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Abstract

Non-parametric Bayesian modelling offers a principled way for avoid-

ing model selection such as pre-defining the number of modes in a mix-

ture model or the optimal number of factors in factor analysis. Instead,

Bayesian non-parametric methods allow the data to determine the com-

plexity of model. In particular, the hierarchical Dirichlet process (HDP)

is used in a variety of applications to infer an arbitrary number of classes

from a set of samples. Within the temporal modelling paradigm, Bayesian

non-parametrics is used to model sequential data by integrating HDP pri-

ors into state-space models such as HMM, constructing HDP-HMM. Also

in latent factor modelling and dimensionality reduction, Indian buffet pro-

cess (IBP) is a well-known method capable of sparse modelling and se-

lecting an arbitrary number of factors among the often high-dimensional

features.

In this PhD thesis, we have applied the above methods to propose novel

solutions to two prominent problems. The first model, named as ‘ADON

HDP-HMM’, is an adaptive online system based on HDP-HMM. ‘ADON

HDP-HMM’ is capable of segmenting and classifying the sequential data

over unlimited number of classes, while meeting the memory and delay

constraints of streaming contexts. The model is further enhanced by a

number of learning rates, responsible for tuning the adaptability by deter-

mining the extent to which the model sustains its previous parameters or

adapts to the new data. Empirical results on several variants of synthetic



and action recognition data, show remarkable performance, particularly

using adaptive learning rates for evolutionary sequences.

The second proposed solution is an elaborate factor regression model,

named as non-parametric conditional factor regression (NCFR), to cater

for multivariate prediction, preserving the correlations in the response

layer. NCFR enhances factor regression by integrating IBP to infer the

optimal number of latent factors, in a sparse model. Thanks to this data-

driven approach, NCFR can significantly avoid over-fitting even in cases

where the ratio between the number of available samples and dimensions

is very low. Experimental results on three diverse datasets give evidence

of its remarkable predictive performance, resilience to over-fitting, good

mixing and computational efficiency.
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synthetic prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Prediction error percentage (ε = 100× ‖ yn − ỹn ‖ / ‖ yn ‖) for gas
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