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Abstract

Among the challenges faced by current active shapeappearance models,
facial-feature localization in the wild, with ocelon in a novel face image, i.e. in a
generic environment, is regarded as one of the diffistult computer-vision tasks. In

this paper, we propose an Active Appearance Modi&M) to tackle the problem of

generic environment. Firstly, a fast face-modetiatization scheme is proposed,
based on the idea that the local appearance ofiréegioints can be accurately
approximated with locality constraints. Nearestghbbrs, which have similar poses
and textures to a test face, are retrieved fromaiaihg set for constructing the initial
face model. To further improve the fitting of thatial model to the test face, an
orthogonal CCA (0CCA) is employed to increase tloeretation between shape
features and appearance features representedrimypliComponent Analysis (PCA).
With these two contributions, we propose a novel MBA namely the

shape-appearance-correlated AAM (SAC-AAM), and dpémization is solved by

using the recently proposed fast simultaneous sevezompositional (Fast-SIC)
algorithm. Experimental results demonstrate a 5-1@@rovement on controlled and
semi-controlled datasets, and with around 10% ivgarent on wild face datasets in

terms of fitting accuracy compared to other stdttie-art AAM models.

Keywords— Facial-feature localization, Generic Active Appase Model, Canonical

correlation analysis, Orthogonal CCA



1. Introduction

Facial-feature detection and localization is a iaduprocess for various applications
such as facial-expression recognition, face anonatBD face reconstruction, etc.
Among all competitive techniques, model-based dlgms have been proven to be
most effective in automatic facial-information lesrg. The earliest work of such

algorithms includes the deformable template [1] #mel active contour model [2].

These approaches aim to extract facial featurescamate face boundaries by studying
feature points individually, and hence have limitetbustness and accuracy. Most
recently, more efficient methods, including the idetShape Model (ASM) [3] and

the Active Appearance Model (AAM) [4], have beemgmrsed. ASM considers the
facial-shape information (based on manually anedtdacial-feature points) from a

holistic perspective, while AAM also includes tevdunformation (usually in terms of

the pixel intensities within a face region). Due ttese models’ efficiency and

accuracy, many variant ASM and AAM methods havenlj@®posed in the past few
decades, and they improve the localization perfoneaHowever, both ASM and

AAM have problems in three different aspects, ngnrebustness to facial variations,
sensitivity to face-model initialization, and geal&ation to generic situations. In the
following, the challenges in these three aspects tanse existing methods, which
address these challenges, are discussed.

Insufficient robustness to variations. Since both ASM and AAM rely on global

parametric models, they can work well for facesilatée in a training set with small

variations in illumination, pose and expression.wdweer, when these variations
become greater, their performances usually degieai®matically. One way to solve

this problem is to integrate ASM and AAM [5] [6h [5], a texture-constrained shape
model was used to prevent the local-minima problang it can achieve a robust
performance under illumination variations. In [@)e profile-search step in ASM is
changed into a gradient-based optimization probtemmore accurately localize

feature points. Recently, improved ASM models uslAg profiles were proposed to

achieve pose-adaptive localization [7] [8] [9]hHds been proven that the 2-D profiles
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can capture more information around each landnek the original 1-D profiles. By
properly setting the initial face model and using @ptimization method, these
methods can achieve accurate results, and thus es@me popular model-based
localization methods.

Sensitivity to initialization. In the process of refining the feature-point |omasg,
both ASM and AAM usually perform gradient-desceptimization over a whole face,
so their performances are sensitive to the infagk model. This issue has drawn
much attention, and can be improved in two majepstnamely, constructing a more
representative initial face model and using a robeeture-point refining scheme. For
the first step, several frameworks [10] [11] [12farmulate the original AAM as a
sparse representation problem [13] and approxiniegdocal appearance of feature
points with locality constraints. After the shapelappearance priors are learned, the
K nearest neighbork{NN) with similar patterns to the test face in terofspose,
expression, etc. are searched from a trainingaset,are used to model the face in a
locally linear sub-space. It has been shown thatgte-processing step helps to reach
faster convergence and to obtain better fittingiltes Similarly, [9] [14] pre-define
the number of face clusters and classify the st fnto one of the clusters based on
a statistical analysis. For the second step, ierow refine the face model, a stacking
strategy is usually employed to search, in sef@sa better location for each feature
point in the face model iteratively [15] [7] [16].

Poor performance in generic situations. In the survey work of [17], statistical
evaluation has shown that person-specific activeeaiso(i.e. images of a query also
exist in the training set) are both easier to baild more robust to fitting than generic
ones (i.e. no images of a query in the training. séb solve the generalization
problem, frameworks [18] [19] based on AAM were pueed to learn a
discriminative fitting function and establish a mpap between the facial appearance
and the face shape in order to improve the alignmecuracy. Unlike AAMs- which
model a whole facial region the family of Constrained Local Models (CLMs) [20]

[21] [22] extracts templates around each landmartkraatches them to new instances



of an object using a shape-constrained searchtarative template generation. This
process always relies on the response surfacesagetdy fitting the current feature
templates using normalized correlation at eachtp&tecently, an approach which
can handle unseen faces and variations was propasddis known as the Active
Orientation Model (AOM) [23]. It establishes a geatere deformable appearance
model based on the principal components of imageslient orientations, and it uses
the project-out inverse compositional algorithmofgimize the results. An improved
AAM model [24] using more efficient optimizationgarithms was also proposed for
generic situations.

As discussed in some survey papers [25] [26] [AAMs take advantage of all
grey-level information across faces to build a ¢oomg model with a relatively
small number of landmarks, while ASM is just a specase of AAM. Therefore, in
this paper, we focus on establishing a shape-agpearcorrelated AAM (SAC-AAM)
framework to tackle the above-mentioned three ehgks at the same time,
especially under a generic localization environment

The contributions of this paper are given as fooin order to fulfill the goals,
we first propose a fast initialization scheme, whietrieves the most similar faces to
a test face in terms of both poses and texturesedan the idea of locality constraint,
these nearest neighbors form a locally linear satesp Then, the shape and
appearance of the selected images are analyzedh@ndorrelation is maximized by
applying Canonical Correlation Analysis (CCA) [2@|ctually, the orthogonal CCA
(oCCA) [29] is employed in our framework due to #igperior data reconstruction
property). We will show that our approach can iaseethe correlation between the
principal components learned for face appearancek shapes, as well as the
respective projection coefficients. This can imgrdfie convergence speed and the
fitting accuracy, while almost no additional comgtignal cost will be added. By
conducting experiments on different face datasetd eomparing our proposed
framework with state-of-the-art model-based methedperimental results show that

our framework can achieve a great improvement mmgeof fitting accuracy,



especially for faces under large pose, expressioa,occlusion variations, as well as
for unseen faces.

The remainder of the paper is organized as followsSection 2, we briefly
introduce the well-known AAM model and some of lagest improved models. The
Canonical Correlation model and its orthogonal aratriare also discussed there. In
Section 3, our shape-appearance-correlated AAM (BA®1) framework is
presented, and the details of generating initige fanodels and obtaining more
correlated principal components are described. Bxgatal results and analysis are

given in Section 4. The conclusion is outlined etttn 5.

2. Related work

In this section, we will give a brief overview dfet Active Appearance Model (AAM)
and its latest variants. We will also introduce tilmcept of Canonical Correlation
Analysis (CCA) and its extension to orthogonal C@#gether with its efficiency for

various applications.
2.1 Active Appearance Model

As mentioned in the previous section, unlike ASMvhich only deals with shape
information — AAM also takes texture information into considevat The shape

vector is usually presented by concatenating thgitipn coordinates of labeled
landmarks, while texture is modeled in terms of tdeeneaned pixel intensities or
colors within the convex hull of a facial shape. &ihgiven a training set of face

images with corresponding labeled landmarks, tla@esimodel is established frdw
fiducial points denoted as=(X, ¥;,X,,Y,,---Xy ¥y J - The shapes are normalized by

using the Procrustes analysis [30], which is a comgnused method to align shapes
to a common coordinate system (usually the meaalldhe objects’ shapes). Then,
the principal component analysis (PCA) is appliedptoject the normalized and
aligned shapes onto the shape subspace. Thudydpe sistancs can be presented

as a linear combination of principal shapes agvait



S=5+P.[4&, and (1)

a=P!(s-73), 2)

where S is the mean shapeP, is the matrix whose columns form a set of
orthonormal base vectors, and the weight veator(also known as projection
parameters) is used to control the shape variations

The appearance model of a face im&ge learned by first warping it into a
“shape-free” model, usually the mean shapeThis is represented as a warping

function W(x;a), where X denotes a set of pixels inside the mean shap&hen,

PCA is again applied to project the “shape-fregiegrance of the imagé(W(X;a))

on to the appearance subspace. The appearancecastean be represented as a

linear combination of principal appearances a®vadt

r=r+P [, and 3)

B=R(r-1), (@)

where T is the mean appearanck, is the matrix whose columns form a set of

orthonormal base vectors, and the weight vegforis used to control the appearance

variations. It should be noted that, in this paper,focus on the AAM, which models
the shape and appearance information independeattigr than combining shape and

appearance with a single set of linear parametens [81].

With an appropriate initialized face, the fittingopess for AAM aims to find the
optimal shape and appearance parameters, whichmmaithe discrepancy between

the synthesized image and the observed facial imdgeous cost functions and

optimization algorithms have been proposed to edgéna and f, among which

the |,-norm error minimization and the Inverse Compositio(IC-AAM) algorithm

[31] are widely used, represented as follows:



{aq. B =argminfl W )~ -P, (p". 5)

As discussed in a current work named Locality-camséd AAM (LC-AAM)
[10], conventional AAMs assume a linear relatiopsacross a whole data set, which
is not always held, especially under a large viamabf pose and expression. One
efficient way to solve this problem is to explone tocal linear subspace by modeling
AAM as a sparsity-regularized problem. In [10], tbeginal sparsity problem is

approximated by adding locality constraints asoioH:

VAR arg{T;}n{Z{l WKe ))—Z,[J’i EIP”} +A [ do (;g”2 +2,| & /),”2}, (6)

where the synthesized appearance image is repeesasta linear combination of all

the training faces,4, and 4, are the regularization coefficients, arfd( «|

denotes the distances between the input imagehanegs$pective appearance bases. In
practice, Eq. (6) can be computed efficiently byedily selecting theK nearest
neighbors of the input face image to form the sheapme appearance bases, as shown
in Eq. (7). With a smaller but similar training dsét, LC-AAM transforms the
original non-linear problem into a locally lineamey and utilizes the popular

project-out inverse compositional algorithm [31fstave the optimization problem.
{ay. B} =arg min{l W (& ))-T -P, (B} (7)

This approach can achieve a good performance anifaages with pose and
expression variations when images of the same aubje included in a training
dataset (i.e. in a person-specific environment)weieer, if no images of the query
face exist in the training set (i.e. in a genemvimnment) and the query face is
partially occluded by facial hair, the performarafefitting the initial model to the
query face deteriorates dramatically, as shown ig. B(a). In our proposed
framework, the sample faces, to be used to formirihal face, are selected by a
weightedK-nearest neighboiKENN) searching scheme, which considers both pose

and texture information. Compared to LC-AAM, thecda selected using our
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approach not only have similar poses, but also hsiwglar facial textures (in
particular, in the lower part of a face, e.g. theuth and chin areas) to the ones in a
query face. Giving a testing face, the correspandap five similar faces selected by
the method in LC-AAM and by using our proposediatization scheme are shown in
Fig. 1(b). Those faces selected by LC-AAM have kinposes to the query, but the
appearance around the mouth area is different. gUsur proposed scheme, the
selected faces have greater similarity around thetimareas. Hence, they can provide
more useful information for learning the correlatibetween the face shape and the
complex texture around mouth regions. Furthermsoeje of the selected faces still
have similar poses to the query. Consequentlypoaposed scheme can improve the
learning and the correlation of the principal comgats of the shape and appearance
information. This can improve the fitting resultg &voiding being trapped in local

minima, as shown in Fig. 1(c).

Fig. 1. Comparison of the faces selected by LC-A&ahd our proposed scheme: (a) an input face is
cropped and normalized based on the position ofwleeeyes; (b) the faces in the upper row are
selected by LC-AAM, which only exhibit similar paséo the input face, while as shown in the
lower row— the faces selected using our scheme have simisgspand texture appearance to the
input face; and (c) the final fitting results basad LC-AAM (upper row) and on our proposed
scheme (bottom row).

2.2 Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is a learnmgthod which seeks basis vectors
for the sets of two variables,andy, such that their projections onto the basis vactor

have a maximized correlation [28{. andY denote the matrices whose columns are



the sets of variables andy with zero mean, respectively. Suppose tlatndN are
the respective direction matrices &f and Y, and the corresponding canonical

variation matrices of the projection coefficientee adenoted byU and V, i.e.,
U=M'"[X and V=N'LY. Then, CCA maximizes the following correlation:

E[UV]  _ MTC, N

- = , 8
JEIVIE[V] JMTC M IN'C,N ©)

where T represents the transpose operatiéh, and C,, denote the within-set

covariance matrices oK and Y, respectively; andC,, denotes the covariance
matrix of X andY. It can be shown that the optimal direction masigl andN are
the eigenvectors oRR, =C; C,,C,C,, and R, =C;C,,C,.C,,, respectively. It

should be noted that two issues should be considereanalyzing data efficiently
using CCA. The first is that two sets of data sHol&ve an intrinsic correlation,
which is further increased. The second is thatilmber of images (i.e. the number
of columns in the data matrices) should be largantthe size of an image (i.e. the
number of rows in the matrices) in order to obtaasible results such that the data
can be reconstructed.

CCA and its variants have been applied to manyeuwgdfit face-analysis
applications, such as face and facial-expressioogration [32] [33], 3D and infrared
face reconstruction [34], face super-resolution] [B®], etc. One of the previous
AAM works [36] applied CCA to efficiently model th#éependency between texture
residuals and model parameters in the searching, stdich improves the
convergence speed.

In [29], the original CCA is extended to orthogon@CA (0CCA). The
orthogonality property is crucial for informatioeaonstruction, and can make the
PCA projections more consistent. Therefore, in puoposed AAM framework, we
also apply oCCA, which imposes extra constraintghenoriginal CCA and obtains

the orthogonal direction matricé andN in an iterative way as follows:



argmaxm, C . n,

My Ny
m'm, =m,m, == m,_m, =0,
n/n, =nyn,=0I=n,_n, =0,

subject to 9
J m,C,m, =1, ®)

n{Cyn, =1,

where M and N, are thek-th column vectors (direction vectors) of the direct

matricesM andN, respectively. The first two constraints are tgase orthogonality

on the direction vectors, while the last two ardiadnal constraints on the norms of
M, and N.. The details of deriving the direction vectors dam found in [29].

Having computed the orthogonal-direction matriees,can further normalize them to

become orthonormal.

3. Shape-Appearance-Correlated Active Appearance M odel

In this section, we will present our proposed Shappearance-Correlated Active
Appearance Model (SAC-AAM) in detail. Our methodlda/s the concept in the
previous work shown in [10], which reformulates thenventional AAM as a
sparsity-regularized AAM problem. However, in thpsper, we propose a more
efficient initialization scheme to approximate sy regularization by retrieving the
K nearest neighbors in terms of both pose and texihen, oCCA is employed to
enhance the correlation between the shape feaamdsthe appearance features
represented by using PCA. We will show that this cgenerate more correlated
principal components for the shape and the appeardeatures, which allows
optimization to be solved efficiently by using thHast simultaneous inverse

compositional algorithm.

3.1 Efficient face-model initialization scheme
In the literature of face detection, recognitiord dacial-expression analysis, various
types of facial features are employed. In our psepoframework, we use two

efficient and effective features, namely the Histmg of Oriented Gradients (HOG)
10



[37] and Local Binary Patterns (LBP) [38], for sel@ing example face images with a

similar pose and texture appearance to the queey faspectively.

(b)
Fig. 2. (a) A cropped face partitioned into 7x7 dows for extracting the LBP features.

(b) The weights used in the Chi square distancesurea where black, dark gray, light
gray, and white represent the weights of 2, and 1, respective

Each face image is cropped to the size ofx160 and normalized based on the
positions of two eyes’ centers [39]. ThenK&IN search based on the HOG features
and Euclidean distance is used to select the miwslas faces from a dataset. As
shown in Fig. 1.(b), th& nearest neighbors have similar poses to thedest tlue to
the fact that HOG captures the edges’ orientatimnd hence an object’s shape.
However, retrieving faces with similar poses ordyinsufficient, because some parts
of a test face image may be occluded by facial ¢vaivair shading, in particular when
the test face has no images in the training datasetder to achieve a more efficient
and accurate subspace learning based on the sklsateples, the weighted LBP
features are also considered in the search, wimchk ® select faces having a similar
texture to the test face. In the search, facesimeped and normalized in the same
way as the training faces, and are also dividenl T%¢7 windows, which can achieve
the best performance by experiment. Because eatheoWindows has a different
degree of importance, different weights are setHem, as shown in Fig. 2.

With the LBP feature histogram for each block daee image, the weighted Chi
square distance is used to measure the similagtyden the test face and all the
faces in the training dataset as follows:

Ij_glj)

Xo(f.0)= ZW [ +g,

(10)
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wheref and g are the normalized histograms of the test andhitrgiface images,

respectively;i andj are the indices representing tihéh bin in the histogram of the

j-th block; and W, is the weight predefined for blogk

Fig. 1(b) shows the top five faces selected froentthining dataset using the LBP
feature. We can see that the selected face imayesehsimilar appearance around the
mouth regions. However, these selected faces mag pases that are different from
the test face. Having retrieved the similar-posm$aand similar-texture faces using
the HOG and LBP features, respectively, the meapestof the similar-pose faces is
computed. In order to use the similar-texture favese efficiently in learning, they
are wrapped to the mean shape by using Procrustgs \n this way, the initial face
model is more similar to the test face in termslope and appearance, and thence
helps to establish a more locally linear subspacedpresentation. It should also be
noted that, for normal faces without large occlasior pose variation, our
initialization scheme does not affect the efficigrand can achieve a slightly better
performance compared to using either one of thefeatures to search the dataset.
The overall initialization scheme is illustratedrig. 3.

In experiments, we have found that using only tpefive pose faces and the top
twenty texture faces is sufficient to achieve adyperformance. More experimental

results will be shown in subsequent sections.

&

HOG B ‘B
K-NN 3 R
Pose Faces Mean shape
PCA |
Test Face (Dataset) WLBP »| Shape Mod« |
" K-NN \ jall Procrustes warg| pca
Texture Faces » Appearance Model

Fig. 3. lllustration of the proposed fast initia@tion scheme (FIS).

3.2 Orthogonal CCA for SAC-AAM
With the K texture faces selected from training samples r(@ftapping to the mean

shape of the retrieved pose faces), PCA is appleedboth the shape matrix
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S=[s,s,...5] and the appearance matrRR =[r,r,...,I, ], where the columns of

the matrices are the landmark coordinates and lgkeg}- intensities, respectively,

within the shape hull of the respective trainingela We compute the mean shape
vector § and the mean appearance vector Then, matricesP, and P are

composed of the orthonormal eigenvectors of thepeshand appearance training

vectors, respectively. The corresponding projectoefficients of the shape and

appearance  vectors are denoted byA=[a,a,...,a |00 i and

B=[h,b,....b ]J00™ . 95% of the total energy of both the shape anccapmce

information is retained. The number of eigenvectmed for shape and appearance
are denoted as andn, respectively, of which both are smaller th&rfm andn are
usually less than 10, while is set at 20 in our algorithms). Similar to Eq). §2d Eq.

(4), the projection coefficients can be computed by

a =P/(§-5), and

b =P (r-T). (1)
Since the shape and appearance information of sopgrossesses an intrinsic

correlation, it can be explored and enhanced byyagp oCCA to the demeaned

coefficients matricesA =[4, a,....,a.] and B=[b, 62,...,6}(]. In fact, it is proven

that this is equivalent to applying oCCA to matsi¢® and B which are already

demeaned. By solving the optimization problem in. £8), we can obtain two

projection matrices with orthonormal column vectoW, and W,, and two

canonical variate matricesC_,=W,A and C, =W'B, where the correlation

E[C.C.]

VE(C)E(C)

coefficient p= is maximized. Then, we rewrit€, and C, as

follows:
C.,=W/A=W'P/(S-9=F'S and

C,=W'B=W'P'(R-R)=P'R, (12)
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where S=S-S and R=R-R are the demeaned shape and appearance matrices,
respectively, andP, =P,W_ and P. =PW. are the corresponding eigen-matrices
after the oCCA transformation.

As shown in Eq. (12), the multiplication of an anigl eigen-matrix B, or P)
and the corresponding oCCA projection matrisW( or W,) forms a new

eigen-matrix PS or |5,), which can project the shape or appearance vectdo a

more correlated subspace. In addition, these twoeaigen-matrices are orthonormal,

which can be proven as follows:

PP, =(PW,)" (PW,) =I and

PR =(RW) (RW,)=I, (13)
wherel is an identity matrix. Therefore, the new eigensmas are applied in the
model-fitting process of the feature points. Sitlke matrices of PCA projection
coefficients A and B are both small, applying oCCA will only increasee th

computational cost slightly, but can improve thewaacy of final fitting as shown in

the experimental results.

3.3 Fitting schemefor SAC-AAM

Fitting an AAM usually involves estimating the mbgarameters so that the distance
between the model instance and the given imagensmzed. Typically, this process
is presented as the optimization of a least-sgpianielem, as shown in Eq. (5). In our
framework, with training faces resembling the témte in terms of shape and
appearance and being used for initialization, ahd tse of more correlated
eigen-matrices and the corresponding projectionfficamnts, we refine the
optimization in Eq. (6) with far fewer shape andearance eigenvectors. In the
related work [10], the optimization problem is sadvby using the project-out inverse
compositional (POIC) algorithm. However, as illaséd in [24], the POIC algorithm
is efficient but does not work well for unseen a#ions, so it is unsuitable for generic

situations. In contrast to POIC, the simultaneonseise compositional (SIC)
14



algorithm [40] has been proven to perform robustlthe case of generic fitting but is
extremely complex computationally. To tackle thimigem, the fast simultaneous
inverse compositional (Fast-SIC) algorithm is ergplbto achieve relatively accurate
fitting results while greatly reducing the compudattime. Instead of concatenating
the warped shape parameters and appearance pasanaeid optimizing them as a
whole, Fast-SIC first optimizes the fitting withspeect to the appearance parameters,
and the solution is then used for optimization wébpect to the warped parameters in
each iteration. The cost required is slightly mibvan that of POIC, which is only an

approximation to Fast-SIC (and hence to SIC), bhteves better fitting results.

Algorithm: Fast-SIC for SAC-AAM

Pre-compute:

(3) Evaluate the gradientsll and UB,; fori=1, ...,K

ow
(4) Evaluate the Jacobiatéa— at (x;0)
K

Iterate:

(1) Warpl with W(X;e,) to compute | (W(X;e,))
(2) Compute the error imagé& . (X) =T + I5r B -1 W(X;a))

_ oW

(5) Compute the steepest descent imabe LI F
K

(6) Project out appearance frahto obtain J.y, = e, [P, B, P,yﬂ};]g—w
oy

=JI. J_. andinvert it

FsicY Fsic

(7) Compute the Hessian Matrii

Fsic
(8) Compute J7, Er . (X)
(9) CompUte AaK =H I_:;c‘]-ll;s'c EFs'c(X)

(10) Update W(x;a, ) « W(X;a,)oW(x;Aa, )™ and B, « B +AB,

Until ||Aa, | <&

Algorithm 1. The Fast simultaneous inverse compmsa algorithm for the SAC-AAM framework.
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In our algorithm, we also fit our model into thesE&IC optimization framework
which firstly linearizes the appearance model dmhtprojects it out. However, in
contrast to Fast-SIC, which directly uses the raxelpintensities as the features
without applying any priors, our algorithm can shawurther improvement on the
fitting performance. Another advantage of our allipon is that we solve the standard
generic AAM dilemma (the number of appearance patars is at least one order of
magnitude greater than the number of shape paresnet nll m for matricesA
and B) using a simple fitting process, where both thenbers of shape and
appearance parameters are small, and also smhHer the number of nearest

neighbors. We refine the fitting model as in Edt)(1
{a,.8} =arg min{1 W (i ))-T-P. (B}, (14)

where a, and [ are the PCA projection parameters in the moreetated shape

and appearance eigen-spaces constructed by usingethevedK nearest face
neighbors. The Fast-SIC algorithm used in our psedditting model is summarized

in Algorithm 1. More details of Fast-SIC can beridun [24].

4. Experimentsand analysis

To evaluate the performance of our proposed gedéh framework, we compare it
with several state-of-the-art methods on differéatasets, namely the IMM dataset
[41] under controlled variations of pose and exgiesg the Bosphorus dataset [42]
with cropped face images under semi-controlledatims of pose and expression,
and the labeled faces in the wild datasets LFPW @ PubFig [43] with
uncontrolled variations of pose and expressionwekas with occlusion. Some faces
of these datasets are shown in Fig. 4. All expanis@vere conducted under Matlab
R2013b environment on an Intel i7 3.5 GHz CPU W#GB RAM PC.

To measure the performances of the algorithms, seethe ground-truth-based

localization error, as in [26] [9], which is theipBto-point error, normalized by the

eye distance. Given the ground-truth landmarks, lib@alization error qk IS
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computed as follows:

« _ Al v, (R 99
S |OD ’ (15)

where d(.,.) is the Euclidean distance betweenkh landmark of the ground-truth

face and the corresponding detected landmark of-thetest face; andiOD is the

Inter-Ocular Distance, which is the distance betwibe two eye pupils. According to
the measurement in [26]¢ <0.1 can be taken as an acceptable error criterionrunde

a controlled environment. In other words, a landmarconsidered to be detected
correctly if its normalized error is below the thineld. In our paper, we employ the
cumulative curve corresponding to the percentagesifimages for which the mean
localization error of all the landmarks (also cdlleormalized root-mean-squared
error (NRMSE)) is less than a specified threshbidthe following subsections, we

will elaborate on the experimental setup on eadhsd#s, and compare our proposed

method with several state-of-the-art methods btattissically and visually.

(@) (b) (©)

Fig. 4. Sample face images from the selected datagd IMM dataset, (b)
Bosphorus dataset with pose variations, (c) Bosphodataset with
expression variations, (d) LFPW dataset, and (bFRudataset.

4.1 Performance on a controlled dataset

In this experiment, 156 gray-scale face images 9i3tinct subjects in the IMM
17



dataset [41] are selected. Each subject is sizéxk4®0 and has 4 images with
neutral-frontal, smiling-frontal, neutral-left, ameutral-right views, respectively. We
use the re-annotated faces with 58 landmarks singlaur previous work [9]. Since
it is a relatively small and simple dataset, wesebne subject for testing and others
for training each time. We mainly examine the édincy of our proposed SAC-AAM
framework together with each of the contributioh®uar proposed framework, i.e. the
fast initialization scheme (denoted by SAC-AAM wvattt oCCA) and using oCCA to
increase the correlation between shape and appear@enoted as SAC-AAM
without FIS). We compare them with the recent libgadonstrained AAM (LC-AAM)
[10] and the adaptive-profile ASM (APASM) [9]. Fdne IMM dataset, we retrieve
the top 5 pose faces and 20 texture faces using(4R& search for our proposed
SAC-AAM, and the top 20 nearest neighbors for LCMAs described in [10]. The
experimental setup is the same for all the metlomaspared, and the experimental

results are presented in Fig. 5 in terms of theutative curves.
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Fig. 5. Fitting results of different methods on tMM dataset.

From the results, we can see that using the propts=e-model initialization
scheme and oCCA to improve the correlation of afgoe and shape, our proposed
method can achieve a more accurate fitting perfoo@ahan LC-AAM. Each of the
contributions can make some improvements to oupgsed framework, and it

achieves detection accuracy of higher than 80 pérgken the error criterion equals
18



0.1, and is at least 10 percent higher than LC-AAMwever, for the IMM dataset,
our previous work, APASM, achieves the best pertoroe because it is based on the
ASM model which locally searches for the best positor each landmark and works
well under controlled environments. Neverthelesss ithe slowest one among the
methods compared. For our proposed SAC-AAM, it $ak@-12s to process and
localize each query image in the IMM dataset. LCM\RAequires a similar runtime,

but APASM needs about 30s.

4.2 Performance on a semi-controlled dataset

To further examine each of the contributions of puoposed framework, and to
compare them with the methods mentioned in Sedibnthe Bosphorus dataset [42]
is employed. It contains the high-resolution imag#gs105 people with larger
variations in pose and expression than the IMMg#dtaas illustrated in Figs. 4(b) and
4(c). These face images have been cropped to mauatly the faces, such that the
landmarks on their face contours cannot be locdlix®e further divide the dataset
into faces with pose variations and faces with eggion variations. For those faces
with pose variations, each subject has four pdsestal, right10, right20, and right30,
respectively, with a total of 32 landmarks. Forghavith expression variations, each
subject has five different expressions: angry, kaptisgusted, surprised, and
eye-closed, with a total of 22 landmarks. The imsige is reduced to 28340 for
faster computation. The same experimental settimgisparameter selection are used
as in Section 4.1, and one subject is selectetefiing, while the others are selected
for training each time. Fig. 6 and Fig. 7 show deeresponding cumulative curves
with pose variations and expression variations.

From the results, we can see that refining theainihce model, by adding local
constraints, can improve the overall performancethref AAM models on such
semi-controlled dataset with cropped face imageenkf those points lying along the
face contour are excluded, our proposed AAM framé&wwith each contribution
achieves better performance than LC-AAM and ouwiptes work APASM, with

about 5-10 percent higher in detection accuracy. A#ASM, we can also observe
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that it deals with pose variations better than eggion variations due to the use of the
HoG feature being able to select training imageth wimilar poses. Compared with
our proposed AAM framework, which increases theradation between shape and
texture under pose and expression variations, whewariations become larger, the
performance of ASM-based methods deteriorates ksecthey determine the final
location of each feature point separately. The ayerruntime of the proposed
SAC-AAM method on the Bosphorus dataset is abobis.5To give a better
illustration, some of the visual fitting resultssead on APASM, LC-AAM, and our
proposed SAC-AAM on the IMM and Bosphrus datasetsshown in Fig. 8.
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Fig. 8. Visual fitting results and the correspomgdmean point-to-point errors of different methods
on the IMM dataset (the first two rows) and Bosphdataset (the last two rows): (a) APASM, (b)
LC-AAM, (c) our proposed SAC-AAM framework, and (the corresponding face image with
ground-true landmarks.

For each individual face image, we calculate thammaoint-to-point error (MPtP
error) between the estimated landmarks and thengrtwe landmarks for all the

feature points. This measurement shows the overedllization performance in a
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straightforward way. Although all the methods cahiave a good performance on
this semi-controlled dataset, we can still obsemeobvious improvement using our
proposed SAC-AAM framework compared to LC-AAM, aghlighted by the yellow

circles and the corresponding enlarged regions shiowhe yellow rectangles.

4.3 Performance on an in-the-wild dataset

Nowadays, with the rapid improvement of facial-teatlocalization techniques, as
well as the availability of new face datasets, titenate goal of recently proposed
methods is to localize facial points accuratelyfaces in the wild, especially under
unseen variations. Therefore, in this experiment, roposed AAM framework is
evaluated on a famous in-the-wild dataset, namiedy re-annotated LFPW dataset
[44]. To have a fair evaluation, we compare ourhuét(together with each of the
contributions) with several state-of-the-art AAM timeds, namely LC-AAM, Active
Orientation Models (AOMs) [23], and AAM with the dia simultaneous inverse
compositional algorithm (AAM-ESIC) [24].
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Fig. 9. Fitting results of the different methodstba LFPW dataset in the wild.

The re-annotated LFPW dataset is an improved versfothe original LFPW
dataset [22], where each face is labeled with G8tpoAll images in the dataset were
downloaded from the web with large variations irsgoexpression, and lighting

conditions, as shown in Fig. 4(c). The resolutiohthe images also vary hugely from
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100x100 to 406400. We select 800 face images for training andfa2e images for

testing, without the subjects in the training sefluded in the testing set. The fitting
results of the different methods are shown in Fg.We can observe that the
performance of all methods decreases with the enatitd faces, while our methods,
together with each contribution, achieve superiesults compared to other

state-of-art methods, with an average of 10 peraigihier detection accuracy.

4.4 Visual performance on facesin thewild

In this section, we conducted two experiments basethce images in the wild. The
fitting results are illustrated visually, basedtbe PubFig dataset [43]. This dataset is
similar to the LFPW dataset, but each face image3deature points.

In the first experiment, the PubFig dataset wasl digeboth training and testing.
Because our framework is based on LC-AAM, we viguabmpare the fitting results
based on LC-AAM, SAC-AAM with one of the two coriutions , i.e. SAC-AMM
without oCCA and SAC-AMM without FIS, and SAC-AAMith both oCCA and FIS.
Some selected fitting results, as well as theirespronding mean point-to-point errors
(MPtP errors), are shown in Fig. 10.

We can observe that, for those generic cases wsii@te pose and illumination
variations (shown in the first two rows), all metlsacan work well. However, for the
faces with strong variations in illumination or fwitocclusion, our proposed
SAC-AAM framework, as well as SAC-AAM with one ohd two contributions,
achieves much better performance, which are higtddy with yellow circles in Fig.
10.

For better visualization, we have also illustraiiedrig. 11 the improvements of
the fitting results by enlarging the regions marksdthe yellow circles in Fig. 10.
With both of the proposed contributions, our SACMAnethod can achieve much
better localization performances in the occludeditimaegions, facial contours, and

eye regions, where most existing AAM methods camacbieve accurate results.
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Fig. 10. Visual fitting results and the correspaigdimean point-to-point errors of different methods
on the PubFig dataset: (a) LC-AAM, (b) SAC-AAM watlt 0CCA, (c) SAC-AAM without fast

initialization scheme, and (d) our proposed ~AAM framework.

In the second experiment, we evaluated the gemati@n capability of different
methods using training and testing data from twiedint datasets. Similar to Section
4.3, we compare our proposed SAC-AAM framework with-AAM, AOMs, and
AAM-FSIC. For AOMs, the source code provided udes Multi-PIE dataset as the
training set. For the other methods, the LFPW @atasthe training dataset, while
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PubFig is the testing dataset. Some visual reandtsllustrated in Fig. 12, and some
highlighted regions (e.g. the mouth region, facahtour, and eye region) are also
enlarged and illustrated in Fig. 13 for better ai&ation. Our proposed SAC-AAM

again generalizes better for unseen faces thamn bent AAM variants.

Fig. 11 Enlarged visual fitting results of selectedults from Fig. 10. The first row is the mouth
region, the second row is the face contour, andtilid row is the eye region: (a) LC-AAM, (b)
SAC-AAM without 0oCCA, (c) SAC-AAM without fast ini&lization scheme, and (d) our proposed
SAC-AAM.

5. Conclusions

In this paper, we have proposed a shape-appeacanedated Active Appearance
Model (SAC-AAM) for generic facial-feature localizan. Based on the idea of
approximating the local appearance of feature poimith locality constraints to
improve face-model initialization, we have propos@&defficient initialization scheme
which retrievesK nearest neighbors with similar poses and textiorestest face from
a training set. With a small number of represemasamples, the correlation between
the shape and the appearance models can be leawredefficiently and this can
better represent the test face images. To furtirave the fitting performance of
AAM, we have applied oCCA to increase the correlatbetween the shape features
and the appearance features represented by PCA. tNéise two main contributions,
we have devised our AAM model and solved the opatidn using the recently

proposed fast simultaneous inverse compositiona$t(EIC) algorithm. With only a
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small number of training images selected for leagnand the fast optimization
algorithm used, our proposed framework is efficiamd accurate. Experimental
results on different datasets have shown the beieiormance, in terms of the
statistically and visually performances, of ourgmeed framework, as well as each of
the two contributions. The fitting results haveoatiemonstrated that our method can
achieve superior performance compared to othewe-sfathe-art AAM models,

especially under generic environments.
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Fig. 12. Visual fitting results of different metheottaining on the LFPW dataset and testing on the
PubFig dataset: (a) LC-AAM, (b) AOMs, (c) AAM-FSI@nd (d) our proposed SAC-AAM.
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Fig. 13. Enlarged visual fitting results of selectesults from Fig. 12. The first row is the mouth
region with mustache, the second row is the fagdoew, and the third row is the eye region: (a)
LC-AAM, (b) AOMs, (c) AAM-FSIC, and (d) our propodeSAC-AAM.
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