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Abstract—Significant reduction of the peak-to-average power
ratio (PAPR) is an implementation challenge in orthogonal
frequency division multiplexing (OFDM) systems. One way to
reduce PAPR is to apply a set of selected partial transmission
sequence (PTS) to the transmit signals. However, PTS selection
is a highly complex NP-hard problem and the computational
complexity is very high when a large number of subcarriers
are used in the OFDM system. In this paper, we propose a new
heuristic PTS selection method, the modified chaos clonal shuffled
frog leaping algorithm (MCCSFLA). MCCSFLA is inspired by
natural clonal selection of a frog colony, it is based on the
chaos theory. We also analyze MCCSFLA using the Markov
chain theory and prove that the algorithm can converge to
the global optimum. Simulation results show that the proposed
algorithm achieves better PAPR reduction than using others
genetic, quantum evolutionary and selective mapping algorithms.
Furthermore, the proposed algorithm converges faster than the
genetic and quantum evolutionary algorithms.

Index Terms—OFDM, PAPR, clonal selection algorithm, shuf-
fled frog leaping algorithm.

I. INTRODUCTION

ORTHOGONAL Frequency Division Multiplexing (OFD-
M) is a multicarrier technique with high bandwidth

efficiency. By dividing the bandwidth into many orthogonal
subcarriers, it can minimize the impact of multi-path delay and
multipath fading [1]. However, one major problem is the high
peak-to-average power ratio, which not only reduces system
power efficiency, but also results in significant nonlinear
distortion when signal passes the amplifier.

In order to reduce the PAPR, techniques such as signal
scrambling and signal pre-distortion have been proposed.
Signal scrambling techniques include coding methods [2],
phase optimization [3][4], partial transmission sequence (PTS)
method and selective mapping (SLM). Signal pre-distortion
techniques include clipping methods [5]-[7].
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PTS method is a popular technique for PAPR reduction
in OFDM systems. However, the partial transmit sequence
selection is a highly complex NP-hard problem and the compu-
tational complexity is very high for a large number of OFDM
subcarriers. Previous studies aimed at finding a set of selected
partial transmit sequences with heuristic and evolutionary
algorithms. Among the studies, simulated annealing (SA) and
particle swarm optimization (PSO) [8] can achieve lower
PAPR than SLM. However, in practice heuristic algorithms
suffer from a low convergence rate. The SLM method is
proposed in [9] for QAM modulated OFDM signals. It has a
lower computational complexity, but the PAPR reduction is not
as good as those of the heuristic algorithms. Chen et al. tried
to solve the PAPR reduction problem with a quantum evo-
lutionary algorithm (QEA) [10][11], which provides a wider
search space. However, quantum evolutionary algorithms also
suffer from a low convergence speed. As one of the iteration
based approaches, Y. Wang et al. proposed a PAPR reduction
method based on Parametric Minimum Cross Entropy for
OFDM system [13]. Their method not only reduces the PAPR
significantly, but also decreases the computational complexity.
Another useful method using real-valued genetic approach has
been proposed by J.-K. Lain et al. [13].Their design is a similar
concept to genetic algorithm.

Recently, nature inspired approaches have been proved to be
very effective in searching for optimal solutions, such as the
genetic algorithm (GA) [14], the ant colony optimization (A-
CO) [12], and the artificial bee colony algorithm (ABC) [15].
They have been used to solve discrete and continuous non-
linear optimization problems. In [16], Eusuff et al. proposed
a shuffled frog-leaping algorithm for discrete optimization by
using a population-based cooperative search metaphor inspired
by natural memetics. Their design is conceptually similar to
the genetic algorithm, and is effective for solving combinato-
rial optimization problems. In their method, the worst frog in
each group first jumps to the best frog in the same group to
create a new frog. If the new frog is better, the new frog will
replace the worst frog. Otherwise, the worst frog will jump to
the global best frog. However, their algorithm is easy to fall
into premature convergence during the evolutionary process.
As a result, it is hard to find a good solution in the billions
of possible combinations for PAPR reduction problem in a
limited number of iterations.

In this paper, we propose a novel PTS method based on a
modified chaos clonal shuffled frog leaping algorithm called
MCCSFLA. It is inspired by the natural biological behavior of
frogs, and motivated by the chaos theory and clonal selection.



2

MCCSFLA combines the nature inspired local search with
the global information exchange between groups and takes
advantage of clonal selection. With such combined strategies,
MCCSFLA is able to avoid local suboptimal points, and direct
the search toward the global optimum PTS that minimizes
PAPR. We present a detailed algorithm design of MCCSFLA
for PAPR reduction. The convergence of MCCSFLA is proved
through Markov chain theory, where the MCCSFLA iteration
process is modeled with Markov chains. Extensive simulations
are conducted comparing the proposed algorithm with the
genetic algorithm, the quantum evolutionary algorithm, the
selective mapping algorithm, and the original method without
PTS. Simulation results demonstrate the superior performance
of the proposed MCCSFLA in both PAPR reduction as well
as fast convergence.

This paper is organized as follows. The system model
is given in Section II. In Section III, the modified chaos
clonal shuffled frog leaping algorithm for PAPR reduction
is presented. Section IV analyzes the convergence of the
proposed algorithm with Markov chain theory. In Section V
the simulation results are presented and discussed. Finally,
Section VI draws the conclusions.

II. SYSTEM MODEL

This section describes the system model for PAPR reduction
in OFDM systems. In [10], the authors proposed an OFDM
PAPR reduction model with binary Signal Sign-Selection from
the set {−1, 1}. Later in [11], the same authors showed a
more flexible model with signal sign-selection from the set
{1,−1, i,−i}. In order to facilitate performance comparisons
between different PAPR reduction algorithms, in this paper we
consider a similar system model as in [10]. Assume an OFDM
system with L subcarriers. The discrete time transmitted signal
can be represented as:

xn =
1√
L

L−1∑
l=0

Zle
i2πnl( 1

L ) (1)

where n is the discrete time index, i equal to
√
−1, and Z =

[ Z0 Z1 · · · ZL−1 ] is the input symbol sequence.
As defined in [10], the PAPR of the transmitted signal can

be represented as:

PAPR = 10log10

max
{
|xn|2

}
E
{
|xn|2

} (2)

where E is the expected value operation.
Then the input data Z = [ Z0 Z1 · · · ZL−1 ]

can be divided in to V non-overlapping sub-blocks
{Yv, v = 0, 1, · · · , V − 1}, which can be shown as

Y=
[
Y1 Y2 · · · YV−1

]
. (3)

The objective of the PTS method is to generate an appropriate
phase weighting sequence that reduces the PAPR.

The phase weighting sequence is a vector with length V ,
which can be represented as:

D = [ d0 d1 · · · dV−1 ] (4)

where dv = exp(jφv) is the phase weighting factor, v ∈
[1, V − 1], and {φv, v = 0, 1, · · · , V − 1} are phase factors
selected from the range φv ∈ [0, 2π). However in practice the
phase factors are selected from a limited set, which can be
represented as:

φv ∈ {2πω/W |ω = 0, 1, · · ·W − 1} (5)

where W is the set of permitted phase factors. In this paper we
only consider ω = 0, 1, 2, 3, which means dv ∈ {1, i,−1,−i}.

After selecting a proper phase weighting factor, it is mul-
tiplied by the input data to reduce the PAPR, which can be
represented as:

Y ′ = [ d0Y0 d1Y1 · · · dV−1YV−1 ]. (6)

After the phase weighting factor optimization, the discrete time
transmitted signal can be represented as xn

′(D).
So the objective function of the PAPR reduction problem is

equivalent to the phase factors search problem, which can be
expressed as:

Minimize

f(D) =
max

{
|xn

′(D)|2
}

E
{
|xn

′(D)|2
} (7)

subject to

φv ∈ {2πω/W |ω = 0, 1, · · ·W − 1} . (8)

The goal of our algorithm is to minimize the fitness func-
tion f(D). As each OFDM symbol has V sub-blocks,
and each phase factor is selected from the set φv ∈
{2πω/W |ω = 0, 1, · · ·W − 1}, the solution space is WV . As
changing a common angle on the sub-blocks cannot change
PAPR, we can set φ0 to a fixed value, so the solution space
can be reduced to WV−1.

Sometimes we have to make a balance between comput-
ing power and bandwidth. For example, with sub-blocks of
M = 8 and W = 2, the possible combination of the phase
weighting sequence is 27=128. In this case exhaustive search
can be used to obtain the optimal PTS. However, with the
length of the phase weighting sequence V = 16 and QPSK,
which are the parameter settings considered in this paper,
the possible combination of the phase weighting sequence
is 415=1, 073, 741, 824. In this case, exhaustive search is not
possible in real time. As such, some lower complexity schemes
must be used to reduce the computational complexity. The
common approach is to design low complexity algorithms to
obtain sub-optimal PTS.

In order to obtain the original signal, the receiver must
obtain the PTS phase information from the transmitter. In
practical systems, the side information can be transmitted via
control channels. In some other systems, there can be reserved
sub-carriers for side information. In this paper, we assume the
side information is transmitted to the receiver via one of the
above two methods.
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III. PAPR REDUCTION BASED ON MODIFIED CHAOS
CLONAL SHUFFLED FROG LEAPING ALGORITHM

To select a proper PTS, we propose a phase optimization
scheme based on MCCSFLA for PAPR reduction. Inspired by
the natural population of frogs, MCCSFLA combines a local
search with global information exchange among groups and
makes use of the advantages of clonal selection. This balanced
strategy enables MCCSFLA to avoid local suboptimal points
and direct the search towards a low PAPR solution. In our
proposed MCCSFLA, the key improvement is that a clone
selection operator is added to the traditional SFLA algorithm.
By cloning the best individual and carrying out mutation
to each copy, the clone selection operator can significantly
improve convergence speed of the MCCSFLA algorithm.

In this section, we present the design of MCCSFLA. We first
review the basic principle of the original shuffled frog leaping
algorithm, and explain encoding and population representation.
We then proceed to the main parts of the algorithm in terms of
initialization, sorting and grouping, searching, clonal selection
and shuffling, as well as the termination condition. We present
MCCSFLA in Algorithm 1, followed by its complexity anal-
ysis.

A. Brief Description of Basic SFLA

The shuffled frog leaping algorithm (SFLA) is inspired from
the natural behavior of the frog [17]. SFLA has been used for
a group of discrete and continuous non-linear optimization
problems. In SFLA, the population is partitioned into different
groups of frogs, and each group consists of a fixed number
of frogs. Each frog is considered as a solution in the process
of evolution, and frogs in one group can be influenced by
frogs in another group by the means of a shuffling process. In
SFLA, the information is carried by a meme, which is similar
to the gene in genetic algorithms. Groups of memes are called
meme complexes, or “memeplexes” and the evolution process
of SFLA is also called a memetic evolution. During a memetic
evolution, a frog can improve its memes by leaping towards
another frog with a better fitness. After the initialization, each
group of frogs conducts a local search. Within each group or
memeplex, frogs can exchange information with each other,
but only the worst frog can jump to another position. After
each memeplex finishes the local search, a shuffling strategy
is applied to all memeplexes by ordering and then all the
frogs are reorganized into new memeplexes according to their
fitness. Both local search and shuffling process are repeated
until the termination condition is met.

B. Solution Encoding and Population Representations

Assume that there are M memeplexes in the entire popu-
lation, and each memeplex contains N frogs. The whole frog
population is represented as P =

{
F1 F2 · · · FM

}
,

where Fm is the mth memeplex, and m ∈ [1,M ] is the order
number of the memeplex in the population. Each memeplex
is represented as Fm =

{
D1 D2 · · · DN

}
, where

Dn is the nth frog in the mth memeplex, and n ∈ [1, N ]
is the frog index. Assume an OFDM system with V non-
overlapping sub-blocks, the nth frog is represented by matrix

Dn =
[
d1 d2 · · · dV−1

]
, where dv ∈ {1, i,−1,−i}

and v ∈ [1, V −1]. In this paper, we set the maximum number
of iterations of the local search to 10.

C. Generation of Initial Population with a Logistic Map

Before the first iteration, initial memeplexes should be
generated. MCCSFLA uses a Logistic map to generate each
frog in each memeplexes. The Logistic map is a polynomial
map with low complex and chaotic behavior, which was first
proposed in [18]. We first generate a random number between
0 and 1 with a Logistic map as:

xv+1 = 4xv(1− xv). (9)

For an OFDM system with V non-overlapping sub-blocks, a
feasible solution space for the problem can be represented as
Dn =

{
d1 d2 · · · dV−1

}
. So for each frog, there are

four options for each meme. We use a simple map to fix dv
as:

dv =


1 0 < xv < 0.25
−1 0 .25 ≤ xv < 0.5
i 0 .5 ≤ xv < 0.75
−i 0 .75 ≤ xv < 1

(10)

where dv are the phase weighting factors from the set
{1,−1, i,−i}, and xv is the chaotic sequence generated from
(9). MCCSFLA also needs to set the global iteration counter
Gc = 0 before the iteration starts.

D. Fitness Calculation

In this paper, we compute fitness f(D) with (7) for each
frog. If the value of f(D) is smaller, the frog is better.

E. Shuffling

Before the search process in each iteration, MCCSFLA does
the shuffling process for the whole population. First all the
frogs in different memeplexes are merged into one popula-
tion, followed by sorting and grouping. The shuffling process
helps the frogs exchange their information among different
memeplexes, and promotes the algorithm convergence to the
global optimum. In the sorting and grouping process, we sort
the frogs in a descending order according to the fitness value
calculated by (7), and then partition the generated frogs into
M memeplexes. The process of partitioning is as follows:

Suppose there are M memeplexes represented as{
F1 F2 · · · FM

}
and each memeplex contains

N frogs, so there are M ×N frogs in the entire population.
At the beginning, we put the No. 1 frog into F1, and put the
No. 2 frog into F2, etc. After we put the No. M frog into
FM we then put the No. M +1 frog back to F1, then put the
No. M + 2 frog to F2, and so on until the (M ×N)th frog
goes to FM . Through this operation, within each memeplex,
the frog ranked first has the largest fitness and PAPR, and the
frog ranked last has least fitness and PAPR. That is, within
each memeplex, the last frog is the best one. Also, we record
the last frog in the last memeplex as the global best frog Dg.
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F. Local Search

After the initialization, MCCSFLA starts a local search
process to improve the quality of the frog fitness. Each
memeplex conducts a local search independently according to
a specific strategy. Within each memeplex, we record the frog
ranked first which has the largest fitness as the worst frog Dw,
and the frog ranked last which has the least fitness as the best
frog Db. The fitness of the worst frog and the best frog in
the memeplex can be shown as f(Dw) and f(Db). Before
we enter the local search, we set the local search counter
Lc = 0. Then the worst frog in each memeplex is updated
in the following steps:

1) Jump Toward the Local Best: First, the worst frog in the
memeplex Dw changes its position and jumps toward the best
frog in the memeplex Db. Unlike the traditional SFLA, we
do not set maximum and minimum jump distance limitations.
The meme of the worst frog Dw is changed as follows:

Dsub = rand · (Db −Dw) (11)

D1
new = Dw +Dsub (12)

where in (11) rand is a binary sequence with length V − 1
generated by the Logistic map. In sequence rand, if the result
of the Logistic map is smaller than 0.5, the number on the
corresponding position is equal to 0. Otherwise it is equal to
1. In this way, Dsub is the jump sequence with length V − 1.
Then we calculate the fitness of D1

new. If the fitness of a newly
generated frog f(D1

new) is smaller than f(Dw), which means
the PAPR of the solution D1

new is lower, the algorithm replaces
Dw with D1

new and goes to step 5). Otherwise the algorithm
goes to step 2).

2) Jump Toward the Global Best: Replace Db in (11) with
Dg, and repeat the procedure 1). Dg is the global best frog
defined in section E. So (11) can be renewed as:

Dsub = rand · (Dg −Dw) (13)

and then a new frog is generated with:

D2
new = Dw +Dsub. (14)

We next evaluate the fitness of D2
new with (7). If the fitness

of the newly generated frog D2
new is better than Dw, the

algorithm replaces Dw with D2
new and goes to step 5). If there

is still no improvement in fitness, the algorithm goes to step
3).

3) Clonal Selection: Do the clonal selection with the clonal
selection operator. The detailed procedure is described in
section G.

4) Replace with Random Frog: If there is still no improve-
ment, we generate a random frog D3

new with the Logistic
map to replace the worst frog Dw in the memeplex. We
generate the frog with the same rule as we generate the initial
population of frogs, but this time we generate only one frog.
After completion of the replacement, the algorithm goes to
step 5).

5) Reorder: Reorder all the frogs in the memeplex in a
descending order according to the fitness value, and set Lc =
Lc + 1. By doing this a round of local search is completed.
In this procedure, if any frog’s fitness is better than the global
best frog Dg , it replaces Dg .

The above procedure continues until Lc reaches the max-
imum number of the local search iterations. Each memeplex
repeats a certain round of local searches independently for a
specific number of generations.

The local search makes a memetic to the exploitation
capability of the algorithm by making the information pass
in the local space, and it improves the average fitness of the
memeplexes.

G. The Clonal Selection Operator

Unlike the traditional SFLA, a chaotic clonal selection
operator is applied in MCCSFLA to enhance the efficiency of
the local search. Before generating a random frog solution in
the local search step, a number of copies of the best solutions
are made, and then the frog jumps to the position where PAPR
goes down. The main steps of the clonal selection operator
are: cloning the best solution, chaotic mutation, frog jump,
and fitness calculation.

1) Cloning the Best Solution: The local best frog and the
global best frog were chosen for cloning. Both the local best
frog and global best frog are cloned to a fixed number of
copies. Unlike the traditional clonal selection algorithm, the
number of copies has no relationship to the fitness.

2) Chaotic Mutation: The chaotic mutation operator ran-
domly chooses some memes on the frog with a fixed rate
and replaces them with the value from the set {1,−1, i,−i}.
The chaotic mutation operator can add additional diversity to
the cloned frog, and prevent premature convergence on the
offspring.

3) Frog Jump: We create new frogs with (15) and (16):

Dsub = rand · (Dc −Dw) (15)

D4
new = Dw +Dsub (16)

where in (15), Dc is the cloned frog which passed the chaotic
mutation operation. The other parameters are the same as in
Section III-F. After that, these frogs are evaluated and ranked
in the descending order of fitness. If the fitness is improved,
the frog rank with the lowest PAPR will replace the worst frog
in the memeplex. Otherwise the frog will be replaced with a
random frog as in step 4) in Section III-F.

H. Population Mutation

In order to increase the diversity, a population mutation
operator is applied to the whole population. The population
mutation is the last operation in each iteration. In this proce-
dure we randomly select a very small percentage of memes in
the whole population and replace these memes with random
values from the set {1,−1, i,−i}.
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I. Upgrade the Elite Frog

We keep an elite frog De which has the lowest PAPR in
all the generations of MCCSFLA. If the frog with the lowest
PAPR after population mutation Dm has lower PAPR than De,
we replace all values of De with the corresponding values of
Dm.

J. Termination Condition

After shuffling, MCCSFLA will check whether the ter-
mination condition is satisfied. The termination condition is
when the algorithm global iteration counter Gc reaches the
designated number of iterations.

K. Basic Steps

The basic steps of MCCSFLA are described in Algorithm 1:

Algorithm 1 The modified chaos clonal shuffled frog leaping
algorithm based PTS method

1: Begin
2: Generate the initial population with Logistic map
3: Evaluate the fitness value
4: Set Gc = 0
5: while Gc has not reached designated global iterations do
6: Sort and group the population into memeplexes
7: Set Lc = 0
8: while Lc has not reached designated global iterations

do
9: Frog jumps to the local best frog

10: if no improvement then
11: Frog jumps to the global best frog
12: end if
13: if no improvement then
14: Clonal selection operator
15: end if
16: if no improvement then
17: Replace with a random frog
18: end if
19: Reorder all the frogs and set Lc = Lc+ 1
20: end while
21: Evaluate the fitness value
22: Shuffle different memeplex into one population
23: Population Mutation
24: Upgrade the Elite Frog
25: Gc = Gc+ 1
26: end while
27: Evaluate the fitness value
28: Output the best frog with lowest PAPR
29: End

L. Computational complexity analysis

As the computing power is mainly consumed in the IFFT
operation and PAPR calculation, we only consider the com-
putational complexity of these two parts. There are V sub-
blocks, and each sub-block need to be modulated with a

L-point IFFT. Thus (LV log2L)/2 complex multiplications
and LV log2L complex additions are needed for IFFT. As
the computational complexity of one complex multiplication
equal to four real multiplications and two real additions, and
one complex addition equal to two real additions, the IFFT
operation need 2LV log2L real multiplications and 3LV log2L
real additions.

For each sample of phase weighting sequence, we need
L(V −1) complex additions to generate the sample, and L real
additions and 2L multiplications to calculate the PAPR[21].
For conventional PTS, the number of sample is WV−1. So
the number of real multiplications and real additions for
conventional PTS (CON-PTS) are

CPmul = 2WV−1L+ 2LV log2L (17)

CPadd = WV−1L+ 2WV−1(V − 1)L+ 3LV log2L (18)

For GA-PTS, the samples number equals to S1 = Pop1×
Gen1, where Pop1 is the number of individuals in the
population and Gen1 is the maximum number of generations
in GA-PTS. So the number of real multiplications and real
additions for GA-PTS are

GAmul = 2LS1 + 2LV log2L (19)

GAadd = LS1 + 2(V − 1)LS1 + 3LV log2L (20)

For QEA-PTS, the samples number equals to S2 = Pop2×
Gen2, where Pop2 is the number of individuals in the
population and Gen2 is the maximum number of generation
in QEA-PTS. So the number of real multiplications and real
additions for QEA-PTS are

QEAmul = 2LS2 + 2LV log2L (21)

QEAadd = LS2 + 2(V − 1)LS2 + 3LV log2L (22)

For MCCSFLA-PTS, as only the worst frog in each group
(memeplex) is renewed, the samples number equals to the
S3 = AJ ×M ×Gen3, where Gen3 is the maximum number
of generations in MCCSFLA, and M is the number of groups
in MCCSFLA. The AJ is the average number of jumps for
the worst frog in each group. If a better solution can be found
via jump toward the local best, the number of jumps is 1. If a
better solution can be found via jump toward the global best,
the number of jumps is 2. If a better solution can be found via
clonal selection, the number of jumps is equal to the number
of clones plus 2. Otherwise the number of jumps is equal to
the number of clones plus 3, as we need replace the worst
frog in the group with a random frog.

MCCSFLAmul = 2LS3 + 2LV log2L (23)

MCCSFLAadd = LS3 + 2(V − 1)LS3 + 3LV log2L (24)

For SLM, the samples number equals to the number of dis-
tinct sign sequences S4. So the number of real multiplications
and real additions for GA-PTS are

SLMmul = 2LS4 + 2LV log2L (25)

SLMadd = LS4 + 2(V − 1)LS4 + 3LV log2L (26)
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IV. CONVERGENCE ANALYSIS OF MCCSFLA FOR PAPR
REDUCTION IN OFDM SYSTEMS

In this section we analyse the convergence of MCCSFLA
for OFDM systems. We first model the iteration process of
MCCSFLA as a Markov chain[19], and derive its properties.
The base Markov chain is then extended to include the elite
frog, and the properties of such extended Markov chain are
investigated further. Under these properties, we prove MCCS-
FLA converges to global optimum.

A. The Base Markov Chain

First, we give some basic definitions in Markov chain. A
discrete-time Markov chain is a random process that can only
take values from a discrete state space. In Markov chain,
the next state only depends on the current state and not on
the previous states[22]. A Markov chain is homogeneous if
it is inrelevant to time (time-invariant). In a homogenous
Markov chain, a transition matrix can be represent as a two-
dimensional matrix P = [pij ]. For a homogenous Markov
chain, with the initial distribution π⃗(0), the probability dis-
tribution of in the time n is only depends on π⃗(0) and P .
Some homogenous Markov chain is Ergodic, which is both
irreducible and aperiodic.

In the iteration process of MCCSFLA, the population re-
news from one iteration to another. If we use standard Markov
tools to analyze this evolutionary process, MCCSFLA runs
from one population distribution at one iteration to another
at the next generation, and this can be viewed as a random
process, and the population distribution at each iteration may
be considered as a state. As the evolution process of the elite
frog De is independent from the other frogs, first we just
consider the evolution process without elite frog De.

Lemma 1: The population sequence {Y (n)}∞n=1 of MCCS-
FLA without elite frog De constitutes a Markov chain.

Proof: Let Y (n) be the whole frog population at iteration
n with multiple memeplex. From the steps of MCCSFLA,
we can know that the population Y (n + 1) is obtained from
the population Y (n) with a sequence of operations, which
means that the distribution probability of the next iteration has
nothing to do with the former iteration Y (n − 1) and initial
population Y (0). Thus, MCCSFLA can be modelled with a
Markov chain and its character may be studied by the Markov
chain theory.

In the procedure of analyze, we use a binary string
to represent the whole population in one state[23].
In this way, each gene in a frog is mapped to two
binary bits, and the number of bits for each frog is
2(V − 1). As there are M memeplex in population and
N frogs in each memeplex, the whole population in
state n is mapped to Y (n) = { D1, · · · , DMN } =
{x1 · · ·x2(V−1)︸ ︷︷ ︸

D1

· · ·x2(MN−1)(V−1)+1 · · ·x2MN(V−1)︸ ︷︷ ︸
DMN

}. For

each frog, the number of possible strings for individual
space is 22(V−1), so the solution space for each generation is
|Φ| = 22(V−1)MN , so the state space of the Markov chain is
finite.

From the operation steps of MCCSFLA, we can obtain the
following conclusions.

Lemma 2: The Markov chain of the population sequence
{Y (n)}∞n=1 is time homogeneous.

Proof: Because the transition probability of the operation
on each iteration remains fixed, the Markov chain of the
population sequence {Y (n)}∞n=1 is homogeneous, and the
transition probability P

(n)
ij is irrelevant to step n, which can

be denoted as P = [pij ] with size 22(V−1)MN × 22(V−1)MN .
So the Theorem is proved.

Now we focus on some important properties of the opera-
tions in MCCSFLA. Each iteration process of the population
sequence {Y (n)}∞n=1 is divided into two steps. The step 1
is the operations before the population mutation, and the
corresponding line numbers in flowchart Algorithm 1 is from
6 to 22. We use the transition matrix G to represent the
first step. The step 2 is the population mutation, and the
corresponding line numbers in flowchart Algorithm 1 is 23.
We use the transition matrix C to represent the second step.
We don’t consider the elite operation in line 24 in the base
Markov chain. So the whole transition matrix P is the product
of the transition matrices in two steps.

Lemma 3: The transition matrix G of step 1 for the
population sequence {Y (n)}∞n=1 in MCCSFLA is stochastic.

Proof: Mathematically, these operations map probabilisti-
cally from one state to another in space Φ with transition
matrix G = [gij ]. Due to the length binary-coded frog is
22((V−1)MN), which is unchanged in the whole process of
algorithm, the total probability from one state to all states that
from [0, 0, · · · , 0]1×22((V −1)MN) to [1, 1, · · · , 1]1×22((V −1)MN)

in the next iteration is 1. Thus gij ≥ 0 and
22(V −1)MN∑

j=1

gij = 1

for any i ∈ [1, 22(V−1)MN ]. Therefore, the transition matrixes
before the mutation operation is stochastic.

Lemma 4: The state transition matrix C of step 2 for
the population sequence {Y (n)}∞n=1 is both stochastic and
positive.

Proof: The population mutation operation in step 2 ran-
domly maps from one state to another, and it works on
each bit string independently. Let C = [cij ] be the state
transition matrix of the population mutation operation, and
Pc ∈ (0, 1) be the mutation probability on each bit. The
transition probability can be shown as

cij = PcHij (1− Pc)2(V−1)MN−Hij > 0 (27)

where cij is transition probability, and Hij is the Hamming
distance between state i and state j [24]. As all cij are
positive, the state transition matrix C is positive. From the

above formula we can also get
22(V −1)MN∑

j=1

mij = 1 for any

i ∈ [1, 22(V−1)MN ]. Thus, C is stochastic.
From the above two lemmas, we can get the following

conclusions.
Lemma 5: Let G be the transition matrix in step 1, and C

be the state transition matrix of step 2 in MCCSFLA. Then
the product GC is a positive and stochastic matrix.

Proof: Let transition matrix P = GC. So we have
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P=
p11 p12 · · · p1,22(V −1)MN

p21 p22 · · · p2,22(V −1)MN

...
...

. . .
...

p22(V −1)MN ,1 p22(V −1)MN ,2 · · · p22(V −1)MN ,22(V −1)MN


(28)

Since for any j in stochastic matrix G, we have
22(V −1)MN∑

j=1

gij = 1, so there is at least one positive element

in each row in matrix G. As C is a stochastic positive
matrix, for all i and j cij > 0, so for all i and j pij =∑22(V −1)MN

k=1 gik · ckj > 0. Thus G is a positive and stochastic
matrix.

Definition 1: [20] A Markov chain is called an ergodic
chain if it is possible to go from every state to every state
(not necessarily in one move).

Theorem 1: The population sequence {Y (n)}∞n=1 of MCCS-
FLA is an ergodic Markov chain.

Proof: According to Lemma 5 pij > 0 for any i and j,
which means that it is possible to reach every state from every
state in just one move. As the solution space |Φ| = 22(V−1)MN

for each generation is finite, according to the definition 1,
the population sequence of MCCSFLA is an ergodic Markov
chain.

According to the properties of the ergodic Markov chain,
the population sequence {Y (n)}∞n=1 has a stationary prob-
ability distribution P∞ = e′ · p∞ when n → ∞, where

p∞ = (p1, p2, · · · , pm) and
m∑
l=1

pl = 1. As transition matrix

P > 0, according to the definition of the primitive matrix, P
is also primitive.

B. The Extended Elite Markov Chain

As in MCCSFLA we keep the elite frog De with low-
est PAPR found by the past and current generations, we
can enlarge the population by adding De in front of other
frogs. In this way, the new population at generation n can
be expressed as Y +(n) = { De, D1 · · · , DMN } =
{x1 · · ·x2(V−1)︸ ︷︷ ︸

De

· · ·x2MN(V−1)+1 · · ·x2(MN+1)(V−1)︸ ︷︷ ︸
DMN

}.

Lemma 6: The stochastic process of the enlarged population
sequence {Y +(n)}∞n=1 of MCCSFLA constitutes a Markov
chain.

Proof: Let Y +(n) be the whole frog population at iteration
n with multiple memeplexes. From the steps of MCCSFLA,
we know that population Y +(n+1) is obtained from popula-
tion Y +(n) with a sequence of operations, which means that
the distribution probability of next iteration has nothing to do
with former iteration Y +(n − 1). Thus, MCCSFLA can be
modelled with a Markov chain and its properties may studied
by the Markov chain theory.

For each frog in population Y +(n), the number of possible
states for individual space is 22(V−1), and with the best frog
the total number of frogs in the population is MN +1, so the
solution space for each generation is |ϕ′| = 22(V−1)(MN+1),
so the state space of Markov chain is also finite.

We divide the evolution process of population Y +(n) into
two steps. We use transition matrix B(n) to indicate the
whole state transition matrix of the two steps. In the first
step, all frogs will be renewed except the elite frog De. In the
algorithm, this stage includes all steps in the outermost loop
before upgrading the elite frog, and the corresponding line
numbers in flowchart Algorithm 1 is from 6 to 23. Math-
ematically, population Y +(n) will upgrade from Y +(n) =
{De, D1, · · · , DMN} to Y +(n) = {De, D

new
1 , · · · , Dnew

MN}.
We use transition matrix Q(n) to indicate this step. In the
second step, the elite frog De will be upgraded, and the
corresponding line numbers in flowchart Algorithm 1 is 24.
If the frog with lowest PAPR in the set {Dnew

1 , · · · , Dnew
MN}

has lower PAPR than De, we replace all values of De with
this frog. We used the transition matrix U(n) to represent this
upgrade stage.

Lemma 7: The enlarged population sequence {Y +(n)}∞n=1

of MCCSFLA constitutes a time homogeneous Markov chain.
Proof: In the first stage, all frogs are renewed except the elite

frog De. We have proved this process is time homogeneous
in Lemma 2, so the transition matrix Q(n) can be written as
Q. In the second stage, the upgrade only depends on the set
{Dnew

1 , · · · , Dnew
MN} in the current generation. So the upgrade

is irrelevant to step n, and the transition matrix U(n) can
be represented as U . So the enlarged population sequence
{Y +(n)}∞n=1 of MCCSFLA is time homogeneous and the
transition matrix B(n) can be represented as B. So the whole
transition matrix B is the product of the transition matrices Q
and U in two steps.

Theorem 2: The transition matrix B of population sequence
Y +(n) in MCCSFLA is stochastic.

Proof: Mathematically, these operations map probabilisti-
cally from one state to another in solution space |ϕ′| =
22(V−1)(MN+1) with transition matrix B, and the total proba-
bility from one state to all states in the next iteration is 1. Thus,
if we use B = [bij ]22(V −1)(MN+1)×22(V −1)(MN+1) to represent

the transition matrix B(n), we can get
22(V −1)(MN+1)∑

j=1

bij = 1

for any i ∈
[
1, 22(V−1)(MN+1)

]
. Therefore, the transition

matrixes before the mutation operation is stochastic.
To simplify the description, we encode the state number in

the solution space according to the PAPR of elite frog De.
Y +(n) with better De has the higher position in solution
space, and the states with the same De are listed together.
In other words, De with lower PAPR will be listed higher.

To make the discussion easier, we assume there is only
one global best frog Dbest in the whole solution space.
The globe best frog has the lowest PAPR. As the size of
matrix B is 22(V−1)(MN+1)×22(V−1)(MN+1), the states with
the elite frog equal to Dbest are listed with state number
i ∈ [1, 22(V−1)MN ]. Similarly, the states with the elite frog
with the highest PAPR are listed with the state number
i ∈

[
22(V−1)MN (22(V−1) − 1) + 1, 22(V−1)(MN+1)

]
.

In the first stage, since the elite frog De is not affected by
transition matrix P in MCCSFLA, state transition matrix Q
can be represented as
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Q =


P

P
. . .

P

 (29)

where in state transition matrix Q there are 22(V−1) matrices
P on the diagonal, and the size of each P is 22(V−1)MN ×
22(V−1)MN .

In the second stage, as we need to upgrade the elite frog
De with the best frog found in the set {Dnew

1 , · · · , Dnew
MN}, we

need to define the upgrade transition matrix U = [uij ]. The
upgrade transition matrix simply replaces the elite frog De

with the best frog Dm found after the population mutation in
the current generation if the PAPR of Dm is lower than De,
or otherwise does nothing.

Lemma 8: Upgrade transition matrix U is a lower triangu-
lar matrix.

Proof: Suppose Dm is the best frog found in the set
{Dnew

1 , · · · , Dnew
MN} after the population mutation at gener-

ation n, and De is the elite frog at generation n− 1.
(1) For Y +(n) with state number i in generation n, if the

PAPR of Dm is lower than De, then Dm will replace De in
generation n, and the state will transtion from state i to state
j. According to the sequence of the state number, state j has a
higher position in the solution space, so i > j and uij = 1. In
this case, the other elements in row i in the upgrade transition
matrix U are 0.

(2) For state Y +(n) with state number i in generation n, if
the PAPR of Dm is higher than De, then the state i will not
change. In this case, uii = 1 and the other elements in row i
in the upgrade transition matrix U are 0.

The above results can directly prove upgrade transition
matrix U is a lower triangular matrix.

We split U into matrix blocks with the same size as matrix
P . In this way, U can be expressed as:

U =


U11

U21 U22

...
...

. . .
U22(V −1),1 U22(V −1),2 · · · U22(V −1),22(V −1)


(30)

Lemma 9: U11 is a unit matrix.
Proof: As the states with the elite frog equal to Dbest are

listed with state number i ∈ [1, 22(V−1)MN ], the elite frog in
these states will not be replaced by other frogs, as it has the
lowest PAPR in the whole solution space.

In matrix U , each row represent a current state, and in such
state the frog with lowest PAPR is fixed, so the next state is
also fixed. With the upgrade matrix, the next state will either
go up with a smaller state number, or remain in the current
state. With the above analyze, we can immediately draw the
following conclusions: In each row there is only one uij = 1,
other elements equal to 0, and i ≥ j.

Lemma 10: U21 ̸= 0 and U22 ̸= 0.
Proof: Let Y +(n) = {De, D

new
1 , · · · , Dnew

MN}. Since the
relevant rows of transition matrix U21 and U22 contain all the
binary combinations of {Dnew

1 , · · · , Dnew
MN}, in some rows the

set {Dnew
1 , · · · , Dnew

MN} contains Dbest, for example Dnew
1 =

Dbest, in this case the elite frog De will be replaced by Dnew
1 .

So there are some elements in U21 with the form ui1 = 1. So
U21 ̸= 0. In some rows De has the lowest PAPR, so the status
will not be changed. In this case uii = 1. So U22 ̸= 0.

In this way, as U11 is a unit matrix, the total transition
matrix can be expressed as [26]

B = QU

=


P

PU21 PU22

...
...

. . .
PU22(V −1),1 PU22(V −1),2 · · · PU22(V −1),22(V −1)


(31)

C. The Convergence for MCCSFLA

Before the convergence proof, we need to define the concept
of convergence of MCCSFLA for PAPR reduction.

Definition 2: Let De be the elite frog found by MCCSFLA
at generation n, and Dbest be the best frog with lowest PAPR
fbest in the whole population space Φ. If lim

n→∞
Pr(f(De) =

fbest) = 1, then population sequence {P (n)}∞n=1 converges.
In order to analyze the convergence of MCCSFLA with the

Markov chain theory, we give the following Lemma.
Lemma 11: [22]: Let P be a m × m primitive stochastic

matrix that converges to P∞ = (πT , πT , · · · , πT )T

with πT=(p1, p2, · · · , pm), R, T ̸= 0, g =[
1, 1, · · · , 1

]
1×k

,. If a k × k non-negative stochastic

phalanx B has the form B =

(
P 0
R T

)
, then B∞ =

lim
n→∞

(
Pn 0∑n−1

m=0 T
mRPn−m−1 Tn

)
=

(
P∞ 0
R∞ 0

)
is a stable stochastic matrix, and B∞ = g′ · b∞, where

b∞ = (p1, p2, · · · , pm, 0, 0, · · · 0) and
m∑
l=1

pl = 1.

The detailed proof can be found in [22].
Based on the above analysis we can prove MCCSFLA

converges to the global optimum when the number of iterations
tends to be infinite.

Theorem 3: MCCSFLA can guarantee convergence to the
global optimum.

Proof: Let the total transition matrix be expressed as

B =

(
P 0
R T

)
, with R =

 PU21

...
PU22(V −1),1

 and T =

 PU22

...
. . .

PU22(V −1),2 · · · PU22(V −1),22(V −1)

. In the above we

proved that P and B are primitive stochastic matrices. As
P > 0, U21 ̸= 0, the product PU21 ̸= 0, so R ̸= 0. As P > 0,
U22 ̸= 0, the product PU22 ̸= 0, so T ̸= 0. According to the
Theorem 1, {Y (n)}∞n=1 converges to B∞ = g′ · b∞, where

b∞ = (p1, p2, · · · , p22(V −1)MN , 0, 0, · · · 0), and
22(V −1)MN∑

l=1

pl =
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1. So we have

B∞ = lim
n→∞

(
Pn 0∑n−1

m=0 T
mRPn−m−1 Tn

)
=

(
P∞ 0
R∞ 0

)

=


p1 · · · p22(V −1)MN 0 · · · 0
p1 · · · p22(V −1)MN 0 · · · 0
...

...
...

...
...

...
p1 · · · p22(V −1)MN 0 · · · 0


(32)

The size of matrix B is 22(V−1)(MN+1) × 22(V−1)(MN+1),
so it has 22(V−1)(MN+1) states. As for status with state number
i ∈ [1, 22(V−1)MN ] the elite frog De = Dbest, according to
the definition of the convergence in Definition 2, {Y (n)}∞n=1

converges to the global optimal solution.

V. EXPERIMENTAL STUDY

In this section we present the simulation results of MCCS-
FLA. In order to demonstrate the algorithm’s capabilities, we
compare it against the genetic algorithm, the quantum evo-
lutionary algorithm, the selective mapping algorithm and the
original method without using partial transmission sequences.

In our simulation, we consider the QPSK, 16QAM and
64QAM modulation respectively. We set the number of non-
overlapping sub-blocks V = 16. The objective function in
(7) is used to evaluate each PAPR reduction algorithm. For
simplicity, the input symbol sequence is considered to be
randomly distributed. The population sizes of both GA and
QEA are 40, and the number of frogs in MCCSFLA is also
40. We set the number of groups in MCCSFLA to 4, which
means there are 10 frogs in each group. In GA, we use a
similar setting to that in [6]. We set the crossover probability
to 0.9, and set the mutation probability to 0.05. In QEA, we
use the same lookup table as in [27]. For comparison purposes,
we set the number of distinct sign sequences of SLM to 8. In
each simulation, we test the algorithms with 128, 256, and
512 subcarriers in one symbol respectively.

In order to compare the performance of MCCSFLA, the
complementary cumulative distribution function (CCDF) is
used to evaluate the algorithms. The CCDF is given as:

CCDF = P{PAPR > PAPR0} (33)

where P is the probability function.
Fig. 1 to Fig. 9 show the CCDF curves of MCCSFLA,

GA, QEA, SLM and “original” with the QPSK, 16QAM and
64QAM modulation respectively. The maximum generation of
MCCSFLA, GA and QEA is set to 20. “Original” means the
PAPR without using PTS. We simulate the OFDM system with
128, 256 and 512 subcarriers respectively. Each case is tested
with 1 × 105 symbols independently. As can be seen from
Fig.1, among all the different subcarriers, MCCSFLA provides
better performance than GA, QEA, SLM and “original”.
For example, with 20 iterations and 128 subcarriers, when
CCDF = 10−3, the average PAPR obtained by MCCSFLA is
around 5.59 dB, which is the lowest among all the algorithms
under evaluation. In contrast, GA and QEA achieve results
for PAPR of around 6.25 dB and 7.15 dB. In comparison,

SLM can only obtain a higher PAPR of 7.53 dB due to the
few partial transmit sequences. “Original”, however, suffers a
substantial performance loss, with the highest PAPR of around
10.40 dB. Similar conclusions can be observed from Fig. 2 to
Fig. 9.

As a numerical example for computational complexity, we
use the parameters in Fig. 1, that is W = 4, V = 16, L = 128
Gen1 = Gen2 = Gen3 = 20, Pop1 = Pop2 = 40, M =
4, and set the number of distinct sign sequences in SLM is
set to 8. With 1 × 105 symbols simulation, we can get the
average number of jumps for the worst frog in each group is
AJ = 8.7. So we have WV−1 = 1073741824. According to
section III-L, the computational complexity of PAPR reduction
schemes is calculated and shown in table I. From the tables we
can see that the computational complexity of MCCSFLA-PTS
is a little bit lower than GA-PTS and QEA-PTS with L = 128.
The proposed MCCSFLA-PTS achieved best PAPR reduction
as shown in Fig. 1 to Fig. 9. As we can see from Fig. 1 and
table I, although SLM has a lower computational complexity
as shown in Table I, its PAPR reduction performance is the
worst among heuristic algorithms.

TABLE I
THE NUMBER OF REAL MULTIPLICATIONS AND REAL ADDITIONS OVER

THE CONVENTIONAL PTS

Scheme Real Multiplications Real Additions
CON-PTS 274877935616 4260607600644
GA-PTS 233472 3217408

QEA-PTS 233472 3217408
MCCSFLA-PTS 206848 2804736

SLM 30720 74752

Fig. 10, Fig. 11 and Fig. 12 show the convergence, defined
as the average PAPR for 100 symbols, for QPSK modula-
tion, MCCSFLA and GA with 128, 256 and 512 subcarriers
respectively. Fig. 10 shows clearly that MCCSFLA performs
significantly better than GA in terms of the convergence speed
with 128 subcarriers. It can be seen in Fig. 10, at the first
generation, the average PAPR of MCCSFLA is lower than
GA as the local search of MCCSFLA is more effective than
GA. Within the initial 50 iterations, the PAPR of MCCSFLA
decreased quickly with the growth of the generations, as the
convergence speed improves with the local search and the
shuffling of the population. On the other hand, GA shows
a slower convergence rate than MCCSFLA. From 50 to 100
iterations, MCCSFLA has approached close to 4.55 dB, while
GA is still far from it. Over all 100 iterations, MCCSFLA
provides a lower average PAPR than GA, and MCCSFLA
converges with a faster rate. From Fig. 11 and Fig. 12, similar
conclusions can also be obtained when the number of the
subcarriers is 256 and 512 respectively. Overall, MCCSFLA
is more effective and suitable for PAPR reduction than GA.
Moreover, similar conclusions can also be obtained from the
simulation results that MCCSFLA converges faster than QEA
with the same number of generations.

VI. CONCLUSION

In this paper, we propose a novel modified chaos clonal
shuffled frog leaping algorithm for partial transmit sequence
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Fig. 1. QPSK, CCDF of the PAPR with subcarrier=128.

Fig. 2. QPSK, CCDF of the PAPR with subcarrier=256.

selection in OFDM systems. We analyze the proposed algo-
rithm using Markov chain theory and prove that the algorithm
converges to the global optimum. Simulation experiments are
conducted to compare the proposed algorithm with the genetic
algorithm, the quantum evolutionary algorithm, the selective
mapping algorithm and the original approach respectively.
The results show that the modified chaos clonal shuffled frog
leaping algorithm is more efficient in terms of both PAPR
reduction and convergence speed.
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