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Abstract

The problem of link prediction describes how to ac-
count for the development of connection structure in
a graph. There are many applications of link predic-
tion, such as predicting missing links and future links
in online social networks. Much of the literature has
focused on limited characteristics of the graph topol-
ogy or on node attributes, rather than a broad range
of measures. There is a rich spectrum of topologi-
cal features associated with a graph, such as neigh-
bourhood similarity scores, node centrality measures,
community structure and path-based distance mea-
sures. In this paper we formulate a supervised learn-
ing approach to link prediction using a feature set
of graph measures chosen to capture a wide range
of topological structure. This approach has the ad-
vantage that it can be applied to any graph where
the connection structure is known. Random forest
learning models are used for their high accuracy and
measures of feature importance. The feature impor-
tance scores reveal the strength of contribution of the
topological predictors for link prediction in a variety
of synthetically generated network datasets, as well
as three real world citation networks. We investigate
both undirected and directed cases. Our results show
that this approach can deliver very high model pre-
cision and recall performance in certain graphs, and
good performance generally. Our models also con-
sistently outperform a simpler comparison model we
developed to resemble earlier work. In addition, our
analysis of variable importance for each dataset re-
veals meaningful information regarding deep network
properties.

Keywords: social networks, link prediction, super-
vised learning, centrality, community structure,
graph topology

1 Introduction

Link prediction describes how the likelihood for a link
existing between two nodes in a complex network can
be estimated. Many approaches have been proposed,
but most require non-topological, node specific infor-
mation to achieve high accuracy. A key goal of link
prediction is the development of an accurate model
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that can be applied universally to any social network
dataset (Shibata et al. 2012).

There are many applications of link prediction.
For instance, these methods can be applied for link
recommendation to users in online social networks.
Another application identified for link prediction
models is the evaluation of evolving social network
models (Lu & Zhou 2011). Link prediction algorithms
estimate the influence of a set of features on the like-
lihood of link formation. A wide range of topological
features can provide information regarding emergent
properties of a social network through their predic-
tive importance. This information may provide an
empirical basis for the derivation of the rule set of an
evolving social network mode. The research question
of using a link prediction model to discover informa-
tion about the deep structure of a social network is
still open in the literature.

In this paper, we present a novel link prediction
framework that can be applied universally to any net-
work where the topology is known. We define a set
of topologically derived features which capture a wide
range of network properties, and apply a random for-
est supervised learning model. Our method is tested
against a variety of synthetic networks and real world
datasets, for both the undirected and directed cases.
We also evaluate whether feature importance scoring
can provide information about global and emergent
properties of a network.

2 Related Work

There are three common frameworks to link predic-
tion: the similarity based approach, methods based
on maximum likelihood estimation, and probabilistic
modelling approaches.

The simplest framework for link prediction is the
similarity-based approach. In this method, each pair
of nodes i and j is assigned a score s

ij

, defined as
the similarity between i and j. All unobserved edges
are then ranked according to their scores, with higher
ranks having a greater link likelihood. Much of the
early literature on link prediction focussed on the use
of singular similarity features, or small sets of fea-
tures. For example, Adamic & Adar (2003) developed
a similarity measure based on common neighbours
to predict connections amongst web pages. Liben-
Nowell & Kleinberg (2007) experimented with a wider
range of similarity based measures, but still used each
in isolation to rank node pairs with the highest scores.
Many similarity indices have been proposed, see Lu &
Zhou (2011) for more details. As these methods are
relatively simple, each similarity index only considers
a limited amount of information regarding the graph
topology. As such, the accuracy of these indices is
generally quite low.
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A more recent framework is to use algorithms
based on maximum likelihood estimation. This ap-
proach assumes some topological form of the network,
e.g. an exponential random graph (Zaccarin & Riv-
ellini 2010). An algorithm then estimates the model
parameters against the dataset. Another method was
proposed by Clauset et al. (2008) and starts by infer-
ring the hierarchical organisation of a network. The
hierarchical structure is assumed to extend across
the network, and is applied to predict missing links.
A modelling approach known as a stochastic block
model has also been developed. These models parti-
tion nodes into groups, which strongly influence link
probabilty. However, this method is known to ignore
heterogeneity in node degree. Zhang et al. (2014)
recently extended the stochastic block model by cor-
recting for variable node degree, with improved re-
sults. Heterogeneity across other network properties
may still be unaccounted for in this approach, limit-
ing its performance in real world datasets. For these
methods to work well in practice, the network struc-
ture should be first understood and matched to the
closest topological form before a model is be built.

The third common framework uses probabilistic
modelling. This methodology aims to abstract the
underlying link structure of the network through
training a probabilistic model, commonly a super-
vised learning model. For instance, Backstrom &
Leskovec (2011) developed a supervised random walk
approach. This method combines node attributes as a
supervised learning problem to guide a random walk
to nodes which are more likely to be connected. There
are many types of probabilistic link prediction mod-
els which can be applied. Wang et al. (2011) tested a
range of supervised learning models on a social net-
work derived from mobile phone data. They found
that a decision-tree model performed most e↵ectively
when trained on a mixture of both network and data
specific node attribute measures.

Recent publications in this area have focussed on
wider sets of features used in a supervised learning
framework to predict link formation. More diverse
topological features can capture di↵erent types of
complex structure. Shibata et al. (2012) applied a
support vector machine learning model to a variety
of features on citation networks, including similarity
scores, some centrality measures, community classifi-
cation and node attributes. This approach achieved
high performance, and the model weights for each
feature were provided as importance measures. The
non-topological node attribute features strongly in-
fluenced most of their models, and it was found that
di↵erent models were required for di↵erent citation
networks. Bliss et al. (2014) analysed link prediction
on a large Twitter social network using a wide variety
of topological and node attribute similarity features.
An evolutionary algorithm was used to estimate the
coe�cients for a linear combination of features, with
good results. Both of these publications, however,
utilised non-topological attributes. This limits the
network datasets to which their application can be
applied to, and are di�cult to compare across other
networks. There is a great deal of interest in this area,
so for a detailed review see Lu & Zhou (2011) and,
more recently, Wang et al. (2014).

The method we present in this paper is motivated
by the above publications using the supervised learn-
ing framework. However, we only consider topologi-
cal features to ensure that our approach can be ap-
plied universally to any network where the topology
is known. We contribute to the existing literature by
extending the range of topological features used. We
also show that a model with a wider range of topolog-

ical features consistently outperforms a reduced fea-
ture set model. A random forest model is used as it
can deliver high accuracy and analysis of feature im-
portance. The results outlined in this work provide
information regarding emergent properties of synthet-
ically generated networks, as well as three real world
citation networks.

The rest of this paper is organised as follows. Sec-
tion 3 outlines the research methods. Section 4 deliv-
ers results regarding the model performance on each
dataset, and the analysis of feature importance. We
conclude in Section 5, and outline the future direc-
tions for this work.

3 Research Methods

In this section, we outline our supervised learning
framework for link prediction using a purely topo-
logical feature set. We proceed by describing the
datasets used and the data preparation and modelling
approach. The features are then defined, followed by
the model evaluation methodology.

We define a graph G as an ordered pair G = (V,E)
comprising a set of nodes V and edges E. The
graph is endowed with nodes v

i

and edges e
ij

, where
i, j = 1, . . . , n. Edges are symmetric for undirected
networks, i.e. e

ij

= e
ji

, but e
ij

6= e
ji

for directed
networks. For directed networks, we will refer to the
“to” node as y, and the “from” node as x.

3.1 Data Description

Our model is applied over three types of synthetically
generated networks: an Erdős-Rényi random graph, a
small-world network, and a scale-free network. While
idealised and simplistic, these three graphs can pro-
vide topology often observed in real world networks
(Newman 2003). These networks are generated using
the igraph package with R statistical software (Csardi
& Nepusz 2006). For each model type, we define a
variable m which varies the number of edges in the
network. The parameter m roughly gives the num-
ber of edges as m ⇥ V , and we take m 2 {1, 2, 3}.
Higher values of parameter m tend to give unrealistic
properties, such as much higher graph densities than
the real world networks. The model performance also
does not vary substantially with m > 3.

• Scale-free networks are generated by the prefer-
ential attachment mechanism, where new nodes
are connected preferentially to existing nodes
with higher degrees. We generate scale-free net-
works SF

m

with 2,000 nodes. Parameter m is
defined as the number of edges added per node.

• Small-world networks start with a regular lattice,
then proceed to rewire edges randomly across
the network. We generate small-world networks
SW

m

with starting lattice dimension equal to 1,
nodes equal to 2,000 and rewiring probability of
0.05. Parameter m is defined as the lattice con-
nection neighbourhood distance.

• Erdős-Rényi random graphs start with a fixed
number of nodes, and edges are created randomly
with uniform probability. We generate Erdős-
Rényi random graphs ER

m

with 2,000 nodes.
The uniform connection probability is defined as
m

1,000 .

We have chosen three real world network data sets
to apply the link prediction model to: Cora, Cite-
seer and WebKB (Sen et al. 2008). These data sets

CRPIT Volume 168 - Data Mining and Analytics 2015

40



have been chosen as the full connection structure is
provided, and they have been used in recent studies
(De et al. 2013). All three data sets represent citation
networks, are directed, and all contain the full connec-
tion structure and node attributes. Table 1 outlines
the key properties of each graph. Di gives the diam-
eter of the network, APL is the average path length,
Cls gives the clustering coe�cient of the network, and
Dns describes the graph density.

Table 1: Key properties of graph datasets

Graph V E Di APL Cls Dns

Synthetic

SF1 2,000 1,999 17 7.8 0 0.001
SF2 2,000 3,997 7 3.8 0.006 0.002
SF3 2,000 5,994 6 3 0.01 0.003
SW1 2,000 2,000 132 51.4 0 0.001
SW2 2,000 4,000 20 10.1 0.362 0.002
SW3 2,000 6,000 13 7 0.436 0.003
ER1 2,000 1,913 33 11 0.001 0.001
ER2 2,000 3,917 12 5.7 0.002 0.002
ER3 2,000 5,951 8 4.5 0.003 0.003

Real World

WebKB 878 1,388 8 3.1 0.036 0.004
Cora 2,709 5,278 19 6.3 0.093 0.001

Citeseer 3,328 4,552 28 9.3 0.13 0.001

In addition to the key graph measures, the net-
works are plotted with a Fruchterman-Reingold lay-
out, which gives a visual indication of their struc-
ture. Figures 1(a) and 1(b) show the plots of the first
two scale-free networks SF1 and SF2, respectively.
SF3 has been excluded as the structure becomes dif-
ficult to discern visually. The branch-like structure
is clearly visible in SF1. Similarly, Figures 1(c) and
1(d) depict the structure of the small-world networks
SW1 and SW2, and Figures 1(e) and 1(f) plot ER1
and ER2. It is noted that these latter graphs are
not fully connected, however the largest component
makes up the majority of the network in both cases.

Figures 1(g), 1(h) and 1(i) show the structure of
the real world datasets. Anecdotally, we can see some
common patterns amongst the three real world graphs
and our generated graphs. For example, the WebKB
graph shown in Figure 1(g) appears to have a similar
branching structure to the scale-free network in Fig-
ure 1(a). In terms of graph measures, WebKB pos-
sesses similar properties to SF2 and SW2, although
the scale-free network has a lower clustering coe�-
cient, and the small-world network has a smaller di-
ameter.

While the link prediction method outlined in this
paper can be applied to both directed and undirected
networks, we note that there may be di↵erences in
performance in each case. We therefore consider both
directed and undirected interpretations of the above
networks in our application.

3.2 Data Preparation and Learning Method

Link prediction is known to be a very unbalanced clas-
sification problem (Wang et al. 2014). There are usu-
ally a large number of node pairs to predict over, and
a small number of actual links. We address these is-
sues through implementing a sampling process. We
also adopt a random forest learning model. This mod-
elling approach has been chosen because it can be ef-
fectively trained to distinguish between unbalanced
classes (Breiman 2001). It is proven to be particu-
larly robust to data outliers and also very accurate.
Lastly, it can provide measures for the importance of

Table 2: Link prediction features

Feature Category

1. Jaccard coe�cient Similarity
2. Adamic-Adar index
3. Dice similarity
4. Degree Centrality
5. Betweenness
6. Closeness
7. Eigenvector
8. PageRank
9. In same community Community
10. Community density
11. Community clustering
12. Cross-community edge weight
13. Node pair geodesic Distance
14. Community pair geodesic

each feature on the likelihood of link formation, which
we evaluate for each data set.

In all data sets, we have prepared the data for
modelling in the following way:

• We create the feature set for all node pairs in G,
as defined in Section 3.3

• The data is split into 70%/30% training/testing
sets using random sampling.

• In the training data set, we select all the link ob-
servations (True class), and sample the remain-
ing set of node pairs (False class) such that there
is a 1:100 ratio between the True and False link
classes. Through experimentation, we found that
oversampling the False cases in the training data
produces a more accurate model. 1:100 provides
a reasonably representative sample of False cases,
while still providing a proportion of True cases
high enough for the random forest to model ac-
curately.

• The random forest model is trained using 50
trees, since we found through experimentation
that the model accuracy did not improve with
additional trees. We also set the number of fea-
tures included in each tree to the floor of the
square root of the total number of features.

3.3 Model Features

We present four categories of measures in this paper:
similarity scores, node centrality, community struc-
ture and distance measures. While the real world
datasets have available certain node attributes, our
aim is to use only topological features in our model.
This allows for our method to be applied in a standard
way to a wide variety of networks in future. We also
consider directed cases of each measure. Table 2 out-
lines the features used by their category. We present
the directed version of the features as the generalisa-
tion to undirected graphs is trivial.

We refer to node pairs x, y 2 G, where x 6= y as
xy, and classify x as the from node and y as the to

node.

3.3.1 Similarity Measures

Similarity measures have been applied extensively to
link prediction. A simple approach to link prediction
is to rank all pairs of nodes by their score according
to a specific similarity index, and take those node
pairs with the highest score to be the most likely
connected pairs (Lu & Zhou 2011). However, these
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Figure 1: Plots of all network datasets used, in the undirected interpretation. Node size is scaled to represent the degree of the
node. (a) represents the scale-free network SF1, and SF2 is shown in (b). The branch-like structure is clearly visible in (a), where
each node is only connected to one existing node. (c) and (d) depict the plots of the small world networks, SW1 and SW2. (e)
and (f) show the plots of the Erdős-Rényi networks with m = 1 and m = 2 respectively. It is clear that there is a large connected
component in ER1, with a number of smaller components around the edges. With m = 2 in (f), most of the network is connected.
(g), (h) and (i) show plots of the real world networks WebKB, Cora and Citeseer, respectively. It is evident that WebKB consists
of four connected components, each with a highly connected hub node, indicating scale-free structure. Cora and Citeseer, shown
in (h) and (i), both show a large connected component with a number of smaller components, similar to (e).

measures can also be used as features in the su-
pervised learning approach to link prediction. We
consider the following three similarity measures to
use as features in the supervised learning problem.

(1) Jaccard similarity coe�cient (SimJacc

xy

):

The Jaccard similarity coe�cient of two ver-
tices is the number of common neighbours divided
by the union of the neighbours of both vertices. For
a node x, let �(x) denote the set of neighbours of x.
For directed networks, �(x) defines the set of nodes

with a link from node x. The Jaccard similarity
coe�cient is then defined as

SimJacc

xy

=
|�(x) \ �(y)|
|�(x) [ �(y)| .

(2) Adamic-Adar index (SimAA

xy

) (Adamic &
Adar 2003):

This index extends the simple counting of com-
mon neighbours to include a term which gives less
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connected neighbours higher weight. Letting k
out,z

be the out-degree of node z, the Adamic-Adar Index
is defined as

SimAA

xy

=
X

z2�(x)[�(y)

1

log k
out,z

.

(3) Dice similarity coe�cient (SimDice

xy

):

This similarity coe�cient, also known as the
Sørensen index, is similar to the Jaccard index in
form, but has been applied to ecological communities
and is known to be robust to outliers (Sørensen
1948). The Dice similarity coe�cient is given by

SimDice

xy

= 2
|�(x) \ �(y)|
k
out,x

+ k
out,y

.

3.3.2 Node Centrality Measures

Centrality measures have been used for a long time
within the field of social network analysis to describe
the relative influence of a node over the network. In-
deed, scale-free networks arose from the insight that
individuals may connect preferentially to more highly
connected individuals, i.e. those with high degree cen-
trality (Barabási & Albert 1999). Shibata et al.
(2007) showed that in citation networks, the between-
ness centrality measure was positively correlated be-
tween pairs of nodes where a connection existed, and
proved to be a significant predictor for future connec-
tions. Further to these results, we expect that in so-
cial networks individuals may connect preferentially
to other individuals according to a variety of central-
ity measures. We therefore include a broad range of
features derived from centrality measures into our su-
pervised learning model and evaluate their predictive
power and importance.

The question of how the centrality measures
for each node pair are used as features requires
consideration. A number of approaches have been
applied previously. For example, Shibata et al. (2007)
derive a feature based on the di↵erence between the
in-degrees of the two nodes, CnPA2

xy

= k
in,x

� k
in,y

.
This measure will capture di↵erences in the in-
degree between the nodes, but may not distinguish
between high and low in-degree nodes. Another
feature derivation commonly used for preferential
attachment is defined as the product of each node’s
degree, i.e. CnPA1

xy

= k
x

⇥ k
y

(Lu & Zhou 2011,
Barabási & Albert 1999). This method gives more
weight to either node having high degree, however
the formula does not distinguish between the to and
from nodes. Additional consideration of this measure
is therefore required for directed networks. However,
this approach is more common in the literature
(Wang et al. 2014) so we adopt the same convention.
To accomodate the directed network case we also
include as a separate feature the centrality measure
for the to node, y. The undirected centrality product
features are labelled as CnMeasure

x⇥y

, and the additional
directed centrality features are labelled CnMeasure

y

.
The list of centrality features are outlined as follows.

(4) Degree centrality (CnDgre

x⇥y

, CnDgre

y

):

The degree centrality is defined simply as the
number of connections of each node in an undirected
network, or the in-degree in a directed network. We

construct a feature for the product of the in-degrees
of both nodes, and another feature for the in-degree
of the to node:

CnDgre

x⇥y

= k
out,x

⇥ k
in,y

,

CnDgre

y

= k
in,y

We expect that a higher degree product indicates
high connection likelihood in the undirected case. In
the directed case, we also expect that from nodes
x with a higher out-degree and to nodes y with a
higher in-degree are more likely to be connected.
The in-degree of the to node y as a separate feature
for directed networks.

(5) Betweenness centrality (CnBtwn

x⇥y

, CnBtwn

y

):

Previous studies have revealed that betweenness
centrality can be a useful predictor of links in
citation networks (Shibata et al. 2012). This measure
represents the extent to which a node lies on the
shortest paths (geodesics) between other nodes,
which can be a useful indicator of influence on net-
work flow. Nodes with high betweenness centralities
tend to bridge otherwise unconnected subsets of a
network. Formally, for nodes i, s and t, let

ni

st

=

⇢
1 if i lies on the geodesic path from s and t

0 otherwise.

The betweenness centrality of a node i is then defined
as:

CnBtwn

i

=
X

st

ni

st

g
st

,

where g
st

gives the total number of geodesic paths
from s to t. Our features are then defined as:

CnBtwn

x⇥y

= CnBtwn

x

⇥ CnBtwn

y

,

with CnBtwn

y

included in the directed case.

(6) Closeness centrality (CnClse

x⇥y

, CnClse

y

):

Closeness centrality measures the inverse of the
mean distance from a node to all other nodes (New-
man 2010). Letting d

ij

be the length of the geodesic
path from node i to j, closeness centrality is defined
as:

CnClse

i

=
nP
j

d
ij

.

We therefore construct our features as

CnClse

x⇥y

= CnClse

x

⇥ CnClse

y

=
nP
i

d
xi

⇥ nP
i

d
yi

,

with CnClse

y

included as a separate feature in the
directed case.

(7) Eigenvector centrality (CnEgnv

x⇥y

, CnEgnv

y

):

Eigenvector centrality extends from degree cen-
trality with the acknowledgement that not all
neighbours are equal. This measure awards each
node with a score proportional to the sum of the
scores of its neighbours. Derivations of eigenvector
centrality have been applied e↵ectively to link pre-
diction (Symeonidis et al. 2013), so we expect that it

Proceedings of the 13-th Australasian Data Mining Conference (AusDM 2015), Sydney, Australia

43



will be a useful feature. The eigenvector centrality
measure for node i, v

i

, is defined as:

v
i

= �1
1

X

j

A
ij

v
j

,

where 1 is the leading eigenvalue of A, A
ij

is the ijth

element of A, and v
j

is the eigenvector centrality of
node j. We construct our feature as:

CnEgnv

x⇥y

= CnEgnv

x

⇥ CnEgnv

y

=

 
�1
1

X

i

A
xi

v
i

!
⇥
 
�1
1

X

i

A
yi

v
i

!
.

As before, we also use CnEgnv

y

as a feature in the
directed case.

(8) PageRank (CnPgRk

x⇥y

, CnPgRk

y

):

PageRank was originally designed as a measure
of web page importance (Page & Brin 1998). It is
similar to the eigenvector centrality in form, however
the neighbour centrality score for each neighbour
i is divided by that node’s out-degree, kout

i

. This
penalises the influence of neighbours with very high
out-degree. We construct our PageRank features as
follows:

CnPgRk

x⇥y

= CnPgRk

x

⇥ CnPgRk

y

=

 
↵
X

i

A
xi

v
i

kout
i

+ �

! 
↵
X

i

A
yi

v
i

kout
i

+ �

!
,

where ↵ and � are constants. We also include CnPgRk

y

as before in the directed case.

3.3.3 Community Measures

Community detection describes the problem of parti-
tioning a graph into densely connected subsets, com-
monly referred to as communities. A graph’s commu-
nity structure has been shown to be predictive of link
formation, as nodes within the same community are
more likely to be connected. For example, Shibata
et al. (2012) include a feature for whether two nodes
are in the same community in their supervised learn-
ing model for link prediction, with good performance.

The problem of community detection has received
a great deal of interest, see Fortunato (2010) for
a comprehensive review. However, many of the
community detection methods have been developed
for undirected graphs, and some have a high com-
putational cost. We utilise the infomap community
detection algorithm as it has computational time
O(V (V ⇥ E)) and can handle directed graphs
(Rosvall et al. 2009). Once the graph is partitioned
into communities, we create the community graph
G

C

by aggregating the vertices of G to their com-
munity partitions. Each node in G

C

is therefore a
community partition of G, and we use the symbols
µ and ⌫ to refer to the from and to nodes in G

C

,
respectively. We also let µ, ⌫ = 1, . . . , k, where k is
the total number of community partitions in G. We
assign edge weights according to the number of links
between each community pair in G. The community
features are defined as follows:

(9) In same community (CmComm

xy

):

We expect that a pair of nodes xy in the same
community should have a higher likelihood of being
connected given that the communities are partitioned
according to connection density. This measure is
defined for node pairs simply as:

CmComm

xy

=

⇢
1 if x is in the same community as y

0 otherwise.

Including a feature for two links being in the same
community should e↵ectively reduce the link like-
lihood space dramatically. This will yield more
accurate link prediction in networks where the
community clustering is strong.

(10) Community density (CmDens

xy

):

The density of a graph is simply the number of
edges divided by the number of possible edges. We
apply this measure to each community µ, represented
as induced subgraphs of G, µ ⇢ G. Letting E(G)
define the set of edges in G, we define |E(µ)| as the
number of edges xy, with x, y 2 µ,G. The density of
µ is then defined as

Dens
µ

=
|E(µ)|P
x,y2µ,G

1
.

We then construct our feature vector for each node
pair in G as

CmDens

xy

=

⇢
Dens

µ

if x and y share community µ

0 otherwise.

We expect that two nodes in the same community
with higher density will have a greater likelihood of
being connected than those in a di↵erent community
with lower density, or in separate communities.

(11) Community clustering coe�cient (CmClst

xy

):

The clustering coe�cient, also known as transi-
tivity, for community subgraph µ is defined as

Clst
µ

=
(number of closed paths of length two)

(number of paths of length two)
.

Similarly to the community density, we expect that
nodes in the same community with higher clustering
are more likely to be connected. The feature vector
is constructed as

CmClst

xy

=

⇢
Clst

µ

if x and y share community µ

0 otherwise.

(12) Cross-community edge weight (CmEwgt

xy

):

The community graph G
C

provides a more coarse
network from which we can take attributes to use
for link prediction of node pairs in G. One straight-
forward measure is the edge weight between each
community pair. We construct a feature vector for
the node pairs in G based on the edge weights be-
tween their respective communities, where the nodes
are not in the same community. Let A

C

denote the
adjacency matrix for G

C

, and let µ, ⌫ 2 G
C

denote
the community classifications for nodes x, y 2 G
respectively. The cross-community edge weight is
then defined as:

CmEwgt

xy

=

⇢P
xy2G

A
Cµ⌫ if µ 6= ⌫

0 otherwise.
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3.3.4 Distance Measures

Distance measures indicate the number of links
between a pair of nodes. Our expectation is that
nodes which are closer together are more likely to
be connected. For the purposes of link prediction,
we only consider distance greater than one for each
node pair. This ensures any direct connections are
not counted, as links in the graph have distance of
one. We construct distance measures for both the
individual node pairs, and the distance between their
communities in G

C

.

(13) Node pair geodesic (DNode

xy

):

For a pair of nodes x, y 2 G, let d
xy,2 be the

shortest path (geodesic) from x to y of length greater
than or equal to 2. Our feature vector is then simply
given by

DNode

xy

= d
xy,2

(14) Community pair geodesic (DComm

xy

):

For a pair of nodes x, y 2 G lying in communi-
ties µ, ⌫ 2 G

C

respectively, our feature vector for
each node pair is defined as the distance from µ to ⌫:

DComm

xy

= d
µ⌫,2

An issue that arises with the distance features, par-
ticularly on small networks, is that there may not be
a path with length greater than one for node pairs
which are connected. If the network is not fully con-
nected, then there will also be node pairs that do not
have a geodesic. These issues e↵ectively introduce
missing values into the observations. To account for
this, we simply replace any missing distance values
with the mean across the dataset which allows for
these observations to be included in the model. More
sophisticated approachs may be developed to account
for missing distance values, but we leave this to future
work.

3.4 Model Evaluation

Given the unbalanced nature of the link prediction
problem, measuring the performance of a model re-
quires consideration. A common approach is to use
the model precision, recall, and the associated F1
measure (Wang et al. 2014). With our model trained
on the training data set, we apply the following eval-
uation measures on the testing data set only. We
abbreviate true positives to TP, false positives to FP,
and false negatives to FN.

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 =
TP

TP + FP + FN
.

We have chosen precision, recall and F1 specifi-
cally because they are useful in unbalanced problems
since they ignore true negatives. There are likely to
be a very large number of records classified as true
negatives due to the high number of node pairs that

Table 3: Link prediction features for comparison model

Feature Category

1. Jaccard coe�cient Similarity
2. Adamic-Adar index
3. Dice similarity
4. Degree Centrality
5. Betweenness
6. In same community Community
7. Community density

Table 4: Model performance on all undirected network
datasets

Network Precision Recall F1 AUC

Synthetic

SF1 1 1 1 1
SF2 0.552 0.729 0.628 0.9932
SF3 0.529 0.527 0.528 0.9729
SW1 1 0.998 0.999 1.000
SW2 0.548 0.851 0.666 0.9932
SW3 0.56 0.829 0.669 0.9858
ER1 0.82 0.964 0.886 0.9999
ER2 0.622 0.476 0.54 0.951
ER3 0.463 0.267 0.339 0.8206

Real World

WebKB 0.709 0.791 0.748 0.9867
Cora 0.402 0.727 0.518 0.983

Citeseer 0.406 0.876 0.555 0.9969

do not have links, which distort the performance re-
sults. In addition to these evaluation measures, we
also provide the precision and recall charts.

In this paper, we expect that a wider range of
topological features can produce a more accurate link
prediction model, as well as revealing diverse informa-
tion about deeper graph properties. To demonstrate
the performance improvement, we create a compari-
son model based on the same topological feature set
used by Shibata et al. (2012), with a random forest
model as the learning algorithm rather than the sup-
port vector machine approach. The list of features
for the comparison models is given in Table 3. It
is noted that the approach by Shibata et al. (2012)
includes non-topological features, so we are not mak-
ing a direct comparison between the two di↵erent ap-
proaches. We also modify the comparison model fea-
tures to be applicable to undirected networks. The
directed and undirected cases are treated in the same
way as outlined in Section 3.3. We compare the per-
formance of models trained with the full feature set
to the comparison set by producing precision recall
charts for both.

The last aspect of model evaluation we consider is
to determine the relative importance of the topolog-
ical features. We provide an analysis of the random
forest mean decrease accuracy importance measure,
and discuss the results with respect to model accu-
racy.

4 Results

4.1 Model Performance: Undirected Graphs

Table 4 outlines the model performance on all data
sets, interpreted as undirected networks. The mod-
els trained on the synthetic networks with parame-
ter m = 1 give very high performance. The model
trained on the scale-free network with m = 1 actually
classifies every node pair correctly. However, as we
increase the value of parameter m, the model perfor-
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Figure 2: Plot of the precision and recall charts for the undirected scale-free networks (a), small-world networks (b), Erdős-Rényi
random graphs (c), and the real world networks (d). Plots (e) to (h) depict the performance of the comparison models trained on
the same network as opposite with a smaller range of topological features.

mance decreases in all cases. The scale-free network
models lose precision with higher values of m, and
recall drops substantially as well. The small-world
network maintains good recall and F1, although pre-
cision does drop with m > 1. The Erdős-Rényi ran-
dom graph loses precision as m is increased, but the
recall drops much more rapidly to 0.267 with m = 3.

Figure 2(a-c) depicts the precision and recall
curves for the undirected synthetic networks, where
recall is plotted on the x-axis and precision on the
y-axis. It is clear from Figure 2(a) that the model
performs well for the scale-free graphs with m = 1, 2
and 3, given that these curves remain in the top tri-

angle of the plot, and their concavity is down. The
small-world networks in Figure 2(b) retain good per-
formance as well. It is interesting that the model on
the network with m = 3 actually seems to outper-
form that with m = 2. We can see the former model
achieves a slightly higher precision of 0.56, compared
to 0.548. The Erdős-Rényi random graphs in Figure
2(c) show good performance for the case with m = 1,
but a large di↵erence to the case with m = 2, and
again with m = 3. All models, except ER3, deliver
AUC higher than 0.97. These results indicate that
our learning model can accurately describe the net-
work generating processes of these three undirected
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synthetic networks, however this accuracy diminishes
as nodes are added to the network with more edges.

On the real world datasets the model gives con-
sistently high recall and AUC values. This indicates
that a high proportion of the actual links are being
classed correctly. Precision gives how many of the
predicted links are actually links, and our model per-
forms well on the WebKB dataset with precision of
0.709. However, the precision values for Cora and
Citeseer are much lower at around 0.4. Figure 2(d)
gives the precision against recall curves for the real
world datasets. We can see that our model performs
the best on WebKB, followed closely by Citeseer. The
model classification gives a low precision score to the
model trained on Citeseer, however the recall is much
higher than Cora. The precision recall curve for Cite-
seer indicates that the model could deliver higher pre-
cision with a small drop in recall.

Table 5: Model performance on all directed network datasets

Network Precision Recall F1 AUC

Synthetic

SF1 0.201 0.926 0.33 0.9994
SF2 0.237 0.522 0.326 0.9443
SF3 0.206 0.194 0.2 0.7293
ER1 0.29 0.45 0.353 0.9855
ER2 0.345 0.154 0.213 0.9401
ER3 0.35 0.075 0.123 0.8391

Real World

WebKB 0.487 0.796 0.604 0.9988
Cora 0.297 0.798 0.433 0.9988

Citeseer 0.237 0.955 0.379 0.9997

Figure 2(e) to 2(h) show the precision and recall
curves for the comparison model with a reduced topo-
logical feature set, trained on the same graphs as the
full model. The key observation from these plots is
that these models fail to achieve high performance in
both recall and precision. Many of these curves are
also not smooth or monotonic. This is likely due to
the feature sampling of the random forest over the re-
duced feature set; the curve may change sharply when
an important feature is excluded or included. We
therefore conclude that by including a wider range of
topological features in our supervised learning model,
we achieve much higher performance than a smaller
set of features.

4.2 Model Performance: Directed Graphs

When we apply the same methodology to the directed
versions of these networks, including the centrality
measures for the to nodes y, the results di↵er sub-
stantially. Table 5 gives the model performance on
the directed interpretation of the networks. igraph

does not currently support a directed version of the
small-world network, so we have removed it from this
analysis. It is clear that the approach is not as ac-
curate on directed networks as their undirected inter-
pretation. Precision is down significantly for all net-
works, however recall remains high for the real world
network models and the synthetic graphs with m = 1.
This result suggests that the model can still identify
the node pairs that have links, but cannot accurately
distinguish the direction of the link. We will explore
this more through an analysis of the feature impor-
tance on each network.

Figure 3(a-c) show the precision and recall charts
for the directed networks. We can clearly see that
precision is not as high in the undirected case for

the real world graphs, although recall is slightly im-
proved. However, it is clear that the synthetic net-
works have not performed as well. To compare, Fig-
ure 3(d-f) show the precision and recall charts for the
comparison model with the reduced feature set. It
is clearly evident that the full model outperforms the
simpler model. However, it is noted that the compari-
son model seems to perform slightly better on the real
world networks than the synthetic. This may be due
to a more balanced feature importance. We explore
feature importance in Section 4.4.

4.3 Feature Importance: Undirected Graphs

As mentioned earlier, one of the advantages of using
a random forest model is that features which are of
lesser use in prediction tend to be e↵ectively down-
weighted. One measure of the importance of the fea-
tures is the mean decrease accuracy, which is a scaled
average of the prediction accuracy of each feature. It
e↵ectively measures the decrease in model accuracy
when values of each feature are randomly permuted
(Breiman 2001). Figure 4 shows a matrix of the mean
decrease accuracy for each feature and graph, for both
the undirected and directed cases. To save space, we
have only shown the synthetic networks with m = 2
as these networks are the most similar to the real
world graphs.

The undirected models and graphs are given in
Figure 4(a). In the model for Citeseer, community
based features and distance measures hold the high-
est importance. The most important feature in this
dataset is the community density, followed by the
same community flag and the node geodesic. The im-
portance of this feature set may be due to the large
number of unconnected components in the Citeseer
graph; nodes in these minor components are likely to
be attributed to the same community. The model has
therefore limited the possible connection space dra-
matically by assigning a higher importance to com-
munity based features. The analysis is very similar for
the Cora dataset as well, however the node geodesic
is flagged as the most important feature. In both
graphs, the centrality measures are also important.

Of all the networks analysed, the model trained
on WebKB delivered the best performance. In this
dataset, we see a broader distribution of predictive
importance across the feature classes. All the fea-
tures have a mean decrease accuracy in the same or-
der of magnitude. Community based features have
the strongest importance, however centrality mea-
sures are very close in magnitude, as are the similar-
ity features. These results are not surprising, given
the existence of four key connected components, each
with a strongly connected hub node.

The Erdős-Rényi random graph model produced a
low score for the recall measure, and we see centrality
measures strongly influencing the predictions. De-
gree centrality was the most important, followed by
eigenvector and closeness centralities. It seems that
the model has trained closely to the node influence
features, given the lack of strong neighbourhood and
community structure. This may also explain the low
model performance, since node influence is not likely
to show huge variation in a random graph.

The feature importance in the small-world net-
work is assigned primarily to the community and node
geodesic measures. Again, this makes sense given that
local connections are far more common in this net-
work type. Centrality measures are marked with low
importance, given that highly influential nodes are
rarer.
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Figure 3: Plot of the precision and recall charts for the directed scale-free networks (a), Erdős-Rényi random graphs (b), and
the real world networks (c). Plots (d) to (f) depict the performance of the comparison models trained on the same network as
opposite with a smaller range of topological features.

In the scale-free network centrality measures are
important as we expect given the preferential attach-
ment growth mechanism. Closeness, PageRank and
degree centralities all score highly. However, the most
important feature is actually the node geodesic. Com-
munity features are also flagged with high impor-
tance. These results suggest that community struc-
ture and local, densely connected sets of nodes have
self-organised in this artificial network.

4.4 Feature Importance: Directed Graphs

For the directed case, Figure 4(b) depicts the feature
importance per network. As discussed in Section 4.2,
the drop in precision described in Section 3.1 may
be due to the model assigning more importance to
measures that don’t necessarily discriminate between
the two nodes. In other words, they will identify the
node pairs most likely to be connected, but will not
accurately determine the link direction.

For the Cora and Citeseer directed networks in
Figure 4(b), the model has scored the community
based measures highly, particularly the community
density feature. This implies that many of the pre-
dicted links will likely be in high density communities.

However, this measure does not carry any informa-
tion regarding the direction of the link within a com-
munity. These models all deliver high recall, which
shows that the community based features are predic-
tive of a link existing between two nodes in either
direction. The only other highly important feature
is the to node’s in-degree. It seems that with only
one important centrality measure carrying link direc-
tion, these models deliver low precision, but manage
to correctly classify a majority of the links.

Similarly to the undirected case, the WebKB
model achieved the best performance. Again, there
is a distribution of predictive importance across the
feature categories. Community structure and node
centrality measures are assigned high scores, for both
the centrality products and the to node centralities.
The higher precision for this model relative to the
models for Cora and Citeseer can be explained by the
fact that most of the centrality features are impor-
tant. However, the node neighbourhood features are
not important in the directed case, which likely ex-
plains the drop in precision relative to the undirected
model.

The synthetic networks, on the other hand, show
strong influence of node centrality product features.
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Figure 4: Plot of the feature importance for both the undirected and directed models. Feature importance is determined by
the Random Forest mean decrease accuracy measure. Higher mean decrease accuracy is given darker colour.

Betweenness is highly important for the ER2 model,
and both degree features in the SF2 model. Rela-
tive to the undirected feature importance for these
models, similarity scores receive very low importance.
Community based features are also less important in
the directed version. The lower precision and recall
for these models is likely due to the bias towards cen-
trality features.

The results for the directed case clearly suggest
that more work is required on the feature set. Par-
ticularly, more features are required that carry infor-
mation regarding the direction of the link. As well
as this, additional variations of measures based on
in-links and out-links should be considered.

5 Conclusion

We have described a new approach to link prediction
using a broad range of graph topological features and
a random forest learning model. This approach has
the distinct advantage of being applicable to any net-
work where the connection structure is known. It also
can discover global or emergent properties of the net-
work through analysis of feature importance.

Our method was tested on three types of synthet-
ically generated datasets, as well as three real world
citation networks. In the undirected case, the model
performs very well in terms of precision, recall, F1 and
AUC. It was shown that the model can achieve per-

fect classification of classes on a scale-free network
with one edge added per node. However, our ap-
proach clearly performs more accurately on synthetic
networks with less complex structure, i.e. where the
number of edges added per new node is small. We
also found that the model in the directed case delivers
lower precision as it does not accurately distinguish
the direction of the link. Modifying the feature set
in the directed case to account for the link direction
more strongly may address this issue. To demonstrate
that including a broader range of topological features
can give higher performance, we compared our ap-
proach to a model with fewer features. It was shown
that a larger set of features consistently gives higher
performance.

It was found that the importance of the input fea-
tures vary significantly with the di↵erent networks.
The model performs best when the features are more
evenly important across the feature categories, as in
the WebKB network. Generally, the model tends to
perform very well when strong neighbourhood and
community structure is present, in addition to high
centrality importance. Finally, the analysis of fea-
ture importance provides a method for the discovery
of complex, emergent properties within a social net-
work. This was demonstrated through the varying
importance of neighbourhood and community-based
features in many of the datasets considered.
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5.1 Further Work

In future, we aim to extend our approach and ap-
ply it to more network datasets, particularly large
social networks with complex structure. To reduce
the computational cost associated with several of the
features used, we will consider reducing the number
of features used to those with the highest predictive
importance, while retaining as much accuracy as pos-
sible. Alternative supervised learning methods will
be considered as well. The directed version of our
approach also needs further development so that the
model can more accurately distinguish the link direc-
tion.
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