 0 dB with a 0.3° error in the assumed maximum elevation value.* 227

Figure 9.13 – (a) *EKF spatial tracker performance at a SNR of 0 dB. A zero-mean random (Gaussian distributed) error, with a 5° standard deviation was added to the initial value of* ψ. (b) *Zoomed version of (a).*

List of Tables

Table 3.1 – Orbital Propagation Algorithm.	43
Table 4.2 – Outlier probability bounds for threshold calculation.	85
Table 5.1 – Quinn's First Algorithm.	101
Table 5.2 – Quinn's second algorithm.	112
Table 5.3 – Macleod's three coefficients interpolator.	116
Table 5.4 – Macleod's five coefficients interpolator.	119
Table 5.5 – Rife-Vincent estimator.	122
Table 5.6 – Modified Rife-Vincent estimator.	124
Table 6.1 – Fractional Fourier Coefficients Interpolation (FFCI) estimator.	130
Table 6.2 – Magnitudes Only Interpolation (MOI) on fractional Fourier coefficient	ents
estimator	137
Table 6.3 – Magnitudes Squared Interpolation (MSI) on fractional Fourier coefficient	icients
estimator	151
Table 6.4 – Modified Magnitudes Squared Interpolation (MMSI) on fractional Fe	ourier
coefficients estimator	156
Table 7.1 – Dichotomous Search of the Periodogram Peak frequency estimator.	162
Table 7.2 – Modified Dichotomous Search of the Periodogram Peak frequency	
estimator	171
Table 7.3 – Guided Search of the Periodogram Peak frequency estimator	173
Table 8.1 – Iterative Implementation of Quinn's first algorithm.	183
Table 8.2 – Iterative Implementation of the Fractional Fourier Coefficient Interp	olation
algorithm.	189

List of Symbols

- a Azimuth
- α_x X-rotation
- α_y Y-rotation
- β Off-boresight error
- δ The offset between true frequency line and the closest bin
- $\hat{\delta}$ Estimate of δ
- D_r Normalised Doppler rate
- D_s Normalised Doppler shift

$$\Phi(x)$$
 Standard Normal density function, $=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

- φ_{ES} Earth station latitude
- φ_s Satellite latitude
- f Signal frequency
- \hat{f} Frequency estimate
- f_s Sampling frequency
- γ Central angle between earth station and satellite
- G Gravitational constant $\approx 6.672 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$
- GM_e Earth figure = 3.986004418 × 10¹⁴
- *i* Satellite orbit inclination
- I The identity matrix
- $\Im(z)$ Imaginary part of z

$\begin{pmatrix} K \end{pmatrix}$	Binomial coefficients
(l)	
λ_{ES}	Earth station longitude
λ_s	Satellite longitude
$\ln(x)$	Natural logarithm of <i>x</i>
$\log(x)$	Logarithm base 10 of x
т	Index of the bin with the highest magnitude
M_{e}	Mass of the Earth $\approx 5.9736 \times 10^{24}$ kg
N	Number of samples
ω	Angular frequency of a sinusoidal signal $=2\pi f$
ω _e	Angular velocity of the Earth
ω_F	Satellite angular velocity in the ECEF frame
ω_I	Satellite angular velocity in the ECI frame
ψ	Angular displacement of the satellite from the point of closest approach
Q	Number of iterations
Q(x)	The standard <i>Q</i> -function $= \int_x^\infty \Phi(t) dt$
q	Probability of an outlier
ρ	Signal to Noise Ratio
p(dB)	Signal to Noise Ratio in decibels
	The set of real numbers
$\Re(z)$	Real part of z
σ	Standard deviation of a random variable
s(k)	k^{th} sample of sinusoidal signal
S(n)	Fourier transform of $s(k)$

- s(t) Earth station to satellite slant range at time t
- θ Elevation
- θ_v Minimum elevation for visibility
- \mathbf{v}^{T} Transpose of \mathbf{v}
- T_s Sampling time = $\frac{1}{f_s}$
- T_{v} Satellite visibility duration
- $w(k) = k^{th}$ sample of additive white Gaussian noise
- W(n) Fourier transform of w(k)
- x^* Complex Conjugate of x
- x(k) Signal plus noise = s(k) + w(k)
- X(n) Fourier transform of x(k)
- Y(n) Magnitude of X(n)
- N(0,1) The standard normal distribution, $= \int_{-\infty}^{x} \Phi(x) dx$

List of Abbreviations

ACRB	Asymptotic Cramer Rao Bound
a.s.	Almost Surely
ARMA	Auto-Regressive Moving Average
AWGN	Additive White Gaussian Noise
Az	Azimuth
BPSK	Binary Phase Shift Keying
CLT	Central Limit Theorem
CRB	Cramer Rao Bound
CRCSS	Cooperative Research Centre for Satellite Systems
DFT	Discrete Fourier Transform
DSP	Digital Signal Processing
ECEF	Earth Centred Earth Fixed
ECI	Earth Centred Inertial
EKF	Extended Kalman Filter
El	Elevation
FAST	Frequency Assisted Spatial Tracking
FFCI	Fractional Fourier Coefficients Interpolation
FFT	Fast Fourier Transform
GPS	Geographical Positioning System
IEKF	Iterative Extended Kalman Filter
IFFCI	Iterative Fractional Fourier Coefficients Interpolation
i.i.d.	Independent and Identically Distributed
IMOI	Iterative Magnitudes Only Interpolation
IMSI	Iterative Magnitudes Squared Interpolation

LEO	Low Earth Orbit
LO	Local Oscillator
MBS	Maximum Bin Search
ML	Maximum Likelihood
MOI	Magnitudes Only Interpolation
MSI	Magnitudes Squared Interpolation
MMSI	Modified Magnitudes Squared Interpolation
MSE	Mean Squared Error
NORAD	North American Aerospace Command
pdf	Probability Density Function
PSK	Phase Shift Keying
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RMSE	Root Mean Squared Error
SNR	Signal to Noise Ratio
STK™	Satellite Tool Kit
TLEs	Two Line Elements
TT&C	Tracking, Telemetry and Command

Abstract

Low Earth Orbit (LEO) satellites have received increased attention in recent years. They have been proposed as a viable solution for remote sensing, telemedicine, weather monitoring, search and rescue and communications to name a few applications. LEO satellites move with respect to an earth station. Thus, the station must be capable of tracking the satellite both spatially and in frequency. In addition, as the spectrum becomes more congested, links are being designed at higher frequencies such as Ka band. These frequencies experience larger attenuations and therefore the system must be capable of operating at low signal to noise ratios.

In this dissertation we report on the research conducted on the following problems. Firstly, we study the estimation of the frequency of a sinusoid for the purpose of acquiring and tracking the frequency of the received signal. Secondly, we propose the use of the frequency measurements to assist the spatial tracking of the satellite.

The highly dynamic environment of a LEO system, combined with the high Ka band frequencies result in large Doppler rates. This limits the available processing time and, consequently, the fundamental resolution of a frequency estimator. The frequency estimation strategy that is adopted in the thesis consists of a coarse estimator followed by a fine estimation stage. The coarse estimator is implemented using the maximum of the periodogram. The threshold effect is studied and the derivation of an approximate expression of the signal to noise ratio at which the threshold occurs is examined.

The maximum of the periodogram produces a frequency estimate with an accuracy that is $O(N^{-1})$, where N is the number of data samples used in the FFT. The lower bound for the estimation of the frequency of a sinusoid, given by the Cramer-Rao bound (CRB), is $O(N^{-\frac{3}{2}})$. This motivates the use of a second stage in order to improve the estimation resolution. A family of new frequency estimation algorithms that interpolate on the fractional Fourier coefficients is proposed. The new estimators can be implemented iteratively to give a performance that is uniform in frequency. The iterative algorithms are analysed and their asymptotic properties derived. The asymptotic variance of the iterative estimators is only 1.0147 times the asymptotic CRB.

Another method of refining the frequency estimate is the Dichotomous search of the periodogram peak. This is essentially a binary search algorithm. However, the estimator must be padded with zeroes in order to achieve a performance that is comparable to the CRB. An insight into this is offered and a modified form that does not require the zero-padding is proposed. The new algorithm is referred to as the modified dichotomous search. A new hybrid technique that combines the dichotomous search with an interpolation technique in order to improve its performance is also suggested.

The second research aim was to study the possibility of applying the frequency measurements to obtain spatial tracking information. This is called the frequency assisted spatial tracking (FAST) concept. A simple orbital model is presented and the resulting equations are used to show that the Doppler shift and rate uniquely specify the satellite's position for the purpose of antenna pointing. Assuming the maximum elevation of the pass is known, the FAST concept is implemented using a scalar Extended Kalman Filter (EKF). The EKF performance was simulated at a signal to noise ratio of 0dB. The off-boresight error was found better than 0.1° for elevations higher than 30°.