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Abstract

Low Earth Orbit (LEO) satellites have received increased attention in recent years.
They have been proposed as a viable solution for remote sensing, telemedicine, weather
monitoring, search and rescue and communications to name a few applications. LEO
satellites move with respect to an earth station. Thus, the station must be capable of
tracking the satellite both spatially and in frequency. In addition, as the spectrum
becomes more congested, links are being designed at higher frequencies such as Ka
band. These frequencies experience larger attenuations and therefore the system must

be capable of operating at low signal to noise ratios.

In this dissertation we report on the research conducted on the following problems.
Firstly, we study the estimation of the frequency of a sinusoid for the purpose of
acquiring and tracking the frequency of the received signal. Secondly, we propose the

use of the frequency measurements to assist the spatial tracking of the satellite.

The highly dynamic environment of a LEO system, combined with the high Ka band
frequencies result in large Doppler rates. This limits the available processing time and,
consequently, the fundamental resolution of a frequency estimator. The frequency
estimation strategy that is adopted in the thesis consists of a coarse estimator followed
by a fine estimation stage. The coarse estimator is implemented using the maximum of
the periodogram. The threshold effect is studied and the derivation of an approximate

expression of the signal to noise ratio at which the threshold occurs is examined.
The maximum of the periodogram produces a frequency estimate with an accuracy that

is O(N ! ), where N is the number of data samples used in the FFT. The lower bound

for the estimation of the frequency of a sinusoid, given by the Cramer-Rao bound

3
(CRB), is O(N 2) This motivates the use of a second stage in order to improve the

estimation resolution. A family of new frequency estimation algorithms that interpolate
on the fractional Fourier coefficients is proposed. The new estimators can be
implemented iteratively to give a performance that is uniform in frequency. The

iterative algorithms are analysed and their asymptotic properties derived. The
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asymptotic variance of the iterative estimators is only 1.0147 times the asymptotic

CRB.

Another method of refining the frequency estimate is the Dichotomous search of the
periodogram peak. This is essentially a binary search algorithm. However, the
estimator must be padded with zeroes in order to achieve a performance that is
comparable to the CRB. An insight into this is offered and a modified form that does
not require the zero-padding is proposed. The new algorithm is referred to as the
modified dichotomous search. A new hybrid technique that combines the dichotomous
search with an interpolation technique in order to improve its performance is also

suggested.

The second research aim was to study the possibility of applying the frequency
measurements to obtain spatial tracking information. This is called the frequency
assisted spatial tracking (FAST) concept. A simple orbital model is presented and the
resulting equations are used to show that the Doppler shift and rate uniquely specify the
satellite’s position for the purpose of antenna pointing. Assuming the maximum
elevation of the pass is known, the FAST concept is implemented using a scalar
Extended Kalman Filter (EKF). The EKF performance was simulated at a signal to
noise ratio of 0dB. The off-boresight error was found better than 0.1° for elevations

higher than 30°.
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