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Abstract

Abstract

Growing developments in the generation and detection of terahertz (THz) radiation

over more than two decades have created a strong incentive for researchers to study

the biomedical applications of terahertz imaging. Contrasts in the THz images of

various types of cancer, especially skin and breast cancer, are associated with changes

in the dielectric properties of cancerous tissues. In fact, dielectric models can explain

the interaction between terahertz radiation and human tissue at a molecular level just

as their parameters have the potential for becoming indicators of cancer. However,

dielectric modelling of various forms of human tissue remains limited due to a number

of factors, especially suboptimal fitting algorithms and tissue heterogeneity.

Thanks to the high water content of human skin, its dielectric response to terahertz

radiation can be described by the double Debye model. The existing fitting method

using a nonlinear least square algorithm can extract the model parameters which track

their measurements accurately at frequencies higher than one THz but poorly at lower

frequencies. However, the majority of dielectric contrast between normal and cancerous

skin tissues has been observed in the low THz range. Accordingly, this research has

developed two global optimization algorithms which are capable of globally accurate

tracking thereby supporting the full validity of the double Debye model in simulating

the dielectric spectra of human skin in the THz frequencies. Numerical results confirm

their superiority over the conventional methods. Furthermore, the next goal of the

study is to apply statistical analysis to the parameters of the double Debye model in
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Abstract

order to test their discrimination capability of skin cancer from normal tissue. Linear

programming and support vector machine algorithms have also been employed using

these parameters to classify normal skin tissue and basal cell carcinoma. By com-

bining the double Debye parameters, the classification accuracy has shown significant

improvement. The encouraging outcomes confirm the classification potential of the

double Debye parameters.

The double Debye model, however, has been shown to be not suitable for simulating

human breast tissue due to its low water content and heterogeneous structure, thus

limiting the understanding of the THz dielectric response of breast tissue. To overcome

this problem, this study proposes a new non-Debye dielectric model to fit the dielectric

spectra of human breast tissue. Due to the mathematical complexity of the fitting pro-

cedure, a sampling gradient algorithm of non-smooth optimization is used to optimize

the fitting solution. Simulation results confirm applicability of the non-Debye model

through its exceptional ability to fit the examined data. Statistical measures have also

been used to analyse the possibility of using the parameters of this model to differentiate

breast tumours from healthy breast tissue. Based on the statistical analysis, popular

classification methods such as support vector machines and Bayesian neural network

have also been applied to examine these parameters and their combinations for breast

cancer classification. The obtained classification accuracies indicate the classification

potential of the model parameters as well as highlighting several valuable features of

the parameter combinations.

ix



List of Figures

List of Figures

2.1 A THz-TDS system in transmission mode [Ferguson and Zhang, 2002]. 18

2.2 A typical time-domain imaging system using raster scan [Chan et al.,

2007]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 A schematic of the terahertz imaging system operating in the reflection

(a) and transmission (b) geometries [Pickwell-MacPherson and Wallace,

2009]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Averaged THz pulses reflected off a tissue sample [Wallace, Fitzgerald,

Shankar, Flanagan, Pye, Cluff and Arnone, 2004]. . . . . . . . . . . . . 27

2.5 (a) A clinical photo of an invasive nodular BCC; (b) The corresponding

THz image with the maximum amplitude Emax for showing surface fea-

tures; (c) The corresponding THz images with a normalised amplitude

at t = 2.8 ps for mapping the tumour at depth [Wallace, Fitzgerald,

Shankar, Flanagan, Pye, Cluff and Arnone, 2004]. . . . . . . . . . . . . 28

2.6 (a) Photomicrograph of an invasive ductal carcinoma sample; (b) the

corresponding THz image using the minimum amplitude of the reflection

impulses; The cancerous regions delineated from the photomicrograph (c)

and the THz image (d) [Fitzgerald et al., 2006]. . . . . . . . . . . . . . 33

x



List of Figures

2.7 Averaged refractive indices and absorption coefficients with the corre-

sponding standard errors of three breast tissue types: fat, fibre, and

tumour [Ashworth et al., 2009]. . . . . . . . . . . . . . . . . . . . . . . 34

3.1 The real and imaginary part of the relative complex permittivities of

normal skin plotted in the range [0.15-1.68] THz from: the measured

data of Pickwell et al. [2005], the simulated spectra using the DD models

obtained by Pickwell et al. [2005] and the grinding-based algorithm . . 54

3.2 The real and imaginary part of the relative complex permittivities of

BCC plotted in the range [0.15-1.68] THz from: the measurement of

Pickwell et al. [2005], the simulated spectra using the DD models ob-

tained by Pickwell et al. [2005] and the grinding-based algorithm . . . . 55

3.3 The real and imaginary part of the relative complex permittivities of

normal skin: the measurement of Pickwell et al. [2005] and the simulated

spectra using the DD models obtained by Pickwell et al. [2005] and the

BB-GO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 The real and imaginary part of the relative complex permittivities of

BCC: the measurement of Pickwell et al. [2005] and the simulated spectra

using the DD models obtained by Pickwell et al. [2005] and the BB-GO 58

3.5 The real and imaginary part of the relative complex permittivities of

normal skin (case 266) of Wallace et al. [2006]: the measurement and

the simulated spectra using the DD models obtained by the BB-GO . . 59

3.6 The real and imaginary part of the relative complex permittivities of

BCC (case 266) of Wallace et al. [2006]: the measurement and the sim-

ulated spectra using the DD models obtained by the BB-GO . . . . . . 60

xi



List of Figures

3.7 The real part of the relative complex permittivities of normal skin and

BCC (average) from [Wallace et al., 2006]: the measurement and the

simulated spectra using the DD models obtained by the BB-GO and the

BB-MNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 The imaginary part of the relative complex permittivities of normal skin

and BCC (average) from [Wallace et al., 2006]: the measurement and

the simulated spectra using the DD models obtained by the BB-GO and

the BB-MNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 The magnitude of the relative complex permittivities of normal skin and

BCC in the average case of Wallace et al. [2006] plotted by: the mea-

surement and simulations by the BB-GO and the BB-MNO . . . . . . . 64

4.1 The p-values for comparing normal skin and BCC by using the real and

imaginary part of the measured complex permittivity εm over the fre-

quency range of 0.2-1.8 THz. The dotted horizontal red line indicates a

p-value equal to 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 The p-values for comparing normal skin and BCC by using the values

of �(εDD), �(D1) and �(D2) respectively over the frequency range of

0.2-1.8 THz. The dotted horizontal red line indicates a p-value equal to

0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Normalized percentage difference between normal and cancerous skin

tissues in mean of the measured absorption coefficient, the refractive

index, and complex permittivity. . . . . . . . . . . . . . . . . . . . . . . 73

4.4 The Pearson correlations of �(D1), �(D2), �(εDD) and �(εm) with the

tumour percentage content in skin samples. . . . . . . . . . . . . . . . . 75

xii



List of Figures

4.5 ROC curves of εs, ε2, ε∞, τ1 and τ2. The dotted line in red highlights

the no-discrimination line. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 The areas under the ROC curves of �(εm), �(εDD) and �(D1) over the

frequency range (0.2− 1.8) THz. . . . . . . . . . . . . . . . . . . . . . 77

5.1 The average complex permittivities with the corresponding error bars

representing 95% confidence intervals for breast tumour, healthy fibrous

breast tissue, and healthy fat (adipose) breast tissue from [Ashworth

et al., 2009] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 The normalized percentage difference in the average complex permittiv-

ities between the two healthy breast tissue groups (fibrous and fat) and

the breast tumour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 The measured average complex permittivities of healthy fat tissue from

[Ashworth et al., 2009] and its fitting by the THz-nDB model. . . . . . 98

5.4 The measured complex permittivities of healthy fibrous breast tissue

from [Ashworth et al., 2009] and its fitting by the THz-nDB model. . . 99

5.5 The measured complex permittivities of a breast tumour from [Ashworth

et al., 2009] and its fitting by the THz-nDB model. . . . . . . . . . . . 100

5.6 ROC plot for various thresholds of σ. . . . . . . . . . . . . . . . . . . . 104

xiii



List of Tables

List of Tables

3.1 The double Debye parameters extracted from the measured complex per-

mittivities of the skin samples (NS-1 and BCC-1 from [Pickwell et al.,

2005]; NS(Case 266), BCC(Case 266), NS(Average), BCC(Average) from

[Wallace et al., 2006]) by the grinding-based algorithm and BB-GO, and

those from these references. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Values of R2
adj corresponding to fitting the real and imaginary parts of the

measured complex permittivities (NS-1 and BCC-1 from [Pickwell et al.,

2005]; NS(Case 266), BCC(Case 266), NS(Average), BCC(Average) from

[Wallace et al., 2006]) are compared between the BB-GO and NLS. . . 61

3.3 p-value of the Breusch-Pagan and Koenker test for the real and imaginary

parts of the extracted DD models using the BB-GO for the skin samples

(NS-1 and BCC-1 from [Pickwell et al., 2005]; NS(Case 266), BCC(Case

266), NS(Average), BCC(Average) from [Wallace et al., 2006]). . . . . . 61

4.1 The double Debye parameters. . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The p-values for the double Debye parameters to illustrate the signifi-

cance of difference between normal skin and BCC samples. . . . . . . . 70

4.3 The normalized percentage difference in means of the double Debye pa-

rameters between the normal skin and BCC samples. . . . . . . . . . . 73

xiv



List of Tables

4.4 The Pearson’s coefficient of correlation between each of the double Debye

parameters and the sample tumour content. . . . . . . . . . . . . . . . 74

4.5 The AUCs for the five DD parameters and the AUCs averaged over the

entire frequency range from 0.2 to 1.8 THz for �(D1), �(D2), �(εDD),

�(εm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 The estimated accuracies (%) with their standard deviations by LOOCV

and RRSCV for applying the double Debye parameters with the LP

algorithms to classify the normal skin and BCC samples. . . . . . . . . 82

4.7 The estimated accuracies (%) with their standard deviations by LOOCV

and RRSCV for applying the double Debye parameters with the SVM

algorithm to classify the normal skin and BCC samples. . . . . . . . . . 83

5.1 The extracted parameters of the THz-nDB model (5.5) by fitting it to

averaged complex permittivities of three types of human breast tissue. . 97

5.2 The group average of the extracted parameters with their standard errors

and the corresponding average R2
adj of the fittings for all 74 data samples. 101

5.3 Pearson correlation between the parameters of the THz-nDB model (5.5)

and the percentage of tissue components . . . . . . . . . . . . . . . . . 101

5.4 P-value of independent two-tailed sample t-test for each pair of sample

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 AUROC values obtained by ROC of each THz-nDB parameter of (5.5) 104

5.6 SVM Classification Accuracy (%) in LOOCV corresponding to each THz-

nDB parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xv



List of Tables

5.7 The estimated accuracies (%) by LOOCV and RRSCV for applying the

double Debye parameters with the SVM to classify the healthy breast

tissue and the breast tumour. . . . . . . . . . . . . . . . . . . . . . . . 108

5.8 The estimated accuracies (%) by LOOCV and RRSCV for applying the

double Debye parameters with the BNN to classify the healthy breast

tissue and the breast tumour. . . . . . . . . . . . . . . . . . . . . . . . 109

xvi



Notation

Notation

THz Terahertz
NMSC Nonmelanoma Skin Cancer
BCC Basal Cell Carcinoma
SCC Squamous Cell Carcinoma
MMS Moh’s micrographic surgery
BCS Breast conserving surgery
NS Normal skin
A � 0 A is A positive semi-definite matrix
A ≥ 0 A is positive, i.e all its entries are positive
x ≥ p xi ≥ pi with x ∈ Rn, p ∈ Rn, i = 1, 2, ..., n
x ∈ [p, q] xi ∈ [pi, qi] with x ∈ Rn, p ∈ Rn, p ∈ Rn, i = 1, 2, ..., n
x ∈ Rn

+ {x ∈ Rn : xi ≥ 0, i = 1, 2, ..., n}
x̃ x is a complex variable
�(x) Real part of a complex variable x
�(x) Imaginary part of a complex variable x
DD Double Debye
THz-nDB The non-Debye model for the human breast in the terahertz regime
NLS Nonlinear Least Square
BB-GO Global optimisation based on the branching and bounding method
BB-MNO Minimax optimisation based on the branching and bounding method

xvii



Notation

QP Quadratic program
R2

adj Adjusted R2 indicates the goodness-of-fit
GOF Goodness-of-fit
SVM Support vector machine
HN Havriliak-Negami relationship
CC Cole-Cole equation
AVR Average value
SE Standard error
ROC Receiver operating characteristic
AUROC Area under the ROC curve
TPR True positive rate
FPR False positive rate
CV Cross-validation
LOOCV Leave-one-out cross-validation
RRSCV Repeated random-subsampling cross-validation
RBF Radial basic function
FDTD Finite difference time domain
BNN Bayesian neural network
NN Neural network

xviii



Author’s Publications

Author’s Publications

The contents of this thesis are based on the following papers that have been published,

accepted, or submitted to peer-reviewed journals and conferences.

Journal Papers:

1. Bao C. Q. Truong, Hoang D. Tuan, H. H. Kha, and Hung T. Nguyen, “Debye

parameter extraction for characterizing interaction of terahertz radiation with

human skin tissue”, IEEE Transactions on Biomedical Engineering, vol. 60, no.

6, pp. 1528-1537, June 2013.

2. Bao C. Q. Truong, Hoang D. Tuan, Anthony J. Fitzgerald, Vincent P. Wallace,

and Hung T. Nguyen, “A dielectric model of human breast tissue in terahertz

regime”, IEEE Transactions on Biomedical Engineering, vol. 62, no. 2, pp. 699-

707, Feb 2015.

3. Bao C. Q. Truong, Hoang D. Tuan, Anthony J. Fitzgerald, Vincent P. Wallace,

and Hung T. Nguyen, “The potential of the double Debye parameters to dis-

criminate between basal cell carcinoma and normal skin”, IEEE Transactions on

Terahertz Science and Technology, vol. 5, no. 6, pp. 990-998, Nov 2015.

Conference Papers:

1. Bao C. Q. Truong, Hoang D. Tuan, H. H. Kha, and Hung T. Nguyen,“System

identification for terahertz wave’s propagation and reflection in human skin”,

Fourth International Conference on Communications and Electronics, Hue, Viet-

nam, pp. 364-368, Aug 2012.

xix



Author’s Publications

2. Bao C. Q. Truong, Hoang D. Tuan, H. H. Kha, and Hung T. Nguyen,“Global op-

timization for human skin investigation in terahertz”, 34th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, San Diego,

USA, pp. 5474-5477, Aug 2012.

3. Bao C. Q. Truong, Hoang D. Tuan, and Hung T. Nguyen,“Near-infrared param-

eters extraction: a potential method to detect skin cancer”, 35th Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology Society,

Osaka, Japan, pp. 33 - 36, July 2013.

4. Bao C. Q. Truong, Hoang D. Tuan, Anthony J. Fitzgerald, Vincent P. Wallace,

and Hung T. Nguyen,“High correlation of double Debye model parameters in skin

cancer detection”, 36th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, Chicago, USA, pp. 718-721, Aug 2014.

5. Bao C. Q. Truong, Hoang D. Tuan, Anthony J. Fitzgerald, Vincent P. Wallace,

Tuan Nghia Nguyen, and Hung T. Nguyen,“Breast cancer classification using

extracted parameters from a terahertz dielectric model of human breast tissue”,

37th Annual International Conference of the IEEE Engineering in Medicine and

Biology Society, Milan, Italy, pp. 2804-2807, Aug 2015.

xx



Chapter 1

INTRODUCTION

Microscopic examination in histopathology allows for exploration of the structure and

functional information of processed specimens with the aim of manifesting their dis-

eases while macroscopic images of tissue are provided by current medical imaging tech-

niques such as magnetic resonance imaging (MRI) or X-ray computed tomography

(CT). Combining macroscopic and microscopic imaging advances in terms of resolution

to precisely delineate margins of cancer remains a unsolved problem of medical imaging.

Terahertz imaging is a promising technique that shows potential to overcome the prob-

lem [Pickwell-MacPherson and Wallace, 2009]. This chapter begins with describing the

background of this doctoral research. It is followed by addressing problems, objectives,

and contributions of the research. The thesis structure is provided at the end of the

chapter.

1



1.1 Background

1.1 Background

Terahertz (THz) radiation, or T-rays, defines the electromagnetic (EM) waves generated

in the typical region of spectrum from 100 GHz to 10 THz. This frequency regime is

extended from just beyond the microwaves region up to the far-infrared and partly

mid-infrared region. The attractive properties of THz radiation include non-ionisation,

low photon energy (below 40 meV) and high water absorption [Siegel, 2002]. The

available sources for microwaves including electronic power supplies are only suitable for

frequencies of up to few hundred GHz as their electronic circuits are unresponsive at the

higher range [Pickwell and Wallace, 2006]. Frequency multipliers can theoretically allow

for reaching the terahertz region but they are not efficient. On the other hand, optical

sources such as semiconductor laser diodes utilising the inter-band transitions between

atomic and molecular states are capable of producing radiations whose frequencies only

extend down to the order of 10 THz due to increasing difficulties with optical designs

[Pickwell and Wallace, 2006]. The lack of efficient and coherent sources and detectors

for THz systems has left a gap in the intermediate region in terms of the exploration

of the THz spectra [Siegel, 2002].

Bridging the THz gap started with the development of a photoconductive emitter us-

ing intense ultrashort optical pulses to generate optical signals with a time resolution

of few picoseconds (ps) [Auston, 1975]. More than one decade after, the free-space

THz transmitters and detectors for terahertz time-domain spectroscopy (THz-TDS)

were demonstrated by Smith et al. [1988] and these introduced subpicosecond pho-

toconducting dipole antennas capable of emitting and detecting electrical pulses of

less than 1 ps. Both the amplitude and phase of the THz pulses can be coherently

measured with an excellent achievable signal-to-noise of up to 10000:1 [van Exter and

Grischkowsky, 1990]. This results in the possibility of the spectroscopic measurements

of optical and dielectric properties of materials such as liquids, gases, semiconductors,

or dielectrics without considering the Kramers-Kronig relations [Grischkowsky et al.,
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1990; Nuss et al., 1991; Pedersen and Keiding, 1992; Harde and Grischkowsky, 1991].

Although the initial THz imaging system proves to be acceptable in terms of spatial

resolution, it is still impractical due to its long acquisition time of a few minutes for each

pixel. Hu and Nuss [1995] demonstrated the first practical teraherz imaging technique

which allows for reducing the acquisition time down to less than 5 ms. The reported

images of this study together with the improvements in the generation and detection

of coherent THz signals have greatly inspired further developments of THz-TDS and

imaging techniques, launched in the 1990s, as well as their applications.

Recent developments in the broadband-pulse generation of terahertz (THz) radiation

and its detection has accelerated biomedical applications in the frequency range. THz

imaging, namely terahertz pulsed imaging (TPI), has now emerged as a potential medi-

cal imaging technique to identify the contrast between various types of tissue [Pickwell-

MacPherson and Wallace, 2009]. Its advances are based on the nature of THz radiation.

Having longer wavelengths than those in the visible/near-infrared domain, THz waves

propagate inside biological tissues with less scattering. Significantly low power lev-

els of THz radiation in typical time-domain systems satisfy the recommended safety

threshold for the human body [Berry et al., 2003]. Another distinct asset is the high

sensitivity of THz to water/high water-content materials, making THz imaging a fea-

sible tool for cancer detection [Wallace, Taday, Fitzgerald, Woodward, Cluff, Pye and

Arnone, 2004]. The high absorption of THz radiation by water is considered to be a

dominant agent producing visible contrast features in THz images between normal and

cancerous tissues due to the higher water content of the tumour in comparison with

normal tissue [Woodward et al., 2003]. It is postulated that Protein, RNA and DNA

content affect the interaction of THz radiation with tissue, along with water, hence

they present themselves as potential sources of contrast [Smye et al., 2001; Fitzgerald

et al., 2006].

Previous studies have shown a contrast in THz images, both in vivo and ex vivo, of

various types of tissue. Early measurements reported contrast images between muscle
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and fat of porcine tissue [Hu and Nuss, 1995]. Skin dermis phantoms and human teeth

were imaged by Arnone et al. [1999] and these also displayed the visible imaging contrast

due to differences in tissue moisture. Taylor et al. [2008] recently found remarkable

differences in THz reflection between healthy and burned porcine skin specimens and

this suggested the potential of real time THz imaging based on reflectivity. A THz

imaging system based on reflection was used to non-invasively map cancerous regions

of human skin while ex vivo images of this cancer also supported the possibility of

distinguishing between normal and cancerous tissues using the THz imaging technique

[Woodward et al., 2002, 2003]. With the introduction of small hand-held THz devices,

there is now the motivation to speed up the translation of this technology into the

clinical setting [Parrott et al., 2011]. In addition to the skin cancer application, the

THz imaging might be beneficial to breast-conserving surgery (BCS) as Fitzgerald et al.

[2006] investigated the possibility of using THz pulses to correctly map breast tumour

margins. Intraoperative THz imaging devices such as the handheld THz imaging probe,

the continuous-wave single frequency THz imaging, or THz near-field microscopy, have

been developed for detecting the tumour margins during BCS [Ashworth et al., 2008;

Chen, Lee, Huang, Chiu, Tsai, Tseng, Lu, Lai and Sun, 2011; St.Peter et al., 2013].

Recent advances in THz technology have also triggered applications in other cancers

occurring in less accessible areas such as the cervix, colon, or liver [Wang and Mittleman,

2012; Reid et al., 2011; Sy et al., 2010].

1.2 Motivation of Thesis

Basal cell carcinoma (BCC), a form of non-melanoma skin cancer (NMSC), is the most

common cancer in the Caucasian population [Mogensen and Jemec, 2007]. As the

diagnosis of BCC depends on visual examination, biopsy is necessary if the diagnosis is

uncertain. Moh’s micrographic surgery (MMS) is a technique which is used to ensure

complete excision of the cancer with minimal excision of healthy tissue [Shriner et al.,
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1998]. MMS achieves the highest cure rate of 96–99%; however, MMS is expensive in

terms of time and money. This treatment modality could be simplified if there was

a system which is capable of accurately delineating the BCC margins preoperatively

without the need for biopsy. The high correlation between THz images and histologic

regions of BCC found byWallace, Fitzgerald, Shankar, Flanagan, Pye, Cluff and Arnone

[2004] supports further studies seeking to apply THz imaging to assist with MMS.

Changes in absorption coefficient and refractive index are among the most important

factors explaining the contrast in the THz images of skin cancer. Therefore, the complex

permittivity as a combination of these two optical properties is also worth considering

as a promising component for the discrimination between healthy and diseased tissues.

A large proportion of water in human skin is the foundation for studying human skin

dielectric permittivity in the THz regime [Smye et al., 2001; Pickwell, Cole, Fitzgerald,

Pepper and Wallace, 2004]. For analytical modelling, the double Debye model (DD)

has been employed to characterise dielectric behavior of human skin since it was first

introduced by Liebe et al. [1991] to describe the frequency-dependent permittivity of

liquid water [Pickwell, Cole, Fitzgerald, Wallace and Pepper, 2004]. This model is

determined by a frequency-dependent function with five driving parameters that de-

scribe the dispersion and relaxation times of two Debye relaxation processes in the THz

regime. Extracting these five parameters of the double Debye model is important to

understand the interaction between THz radiation and human skin as the DD param-

eters are believed to be the origin of contrast in THz images of skin cancer [Pickwell,

Cole, Fitzgerald, Wallace and Pepper, 2004; Taylor et al., 2011; Pickwell et al., 2005].

Indeed, the extracted DD parameters were found to be capable of providing interesting

contrast between normal skin and BCC [Pickwell et al., 2005]. In addition, Reid et al.

[2010] reported the possibility of using the DD parameters to specify the biological

tissue pathology with a limited resolution. Despite the advantages of the double Debye

model, the existing extraction procedure using nonlinear least-squares methods (NLS)

is far from being optimal and consistent. Liebe et al. [1991]; Barthel and Buchner
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[1991]; Kindt and Schmuttenmaer [1996] have successfully used the two Debye relax-

ation processes to model the liquid water complex permittivity in the frequency ranges

up to 1 THz. Based on this, Pickwell, Cole, Fitzgerald, Wallace and Pepper [2004];

Pickwell et al. [2005] has considered the double Debye model for complex permittivities

of either water or human skin in the frequency band extending to 2 THz. However, this

model fitting is inferior to its counterparts in the narrower band in terms of consistent

performance over a whole examined spectrum. To be more specific, the discrepancies

between the measured complex permittivity and that simulated by the double Debye

model from [Pickwell et al., 2005] at the frequencies below 0.8 THz are remarkably

higher than those published in [Kindt and Schmuttenmaer, 1996]. Liebe et al. [1991]

suggested an addition of two Lorentzian resonant processes to the double Debye model

in order to maintain a good fit when examining the frequency range extending to 2

THz. These extras certainly not only add unnecessary complexity to extraction but

also raise serious doubts about the validity of the double Debye model. The question as

to whether the performance of double Debye models is adequate for modelling human

skin complex permittivity in the THz frequency range remains open.

Terahertz imaging has also shown its capability to produce images which show the

essential contrast between healthy and cancerous breast tissue [Fitzgerald et al., 2006;

Hassan et al., 2012]. Compared to conventional imaging systems, the nature of the

THz radiation provides this technique with viable advantages to noninvasively and

nondestructively image breast tumours with high resolution [Ashworth et al., 2009].

The THz images suggested the potential of the THz imaging technique for accurately

detecting margins of breast cancer in BCS. Increases in absorption and refractive index

of breast tumour compared with healthy tissue are associated with the imaging contrast

but its origin is still not available [Ashworth et al., 2009]. Therefore, similarly to skin

cancer, modeling the dielectric function of breast tissue not only explains the physical

characteristics underpinning the contrast in the THz images but also possibly introduces

some classifiers of breast tumour.
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The free water content of other human body parts may be considerably less than that

of skin, which means that the dielectric responses of that tissue may not comply with

the simple Debye relaxation. Alternatively, the increasing content of biological water,

or hydration water, which is constructed by chains of protein and their surrounding

water molecules, is likely to cause non-Debye responses in the dielectric spectra of

tissue [Fitzgerald et al., 2014; Feldman et al., 2002]. Indeed, the double Debye model

fails to obtain a requisite fit for complex permittivity of breast tissue due to an increase

observed in the real part of the complex permittivity spectra of the human breast in

the range below 1 THz [Ashworth et al., 2009]. However, a suitable dielectric model

for breast tissue in THz regime is yet to be achieved in the literature.

1.3 Objectives and Contribution

Considering the aforementioned research problems, the ultimate purpose of this doctoral

research is to improve the dielectric modelling of human tissue and tumour, especially

in the skin and the breast, in the terahertz regime. In addition to the modelling, this

study targets identifying potential indicators of cancer from extracted parameters of

the dielectric models. The outcomes of this research will not only contribute towards

a better theoretical framework in terms of understanding the interaction between THz

radiation and human tissue in general, but will also support the clinical applicability of

the terahertz imaging to cancer-margin delineation in MMS and BCS. The main tasks

of this research will be accomplished by achieving the objectives outlined below.

The first objective is to improve the fitting quality of the double Debye model through

optimization algorithms. The conventional sum of square error (SSE) function, on

which the fitting is based, is definitely a complex nonlinear and nonconvex function of

the DD parameters, thus the NLS-based approach can only locate a local solution which

will satisfy some necessary optimality conditions. Therefore, several global optimization

(GO) algorithms will be introduced in this thesis to find a globally optimal solution
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for the fitting problem. The first proposed optimization algorithm employs grinding-

based technique that consecutively searches and updates the optimal solutions at each

grinding point of a finite two-dimensional space which is created by the constraints of

the problem variables. This method leads to the optimised double Debye model for

a very accurate description of skin complex permittivity in the frequency range [0.2–

2] THz. Simulation results prove the superiority of the grinding-based GO algorithm

over the NLS. The second algorithm is based on applying a brand-and-bound method

of global optimization (BB-GO) in order to improve the computational efficiency and

intensity of the fitting procedure while still assuring convergence of the optimal solution.

Simulation outcomes indicate that the BB-GO not only is significantly more effective

in computational time than the grinding-based algorithm but also guarantees the same

fitting quality. An error analysis of the fitting still shows lower fitting errors at high

THz frequencies than those at the low range. Thus, a modification of the BB-based

method, which takes advantage of a minimax optimization (MNO), is also proposed

to control the fitting-error balance between low and high parts of the examined THz

domain. Despite the fact that this modified algorithm does not improve the overall

performance, its simulations provide a better estimation at the low THz frequencies.

The second objective of the PhD study is to explore the cancer discrimination ability of

the double Debye model through statistical measures and classification. A combination

of statistical measures including t-test, normalised values of difference in mean, Pearson

correlation, and receiver operating characteristics (ROC) curve has been used to exam-

ine the DD parameters and several frequency-dependent parameters related to the DD

model. The statistical outcomes allow for accurate selection of the most informative

parameters for skin cancer discrimination. linear programing (LP) and support vector

machine (SVM) classifiers have also been employed to classify the skin samples using

the best parameters. Positive outcomes of the classification provide the first concrete

assessment about the potential of the double Debye model for skin cancer classification.

The third objective of my research is to propose a new non-Debye dielectric model
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for human breast tissue (abbreviated by THz-nDB) in the terahertz region as well as

analyse this model in terms of its applicability to breast cancer detection. A robust

sampling gradient algorithm for the nonsmooth optimization problem has been em-

ployed to fit this model. According to simulation results, this model can accurately

describe complex permittivities of both healthy and cancerous samples. Furthermore,

good performance of this model also facilitates a deeper insight into the contrast mech-

anism at the molecular level. For the cancer discrimination potential of the THz-nDB,

its eight model parameters have been investigated by statistical tools. The obtained

results suggest some of these paramters are indicators of breast tumours due to its high

correlation with the tumour percentage of the samples, the statistical significance of the

difference between normal tissue and tumours, and the high values of the area under

the ROC curve. The selected parameters and their combinations have been used with

the SVM and Bayesian neural networks (BNN) classifiers to classify the breast sam-

ples. Both classification methods present high classification accuracies for the applied

data, thus proving the classification potential of these parameters. Furthermore, BNN

demonstrates better overall performance as compared to the SVM in terms of using the

parameters of the THz-nDB model for breast cancer classification.

1.4 Structure of Thesis

The thesis includes six chapters together with references. The first chapter introduces

the background in terms of how I developed my research, the current problems in

the area, and the research question raised. It also clarifies the specific objectives and

provides an overview of the contributions of this doctoral research. The contents of the

following chapters are briefly outlined below.

Chapter 2 presents a review of THz imaging technologies. Firstly, it introduces the

distinct properties of terahertz radiation. The generation and detection techniques of

THz radiation are carefully pointed out in the next section. These are followed by a
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section describing terahertz time-domain spectroscopy as a key spectroscopic technique

and the foundation for developments in THz imaging. After this, a variety of terahertz

imaging techniques are reviewed. Last but not least, important medical applications

of terahertz imaging in skin cancer and breast cancer, which are also the focus of this

thesis, are provided in detail.

Chapter 3 firstly outlines its main content. This is followed by a secton that introduces

the double Debye model and the proposed optimization problem to fit this model. The

next section sequentially demonstrates two global optimization algorithms based on

grinding and brand-and-bound techniques to fit the double Debye model to its measured

data of human skin. Simulation results and dicussion concerning them are presented in

another section. This is followed by concluding statements.

Chapter 4 starts with a brief introduction of the research targets. The next section

provides information on the applied data and extraction procedure. This is followed by

a section providing statistical analysis of the extracted DD paramters. After this, the

classification ability of these parameters is examined using LP and SVM algorithms.

Classification results and concluding statements are respectively presented in the last

two sections.

Chapter 5 proposes a new non-Debye dielectric model to describe the dielectric prop-

erties of human breast tissue. It begins with reviewing current dieletric models in lit-

erature and then introducing the modified non-Debye model. The next section demon-

strates a robust gradient sampling algorithm to tackle the complexity of fitting this

dieletric model. This is followed by a section that provides a statistical analysis with

the aim of assessing the cancer discrimination potential of the model parameters. The

performance of these parameters and their combinations in the SVM and BNN classi-

fication may be viewed in the next two sections. The contributions of this chapter are

summarised in the final section.

Chapter 6 includes two sections. Firstly, the summary section focuses on summarizing

10



the studies in this doctoral research and their respective contributions. The final section

addresses limitations and raises essential questions for future research in this area.
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LITERATURE REVIEW
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2.1 Properties of Terahertz Radiation

Terahertz (1 THz = 1012 Hz) radiation, or T-ray, has a typical frequency range of be-

tween 100 GHz – 10 THz [Mittleman et al., 1996]. 1 THz corresponds to the wavelength

of 300μm and the photon energy of 4.14 meV. The energy level of THz radiation is much

less than that of X-rays, thus making this radiation non-ionised. Therefore, the safe

T-ray for human body and is promising in terms of medical application [Berry et al.,

2003]. It also means that frequently screening and monitoring patients by THz imaging

may be possible if the imaging technology becomes available [Pickwell-MacPherson and

Wallace, 2009]. The safety level of exposure has been studied on human keratinocyte

and blood leukocytes [Clothier and Bourne, 2003; Zeni et al., 2007]. Sensitivity to

water is another important property of THz radiation. Molecular resonances of inter-

molecular bonds, especially hydrogen bonds, extending into the THz region explain the

high absorption of this radiation by water. This distinct property of T-ray is particu-

larly beneficial for biomedical applications as biological tissue commonly has high water

content.

2.2 Terahertz Generation and Detection

Development in optics and electronics have been significantly improving THz sources

and detectors. A generated THz signal can take one of two forms including broadband

or continuous-wave (CW) pulses. This section aims to provide brief descriptions of the

popular techniques used for terahertz generation and detection.

2.2.1 Generation

Generating terahertz radiation is based on sending incident electromagnetic waves to a

nonlinear medium which facilitates nonlinear conversion of these waves [Lee, 2008]. In
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particular, frequency down conversion utilises the interaction of two optical photons at

two different frequencies with a nonlinear crystal to create a terahertz photon. The first

type of this nonlinear optical process is optical rectification that allows femtosecond

laser pulses to have a broad spectrum with the bandwidth being up to 10 THz to

generate broadband THz pulses [Carrig et al., 1995; Huber et al., 2000; Lee et al.,

2001]. Difference frequency generation is another process to produce CW THz pulses

from optical beams [Kawase et al., 1999]. For the up frequency conversion, diodes

with nonlinear characteristics are used for frequency multiplication of microwaves to

convert incident waves from solid-state microwave-based sources into continuous-wave

THz pulses which are harmonic forms of these microwaves.

Another technique to generate terahertz radiation employs exciting a biased photocon-

ductive (PC) antenna by femtosecond laser beams [Hamster et al., 1993; Zhang and

Xu, 2009]. This is based on utilizing varying photocurrents and accelerating charges in

time to radiate electromagnetic waves. A PC antenna is constructed by two metal elec-

trodes attached to a semiconductor substrate. The femtosecond lasers focus on the gap

between the electrodes to create electron-hole pairs in the semiconductor after transient

polarization due to electrical shortening and applied-voltage reduction. The generated

electrons and holes act as free photocarriers that are accelerated by a static bias field.

This photocurrent, which is proportional to the intensity of the incident optical beams,

results in generating the broadband THz pulses. To generate CW THz radiation, a

photomixing technique can be applied to mix two frequency-offset laser beams in order

to form an optical beat which is then radiated to the PC antenna [Verghese et al.,

1997; Preu et al., 2011]. Ultrafast photoconductive material, such as low-temperature

GaAs, are commonly used to make the photomixer and its operating mechanism in-

volves conductivity modulation and conversion into a current under an applied electric

field.

A free-electron laser (FEL) is also able to produce extremely coherent THz waves [Doria

et al., 2002; Grosse, 2002]. It employs relativistic electrons and electron accelerators to
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stimulate photon emission. An electron beam triggered by a femtosecond laser source

is transmitted through an array of magnets which create a transverse and periodic

magnetic field to force the electrons motion into a sinusoidal oscillation. The incident

electrons are accelerated due to this oscillation and are able to emit photons of the

THz radiation. The wavelength of the generated THz pulses depends on the applied

magnetic field and the electron beam energy. A backward wave oscillator (BWO) is

another free-electron-based source which can be considered as a laboratory version of

FEL [Dobroiu et al., 2004; Chen et al., 2012]. However, it is used to generate tunable

CW THz radiations. This device shares a similar operating mechanism to FEL but

it uses a grating instead of a magnet array to change the speed of the electron beam.

The electrons generated by a heated cathode are accelerated during their travel to the

anode inside a vacuum tube. This is done through the impact of an external magnetic

field and is thus able to radiate THz waves.

Compact solid-state THz sources such as diode-based frequency multipliers and quan-

tum cascade lasers (QCL) are also available. The Schottky diodes can multiply inci-

dent microwaves to generate THz radiations [Porterfield et al., 1999]. The recent GaAs

Schottky allows for tripling the frequency of the output waves [Porterfield, 2007]. QCLs

have been recently developed thanks to advances in nanotechnology [Ajili et al., 2002;

Williams, 2007]. They employ semiconductor heterostructures which are periodically

made of consecutive layers of different semiconductors. Intersubband transitions due

to electron propagation between these structures result in emitting THz radiations.

2.2.2 Detection

THz detection techniques are widely categorised into coherent and incoherent signal

detection [Lee, 2008]. The former targets measuring amplitude and phase of the THz

signals whereas the latter only focuses on the measurement of the signal intensity. Gen-

erally, coherent detection techniques have many similarities to generation techniques in
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terms of the operating mechanism and its supporting components. The same light

source can be used for either generation or detection.

Photoconductive detection and electrooptic (EO) sampling techniques are the most

popular methods to detect THz signals. A photoconductive detector for broadband THz

pulses shares the used substrate material and antenna structures with the generators

[Jepsen et al., 1996; Zhang and Xu, 2009]. Its detection mechanism is based on using

a current amplifier to read the dc photocurrent induced by cross correlation between

the THz waves and the photocarriers. The EO sampling technique utilises the Pockets

effect of an EO crystal to induce birefringence under the static electric field created by

the THz waves [Wu and Zhang, 1995; Nahata et al., 1996]. Measuring the birefringence

in terms of the delay between the THz waves and the incident optical beam enables the

determination of the THz waveform.

Heterodyne receivers use frequency beat and down conversion to detect the amplitude

and phase of CW THz waves [Hubers, 2008]. Their structure includes a local oscillator, a

mixer and a spectrometer. The local oscillator, a CW THz source, produces a reference

signal that together with the THz signal is converted into an intermediate frequency

signal in the microwave range by the mixer. This microwave signal can be detected by

the spectrometer after being amplified.

Thermal detectors such as bolometers, pyroelectric detectors, and Golay cells are com-

monly used for incoherent detection of THz signals [Chasmar et al., 1956; Porter, 1981;

Golay, 1947]. They all contain a radiation absorber whose temperature will increase due

to the incident THz wave. A thermometer is used to measure this temperature change.

Each type of thermal detector has a specific thermometer structure. The response

of these detectors is slow compared to the coherent detectors due to the equilibrium

condition of the temperature measurement.
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2.3 Terahertz Time-Domain Spectroscopy

Terahertz time-domain spectroscopy (THz-TDS) was first introduced by Auston and

Cheung at AT & T Bell Laboratories in 1985 [Auston and Cheung, 1985]. The break-

through advances in the generation and detection of THz radiation in the following

decades ensured that this technique became one of the most powerful tools for THz

spectroscopy. THz-TDS provides coherent measurements of the THz electric field in

terms of its amplitude and phase information [Ferguson and Zhang, 2002]. Implemen-

tation of THz-TDS in the imaging system can map a number of compositions of the

sample materials. This advantage of THz-TDS facilitates its application in real-time

material detection and biomedical devices [Ferguson and Zhang, 2002]. Furthermore,

since the coherent measurement of THz signals make it possible to recover the complex

optical or dielectric constants of the sample, THz-TDS can provide structural informa-

tion of the sample at the molecular level [Globus et al., 2003; Naftaly and Miles, 2007].

Applications of THz-TDS in material characterization cover a wide range of various

fields including astronomy, illegal drugs and explosive detection, industrial quality con-

trol, and especially THz imaging [Naftaly and Miles, 2007; Beard et al., 2001; Kawase

et al., 2003; Shen et al., 2005; Yasui et al., 2005; Hu and Nuss, 1995; Pickwell and

Wallace, 2006].

Fig. 2.1 shows the structure of a typical THz-TDS system set up in the transmission

geometry [Ferguson and Zhang, 2002]. This system employs a femtosecond laser source

to produce a series of pulses typically being 1-2 ps in duration with a repetition rate

of up to 100 MHz. These femtosecond laser pulses are used for the generation and

detection of THz pulses. In particular, the laser beam is split by a beam splitter into

two paths. One beam is used to generate the THz signal probing the sample whereas

the other is utilised to gate the detector. Then, the THz electric field as a function of

time can be captured at a optical delay between the two beams. Assuming that the

electric field is unchanged, this measurement is repeated with different time delays. As
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Figure 2.1: A THz-TDS system in transmission mode [Ferguson and Zhang, 2002].

a result, the time-domain waveform of the THz signal is obtained by connecting the

multiple measurements in a time line of the optical delays. The spectrum of the THz

pulses is obtained using the Fourier transform. The direct linkage of the THz amplitude

and phase with the absorption coefficient and the refractive index of the sample enables

the calculation of the real and imaginary parts of the complex permittivity.

THz-TDS possesses several remarkable advantages over other THz spectroscopic tech-

niques such as far-infrared Fourier transform spectroscopy (FTS) [Beard et al., 2002;

Chan et al., 2007]. The ability of THz-TDS to directly obtain the complex dielec-

tric/optical constants results in eliminating the use of Kramers-Kronig relations whose

indirect calculation in FTS potentially contains sources of error. Additionally, exploit-

ing the time delays of THz waves passing through the sample in THz-TDS is beneficial
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in terms of identifying the variation of the sample thickness [Mittleman et al., 1996].

THz-TDS is also more power-efficient, with the SNR > 106, than FTS as it only has

around 300 in SNR [Beard et al., 2001]. Furthermore, employing highly coherent and

short-pulse sources allows THz-TDS to achieve higher optical intensities in the order of

magnitude as compared to the CW sources of FTS, thus making THz-TDS preferable

for the measurements of absorption coefficients in transmission geometry [Beard et al.,

2001]. In terms of the frequency resolution, THz-TDS can reach to approximately 1

GHz, which is comparable to the best of the FTS devices [Naftaly and Miles, 2007].

2.4 Terahertz Imaging

Hu and Nuss [1995] introduced the THz imaging system based on the THz-TDS tech-

nique in 1995. The operating mechanism of this initial system has been fundamental

in terms of the development of subsequent THz imaging up until today. A THz-TDS-

based imaging system (Fig. 2.2) commonly uses photoconductive antennas together

with the EO generator and detector. Its image acquisition is based on raster-scanning

techniques that raster the sample through the THz beam focus to acquire the imag-

ing data at all pixels. Generally, the earliest system took approximately 10 minutes

to obtain a 100×100 pixel image. The image acquisition rate has been enhanced in

modern THz imaging systems by using more advanced methods to increase the speed

of varying the optical delay. However, the variation speed in the delay line must be

synchronised to the raster scan of the sample in order to identify the pixel location of

the currently-obtained waveform. For image formation, various information collected

from the measured THz electric fields in both the time and frequency domains can be

used to form two-dimensional false-colour THz images. In particular, the time-domain

pulses provide amplitude and phase information whereas their Fourier transformation

offers many useful spectral components. Each part of the data can produce various

images that demonstrate different information about the sample.
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Figure 2.2: A typical time-domain imaging system using raster scan [Chan et al., 2007].

Recent expansion of the THz imaging leads to a number of developments in new imag-

ing techniques [Siegel, 2002]. For instance, time-of-flight imaging and various imaging

approaches based on tomographic and synthetic aperture configurations manipulate

the low temporal coherence of THz pulses in the reflection geometry to form three-

dimensional images of the sample [Mittleman et al., 1997; McClatchey et al., 2001;

O’Hara and Grischkowsky, 2004; Ferguson and Zhang, 2002; Wang and Zhang, 2003].

Jiang and Zhang [1999] have employed the free-space EO sensing techniques in their

pioneering studies of building a video-rate terahertz imaging system to overcome the

limitation of the raster-scanning method on the image acquisition rate. The authors
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have also introduced a chirped-pulse imaging scheme that allows for measuring the a

full THz waveform with only a single femtosecond pulse from the laser source [Jiang

and Zhang, 1998, 2000]. A variety of methods have been applied to implement the near-

field imaging techniques in order to obtain sub-wavelength resolution [Hunsche et al.,

1998; Mitrofanov et al., 2000; Chen et al., 2003; Schade et al., 2004; Wang et al., 2004].

Using CW THz radiation for imaging has been accompanied by developments in CW

THz sources such as the invention of THz quantum cascade lasers or THz parametric

oscillators [Darmo et al., 2004; Lu et al., 2005; Kim et al., 2006; Nguyen et al., 2006].

Numerous studies have reported the applications of THz imaging in a variety of areas

ranging from security and medical diagnosis to monitoring processes and packing in-

spection in the food, material, and chemical industries [Wallace et al., 2006; Fitzgerald

et al., 2006; Pickwell and Wallace, 2006; Mittleman et al., 1999; Shen et al., 2005; Kemp

et al., 2003; Gowen et al., 2012; Zeitler et al., 2007; Tonouchi, 2007].

2.5 Medical Applications of Terahertz Imaging

The aforementioned advantages of THz radiation in terms of non-ionization, safe levels

of emission energy, and sensitivity to hydrated materials such as biological tissues make

THz imaging a very promising medical tool for cancer diagnosis. Current terahertz

imaging systems such as THz pulsed imaging have been typically developed based on

the THz-TDS technique [Yu et al., 2012]. In these systems, coherent THz pulses are

used to characterise tissue composition as well as to produce either two-dimensional

or three-dimensional images of biological samples. The THz imaging systems can be

designed to detect the transmitted THz signal through the sample or the reflection

off the sample as can be seen in Fig. 2.3 [Pickwell-MacPherson and Wallace, 2009].

The transmission mode requires well-sliced samples with a sufficiently-small thickness

to ensure the measurement of the transmitted THz wave as this radiation is strongly

absorbed by water inside the biological tissue. However, the structure of tissue can be
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Figure 2.3: A schematic of the terahertz imaging system operating in the reflection (a)
and transmission (b) geometries [Pickwell-MacPherson and Wallace, 2009].

damaged by slicing whereas the thin sample dehydrates more easily. These problems

may affect the measurement accuracy. On the contrary, measurements in the reflection

geometry prefer samples that are sufficiently thick to eliminate multiple reflections

within the samples. Assuming that the sample is homogeneous and has an appropriate

thickness, both the measurement modes are able to determine the optical/dielectric

properties of the samples [Png et al., 2008; Huang, Ashworth, Kan, Chen, Wallace,

ting Zhang and Pickwell-MacPherson, 2009; Huang, Wang, Yeung, Ahuja, Zhang and

Pickwell-MacPherson, 2009]. By investigating the dielectric properties, intermolecular

vibrations between molecules inside the samples can be revealed [Pickwell-MacPherson

and Wallace, 2009]. These molecular interactions occur when attractive intermolecular

forces such van der Waals forces between neighbouring molecules are weak. Since the

structure and function of biomolecules, such as proteins, are heavily dependent on

these forces, the signatures of various protein can be read by probing the THz spectra

[Fischer et al., 2002]. THz imaging has been considered as a potential tool for a number

of medical applications ranging from imaging skin burns to cancer diagnosis [Mittleman

et al., 1999; Brun et al., 2010; Yu et al., 2012; Zaytsev et al., 2014; Fan et al., 2014].
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2.5.1 Skin Cancer Detection

2.5.1.1 Overview of Skin Cancer

According to the Cancer Council Australia, skin cancer is one of the most common

diagnosed cancers, and this accounts for approximately 80% of all newly diagnosed

cancers. The statistics in 2007 show that more than 444,000 people need treatments for

various types of skin cancer each year and the disease causes more than 1,700 deaths

in Australia [AIHW & AACR, 2012]. Common types of skin cancer are divided into

two groups: cutaneous malignant melanoma and non-melanoma skin cancer (NMSC)

[Diepgen and Mahler, 2002]. Melanoma is the fourth most common cancer in Australia

and New Zealand and has the highest mortality [Diepgen and Mahler, 2002; Elder,

1995].

NMSC is the most prevalent skin cancer in the light-skinned population and includes

basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). The incidence rate

of NMSCs are rapidly increasing due to a variety of causes, i.e. increased exposure to

UV light. UV radiation can directly damage DNA, which contributes to skin mutation.

The tumorigenesis is affected by not only solar exposure but also the constitutional

predisposition, e.g. skin color, freckle spread, genetic history related to melanoma, and

age.

The key factor in dealing with skin cancer is early detection of the disease. This prevents

the further penetration of cancerous tissue into deeper skin layers and thus enables

early treatments such as surgical excision [Rigel et al., 2010]. The current statement

of skin cancer diagnosis is dependent on evaluating the clinical examination of biopsy

specimens to explore the histopathological details of the patient [Stockfleth et al., 2010].

Despite the fact that the biopsy is considered as a gold standard for diagnosis, it may be

time-consuming, expensive, and cause pain for patients [Hallock and Lutz, 1998]. This

diagnostic procedure is augmented by advances in non-invasive imaging techniques and
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computerisation of cellular figures. Furthermore, either traditional treatment, whether

based on surgery or new non-invasive treatment strategies depends on identifying the

tumour margin to guarantee complete removal of cancerous cells. Repeated biopsy

examination may be necessary if the correct margin is not detected. This fact alone calls

for non-invasive diagnostic tools. Medical imaging techniques are among the promising

diagnostic tools for non-invasively detecting cancerous cells and mapping the tumour

margin.

2.5.1.2 Existing Imaging Techniques of Skin Cancer Detection

There are various non-invasive imaging systems which have been employed to investi-

gate unique features of cancerous areas in skin but the majority of them are limited

by unexpected drawbacks [Mogensen and Jemec, 2007]. Dermatoscopy, a non-invasive

tool for skin cancer diagnosis, has been widely applied in clinical examinations for

over 20 years [Argenziano and Soyer, 2001]. It also has the largest clinical impact in

terms of the new skin cancer diagnostic methods. A diagnosis process using the der-

matoscopy includes visualization of the cellular structure of skin and is based on several

criteria to make final decisions in pathology [Argenziano and Soyer, 2001]. As a conse-

quence, this method is not only dependent on pathologists’ experiences but also very

time-consuming. Ultrasound skin imaging systems enable the production of biological

images of skin based on measuring the reflection of oscillating-sound waves from the

examined surface [Vogt et al., 2003]. However, various chemical contents and subtypes

of the skin tumour are not distinguishable by ultrasonography, thereby limiting the ap-

plicability of this technique [Fornage et al., 1993]. Magnetic resonance imaging (MRI)

needs whole body scanning to produce skin images and it is considered more suitable for

prognosis than diagnosis [Williams et al., 2001]. Near-infrared (NIR) imaging includes

two main techniques: optical coherence tomography (OCT) and reflectance confocal

microscopy (RCM). Being capable of constructing high-resolution images, OCT allows

visualization of micromorphological structure of skin with an axial resolution of about
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15 μm [Fujimoto et al., 2000; Gambichler et al., 2007]. RCM can provide cellular details

of skin with a higher resolution of 1–2 μm [Rajadhyaksha et al., 1995]. However, OCT

cannot provide details about the morphology of single cells while RCM is restricted

owing to low penetration of up to 300 μm into the skin [Rigel et al., 2010]. Fluo-

rescence spectroscopy using autofluorescence or endogenous and exogenous fluorescent

techniques is another skin cancer detection tool [Borisova et al., 2014]. Although the

most important advantage of this diagnostic tool is its ability to discriminate between

malignant and nonmalignant lesions, distinguishing in vivo between nonmelanoma and

other benign or malignant skin tissues remains fairly limited. The disadvantages of

the aforementioned imaging techniques leave the field open to research on new imaging

technologies. Terahertz imaging, which has a number of advantages over the existing

methods, has been displaying potential for application to skin cancer [Wallace, Fitzger-

ald, Shankar, Flanagan, Pye, Cluff and Arnone, 2004]. Its performance in skin cancer

detection is thoroughly reviewed in the following section.

2.5.1.3 THz Imaging for Skin Cancer

THz imaging has long been used to study a number of applications for human skin.

Cole et al. [2001] conducted the first in vivo measurements of the skin arm and hand,

and consequently found that THz imaging in reflection geometry could detect changes

in the hydration level of stratum corneum. Their further investigation of the reflec-

tions showed the possibility of determining the thickness of the stratum corneum layer

through analysing the waveforms of the THz reflections. This finding could be beneficial

to cosmetic applications of THz imaging.

Woodward et al. [2002] investigated the reflected THz signals off scar/inflammation and

BCC tissues in vitro and in vivo together with applying time-domain techniques such as

minimum peak and time-post-pulse (TPP) to imaging these samples. Accordingly, scar

tissue, which is known for its decreasing water content as compared to its surrounding
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normal tissue, creates negative changes in contrast to the normal and inflammation

regions in false-colour THz images of the skin samples. On the other hand, positive

changes in the contrast between BCC and its adjacent normal tissue were observed. This

is possible due to a rise in water content as carcinogenesis leads to an increase in tumour

cells and their size and composition. More insights into the significant differences in

the time domain pulses between normal and cancerous skin were provided through

frequency-domain analysis techniques [Woodward et al., 2003]. This study highlighted

the complexity of obtaining the spectral information of skin tissue in the reflection

mode.

Wallace, Fitzgerald, Shankar, Flanagan, Pye, Cluff and Arnone [2004] employed a

portable terahertz pulsed imaging (TPI) system to image 18 BCC ex vivo and 5 in

vivo samples with the aim of examining the capability of this imaging system to delin-

eate tumour margins in MMS. The THz waveforms shown in Fig. 2.4 are among those

used to generate THz images of the tissue samples. Particularly, maximum amplitudes

or normalised amplitudes at the optical delay t giving the maximum difference in am-

plitude between waveforms of normal and cancerous tissues were employed to explore

either the surface or depth information of the samples (e.g. Fig.2.5 from [Wallace,

Fitzgerald, Shankar, Flanagan, Pye, Cluff and Arnone, 2004]). Accordingly, the con-

trast shown in the THz images was considered to be sufficient to map tumour margins

to a certain extent, thus supporting the potential of the THz imaging in the tumour

margin detection.

Another recent study by Joseph et al. [2014] proposed a combination of polarised tera-

hertz and optical imaging to delineate nonmelanoma skin cancer. Their results indicate

that cross-polarised terahertz imaging can provide a correct detection of the cancer

area due to the lower reflectivity of tumourous area with respect to normal ones, thus

improving the resolution of the optical imaging. As a result, this approach was sug-

gested to be capable of microscopically accessing tissue morphology as well as accurately

delineating tumour margins.
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Figure 2.4: Averaged THz pulses reflected off a tissue sample [Wallace, Fitzgerald,
Shankar, Flanagan, Pye, Cluff and Arnone, 2004].

A number of other studies looked at the spectroscopic sides of the THz images, such

as the optical/dielectric properties, to understand the imaging contrast. Pickwell,

Cole, Fitzgerald, Wallace and Pepper [2004] developed a finite-difference-time-domain

(FDTD) model to simulate the interaction between THz radiation and human skin

and, hence, found the correlation between the skin hydration changes and the refrac-

tive index of skin. This model was successfully applied to ex vivo data of skin cancer

[Pickwell et al., 2005]. This study also indicates that the refractive index and absorp-

tion coefficient of BCC are higher than those of the neighbouring healthy tissues. It

was followed by a conventional work of Wallace et al. [2006] who concentrated on the

statistical analysis of the skin cancer optical properties. The authors found significant
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Figure 2.5: (a) A clinical photo of an invasive nodular BCC; (b) The corresponding
THz image with the maximum amplitude Emax for showing surface features; (c) The
corresponding THz images with a normalised amplitude at t = 2.8 ps for mapping
the tumour at depth [Wallace, Fitzgerald, Shankar, Flanagan, Pye, Cluff and Arnone,
2004].

differences between BCC and normal samples in the refractive index and the absorp-

tion coefficient over the range 0.25–0.90 THz and 0.2–2.0 THz respectively. In fact,

the differences in the fundamental properties partially elaborate the contrast features

between healthy and cancerous regions in THz images of BCC [Woodward et al., 2003;

Wallace, Fitzgerald, Shankar, Flanagan, Pye, Cluff and Arnone, 2004]. Furthermore,

THz complex permittivity, which can be directly calculated from the complex refractive

index, has been recently found to be capable of distinguishing dysplastic nevi, an early

stage of melanoma, from non-dysplastic skin nevi [Zaytsev et al., 2015]. All the achieve-

ments have pointed to the potential of THz imaging to aid skin cancer delineation in

surgical treatments. However, the aforementioned studies have only considered normal

tissue and its BCC form. Therefore, we have yet to know whether THz imaging can

distinguish between skin cancer types or between malignant and benign manifestations.

Further investigation of skin disorders might serve to find an answer to these questions.
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2.5.2 Breast Cancer Detection

2.5.2.1 Overview of Breast Cancer

Excluding nonmelanoma skin cancer, current statistics shows that breast cancer is the

most commonly diagnosed cancer among females [American Cancer Society, 2011]. It is

also one of the most fatal forms of cancer worldwide [Jemal et al., 2008]. According to

the statistics, there were an estimated 1.4 million new cases diagnosed in 2008, which

results in approximately 458,400 deaths from breast cancer. In general, the breast

cancer incidence rates have been increasing since the late 1990s. The mortality rate of

breast cancer has only stabilised or decreased in some parts of the world, e.g. North

American and some European countries.

Early detection and advanced treatments have been attributing to mortality reduc-

tion in the West while the westernised lifestyle and inadequate effective programs of

screening breast cancer have been leading to an increase in the mortality rates in many

Asian countries [Canfell et al., 2008; Coughlin and Ekwueme, 2009]. Numerous stud-

ies have shown that early detection increases the patients’ chance of survival due to

more treatment options and their higher effectiveness [American Cancer Society, 2011].

Available methods for breast cancer early detection are based on mammography and

clinical breast examination [Boyd et al., 2007; Anderson et al., 2008]. Mammography

can detect the breast cancer at its early stage when treatment may be more effective but

it may be prohibitively expensive for low- and middle-income countries. Thus, clinical

breast examination to detect early signs and symptoms of the cancer is recommended for

developing countries [Anderson et al., 2008]. There are a variety of treatment methods

including lumpectomy, mastectomy, radiation therapy, hormone therapy, chemotherapy,

or targeted biologic therapy [American Cancer Society, 2011].
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2.5.2.2 Existing Techniques of Breast Cancer Detection

Breast-conserving surgery (BCS) including lumpectomy and irradiation therapy is the

standard treatments for clinical stages I and II breast cancer, which is undergone by

approximately 70% of diagnosed cases [Pleijhuis et al., 2009; Fitzgerald et al., 2012]. A

number of studies have shown difference in survival rates between BCS and traditional

mastectomy [Blichert-Toft et al., 2008]. From the psychological perspective, BCS based

on surgical removal of breast tumour with clear margins is preferable with better cos-

metic results and lower risk of wound infection than the mastectomy with full removal

of the breast. However, BCS has an important disadvantage associated with the risk

of local cancer recurrence (LR), thus requiring additional surgery [Kreike et al., 2008].

This problem depends on the completeness level of removing the breast tumours. In

fact, in 20–40% of patients exposed to BCS, positive margins with tumour cells at

around the cut edge of the surgical specimen were detected after resecting the primary

tumour according to previous studies [Pleijhuis et al., 2009; Miller et al., 2004; Jacobs,

2008]. In addition to the positive margins, close margins defined by the presence of

cancer cells within 2 mm from the cut edge need to be taken into account for possible

re-excision due to the increasing risk of LR and the tumorous cells reaching the cut

edge [Kunos et al., 2006]. For instance, Zavagno et al. [2008] recently conducted a

trial in which 1520 patients undergoing BCS had their surgical margins evaluated for

re-excision. Close and positive margins found in 431 cases corresponded to LR rates

of 51.8% and 34.1% respectively. Unsuccessful removal of all cancerous cells with suffi-

ciently large margins leads to an increased risk of local recurrence and thus, additional

surgeries are required to completely remove the remaining tumours. These surgical

operations may also cause unexpected cosmetic results, higher risk of wound infection,

lower chance of survival, and increased cost of the treatment program [Fitzgerald et al.,

2012]. Therefore, accurate localization of breast tumours plays a crucial role in ob-

taining tumour-free margins with the least number of secondary surgeries and minimal

removal of healthy tissue. It also optimises the cosmetic side of the surgery.
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A variety of techniques have been clinically applied to localise the tumour both pre-

operatively and intraoperatively. Although current preoperative mammography using

radiographic X-ray is considered to be adequate for detecting breast cancer, it has

low specificity and does not provide functional and quantitative information of breast

tissue [Pleijhuis et al., 2009; Ikeda et al., 2003]. Combining ultrasound with the mam-

mography also underestimates the tumour size and developing pattern of diffuse and

multinodular tumours [Faverly et al., 2001]. Magnetic resonance imaging (MRI) has

become the most preferable clinical imaging modality for preoperative tumour localiza-

tion and assessment due to its high sensitivity and ability to deal with the shortcomings

of mammography [Pleijhuis et al., 2009]. However, this technique is limited by real-time

capability of margin assessment as well as not improving examination of margin sta-

tus after resection [Pengel et al., 2009]. Wire-guided localization (WGL) using a wire

guided by MRI, X-ray, or ultrasound was a clinical standard technique for intraopera-

tively localizing the tumour after resection but this has recently been found to cause

unacceptable rates of positive margins [Pleijhuis et al., 2009; Kelly and Winslow, 1996].

Although intraoperative ultrasound-guided resection in which ultrasound is used to as-

sess the tumour location and margins before and during BCS can lead to improvements

in identifying margin status as compared to WGL, its detection of nonpalpable tu-

mours and ductal carcinoma in situ is very limited [Smith et al., 2000; Klimberg, 2003].

Another technique using ultrasound is the cryoprobe-assisted localization and this has

been found to be comparable to WGL with some improvements in reducing the amount

of excised healthy tissue as well as excision time and complication [Tafra et al., 2006].

Radiographic X-ray mammography is also used for intraoperative assessment but this

has low resolution and sensitivity [Huynh et al., 1998]. Frozen section analysis (FSA)

and intraoperative touch preparation cytology (ITPC) are approaches which employ

microscopic examination to assess tumor margins. FSA offers a safe and inexpensive

procedure together with minimizing the re-excision rate but it is not suitable for small

tumours, very time-consuming, and dependent on pathologists’ experiences [Pleijhuis

et al., 2009; Riedl et al., 2009]. Despite the fact that ITPC is an efficient technique in
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terms of time, cost, accuracy, and tumour size as well as reportedly achieving signifi-

cantly lower LR rates than the above methods, it is not commonly applied due to not

providing any information in terms of close margins [Pleijhuis et al., 2009; Klimberg

et al., 1998].

The aforementioned clinical techniques generally have a high possibility of leaving pos-

itive margins after resection and consequently lead to an increased risk in terms of

LR and cosmetic results, thus it is essential to seek innovative approaches in relation

to improving the intraoperative margin assessment. For instance, 18F-fluoro-2-deoxy-

D-glucose (18F-FDG) positron emission tomography imaging (PET), a powerful tool

for malignant diagnosis, has been investigated for breast cancer due to potentially in-

creasing the 18F-FDG in breast cancerous cells [Brown et al., 1996; Hall et al., 2007].

However, this imaging modality possesses several critical disadvantages such as its limi-

tation in terms of partial solution (< 1 cm), low specificity, high cost, and resulting high

radiation exposure to patients during the intraoperative assessment [Hall et al., 2007;

Wahl, 2001; Strong et al., 2008]. Another technique under research is the radioguided

occult lesion localization (ROLL) that employs a hand-held gamma probe together with

a radio tracer (i.e. radioisotope or radioactive iodine) injected into the examined tu-

mour [Luini et al., 1999; Gray et al., 2001]. ROLL proves to be more advanced in terms

of simplicity, accuracy, and safety than the conventional WGL but still requires further

research to be clinically applied [Lovrics et al., 2011; van Esser et al., 2008]. Optical

imaging modality such as near-infrared fluorescence (NIRF) or fluorescence reflectance

imaging (FRI) have been recently investigated as well. They provide some biomarkers

of breast cancer as well as having a number of technical advantages such as ease of use,

high lateral resolution, cost efficiency, nonionization, noninvasive and safety [Ke et al.,

2003; Luker and Luker, 2008; Tagaya et al., 2008; Ntziachristos, 2006]. However, the

intrinsic optical properties of near-infrared light results in limitations of the imaging

systems including reduced sensitivity and low depth resolution due to light absorption

and scattering [Tagaya et al., 2008; Ntziachristos, 2006].
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2.5.2.3 THz Imaging for Breast Cancer

Breast tissue and its cancerous forms have also shown differences in terahertz proper-

ties. [Fitzgerald et al., 2006] conducted a pilot study on imaging ex vivo breast samples,

including invasive and in situ carcinomas excised from 22 female patients. Their gener-

ated THz images were generally comparable with the corresponding histopathological

photomicrographs with sufficiently high correlation. For instance, Fig. 2.6 compares

Figure 2.6: (a) Photomicrograph of an invasive ductal carcinoma sample; (b) the cor-
responding THz image using the minimum amplitude of the reflection impulses; The
cancerous regions delineated from the photomicrograph (c) and the THz image (d)
[Fitzgerald et al., 2006].

the microphotograph and THz image of one sample containing invasive ductal carci-

noma. Additionally, the THz contrast created by the presence of the in situ form of

breast tumours is crucial as non-calcified tumours are impalpable and hence are often

missed during BCS. However, the outcomes of this study are limited by several factors

such as tissue deformation due to histopathological preparation, alignment of the im-

age window, or the small number of specimens which do not include benign tissues. In

addition to these limitations, the origin of the imaging contrast is not well understood.

The positive results of Fitzgerald et al. [2006] have led to the development of a intro-

operative THz imaging system using a portable scanning probe for medical applications

by Teraview Ltd. (Cambridge, UK) [Ashworth et al., 2008]. Then, Ashworth et al.

[2009] executed a thorough investigation of human breast cancer through analysing the

terahertz properties extracted from reflections. 74 samples excised from 20 consecutive
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female patients were used for this study as well as classified into three groups based on

their dominant composition, namely healthy fat, fibre, and tumour. As can be seen in

Figure 2.7: Averaged refractive indices and absorption coefficients with the correspond-
ing standard errors of three breast tissue types: fat, fibre, and tumour [Ashworth et al.,
2009].

Fig. 2.7, the breast tumour possesses a higher refractive index than both fat and fibrous

tissue over the frequency range 0.2–2.0 THz while its absorption is found to slightly

increase at around 0.32 THz. Furthermore, simulated impulse functions from these

optical properties reveal a difference in peak of approximately 60% between healthy

and tumorous breast samples, thus partly explaining the contrast sources in the THz

images.

Imaging techniques used for breast tumour in the aforementioned studies are indeed

not only limited by measurement factors but also the selection of imaging features to

generate the THz images. To be more specific, it is not yet known which features offer

the best contrast or an official procedure for the feature selection. A recent large-scale

study of employing THz imaging for breast cancer detection was carried out by Fitzger-

ald et al. [2012] in order to seek the best classification features for imaging breast cancer.

The THz database included reflected THz pulses measured from 20×20 mm samples

freshly excised at suspected regions from 51 female patients. Ten heuristic parameters
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and their combinations were investigated through principle component analysis and

support vector machine classifiers. By using all ten of these parameters, the authors

could classify the breast cancer samples with an accuracy of 92%. However, in spite

of the encouraging results, the applicability of the THz probe during surgery has been

challenged by a number of factors such as the presence of blood and other fluids in

the imaged regions, or the variation of tissue hydration and temperature in vivo. Con-

sequently, it still requires further systematic studies of the contrast mechanism and

potential sources of difference between various types of breast tissue, both healthy and

diseased, to make THz imaging an established medical tool.

2.5.3 Dielectric Modelling-Based Approach

Various features extracted from terahertz signals in both the time and frequency do-

mains have been used to form terahertz images of human skin and breast tissue [Wood-

ward et al., 2003; Fitzgerald et al., 2002, 2012; Joseph et al., 2009]. However, since

the construction of images is based on arbitrary choices of the imaging features, it

potentially involves signal noise and destructive information that can negatively affect

the ability of the images to discriminate the disease [Brun et al., 2010; Chan et al.,

2007]. Furthermore, it has been reported that changes in the absorption coefficient and

refractive index stimulate the variation of these features, thus producing contrast in the

THz imaging. The optical properties underline the physical mechanism that describes

the interaction between THz radiation and human tissue. However, the root of the

increase in the absorption and refractive index between tumours and healthy tissue still

requires more thorough studies to be conducted [Ashworth et al., 2009; Parrott et al.,

2011]. Apart from this, a solid understanding of the contrast mechanism also has a pos-

itive impact on determining informative features for cancer classification. As optical

properties are directly related to dielectric permittivities, a concrete understanding of

dielectric properties of human tissue provides a deeper insight into the contrast mech-

anism. In fact, a dielectric model can offer a theoretical framework characterizing the
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complex permittivity of tissue, which reflects interactions between molecules and the

THz radiation [Smye et al., 2001]. Therefore, modelling dielectric properties plays a

vital role in not only explaining the contrast between healthy tissue and tumours in

THz images but also potentially introducing more classifiers for cancer detection.

Considering the dielectric properties of human skin, Pickwell, Cole, Fitzgerald, Wallace

and Pepper [2004], for the first time, introduced application of the double Debye model

to describe the complex permittivities of skin tissue. This introduction was based on

the high radiation absorption of water in the terahertz frequency as well as increased

water content of skin tumour as compared to normal skin. The authors used the non-

linear least square method to extract the five DD parameters which were subsequently

incorporated into their developed FDTD program in order to simulate impulse func-

tions of samples. This approach was tested with the in vivo measured impulse function

of the skin on the volar forearm in the frequency range 0.2–2 THz. The simulation of

that study shows a good match between the measurement and simulated value with a

correlation of 0.97. Further investigation of the double Debye model into the skin on

different sites such as dorsal forearm and palm was successfully conducted by Pickwell

et al. [2005] with the similar agreements, hence confirming the applicability of this di-

electric model. As a result, Pickwell et al. [2005] with the same approach carried out

the study on BCC, both ex vivo and in vivo, and extracted the DD parameters from

normal skin tissues and the BCCs. Significant differences in these parameters between

normal and BCC cases were also found, hence suggesting their potential for the cancer

discrimination. Their simulation results were very encouraging but still showed some

discrepancies between the measured data and simulated values. Therefore, the study in

this thesis analysed this fitting problem and realised that the fitting algorithm used to

extract the DD parameters could be the source of the errors. Particularly, it is found

that the fitting quality with the NLS method is not consistent, especially very poor at

frequencies below 0.8 THz of the examined range 0.2-2 THz, despite that this extraction

algorithm proves to be sufficient for the range only up to 1 THz [Liebe et al., 1991]. This
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unexpected performance should be not a surprise because the NLS algorithm aims at

local solutions that are not optimal for the fitting problem of the double Debye model.

Therefore, there is an apparent need for an extraction algorithm capable of fishing the

optimal solutions.

Fitzgerald et al. [2014] recently employed the double Debye model to simulate the

impulse function of breast tissue in the terahertz region. Some correlation of the simu-

lated data with its measurements was found for both healthy breast tissue and tumour.

However, the authors pointed out the challenge of applying the double Debye model to

breast tissue based on the limited fitting quality. Admittedly, breast tissue has more

heterogeneous structure than skin tissue, which especially contains low water content

and a considerable proportion of adipose tissue (fat or lipid). The low hydration in-

deed disproves the main motive for the use of the double Debye model. Furthermore,

measured dielectric permittivities of various ex vivo breast samples by Ashworth et al.

[2009] demonstrate an increase of the real spectra in the vicinity of 0.32 THz. This

spectral response evidently does not obey the Debye relaxation theory. To sum up,

other dielectric models should be developed to address the modelling challenges for

breast tissue.

37



Chapter 3

PARAMETER EXTRACTION

FOR THE DOUBLE DEBYE

MODEL OF HUMAN SKIN

TISSUE
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3.1 Introduction

3.1 Introduction

This chapter is concerned with parameter extraction for the double Debye model, which

is used for determining the frequency-dependent complex permittivities of human skin.

The model parameters are considered as the origin of contrast in THz images of skin

cancer. However, the existing extraction methods by nonlinear least-squares (NLS)

algorithms, such as Levenberg-Marquardt algorithm, could generate Debye models ca-

pable of tracking their measurements accurately at frequencies higher than one terahertz

but poorly at lower frequencies where the majority of contrast between healthy and dis-

eased skin tissues is actually observed. Adding the Lorentzian resonant process terms or

more Debye relaxation processes as suggested by Liebe et al. [1991] might improve the

fitting. However, these extras complicate the applicable model unnecessarily whereas

the model complexity could be a potential source of over-fitting error.

To deal with the aforementioned problem, the study in this thesis targets at improving

the fitting algorithm as well as optimizing the extraction of the double Debye pa-

rameters. As the conventional sum of square error function, on which the extraction

is based, is a complex nonlinear and nonconvex function of the DD parameters, the

NLS-based approach could locate a solution to satisfy only some necessary optimality

conditions. In view of this suboptimal issue, our approach aims to locate the globally

optimal solution of the problem, which leads to an optimal double Debye model for

a very accurate description of human skin permittivity in the entire THz frequencies.

As a result, we consecutively introduce two global optimization-based algorithms to

not only optimize the fitting problem but also ensure the reliability and computational

tractability of the optimized double Debye model for modelling dielectric permittivity

of human skin. The first algorithm is based on grinding technique that continuously

solves the optimisation problem at each point of a finite-dimensional space defined by

the constraints of the problem variables and chooses the optimal solution accordingly.
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3.2 Problem Formulation

Despite that this initial approach is effective in terms of optimising the fitting, it is com-

putational and time-consuming. As a result, the second optimisation algorithm based

on a branch-and-bound method was introduced in order to improve the efficiency of

the fitting procedure. Specific details of the two optimisation algorithms are presented

in the following sections.

This chapter is structured as follows. Section 3.2 is devoted to the problem formulation

whereas the next section 3.3 introduces the global optimization algorithms to solve the

proposed problem. Numerical results together with discussion on them are given in

section 3.4. Finally, section 3.5 summarises the contributions in this chapter.

3.2 Problem Formulation

3.2.1 The Double Debye Model

The double Debye model has been shown by previous studies to be capable of de-

scribing the dielectric response of human skin at the THz frequencies [Pickwell, Cole,

Fitzgerald, Wallace and Pepper, 2004; Wallace et al., 2006; Truong et al., 2013]. Since

this model targets the mechanism of interaction between THz radiation and water

molecules, human skin which always contains a large proportion of water can share this

approach. Particularly, the well-known simple Debye equation is generally believed to

be adequate for simulating the permittivity of pure water at frequencies up to 100 GHz

[Alison and Sheppard, 1990]. A second Debye relaxation process added to the single

Debye equation is proposed for fitting the permittivity of water in the transition range

0.1–1 THz [Barthel and Buchner, 1991; Kindt and Schmuttenmaer, 1996]. This incor-

poration reflects the impact of an external electric field on water molecules [Ronne and

Keiding, 2002; Wallace et al., 2006]. The double Debye model is characterised by the

frequency-dependent dielectric function

εDD(ω) = ε∞ +
εs − ε2
1 + jωτ1

+
ε2 − ε∞
1 + jωτ2

. (3.1)
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3.2 Problem Formulation

Here εs is the static permittivity at low frequency, ε∞ is the high-frequency limit of

permittivity, and ε2 is the intermediate dielectric constant for the description of the

transitional state between the two relaxation processes. Therefore, εs − ε2 and ε2 −

ε∞ represent the dispersion in amplitude of the slow and fast relaxation processes

respectively. It is suggested that in liquid water the molecules are in the form of

tetrahedral structure; when water is excited by incident THz radiation, this structure

is perturbed and reorients, for this to happen the structure must break. Thus, four

hydrogen bonds need to be broken which is a slow process (τ1). Subsequently, after

approximately τ1, the single water molecule will reorient and move (a fast process), in

τ2, to a new tetrahedral site [Rønne et al., 1997].

3.2.2 Optimization Problem

For mathematical simplification, the common form of the double Debye model in (3.1)

can be rewritten without losing its generality as follows

εDD(ω) = ε∞ +
Δε1

1 + jωτ1
+

Δε2
1 + jωτ2

, (3.2)

where Δε1 = εs − ε2 and Δε2 = ε2 − ε∞. This form of the double Debye model is used

throughout the following sections.

The complex optical properties ñm of human skin, both normal and cancerous, were

measured by a number of studies through terahertz spectroscopy systems [Pickwell

et al., 2005; Wallace et al., 2006]. Thus, the measured complex permittivity ε̃m at

frequency ω can be calculated using the following relationship,

εm(ω) = (nm)
2 =

[
n(ω)− jκ(ω)

]2
. (3.3)

The square error function between the relative complex permittivity ε̃DD(ω) in (3.2)

and its measured value ε̃m(ω) in (3.3) is determined by

E(ωi) = |εDD(ωi)− εm(ωi)|
2 =

∣∣∣∣ε∞ +
Δε1

1 + jωiτ1
+

Δε2
1 + jωiτ2

− ε̃m(ωi)

∣∣∣∣
2

. (3.4)
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Accordingly, the five double Debye parameters (ε∞,Δε1,Δε2, τ1, τ2) in (3.2) can be

extracted from the following sum-of-square-error minimisation

min
(Δε1,Δε2,ε∞,τ1,τ2)

N∑
i=1

E(ωi) : ε∞ ≥ 1,Δε1 ≥ 0, Δε2 ≥ 0, τ1 > 0, τ2 > 0, (3.5)

whereN is the number of discretely-sampled frequencies ωi = 2πfi with fi ∈ [0.2, 2] THz.

The constraints in (3.5) cover most practical cases of dispersive materials and can be

explained from the physical viewpoint [Barthel and Buchner, 1991]. However, according

to previous extraction results of Barthel and Buchner [1991]; Kindt and Schmuttenmaer

[1996]; Pickwell et al. [2005] for human skin, they can be reasonably narrowed down to

1 ≤ τ1 ≤ 20, 0.01 ≤ τ2 ≤ 0.5 (3.6)

The next two sections present the two proposed optimization algorithms to solve (3.5)

with respect to (3.6).

3.3 Global optimization-based Algorithms

3.3.1 Grinding-based optimization

It is seen from (3.4) that each E(ωi) is a highly nonlinear and nonconvex function

in (Δε1,Δε2, ε∞, τ1, τ2). Consequently, (3.5) is minimisation of sum of N nonlinear

and nonconvex functions subject to convex constraints, which is a hard optimization

problem. However, E(ωi) is obviously convex in (Δε1,Δε2, ε∞) with τ1 and τ2 held fixed.

This means that only two variables τ1 and τ2 are complicating variables which make

(3.5) non-convex [Tuy, 1998]. Thus, we can rewrite (3.5) into the following parametric

optimization,

min
(τ1,τ2)

F (τ1, τ2) subject to (3.6) (3.7)

with

F (τ1, τ2) := min
(εs,ε2,ε∞)

N∑
i=1

E(ωi) : ε∞ ≥ 1, Δε1 ≥ 0, Δε2 ≥ 0, . (3.8)
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3.3 Global optimization-based Algorithms

Firstly, our focus is to solve (3.8) as it is a convex problem. Let x = (Δε1,Δε2, ε∞)T =

(x1, x2, x3)
T and

ai =

⎡
⎢⎢⎢⎣

1
1+jωiτ1(i)

1
1+jωiτ2(k)

1

⎤
⎥⎥⎥⎦ ,

Ai = a∗i a
T
i , b

T
i = −2Re(cia

H
i ), di = |ci|

2,

A =

N∑
i=1

Ai, b
T =

N∑
i=1

bTi , d =

N∑
i=1

di,

Consequently, the objective function of (3.8) is the following convex quadratic function

of x,

N∑
i=1

E(ωi) =

N∑
i=1

∣∣aTi x− ci
∣∣2

=
N∑
i=1

(aTi x− ci)
∗(aTi x− ci)

=

N∑
i=1

xHa∗ia
T
i x+ |ci|

2 − cix
Ha∗i − c∗ia

T
i x

=

N∑
i=1

xHa∗ia
T
i x+ [−2Re(cia

H
i )]x+ |ci|

2

=
N∑
i=1

(xTAix+ bTi x+ di)

= xT(

N∑
i=1

Ai)x+ (

N∑
i=1

bTi )x+

N∑
i=1

di

= xTAx+ bTx+ d.

Thus, (3.8) is the following convex quadratic program in three scalar variables only

min
x∈R3R3R3

xTAx+ bTx+ d

subject to x1 ≥ 0, x2 ≥ 0, x3 ≥ 1
. (3.9)

This optimization problem can be solved easily by any existing quadratic programming

solver such as SeduMi [Sturm, 1999].
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3.3 Global optimization-based Algorithms

Since the objective function F (τ1, τ2) consists of two variables only, the optimal solution

of (3.7) can be easily located through repeatedly examining the value of F at each point

(τ1(k), τ2(k)) identified by

τ1(k) = l1 +
u1 − l1
M

k, τ2(k) = l2 +
u2 − l2
M

k, (3.10)

where k = 0, 1, 2...M , l1 = 1,u1 = 20, l2 = 0.01, u2 = 0.5 according to (3.6). M

can be reasonably chosen from at least 80 to sufficiently avoid local optimums. In-

creasing values of M often lead to unnecessary trade-offs between optimal results and

computational cost.

3.3.2 BB-Based optimization

Since the value F (τ1, τ2) in (3.8) is very sensitive to (τ1, τ2), the set of the grinding

points must be very dense for good performance. Thus, the grinding-based method

is computationally demanding. Instead, a branching and bounding (BB) method of

global optimization (BB-GO) is proposed to improve the computational efficiency.

The explicit form of the objective function in (3.5) is derived in a different way as

follows. Set

0 < ai := �
(
εm(ωi)

)
, 0 < bi := −�

(
εm(ωi)

)
.

Thus

E(ωi) = (ε∞ +
Δε1

1 + ω2
i τ

2
1

+
Δε2

1 + ω2
i τ

2
2

− ai)
2 + (

ωiΔε1τ1
1 + ω2

i τ
2
1

+
ωiΔε2τ2
1 + ω2

i τ
2
2

− bi)
2

Define

E1(ωi) := (ε∞ +
Δε1

1 + ω2
i τ

2
1

+
Δε2

1 + ω2
i τ

2
2

− ai)
2

= (ε∞ +
Δε1

1 + ω2
i τ

2
1

+
Δε2

1 + ω2
i τ

2
2

)2 + a2i − 2ai(ε∞ +
Δε1

1 + ω2
i τ

2
1

+
Δε2

1 + ω2
i τ

2
2

)

= xxxTΓi(τ1, τ2)xxx+ βT
i (τ1, τ2)xxx+ a2i (3.11)
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for

Γi(τ1, τ2) =

⎛
⎜⎜⎜⎝

1
1+ω2

i
τ2
1

1
1+ω2

i
τ2
2

1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
1+ω2

i
τ2
1

1
1+ω2

i
τ2
2

1

⎞
⎟⎟⎟⎠

T

, (3.12)

βi(τ1, τ2) = −2ai

⎛
⎜⎜⎜⎝

1
1+ω2

i
τ2
1

1
1+ω2

i
τ2
2

1

⎞
⎟⎟⎟⎠ , xxx = (Δε1,Δε2, ε∞)T.

Analogously,

E2(ωi) := (
ωiΔε1τ1
1 + ω2

i τ
2
1

+
ωiΔε2τ2
1 + ω2

i τ
2
2

− bi)
2

= (
ωiΔε1τ1
1 + ω2

i τ
2
1

+
ωiΔε2τ2
1 + ω2

i τ
2
2

)2 + b2i − 2bi(
ωiΔε1τ1
1 + ω2

i τ
2
1

+
ωiΔε2τ2
1 + ω2

i τ
2
2

)

= xxxTΛi(τ1, τ2)xxx+ χT
i (τ1, τ2)xxx+ b2i (3.13)

for

Λi(τ1, τ2) =

⎛
⎜⎜⎜⎝

ωiτ1
1+ω2

i
τ2
1

ωiτ2
1+ω2

i
τ2
2

0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ωiτ1
1+ω2

i
τ2
1

ωiτ2
1+ω2

i
τ2
2

0

⎞
⎟⎟⎟⎠

T

, χi(τ1, τ2) = −2bi

⎛
⎜⎜⎜⎝

ωiτ1
1+ω2

i
τ2
1

ωiτ2
1+ω2

i
τ2
2

0

⎞
⎟⎟⎟⎠ . (3.14)

Therefore, under the definition

Γ(τ1, τ2) :=

N∑
i=1

Γi(τ1, τ2), Λ(τ1, τ2) =

N∑
i=1

Λi(τ1, τ2),

β(τ1, τ2) =

N∑
i=1

βi(τ1, τ2), χ(τ1, τ2) =

N∑
i=1

χi(τ1, τ2), γ =

N∑
i=1

(a2i + b2i ),

(3.15)

problem (3.5) is rewritten as

min
xxx,τ1,τ2

[xxxT(Γ(τ1, τ2) + Λ(τ1, τ2))xxx+ (β(τ1, τ2) + χ(τ1, τ2))
Txxx+ γ]

subject to x1 ≥ 0, x2 ≥ 0, x3 ≥ 1, (3.6). (3.16)

From (3.12), (3.14) and (3.15), the functions Γ(τ1, τ2) and Λ(τ1, τ2) are recognised as

sums of N fourth order polynomial fractional functions in (τ1, τ2), while β(τ1, τ2) and
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3.3 Global optimization-based Algorithms

χ(τ1, τ2) are sums ofN quadratic fractional functions in (τ1, τ2). Like (3.7)-(3.8), the ob-

jective function in (3.16) is obviously convex and quadratic in xxx = (Δε1,Δε2, ε∞)T if τ1

and τ2 are constant. Therefore, (3.16) is also transferred to the parametric optimization

as follows,

min
τ=(τ1,τ2)

F (τ1, τ2) (3.6) (3.17)

with

F (τ1, τ2) = min
x

[xxxT(Γ(τ1, τ2) + Λ(τ1, τ2))xxx+ (β(τ1, τ2) + χ(τ1, τ2))
Txxx+ γ] :

ε∞ ≥ ε0, Δε1 ≥ 0, Δε2 ≥ 0. (3.18)

Note that Γ(τ1, τ2) � 0 and Λ(τ1, τ2) � 0 for every (τ1, τ2) so the computation for

F (τ1, τ2) is a simple convex quadratic problem in just three dimensional variable x ∈

R3
+. One can call any existing quadratic solver such as SeduMi [Sturm, 1999] for this

computation. The following BB technique allow solving nonconvex problem (3.17).

Theoretical framework of BB: The BB method involves two basic operations:

• Branching. The initial rectangle [p0, q0] with p0 = (l1, l2) and q0 = (u1, u2) is

partitioned into finitely many rectangles [p, q]. At each iteration, a partition

rectangle M = [p, q] is subdivided further into subrectangles by bisection τi0 =

(qi0 − pi0)/2 with i0 = argmaxi=1,2{(qi − pi)/10
2−i}.

• Bounding. Given a partition rectangle M = [p, q] one has to compute a number

L(M) such that

L(M) ≤ min
(τ1,τ2)∈M

F (τ1, τ2). (3.19)

Let Mκ be the candidate for further partition at iteration κ (Mκ is the one with

minimal L(M)). To ensure convergence, branching and bounding must be con-

sistent in the sense

min
(τ1,τ2)∈Mκ

F (τ1, τ2)− L(Mκ) → 0 as κ→ +∞. (3.20)
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Thus, the crucial step in the BB method is bounding. Since function F (τ1, τ2) is highly

nonconvex with unknown partial convexity structure such as d.c. (difference of two

convex functions) [Tuy, 1998], its bounding is not so easy. We use the ideas of mono-

tonic optimization [Tuy, 2000] to develop a bounding technique for realisation of BB

algorithm for problem (3.17).

3.3.2.1 Monotonic optimization-Based Bounding

Before going to monotonic optimization based bounding for function F (τ1, τ2) on a

rectangle [p, q] we recall some basic concepts of monotonic functions and properties

that will be frequently used in our development. A function f : R2
+ → R is said to be

increased if f(τ) ≥ f(τ ′) for all τ ≥ τ ′ ∈ R2
+. Function f := f1 − f2 with increasing

functions f1 and f2 is called d.m. (difference of two monotonic functions) [Tuy, 2000].

Obviously, a lower bound of such d.m. function f on [p, q] is

f1(p)− f2(q).

Suppose that α ≥ α′ ∈ Rn
+. Then αα

T − α′(α′)T ≥ 0 and so whenever x ∈ Rn
+,

αTxxx ≥ (α′)x & xT(ααT)x ≥ xT(α′(α′)T)x.

Now, using the above monotonic concepts, it is easily seen that for E1(ωi) defined by

(3.11) and (τ1, τ2) ∈ [p, q],

E1(ωi) ≥ Fi(Δε1,Δε2, ε∞)

:= xxxTΥi(q)xxx+ ξTi (p)xxx+ ai
(3.21)

for

Υi(q) =

⎛
⎜⎜⎜⎝

1
1+ω2

i
q2
1

1
1+ω2

i
q2
2

1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
1+ω2

i
q2
1

1
1+ω2

i
q2
2

1

⎞
⎟⎟⎟⎠

T

, ξi(p) = −2ai

⎛
⎜⎜⎜⎝

1
1+ω2

i
p2
1

1
1+ω2

i
p2
2

1

⎞
⎟⎟⎟⎠
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Considering E2(ωi), the monotonicity of its terms are based on the sign of their gradients

defined by
d

dτj

τj
1 + ω2

i τ
2
j

=
1− ω2

i τ
2
j

(1 + ω2
i τ

2
j )

2
, j = 1, 2. (3.22)

As 1− ω2
i τ

2
1 < 0 for all ωi and τ1 in their definition domain, the function τ1/(1 + ω2

i τ
2
1 )

is decreasing and
τ1

1 + ω2
i τ

2
1

≥
q1

1 + ω2
i q

2
1

as well as,

−
τ1

1 + ω2
i τ

2
1

≥ −
p1

1 + ω2
i p

2
1

.

Therefore, whenever (τ1, τ2) ∈ [p, q],

E2(ωi) ≥

(
ωiΔε1q1
1 + ω2

i q
2
1

+ min
τ2∈[p2,q2]

{
ωiΔε2τ2
1 + ω2

i τ
2
2

})2

+ b2i

−2bi

(
ωiΔε1p1
1 + ω2

i p
2
1

+ max
τ2∈[p2,q2]

{
ωiΔε2τ2
1 + ω2

i τ
2
2

})

:= Gi(Δε1,Δε2, ε∞)

= xxxTΨi(p, q)xxx+ ζi(p, q)
Txxx+ b2i (3.23)

with

Ψi(p, q) =

⎛
⎜⎜⎜⎜⎜⎝

ωiq1
1 + ω2

i q
2
1

min
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}

0

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

ωiq1
1 + ω2

i q
2
1

min
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}

0

⎞
⎟⎟⎟⎟⎟⎠

T

,

ζi(p, q) = −2bi

⎛
⎜⎜⎜⎜⎜⎝

ωip1
1 + ω2

i p
2
1

max
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}

0

⎞
⎟⎟⎟⎟⎟⎠

(3.24)

For each ωi, min and max functions in (3.24) admit the following analytical forms.

• Whenever 1
ωi

≤ p2, the gradient of the function τ2/(1 + ω2
i τ

2
2 ) defined by (3.22) is

non-positive, so it is decreasing and

min
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}
=

ωiq2
1 + ω2

i q
2
2

, max
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}
=

ωip2
1 + ω2

i p
2
2

.
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• Whenever 1
ωi

≥ q2,the gradient of the function τ2/(1 + ω2
i τ

2
2 ) is non-negative, so

it is increasing and

min
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}
=

ωip2
1 + ω2

i p
2
2

, max
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}
=

ωiq2
1 + ω2

i q
2
2

.

• Whenever 1
ωi

∈ [p2, q2], the gradient of the function τ2/(1+ω
2
i τ

2
2 ) is non-negative

on [p2, 1/ωi] and non-positive on [1/ωi, q2]. This means the function is increasing

on [p2, 1/ωi] and decreasing on [1/ωi, q2]. Consequently,

min
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}
= min

τ2∈{p2,q2}

{
ωiτ2

1 + ω2
i τ

2
2

}
,

max
τ2∈[p2,q2]

{
ωiτ2

1 + ω2
i τ

2
2

}
=

ωi/ωi

1 + ω2
i (1/ωi)2

= 0.5 .

In summary, a lower bound of F (τ1, τ2) in [p, q] is

L(p, q) := min
x=(Δε1,Δε2,ε∞)

N∑
i=1

(Fi(Δε1,Δε2, ε∞) +Gi(Δε1,Δε2, ε∞)) :

ε∞ ≥ ε0, Δε1 ≥ 0, Δε2 ≥ 0. (3.25)

By (3.21) and (3.23),

N∑
i=1

(Fi(Δε1,Δε2, ε∞) +Gi(Δε1,Δε2, ε∞)) =

xxxT(Υ(q) + Ψ(p, q))xxx+ (ξ(p) + ψ(p, q))Txxx+ γ, (3.26)

where

Υ(q) =

N∑
i=1

Υi(p), Ψ(p, q) =

N∑
i=1

Ψi(p, q),

ξ(p) =
N∑
i=1

ξi(p), ψ(p, q) =
N∑
i=1

ψi(p, q). (3.27)

Since both Υ(q) and Ψ(p, q) are obviously positive definite matrices, the lower bound

L(p, q) in (3.25) can be solved by the optimal value of the following simple three-

dimensional convex quadratic problem

L(p, q) = min
x=(Δε1,Δε2,ε∞)

xxxT(Υ(q) + Ψ(p, q))xxx+ (ξ(p)

+ψ(p, q))Txxx+ γ :

ε∞ ≥ ε0,Δε1 ≥ 0, Δε2 ≥ 0. (3.28)
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It is worth mentioning that as p↗ q,

Fi(Δε1,Δε2, ε∞) ↗ E1(ωi), Gi(Δε1,Δε2, ε∞) ↗ E2(ωi),

that leads to

L(p, q) ↗ F (q) as p↗ q (3.29)

which verifies the consistence condition (3.20) for the convergence of the corresponding

BB algorithm.

3.3.2.2 Branching and Bounding Algorithm

With the bounding developed in the previous subsection, the implementation of the

BB algorithm is as follows

• Initialisation. Start withMi = [pi, qi], i = 1, 2, ..., L. Set S1 = N1 = {M1,M2, ...,ML}.

Set κ = 1. Set μ = mini=1,2,...,M F ((pi + qi)/2).

• Step 1. For each M = [p, q] ∈ Nκ compute F ((p + q)/2) by (3.18). Update

current best value (CBV) μ → F ((p + q)/2) and current best solution τopt if

F ((p+ q)/2) < μ. Solve (3.28) to obtain L(M) = L(p, q).

• Step 2. Delete all M such that L(M) ≥ μ− ε (ε > 0 is a given tolerance). Let Rκ

be the set of remaining rectangles. If Rκ = ∅, terminate: μ is the optimal value

of (3.17) with tolerance ε, i.e. 0 ≤ μ − F ∗ ≤ ε, where F ∗ is the global optimal

value of (3.17).

• Step 3. Choose Mκ ∈ argmin{L(M) : M ∈ Rκ} and divide it into two smaller

rectanglesMκ,1,Mκ,2 according to the above bisection rule. LetNκ+1 = {Mκ,1,Mκ,2},

Sκ+1 = (Rκ \Mκ) ∪Nκ+1.

Set κ→ κ+ 1 and go back to Step 1.

The global convergence of the above algorithm is shown in the following theorem.
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Theorem 1 The above algorithm will terminate after finitely many iterations, yielding

the optimal value of (3.17) with tolerance ε.

Proof. The proof is similar to that for [Tuan and Apkarian, 2000, Th. 2]. Suppose

that the algorithm is infinite. By [Tuy, 1998, Th. 5.5], the above bisection rule with

the consistence condition (3.29) guarantee that the algorithm generates a sequence of

nested rectangles Mν = [pν , qν ] → M∗ = {p∗} such that L(Mν) ↗ F (p∗) ≥ F ∗. But

by construction procedure in Step 2, we have L(Mν) < F ∗ − ε, so F (p∗) ≤ F ∗ − ε, a

contradiction. �

3.3.3 Minimax optimization

Most contrasts between the normal and cancerous skin permittivities occur in the in-

terval [0.3, 0.8] THz of the refractive index [Bennett et al., 2011], [Wallace et al., 2006].

A drawback of the sum-of-square-error formulation (3.5) is that it does not always con-

trol the error distribution of the optimized DD model, i.e the errors between different

frequency ranges are not equal. Particularly, the performance of the simulation at the

low frequencies, where important contrast between normal and cancerous skin tissue

is present, is worse than that at the higher spectral range. To address this issue, a

more flexible minimax optimization also using the BB algorithm (BB-MNO), which

can control the error quality well in all frequencies, is introduced. Thus, it is expected

that the extracted DD parameters using this method should be more meaningful.

Derivation of the BB-MNO starts with dividing the frequency index setN = {1, 2, ..., N}

into two disjoint subsets N1 and N2 such that ωi ≤ ν, i ∈ N1 and ωi > ν, i ∈ N2 given

a threshold ν. In other words, {ωi, i ∈ N1} covers a lower frequency range, while

the set {ωi, i ∈ N2 := N \ N1} covers a higher frequency range. On the other hand,

the frequency-dependent complex permittivity exhibits a larger variation scale of its

imaginary part than its real part. Consequently, there is a difference in the error level

between these two index parts which could not be incorporated in (3.5). Therefore, the
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3.3 Global optimization-based Algorithms

so-called weight factors must be introduced to balance the error level between the real

and imaginary components. Accordingly we modify F (τ1, τ2) into

F (τ1, τ2) = F1(τ1, τ2) + F2(τ1, τ2) (3.30)

with

F1(τ1, τ2) =
∑
i∈N1

k11E1(ωi) + k21E2(ωi),

F2(τ1, τ2) =
∑
i∈N2

k12E1(ωi) + k22E2(ωi),

where k11, k21, k12, k22 are weight factors for the real and imaginary parts. Instead of

(3.16), the following minimax problem is considered,

min
τ=(τ1,τ2)

FMN(τ1, τ2) := max
j=1,2

Fj(τ1, τ2) : (3.6). (3.31)

Note that for each (τ1, τ2), FMN(τ1, τ2) is still computed by the following convex quadratic

problem

min
xxx,t

t : (3.5b), xxxT(Γj(τ1, τ2) + Λj(τ1, τ2))xxx+ (βj(τ1, τ2)

+χj(τ1, τ2))
Txxx+ γj ≤ t, j = 1, 2, (3.32)

for

Γj(τ1, τ2) :=
∑
i∈Nj

k1jΓi(τ1, τ2),

Λj(τ1, τ2) =
∑
i∈Nj

k2jΛi(τ1, τ2),

βj(τ1, τ2) =
∑
i∈Nj

k1jβi(τ1, τ2),

χj(τ1, τ2) =
∑
i∈Nj

k2jχi(τ1, τ2),

γj =
∑
i∈Nj

(k1ja
2
i + k2jb

2
i ), j = 1, 2 (3.33)

The above BB algorithm is still directly applicable for the global optimal solution of

minimax problem (3.31) with the lower bounding F̄ (p, q) in (3.28) replaced by the
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3.4 Numerical Results and Discussion

following convex quadratic problem

F̄ (p, q) = min
xxx,t

t : xxxT(Υj(q) + Ψj(p, q))xxx+ (ξj(p)

+ψj(p, q))
Txxx+ γj ≤ t, j = 1, 2, (3.34)

where

Υj(q) =
∑
i∈Nj

k1jΥi(p), Ψj(p, q) =
∑
i∈Nj

k2jΨi(p, q),

ξ(p) =
∑
i∈Nj

k1jξi(p), ψ(p, q) =
∑
i∈Nj

k2jψi(p, q), j = 1, 2.
(3.35)

3.4 Numerical Results and Discussion

In this section, simulation results obtained from the proposed algorithms are presented.

The data used for the simulation was extracted from the references [Pickwell et al., 2005;

Wallace et al., 2006] for the frequency band approximately between [0.2, 2] THz. This

data includes measured complex permittivities of human skin samples, both normal

and BCC. The published data is also necessary for result comparison in order to show

the algorithm improvement in optimizing the model-fitting procedure.

Each grinding-based optimization process uses 6400 grid points, corresponding toM =

80. Fig. 3.1-3.2 demonstrate the measured complex permittivities of normal skin

(NS) and BCC samples from [Pickwell et al., 2005], the simulated values with the fitted

DD model by this reference using NLS, and those by the grinding-based method. It is

obvious that the grinding-based technique provides a better fitting performance than

the reference, especially at the frequency range below 1 THz. Extracted values of the

DD parameters using the grind-based method are recorded in Table. 3.1.

As regards the BB-GO algorithm, although each term Fi(Δε1,Δε2, ε∞)+Gi(Δε1,Δε2, ε∞)

is a tight lower bound for E(ωi) (see (3.21) and (3.18)), their sum defined by (3.26) is

obviously much looser lower bound for the objective function F (τ1, τ2) of (3.5) on the

rectangle [p, q]. This fact should not be a surprise since F (τ1, τ2) is implicitly a frac-

tion of high order polynomials. Due to the convergence of the lower bound function in
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Figure 3.1: The real and imaginary part of the relative complex permittivities of normal
skin plotted in the range [0.15-1.68] THz from: the measured data of Pickwell et al.
[2005], the simulated spectra using the DD models obtained by Pickwell et al. [2005]
and the grinding-based algorithm

(3.29), the first step for the implementation of BB algorithm is to narrow down the area

for its branching and bounding. Thus, [p, q] is divided into few smaller rectangles. The

BB process is initialised with these rectangles. A rectangle Mκ = [pκ, qκ] selected for

the next iteration must simultaneously contain the minimum lower bound L(Mκ) and

the current best solution. Then, the BB algorithm restarts with the extended rectangle

M = [3
4
p, 5

4
q].

Fig. 3.3-3.4 depict the measured complex permittivities of normal skin and BCC sam-

ples from [Pickwell et al., 2005] and compare them with the DD simulations by the ex-

isting NLS and BB-GO. Overall, the global-optimization-based modelling clearly tracks

the measured values far better than the NLS-based approach of Pickwell et al. [2005].

The fitting quality of the double Debye model is especially improved significantly at
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Figure 3.2: The real and imaginary part of the relative complex permittivities of BCC
plotted in the range [0.15-1.68] THz from: the measurement of Pickwell et al. [2005],
the simulated spectra using the DD models obtained by Pickwell et al. [2005] and the
grinding-based algorithm

the lower frequencies by the proposed BB-GO. A consistent performance of the BB-GO

has been also seen in other skin samples from [Wallace et al., 2006] according to Fig.

3.5-3.6.

The extracted values of five DD parameters for various skin samples from the references

[Pickwell et al., 2005; Wallace et al., 2006] are presented in Table 3.1. In addition, sum-

of-square-error values (SSE) indicating the optimal values of the objective function in

(3.5) are also provided in this table to compare the fitting errors of the conventional

NLS, grinding-based and BB-GO methods. The DD parameters extracted by Pickwell

et al. [2005]; Wallace et al. [2006] using the NLS method are not quite optimal as their

simulations exhibit a large deviation from the measured complex permittivities at low

frequencies. The superiority of both the BB-GO and grinding-based methods over the
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Case Method (Δε1, εεε2, ε∞) (τ1, τ2) TSEV QPs

NS-1 NLS (10.5, 1.6, 2.6) (1.5, 0.06) 3.6 -
NS-1 Grinding (22.6, 1.7, 2.9) (4.1, 0.11) 0.3 6400
NS-1 BB-GO (21.8, 1.7, 2.9) (3.9, 0.11) 0.3 3970
BCC-1 NLS (13.4, 1.6, 2.7) (1.6, 0.06) 5.3 -
BCC-1 Grinding (31.6, 1.8, 3.0) (4.8, 0.11) 0.5 6400
BCC-1 BB-GO (31.9, 1.8, 3.0) (4.9, 0.12) 0.5 3880

NS(Case 266) Grinding (20.2, 1.7, 3.0) (3.9, 0.11) 0.6 6400
NS(Case 266) BB-GO (19.9, 1.7, 3.0) (3.8, 0.11) 0.6 510
BCC(Case 266) Grinding (29.4, 2.0, 3.0) (4.1, 0.11) 0.5 6400
BCC(Case 266) BB-GO (29.5, 2.0, 3.0) (4.1, 0.12) 0.5 690
NS(Average) Global (25.7, 1.8, 2.9) (4.8, 0.10) - -
NS(Average) BB-MNO (26.8, 1.7, 3.0) (4.9, 0.11) - -
BCC(Average) BB-GO (72.3, 2.0, 3.0) (11.0, 0.13) - -
BCC(Average) BB-MNO (55.3, 1.8, 3.1) (8.8, 0.14) - -

Table 3.1: The double Debye parameters extracted from the measured complex per-
mittivities of the skin samples (NS-1 and BCC-1 from [Pickwell et al., 2005]; NS(Case
266), BCC(Case 266), NS(Average), BCC(Average) from [Wallace et al., 2006]) by the
grinding-based algorithm and BB-GO, and those from these references.

NLS is also revealed by their SSEs. Particularly, the SSEs obtained by the global

optimization-based methods are orders of magnitude lower than those by the NLS.

The difference in SSE between the BB-GO and grinding-based methods is very minor,

indicating their similar performance in terms of fitting error. However, it is observed

that even very small calibration of SSE often results in considerable differentiation of

the corresponding five Debye parameters. This fact makes global optimization highly

desirable.

The number of called quadratic problems (QP) corresponding to the simulations of the

grinding-based and BB-GO algorithm are listed in the last column of Table 3.1. As

mentioned earlier, it is found that the grinding-based algorithm requires computation

of the quadratic objective function of (3.5) at at least 80×80 = 6400 grid points to

ensure the optimality of the solution. Thus, each simulation with the grinding-based

technique involves 6400 QPs as can be seen in Table 3.1. It is also apparent that

the BB-GO approach is much more computationally efficient than the grinding-based
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Figure 3.3: The real and imaginary part of the relative complex permittivities of normal
skin: the measurement of Pickwell et al. [2005] and the simulated spectra using the DD
models obtained by Pickwell et al. [2005] and the BB-GO

one. Indeed, the number of required quadratic problem solvers for implementation of

the former is approximately a half or quarter as much as that for implementation of

the latter. For instance, the average computational time for each QPs is about 1/7

second if the computer with Intel Core i5-2400 CPU 3.10 GHz processor and 4.00 GB

RAM is utilised for the simulation. Comparing between normal and BCC skin samples,

the values of the five double Debye parameters corresponding to these samples are far

different, thus suggesting that the DD model can be potentially used for supporting

skin cancer detection. This application of the optimal double Debye modelling still

requires further studies.

To accurately assess the fitting performance of the global optimization-based algo-

rithms, Table 3.2 provides the numerical values of the so called adjusted R-square
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Figure 3.4: The real and imaginary part of the relative complex permittivities of BCC:
the measurement of Pickwell et al. [2005] and the simulated spectra using the DD
models obtained by Pickwell et al. [2005] and the BB-GO

(R2
adj) (see [MATLAB, 2012]), which presents the goodness-of-fit (GOF) of numerical

models, for the simulations of various skin samples. The value R2 = 1 corresponds

to the error-free (perfect) fitting. All simulations by the BB-GO provide excellent fit-

ting with the corresponding R2
adjs of around 0.99. One can also see that R2

adjs for the

DD models extracted by Pickwell et al. [2005] are considerably smaller than that by

the BB-GO, especially for the real part �(ε̃DD). Furthermore, the distributions of the

fitting errors for the DD simulation with the BB-GO also undergoes the Kolmogorov-

Smirnov test by computing its critical p-values (see e.g. [SPSS, 2011; Lilliefors, 1967]).

In most cases, these values are smaller than the significance level of 0.05, which means

that these distributions are not normal. To analyze the fitting error property of the

BB-GO simulations, the Breusch-Pagan and Koenker test under the null hypothesis
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Figure 3.5: The real and imaginary part of the relative complex permittivities of normal
skin (case 266) of Wallace et al. [2006]: the measurement and the simulated spectra
using the DD models obtained by the BB-GO

of homoscedasticity [Breusch and Pagan, 1979; Koenker, 1981] is carried out by us-

ing SPSS Statistics software [SPSS, 2011]. Its p-values corresponding to both the real

(�(ε̃DD)) and imaginary (�(ε̃DD)) parts of the optimal DD models are provided in Ta-

ble 3.3. The fitting errors for �(ε̃DD) are likely homoscedastic as their corresponding

p-values are larger than the significance level of 0.05. The fitting errors are thus likely

multiplicative in these cases. In contrast, the fitting errors for �(ε̃DD) are likely het-

eroscedastic because their corresponding p-values are less than the significance level of

0.05. The fitting errors are then likely additive.

The frequency range 0.3–0.8 THz is of great interest as it provides the most contrast in

complex permittivities between normal and cancerous skin tissues. Thus, it is desirable

to have the computed model strictly track its measurement in this spectral range.
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Figure 3.6: The real and imaginary part of the relative complex permittivities of BCC
(case 266) of Wallace et al. [2006]: the measurement and the simulated spectra using
the DD models obtained by the BB-GO

Therefore, unsatisfactory tracking may lead to loss of useful information for recognizing

changes in tissue composition, especially free water, due to carcinogenesis. For instance,

Figure 3.7, demonstrates a clear mismatch between the Debye model computed by

total square minimisation and its measurement at the interested frequency band [0.3–

0.8] THz. To conduct the BB-MNO simulation, values of the weights kij, i, j ∈ [1, 2]

and the frequency threshold ν for dividing the frequency index set are chosen based on

the mismatched area of practical cases. Particularly, BB-MNO requires the following

adjustments of these parameters: ν = 0.85; k11 = k12 = 4 and k21 = k22 = 1 for the

case 266 of [Wallace et al., 2006]; k11 = k12 = 3 and k21 = k22 = 1 for the average case

of [Wallace et al., 2006]. The plots of double Debye models simulated by the BB-MNO

in Fig. 3.7-3.8 demonstrate an essentially better tracking quality for their measured

values at the frequencies lower than 1 THz. The contrast between normal skin and BCC
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Case Method
R2

adj

�(ε̃DD) �(ε̃DD)
NS-1 BB-GO 0.99 0.99
NS-1 NLS 0.73 0.95
BCC-1 BB-GO 0.98 0.99
BCC-1 NLS 0.67 0.95

NS(Case 266) BB-GO 0.99 0.98
BCC(Case 266) BB-GO 0.98 0.99
NS(Average) BB-GO 0.98 0.99
BCC(Average) BB-GO 0.96 0.98

Table 3.2: Values of R2
adj corresponding to fitting the real and imaginary parts of the

measured complex permittivities (NS-1 and BCC-1 from [Pickwell et al., 2005]; NS(Case
266), BCC(Case 266), NS(Average), BCC(Average) from [Wallace et al., 2006]) are
compared between the BB-GO and NLS.

Case
p-value

�(ε̃DD) �(ε̃DD)
NS-1 0.40 9.0E-06
BCC-1 0.11 1.2E-07

NS (Case 266) 0.55 2.0E-06
BCC (Case 266) 0.45 5.1E-03
NS (Average) 0.72 1.3E-05
BCC (Average) 0.25 3.2E-06

Table 3.3: p-value of the Breusch-Pagan and Koenker test for the real and imagi-
nary parts of the extracted DD models using the BB-GO for the skin samples (NS-1
and BCC-1 from [Pickwell et al., 2005]; NS(Case 266), BCC(Case 266), NS(Average),
BCC(Average) from [Wallace et al., 2006]).

is obviously revealed in these figures, especially in the frequency band [0.3–0.8] THz,

hence paving the way for potential application of the BB-MNO in skin classification.

Furthermore, as can be seen in Figure 3.9, in the whole usable range up to 2 THz,

although the performance of the BB-MNO may not be as good as that of BB-GO, the

former still maintains an acceptable tracking. In short, the proposed BB-GO method

aims at improvement of the tracking quality in a selected spectral range in which the

most information of skin dielectric response can be explored.
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Figure 3.7: The real part of the relative complex permittivities of normal skin and BCC
(average) from [Wallace et al., 2006]: the measurement and the simulated spectra using
the DD models obtained by the BB-GO and the BB-MNO

3.5 Conclusion

Dielectric properties of human skin tissue in the terahertz frequencies have been de-

scribed well by the double Debye model. Accurately fitting the measured complex

permittivities to this model and extracting the model parameters remains a sufficient

condition to guarantee the precise transformation of information from the extremely

high-dimensional data to the 5-dimension space of the DD model. Apparently, this

transformation should be potential for cancer classification as the contrast in the ex-

tracted DD parameters is found between normal skin and BCC. However, this sugges-

tion requires further studies with a larger database for a confirmation. At the current

stage, the proposed optimization algorithms, such as the grinding-based technique and

BB-GO, for the DD parameter extraction are essential for better understanding and
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Figure 3.8: The imaginary part of the relative complex permittivities of normal skin
and BCC (average) from [Wallace et al., 2006]: the measurement and the simulated
spectra using the DD models obtained by the BB-GO and the BB-MNO

exploiting dielectric properties of human skin. It has been shown that the dielectric

response of THz waves in skin tissue can be approximated well by the double Debye

model if its five deterministic parameters are optimally extracted. The optimal pa-

rameter extraction is itself a challenging task but has been handled efficiently by the

developed algorithms of global optimization.
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Figure 3.9: The magnitude of the relative complex permittivities of normal skin and
BCC in the average case of Wallace et al. [2006] plotted by: the measurement and
simulations by the BB-GO and the BB-MNO
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4.1 Introduction

4.1 Introduction

The first aim of the study in this chapter is to provide comprehensive statistical analysis

of the double Debye parameters in terms of differences between normal skin and BCC.

In particular, the optimal values of these parameters are obtained by applying the BB-

GO algorithm introduced in section 3.3.2 to fitting the complex permittivities of human

skin samples, both normal and BCC. A tighter constraint than that previously applied

for this algorithm is proposed to avoid overfitting of the model, which, in turn, reduces

the variance of the extracted parameters. They are then statistically analysed through

the two-tailed unpaired Student’s t-test, normalized mean difference and correlation

analysis. The second aim is to pinpoint the potential parameters among them for skin

cancer classification. Analysis of the receiver operating characteristic (ROC) curves of

these classifiers allows us to obtain those having the best capability of discriminating

between normal skin and BCC. Support vector machines (SVM) is employed to classify

the data using the most potential classification parameters of the double Debye model.

The classification accuracy is assessed by leave-one-out cross-validation and random-

subsampling cross-validation. The positive outcomes of this study provide the first

glance at the potential of the double Debye parameters for improving the contrast and

resolution of THz imaging in BCC.

The structure of this chapter is as follows. Section 4.2 introduces the applied data

and fitting procedure. Section 4.3 presents statistical analysis of the double Debye pa-

rameters including difference analysis and correlation between normal skin and NMSC.

Discrimination capability of these parameters and their classification performance in

the SVM classification are covered in Section 4.4. Finally, the main contributions are

summarized in section 4.6.
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4.2 Model Parameters Extraction

4.2.1 Examined Data

The data used in this study has been previously described in [Wallace et al., 2006].

In particular, skin tissue samples were excised from ten patients undergoing MMS at

the Dermatology Department, Addenbrooke’s Hospital, Cambridge, United Kingdom.

There are thirteen samples containing BCC and their percentages of BCC were esti-

mated by an expert histopathologist. Ten normal skin samples were obtained from

the adjacent areas to the tumour site. The TPI spectra1000 (Teraview Limited, Cam-

bridge, United Kingdom) was used to conduct all spectroscopy measurements. This

instrument was described in detail by Taday and Newnham [2004]. The TPI system

was operated in transmission mode to collect the time domain data with 30 scans per

second. Fourier transformation allows one to obtain the frequency domain data from

the received signals. The spectral data facilitates retrieving both amplitude and phase

information which is used to calculate the frequency-dependent refractive index and

absorption coefficient of the sample. The reader is referred to [Wallace et al., 2006] for

more details of the sample preparation and measurement procedure.

4.2.2 Extraction Procedure

The numerical value εm(ω) of the frequency-dependent complex permittivity is obtained

by using the formula

εm(ω) = (n(ω)− j
cα(ω)

2ω
)2, (4.1)

where n(ω) and α(ω) are the measured frequency-dependent refractive index and frequency-

dependent absorption coefficient. To fit the measured data εm(ω) with its double Debye

modelling in (3.1), we minimize the following sum of square errors between εm(ωi) and
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4.2 Model Parameters Extraction

their predicted values εDD(ωi) according to the equation (3.1):

E =
N∑
i=1

|εDD(ωi)− εm(ωi)|
2. (4.2)

Here N is the number of data points used to fit the model over the frequency range

(0.2–1.8) THz. This optimization problem is rewritten as

min
εs,ε2,ε∞,τ1,τ2

E : ε∞ ≥ 1, εs ≥ ε2, ε2 ≥ ε∞,

p1 ≤ τ1 ≤ q1, p2 ≤ τ2 ≤ q2.
(4.3)

Here [p1, q1] and [p2, q2] are chosen to cover all practical values of τ1 and τ2. The BB-GO

algorithm introduced in section 3.3.2 is applied to achieve the optimal solution. The

following brief description of this algorithm is basic to proposing a change in the applied

constraint. The problem (4.3) is transferred into a parametric optimization problem in

two variables (τ1, τ2)

min
τ1,τ2

F (τ1, τ2) : p1 ≤ τ1 ≤ q1

p2 ≤ τ2 ≤ q2.
(4.4)

Here, F (τ1, τ2) is the optimal values of the following convex quadratic optimization

min
x=(εs,ε2,ε∞)

xxxT(Γ(τ1, τ2) + Λ(τ1, τ2))xxx+ (β(τ1, τ2) + χ(τ1, τ2))
Txxx+ γ :

ε∞ ≥ ε0, εs ≥ ε2, ε2 ≥ ε∞. (4.5)

Here, the coefficient matrices of this objective quadratic function are specified in section

3.3.2. For fixed (τ1, τ2), (4.5) can be effectively solved by an existing quadratic solver

such as SeduMi [Sturm, 1999]. The branch-and-bound algorithm described in section

3.3.2.2 is used for performing a global search for the optimal solution (τ1, τ2) of (4.4).

More details of the extraction procedure are thoroughly described in section 3.3.2.

However, since the optimization problem (4.4) depends on the constraints of (τ1, τ2),

it is essential to constrain their ranges. The previous results of Pickwell et al. [2005];

Truong et al. [2013] used (p1, q1) = (1, 20) ps for τ1 and (p2, q2) = (50, 150) fs for τ2

for ex vivo data, which lead to the high variance and numerically ill-posedness of the
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extracted values εs. Taking this undesired consequence into account, we found that

the overfitting occurs in cases that the spectra of εm diverge from the standard form of

the human skin complex permittivity in some parts of the examined frequency range.

Particularly, because εs highly correlates with the variation of τ1, a large value of the

latter will result in increasing the former. In fact, it is observable that the values of

τ1 higher than five picoseconds only provide minor improvements in terms of fitting

quality, leading to the high variance of εs. Therefore, in the present study, we constrain

τ1 to the narrow range [1–5] ps. The extracted values of the double Debye parameters

for normal skin and BCC samples were averaged with standard deviations and recorded

in Table 4.1. The difference in the fitting quality between using τ1 ∈ [1, 5] in this study

Sample εs ε2 ε∞ τ1(ps) τ2(ps)

Normal 24.97 ± 2.54 4.63 ± 0.16 2.89 ± 0.14 3.82 ± 0.49 0.11 ± 0.01
BCC 33.33 ± 5.48 4.80 ± 0.20 2.90 ± 0.15 4.35 ± 0.67 0.11 ± 0.01

Table 4.1: The double Debye parameters.

and τ1 ∈ [1, 20] in [Truong et al., 2014] is only 0.2% on average based on comparing

their adjusted R-square values for the goodness of fit. However, the variance of εs is

significantly smaller as compared with that in [Truong et al., 2014]. Further statistical

analysis presented in the following sections will also support the superiority in the

modified extraction approach with the stricter constraint of τ1.

4.3 Statistical Analysis

In this section, statistical methods are used to analyse the double Debye parameters

including εs, ε2, ε∞, τ1, τ2, the imaginary parts of the complex permittivity estimated

by the double Debye model (denoted by �(εDD)), and the imaginary parts of the two

Debye relaxation terms (respectively denoted by �(D1) and �(D2) with D1 = (εs −

ε2)/(1 + jωτ1) and D2 = (ε2 − ε∞)/(1 + jωτ2) ).
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4.3.1 Student t-test

Two-tailed independent samples Student’s t-test is used to determine the statistical

differences between normal skin and BCC samples for the eight aforementioned pa-

rameters of the double Debye model and the measured complex permittivities [Altman,

1991; Salomatina et al., 2006]. For this test, null hypothesis refers to the statement that

statistical difference in means of two sample groups is not significant. The unknown

variances of these subjects are also taken into account by the t distribution. The so-

called p value with a critical value, which is taken to be 0.05 in most practical cases,

allows assessment of the null hypothesis. The p-value represents the probability that

we observe no difference between two groups in the data. The t-test outcome giving a

p-value below the threshold is sufficient to reject the null hypothesis as well as to admit

the statistical significance of the difference.

Fig. 4.1 presents the variation in p-values for the real and imaginary part of the mea-

sured complex permittivities εm over the frequency range from 0.2 to 1.8 THz when

we compare normal skin with BCC. The p-values for the imaginary part �(εm) is con-

sistently lower than the critical value 0.05 over the frequency range while those corre-

sponding to the real part �(εm) slightly vary around 0.05. The interesting differences

in average values of the double Debye parameters can be observed in Table 4.1. To

analyse the statistical significance of these differences, Table 4.2 shows the p-values

corresponding to the five parameters of the double Debye model. Accordingly, εs can

DD εs ε2 ε∞ τ1 τ2
p-value < 0.001 0.05 0.78 0.06 0.55

Table 4.2: The p-values for the double Debye parameters to illustrate the significance
of difference between normal skin and BCC samples.

provide the statistical significance of difference between normal skin and BCC samples

although such the difference is not observed in the remaining parameters. This statis-

tical result agrees well with the previous analysis in literature. Particularly, Wallace
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Figure 4.1: The p-values for comparing normal skin and BCC by using the real and
imaginary part of the measured complex permittivity εm over the frequency range of
0.2-1.8 THz. The dotted horizontal red line indicates a p-value equal to 0.05.

et al. [2006] found that the absorption coefficient α in the frequencies below 1 THz offers

the highest difference between diseased and normal tissue while εs as the low frequency

limit parameter is mainly influenced by the change in α. This provides a comprehensive

explanation for the significant difference found in εs [Pickwell et al., 2005]. Moreover,

τ1 and τ2 are also so found dependent on α but their small values may affect their

discrimination ability. Conversely, the t-test outcomes of ε2 and ε∞ may be interpreted

by their less sensitivity to α than the refractive index n.

In Fig. 4.2, the p-values for �(εDD), �(D1), and �(D2) are plotted versus the frequency

range [0.2− 1.8] THz. Accordingly, all these Debye parameters can provide significant

differences between normal skin and BCC due to their p-values below 0.05 over this

whole frequency range. Several bumps in the p-values of �(εm) (in Fig 4.1) are not seen
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Figure 4.2: The p-values for comparing normal skin and BCC by using the values of
�(εDD), �(D1) and �(D2) respectively over the frequency range of 0.2-1.8 THz. The
dotted horizontal red line indicates a p-value equal to 0.05.

in that of �(εDD) because the double Debye model may smooth out some variations

in �(εm). The similar response of �(εm) in Fig. 4.1 and �(εDD) in Fig. 4.2 indicates

the capability of the double Debye model to maintain the significant difference between

normal skin tissue and BCC in complex permittivity.

4.3.2 Normalized Percentage Difference in Mean

While the t-test can facilitate the analysis of potential differences between normal skin

and BCC in the DD parameters, the normalized percentage difference in means is

capable of assessing the level of these differences. The normalized percentage differences

in εs, ε2 , ε∞, τ1, τ2 are presented in Table 4.3. εs shows 33.5% of the difference which

is the highest among the examined DD parameters. This result indicate that εs is
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4.3 Statistical Analysis

DD εs ε2 ε∞ τ1 τ2
Difference(%) 33.49 3.64 0.63 13.96 2.91

Table 4.3: The normalized percentage difference in means of the double Debye param-
eters between the normal skin and BCC samples.

the most sensitive feature for skin cancer discrimination. Fig. 4.3 demonstrates the
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Figure 4.3: Normalized percentage difference between normal and cancerous skin tis-
sues in mean of the measured absorption coefficient, the refractive index, and complex
permittivity.

normalized percentage differences in �(εm), �(εDD), �(D1) and �(D2) between healthy

and BCC samples over the frequency range [0.2–1.8] THz. According to this figure,

�(εDD), �(D1) and �(D2) obtain the highest percentage differences of 22.5%, 23.5%,

12.5% respectively at 0.2 THz while the difference in �(εm) reaches its peak of 23.2%

at 0.5 THz. The percentage differences in �(εDD) and �(D2) notably reduce at higher

frequencies while �(D1) practically retains its contrast level throughout the spectral

range.
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4.3.3 Correlation Analysis

With the differences found in subsections 4.3.1 and 4.3.2, it is interesting to investigate

how the parameters of the double Debye model vary with the percentage tumour content

in these samples. The Pearson’s correlation coefficients measuring the linear dependence

between the double Debye model parameters εs, ε2, ε∞, τ1, τ2 and the BCC percentage

are recorded in Table 4.4. Accordingly, εs shows a good correlation r = 0.70 with

DD εs ε2 ε∞ τ1 τ2
Correlation 0.70 0.51 -0.11 0.37 0.15

Table 4.4: The Pearson’s coefficient of correlation between each of the double Debye
parameters and the sample tumour content.

the percentage tumour content of samples while the correlations for the remaining

parameters are trivial. These findings agree well with the previous analysis of difference

in εs.

The Pearson’s correlation coefficients of �(εm), �(εDD), �(D1) and �(D2) with the per-

centage tumour content were calculated at each examined frequency. The correlation

responses of these parameters over the range from 0.2 to 1.8 THz are presented in Fig.

4.4. Accordingly, �(D) and �(D1) shows fairly stable responses over the examined

frequencies with the minimum correlations of 0.78 and 0.77 respectively while the cor-

relation of �(D2) increases with frequency and reaches the maximum of only 0.67. The

correlation of �(εm) is generally similar to that of �(D) and �(D1) in the low frequency

range (below 1.2 THz) but disperses strongly at higher frequencies. Furthermore, the

high correlation of these parameters with tumour content justifies the analysis of differ-

ence between normal and BCC in previous subsections. The low correlation of �(D2)

also reflects its analysis results in the t-test and normalized percentage difference to a

certain extent.
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Figure 4.4: The Pearson correlations of �(D1), �(D2), �(εDD) and �(εm) with the
tumour percentage content in skin samples.

4.3.4 ROC analysis

The parameters of the double Debye model demonstrate significant differences between

normal and diseased skin tissue as well as correlate well with the tumour percentage

content of skin samples. In this section, a further test of their potential for classification

between diseased and healthy tissue is carried out. ROC analysis is a common tool to

investigate the classification accuracy in medical community [Fawcett, 2004]. Regarding

its mechanism, a threshold value chosen by averaging two consecutive instances of

original data is used to divide the data into two separate sets. Then, this classification is

compared with tissue pathology to determine the sensitivity and specificity. In the ROC

curve, 1-specificity is plotted versus sensitivity to describe the trade-offs in classification

accuracy of a classifier/variable. For instance, Fig. 4.5 shows the ROC curves of εs, ε2,

ε∞, τ1 and τ2. According to this figure, only the ROC curve of εs is completely above the
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Figure 4.5: ROC curves of εs, ε2, ε∞, τ1 and τ2. The dotted line in red highlights the
no-discrimination line.

diagonal line, thus confirming the discrimination capability of this classifier. In contrast,

the interception of the ROC curves for ε2, ε∞, τ1, τ2 and the no-discrimination line at

some points indicates their discrimination deficiency. This result fully matches with

the statistical analysis of difference presented in Section 4.3.

To compare the classifiers, we employ the area under the ROC curve (AUC). AUC =

1 represents perfect discrimination while the AUC of any realistic classifier should not

be lower than 0.5 (random chance). Table 4.5 provides the calculated AUCs of the five

double Debye parameters. The averaged AUCs of �(D1), �(D2), �(εDD) and �(εm)

over the examined frequency range are also recorded in Table 4.5. While εεεr and �(D1)

shows the highest discrimination potential among the investigated parameters, the rest

are still prominent for classification due to the slight differences in AUC between these

parameters. Furthermore, the AUC values of �(D1), �(εDD) and �(εm) were plotted
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DD εs ε2 ε∞ τ1 τ2 �(D1) �(D2) �(εDD) �(εm)

AUC 0.93 0.72 0.51 0.76 0.58 0.93 0.79 0.91 0.89

Table 4.5: The AUCs for the five DD parameters and the AUCs averaged over the
entire frequency range from 0.2 to 1.8 THz for �(D1), �(D2), �(εDD), �(εm) .
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Figure 4.6: The areas under the ROC curves of �(εm), �(εDD) and �(D1) over the
frequency range (0.2− 1.8) THz.

over the range 0.2–1.8 THz in Fig. 4.6. According to this figure, the AUCs of �(D1),

�(εDD) and �(εm) simultaneously achieve their corresponding highest values at 0.5 THz.

4.4 Classification Methodologies

As the aforementioned statistical and ROC analysis facilitate the identification of poten-

tial classification variables, it is essential to examine them with a practical classification

procedure that includes creating a rule for a training set of data and using the rule to
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classify a testing set of data. Two different methods, namely pattern recognition via

linear programming (LP) and support vector machine (SVM) classification algorithm,

were employed to perform the classification with the double Debye parameters in our

study. Then, the classification accuracies were estimated by the cross-validation (CV)

technique.

4.4.1 Linear Programming

The linear programming-based diagnosis system is based on determining a linear dis-

criminant function to separate the two distinct groups of the data [Bennett and Man-

gasarian, 1992; Mangasarian et al., 1995]. This method targets at finding a plane

defined by xTw = γ to separate the data points x ∈ R
n with n indicating the number

of applied features. w ∈ R
n and γ are the constants of this linear function. Let H ⊂ R

n

be a set of H data points for diseased tissue and M ⊂ R
n be a set of M data points for

normal tissue. This plane will strictly separate these two groups if and only if

xTw ≥ γ + 1 ∀x ∈ H and xTw ≤ γ − 1 ∀x ∈ M. (4.6)

However, these inequalities are not always achievable due to the linear inseparability

of the tested data. Therefore, instead of completely-separating planes, we seek a plane

which has minimal violations between the two data groups. Let y = (y1, y2, ..., yH) ∈ R
+

and z = (z1, z2, ..., zM) ∈ R
+ respectively represent these violations of H and M. As a

result, the optimal approximately-separating plane can be obtained through minimizing

the average total violations as being described in the following optimization problem,

min
y,z,w,γ

1
H

∑H

h=1 yh +
1
M

∑M

m=1 zm :

xThw − yh ≥ γ + 1 ∀xh ∈ H,

xTmw − zm ≤ γ − 1 ∀xm ∈ M,

yh ≥ 0, zm ≥ 0, w ≥ 0.

(4.7)

Obviously, y = 0 ∈ R
H and z = 0 ∈ R

M in (4.7) means the plane xTw = γ separates

these two sets H and M. The constraint w ≥ 0 is added to the original problem
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in [Mangasarian et al., 1995] due to the fact that the values of all the double Debye

parameters for BCC samples are expected to be higher than those for normal samples.

The problem (4.7) can be easily solved by the solver SeduMi [Sturm, 1999]. Then, the

obtained optimal linear plane will be tested with the testing data for its capability of

separating the cancer and healthy groups. A data point which satisfies the inequality

xTw > γ are labelled as a diseased case or vice versa.

4.4.2 Support Vector Machine

The support vector machine (SVM) is among the best supervised learning algorithm.

The SVMs identifies the decision boundary separating two classes of data in a multi-

dimensional feature space. The separating hyperplane is optimized with maximal geo-

metric margin of support vectors between the classes. More details of SVM are thor-

oughly presented in [Burges, 1998]. For this study, the popular SVM package introduced

by Chang and Lin [2011] with the Matlab implementation is utilised to perform the

classification. Among kernel functions used to fit the hyperplane with non-linear deci-

sion surfaces to the data, the Gaussian radial basic function (RBF) is chosen to perform

our classification. In fact, this function provides a less complicated approach compared

to the other kernels since it only requires searching one kernel parameter γ. In addi-

tion, as the data in this study contains non-separable cases, there is a need to optimize

the cost parameter C, also called soft margin parameter, which controls the trade-off

between complexity and the number of nonseparable cases. Grid-search was applied to

select the optimal values of the two parameters (C, γ) in order to achieve the highest

classification accuracy. Eventually, the trained SVM model using the RBF with respect

to the chosen (C, γ) was assessed with the testing data to predict the accuracy of the

classifier.

79



4.4 Classification Methodologies

4.4.3 Accuracy Estimation

Cross-validation (CV) is currently one of the most common methods to predict the

true accuracy of a classier as well as select a classification model in supervised machine

learning algorithms [Kohavi, 1995]. Indeed, CV reveals an estimation of the true error

rate of the classifier thanks to the mechanism that keeps holding out a part of data set

for testing and training the model with the rest of the data a limited number of times

[Fisher and van Belle, 1993]. While different types of CV methods offer different trade-

offs between bias and variance of the accuracy, the purpose of using CV is to decide upon

the most appropriate method. Particularly, leave-one-out cross-validation (LOOCV)

and repeated random subsampling cross-validation (RRSCV) were chosen to assess the

classification accuracy of the proposed classifiers. LOOCV is the most computational

form of the well-known k-fold CV, which requires the k training-testing times equivalent

to the size of data. This method uses most of data to train the model and testing

with only one left-out data point, thus providing an un-biased estimation of accuracy

[Cawley and Talbot, 2003]. On the other hand, RRSCV allows leaving more data for

testing and, as a result, reduces the variance of the predicted accuracy. Nonetheless,

this method makes inefficient use of the data that is usually less than that in our

expectation. The common ratio that 2/3 of the data is randomly held out for training

and the remaining 1/3 of the data is for testing is chosen to estimate the RRSCV

accuracy. The output of LOOCV and RRSCV includes the average values of cross-

validation accuracy, sensitivity, and specificity. The number of training-testing times

is equivalent to data size in the case of leave-one-out while it needs to be sufficiently

large to guarantee a stable estimation in the case of random-subsampling.

80



4.5 Results and Discussion

4.5 Results and Discussion

The five double Debye parameters (εs, ε2, ε∞, τ1, τ2) are investigated in terms of their

classification performance with the applied LP and SVM. In addition, the intensive sta-

tistical analysis and the ROC analysis in section 4.3 support selection of the most novel

frequency for each of the frequency-dependent parameters including �(D1), �(D2),

�(εDD), and �(εm) to classify the skin cancer. To be more specific, �(D1) and �(D2)

are assessed at 0.2 THz (respectively denoted by �(D1)0.2 and �(D2)0.2) while the fre-

quency 0.5 THz is considered for �(εDD) and �(εm) (respectively denoted by �(εDD)0.5

and �(εm)0.5). These parameters together with the DD parameters are now considered

as classification parameters.

For the RRSCV, the accuracy measures are averaged with respective standard devia-

tions over 1000 of repeated training-testing times with 2/3 of the dataset (15 samples)

held out for training and the remaining data (8 samples) used for testing. The training

set and testing set are stratified to contain the same proportion of normal and diseased

samples as the stratification in cross-validation can generally improve the robustness

in terms of variance and bias as compared to regular cross-validation [Kohavi, 1995].

Each classification parameter is considered as an indicator of BCC in the LP and SVM

classification process. Based on the cross-validation, we can compare the classifica-

tion capability between the classification parameters as well as between LP and SVM

classifiers.

According to Table 4.6, εs is the best classification variable with the LP due to its

highest LOOCV and RRSCV accuracies among the proposed single parameters. Com-

bination of εs and ε2 in the LP classification offers an improvement in LOOCV up to

95.7%. However, incorporating more DD parameters, especially ε∞, τ1 and τ2, into this

combination causes overtraining, hence leading to a deterioration in classification accu-

racy. For example, combination of the three features (εs, ε2, ε∞) in the LP classification

only provides the LOOCV of 91.3% and RRSCV of 83.5% which are considerably lower
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Feature LOOCV RRSCV
εs 87.0±34.4 89.2±7.7
ε2 69.6±47.1 69.4±11.6
ε∞ 47.8±51.1 48.3±8.6
τ1 69.6±47.05 65.6±12.7
τ2 56.5±50.5 43.3±9.9
εs, ε2 95.7±20.9 89.4±9.1
εs, ε2, ε∞ 91.3±28.8 83.5±12.8
εs, ε2, ε∞, τ1 91.3±28.8 82.5±13.0
εs, ε2, ε∞, τ1, τ2 91.3±28.8 82.8±12.4
�(D1)0.2 78.3±42.2 80.6±12.0
�(D2)0.2 78.3±42.2 76.3±12.0
�(εDD)0.5 82.6±38.8 84.2±10.4
�(εm)0.5 87.0±34.4 85.6±10.6

Table 4.6: The estimated accuracies (%) with their standard deviations by LOOCV and
RRSCV for applying the double Debye parameters with the LP algorithms to classify
the normal skin and BCC samples.

than 95.6% and 89.4% of (εs, ε2). �(D1)0.2 and �(D2)0.2, �(εDD)0.5 and �(εm)0.5 also

offer good classification accuracies. The fairly close value of LOOCV to RRSCV of

�(εm)0.5 confirms the true accuracy of the skin cancer classification using this feature.

For the SVM classification, Table 4.7 demonstrates the LOOCV and RRSCV values

with their standard deviations for these parameters corresponding to applying the SVM

classification algorithm. The cross-validation values obtained from the LOOCV are

higher than those from the RRSCV in most cases. Furthermore, the higher standard

deviation of the LOOCVs than that of RRSCVs is due to the fact that more data

is left out in the leave-one-out method than its counterpart. As LOOCV makes the

most efficient use of the data for training, these outcomes indicate that more training

data can improve the prediction accuracy. Therefore, the true classification accuracy

in this case may be closer to the LOOCV if the size of the training data is sufficiently

large. For each classification variable, the best SVM parameters C, γ selected by the

grid-search corresponding to each cross-validation method were presented in Table 4.7.

The highest LOOCV at 95.7% provided by �(εDD)0.5 indicates that this parameter is
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Parameters LOOCV (C, γ) RRSCV (C, γ)
εs 91.3±28.8 (0.25, 2) 90.9±8.8 (0.5, 2)
ε2 69.6±47.1 (1, 1) 61.1±12.1 (64, 0.125)
ε∞ 60.9±49.9 (32, 16) 50 (0.25, 1)
τ1 73.9±44.9 (8, 0.25) 65.6±16.3 (64, 0.25)
τ2 39.1±49.9 (0.25, 0.125) 50 (0.25, 1)
εs, ε2 95.7±20.9 (2, 1) 86.9±12.4 (8, 0.0625)
εs, ε2, ε∞ 95.7±20.9 (32, 0.5) 88.0±11.6 (16, 0.5)
εs, ε2, ε∞, τ1 95.7±20.9 (64, 0.125) 86.6±13.3 (64, 0.125)
εs, ε2, ε∞, τ1, τ2 87±34.4 (32, 0.125) 80.9±13.9 (64, 0.125)
�(D1) at 0.2 THz 91.3±28.8 (2, 32) 85.2±11.9 (2, 32)
�(D2) at 0.2 THz 82.6±38.8 (64, 0.5) 80.4±12.2 (64, 0.5)
�(εDD)0.5 at 0.5 THz 95.7±20.9 (64, 16) 88.0±12.4 (64, 16)
�(εm)0.5 at 0.5 THz 87±34.4 (16, 4) 86.3±10.4 (16, 4)

Table 4.7: The estimated accuracies (%) with their standard deviations by LOOCV
and RRSCV for applying the double Debye parameters with the SVM algorithm to
classify the normal skin and BCC samples.

potentially the best for the applied SVM in case of having adequate data in the training

set. Less training data used in the random-subsampling approach consequently reduces

the prediction accuracy as can be seen through the lower RRSCV (88.0%) of �(εDD)0.5.

A similar outcome can be observed with �(D1)0.2 whose CV reduces from 91.3% in the

LOOCV to 85.5% in the RRSCV. Combinations of εs and the other parameters includ-

ing ε2, ε∞, τ1 also provide the diagnosis accuracy estimated by LOOCV up to 95.7%

while adding τ2 to the classification weakens the prediction with the LOOCV of only

87%. In contrast, their performance assessed by RRSCV shows a remarkable reduction

in classification accuracy. This may be explained by insufficient data used for training

in the random-subsampling method. The stand-alone εs obtains the LOOCV accuracy

of 91.3% while its RRSCV reaches the peak of 90.9% among all the applied parameters

in the recent study. The slight differences between the LOOCVs and RRSCVs for εs

and �(εm) not only indicate the sufficient data used for training in the RRSCV but

also support the estimation of their true classification accuracies.

The SVM algorithm with its advances in terms of dealing with nonlinear inseparability
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of the data demonstrates its superiority over the LP approach in a majority of cases.

However, the level of the improvement varies between different applied features. In par-

ticular, the applied SVM remarkably improve the classification accuracies of �(D1)0.2 ,

�(D2)0.2 , and �(εDD)0.5 as compared to the LP algorithm. For instance, the LOOCV

of �(εDD)0.5 increases from 82.6% by the LP to 95.7% by the SVM, which highlights

the suitable classifier for this parameter. Furthermore, �(D1)0.2 is also another poten-

tial variable for the SVM classification as its LOOCV accuracy achieves 91.30% that is

far higher than 78.26% for the LP. On the other hand, εs consistently presents an im-

pressive performance with both the LP and SVM classifier, giving the cross-validation

accuracies ranging approximately from 87.0% and 91.3%. Such an outcome marks this

parameter as the most potential indicator for detecting BCC. Additionally, in terms of

dealing with multi-feature classification, the performance of SVM is overall better than

that of LP. Particularly, (εs, ε2, ε∞) and (εs, ε2, ε∞, τ1) in the SVM classification obtain

higher LOOCV and RRSCV accuracies as compared with the LP method.

4.6 Conclusion

The complex permittivity of 23 samples of human skin including either completely

healthy or containing a certain proportion of BCC are fitted by the double Debye

model using the global optimization-based algorithm with the proposed strict constraint

of τ1. The extracted parameters of this model are statistically analysed to prove their

capability of skin cancer discrimination. The differences between normal skin tissue

and BCC are assessed by the Student’s t-test and normalized percentage difference

of the mean values. Among five parameters of the double Debye model, only εs can

offer the statistical significance of difference which is supported by 33% of the mean

difference between normal and BCC samples. The variation of this parameter has a

high correlation of r = 0.7 with the tumour percentage content. This result indeed

highlights the advantage of applying the appropriate constraint of τ1 over the prior
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study [Truong et al., 2014]. We also observe the significant difference in the imaginary

part of the complex permittivity, both measured (�(εm)) and predicted by the double

Debye theory (�(εDD)0.5), and the two Debye terms (�(D1)0.2 and �(D2)0.2) over the

examined frequency range from 0.2 to 1.8 THz. The normalized percentage differences

in these parameters reach the top values for �(D1)0.2 and �(D2)0.2, and at 0.5 THz

for �(εDD)0.5 and �(εm). Furthermore, the high correlations of these parameters with

the BCC content of the samples are also spotted over the frequencies. These analysis

results of �(D1)0.2, �(D2)0.2 and �(εDD)0.5 provide a solid explanation for the findings

of the empirical combinations of the double Debye parameters in [Truong et al., 2014].

The applied SVM and LP classification procedure indeed offer encouraging results in

terms of using the various parameters from the double Debye model to classify the

BCC. Among the examined double Debye parameters, εs is the most novel classifica-

tion feature based on its excellent discrimination capability with the AUC of 0.93 as

well as its robust classification accuracy in both the LP and SVM approach with the

RRSCVs of 89.2% and 90.9% respectively. While the classification ability of ε2, ε∞,

τ1, and τ2 is rather weak with their estimated accuracies only up to 69.6%, some of

their combinations with εs can provide some improvements. For instance, the pair of

(εs, ε2) enhances the LOOCV accuracy from 91.3% to 95.7% in the SVM. However, the

performance of each combination also depends on the applied inducer (i.e. LP or SVM),

hence choosing the correct method will be key to explore the potential of the combina-

tions. The three frequency-dependent parameters of the double Debye model, namely

�(εDD)0.5, �(D1)0.2, and �(D2)0.2 also demonstrate the high ability of BCC discrimi-

nation through their impressive frequency-averaged AUC values which vary from 0.79

to 0.93. Furthermore, the SVM is significantly more efficient for �(D1)0.2, �(D2)0.2

and �(εDr )0.5 as compared to the LP. �(εDD)0.5 with the SVM classifier provides the

LOOCV accuracy of 95.7% and RRSCV accuracy of 88%, which are the best among

the frequency-dependent parameters as well as comparable to εs and its combinations.

In general, the SVM approach with its advance in dealing with linearly inseparable
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data can indeed provide better classification accuracies for the examined double Debye

parameters than the LP. This suggests that the SVM algorithm is more suitable for the

DD parameters to classify the skin cancer. The classification procedure performed in

this study was carried out in a small scale of the data, thus we can only confirm the

potential of the proposed classifiers from the double Debye model and estimate their

true classification accuracies. Therefore, we suggest that future studies produce THz

images of BCC with these classifiers in order to confirm the accuracy of THz imaging

in detecting tumour margins for MMS.

86



Chapter 5

A NEW DIELECTRIC MODEL

OF HUMAN BREAST TISSUE IN

TERAHERTZ REGIME
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5.1 Introduction

5.1 Introduction

The double Debye model has been used to understand the dielectric response of differ-

ent types of biological tissues at terahertz frequencies but fails in accurately simulating

human breast tissue. This leads to limited knowledge about the structure, dynamics,

and macroscopic behaviour of breast tissue and hence constrains the potential of THz

imaging in breast cancer detection. Therefore, the first goal of this study is to propose a

new dielectric model capable of mimicking the spectra of human breast tissue’s complex

permittivity in THz regime. Namely, a non-Debye relaxation model is combined with

a single Debye model to produce a mixture model of human breast tissue. A sampling

gradient algorithm of non-smooth optimization is applied to locate the optimal fitting

solution. Samples of healthy breast tissue and breast tumour are used in the simulation

to evaluate the effectiveness of the proposed model. The second goal is to confirm the

potential of using the parameters of the proposed dielectric model to distinguish breast

tumour from healthy breast tissue, especially fibrous tissue. Statistical measures are

employed to analyse the discrimination capability of the model parameters while sup-

port vector machines and Bayesian neural networks are applied to assess the possibility

of using the combinations of these parameters for higher classification accuracy.

This chapter has the following structure. Section 5.2 is to introduce the mixture model

of breast tissue, propose the fitting algorithm to extract the parameters of the proposed

models, describe the tested data and discuss on simulation results. Section 5.3 provides

the statistical analysis of the extracted model parameters. Then, these parameters are

used to classify the breast samples with SVM and BNN in section 5.4. Eventually, the

chapter is summarised in section 5.5.
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5.2 Dielectric Properties Modelling

5.2.1 Dielectric Model of Human Breast Tissue

Human tissue is commonly considered as a dispersive material whose dielectric proper-

ties including relative permittivity and conductivity depend on frequency. The increase

of frequency leads to a remarkable decrease in the relative permittivity but conversely

causes an upturn in conductivity. Complex permittivity of human tissue in a very

low frequency range is well-described by the single Debye relaxation model while its

responses in higher frequencies above 0.1 THz require extra Debye relaxation processes

[Liebe et al., 1991] :

ε = ε∞ +

N∑
n=1

Δεn
1 + jωτn

, (5.1)

where Δεn indicates the permittivity dispersion of the nth Debye relaxation process.

The underlined fact of the multiple Debye model is the higher water content of var-

ious human tissues [Foster and Schwan, 1989; Gabriel, Lau and Gabriel, 1996]. The

double-Debye model was initially used as a dielectric function of water and then has

inspired a significant number of applications for highly-hydrated mixtures [Kindt and

Schmuttenmaer, 1996; Reid et al., 2010; Pickwell, Cole, Fitzgerald, Wallace and Pep-

per, 2004; Smye et al., 2001]. For instance, the complex permittivity of human skin,

which contains around 70% of water, has been accurately predicted by the two Debye

relaxation processes [Pickwell et al., 2005; Truong et al., 2013]. Muscle with higher

water content than skin employs the summation of five Debye dispersions in addition

to a frequency-dependent conductivity term [Hurt, 1985]:

ε = ε∞ +

5∑
n=1

Δεn
1 + jωτn

+
σ

jωε0
. (5.2)

However, dielectric properties of biological tissues with low water content and more

complicated structure and composition exhibit broader dispersion that may involve

superposition of several relaxation processes or non-first-order kinematics of molecular
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5.2 Dielectric Properties Modelling

structure. The broadening of the dispersion could be resolved by adding a distribution

parameter, and thus the Cole-Cole (CC) equation has been introduced as an alternative

of the Debye equation [Gabriel, Lau and Gabriel, 1996]. Eventually, the experimental

dielectric spectra of various human tissues may be effectively described by multiple CC

relaxation model [Gabriel, Gabriel and Corthout, 1996; Gabriel, Lau and Gabriel, 1996;

Said and Varadan, 2007]:

ε = ε∞ +
N∑

n=1

Δεn
1 + (jωτn)1−αn

+
σ

jωε0
, (5.3)

where αn is the distribution parameter measuring the broadening of the dispersion nth.

The non-exponential relaxation processes described by the CC equation constitute a

special case of non-Debye dielectric relaxation. The Havriliak-Negami (HN) relationship

generalizes modelling the non-Debye relaxation processes by introducing two empirical

exponents α and β [Havriliak and Negami, 1967]:

ε̃(ω) = ε∞ +
εs − ε∞

[1 + (jωτ)α]β
, (5.4)

In this regard, human breast is also composed of inhomogeneous structures of fat cells

and proteins. The fatty (adipose) tissues have a low water content and therefore play

a substantial role in regulating the dielectric responses of breast tissue. Indeed, the

spectra of real permittivity of breast tissue increase at the low frequencies and pose quite

a flat response over the higher frequency range, which is similar to that of pure adipose

tissue. Particularly, Fig. 5.1 presents the average measured complex permittivities

versus the frequencies for breast tumour, healthy fibrous breast tissue (fibrous), and

healthy adipose tissue (fat), which were published by [Ashworth et al., 2009]. The

error bars show the standard errors of the mean values with 95% confidence interval.

Further details of the data are thoroughly described in subsection 5.2.3. Accordingly,

while the most noticeable feature in dielectric properties of the breast tissues is the peak

at around 0.32 THz, a similar increase is also spotted at 0.5 THz in dielectric spectrum

of fat tissue. The physical origin of this dielectric response is yet to be understood
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Figure 5.1: The average complex permittivities with the corresponding error bars rep-
resenting 95% confidence intervals for breast tumour, healthy fibrous breast tissue, and
healthy fat (adipose) breast tissue from [Ashworth et al., 2009]

.

[Ashworth et al., 2009; Khan et al., 2007]. Therefore, the increase of permittivity of

breast tissue in the low range of THz regime is considered as a non-Debye response.

Apart from this, breast tissue still contains a relative-high proportion of water, which

is the most prevalent source of absorption in THz frequencies, and, thus, its complex

permittivity like that of human skin may be also contributed by dielectric properties of

water. In fact, the increase of THz frequency results in greater contribution of water

absorption, thus the Debye relaxation process may be more transparent in the range

above 1 THz. Considering the two aforementioned factors driving the dielectric spectra

of breast tissue, an empirical mixture model based on a combination of non-Debye and

Debye relaxation processes is proposed as follows,

ε̃(ω) = ε∞ +
ωτ1Δε1 +Δε2
1 + (jωτ1)α

+
Δε3

1 + jωτ2
+

σ

jω
. (5.5)

Here the term (ωτ1Δε1+Δε2) produces the peak in the real part of the complex permit-

tivity of breast tissue at frequencies below 1 THz. Δε1 and Δε2 underline the existence

of two dielectric dispersions occurring in slow relaxation process characterized by time

constant τ1. However, it is important to emphasize that proposing these two parameters

is more empirical rather than underlying any physical process, and thus they should

be simply regarded as necessary parameters to provide accurate fits. The dispersive

amplitude of fast relaxation mode with the time constant τ2 is ε3 corresponding to high
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frequency. ε∞ is the limiting permittivity constant at very high frequency. σ/jω rep-

resents the impact of dc-conductivity on dielectric loss of tissue. For easy tracking of

the non-Debye model for breast tissue, it is denoted by THz-nDB in the presentation

of this thesis.

As the real and imaginary parts of the complex permittivity have different impacts on

the values of the introduced parameters in (5.5), the significance of the difference in

these two features between healthy breast tissues and tumour can suggest the cancer

discrimination potential of the THz-nDB parameters. Therefore, the normalized dif-
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Figure 5.2: The normalized percentage difference in the average complex permittivities
between the two healthy breast tissue groups (fibrous and fat) and the breast tumour.

ferences in the real and imaginary part of the average complex permittivities between

tumour and healthy tissues, both fibrous and fat, were calculated and plotted over the

examined frequency range in Fig. 5.2. Accordingly, the variation of the imaginary part
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of the complex permittivity between the healthy and cancerous tissues is more signifi-

cant than that of the real part in most of the spectral range. The fact that only σ is

fully driven by the dielectric loss marks this parameter as the most prevalent indicator

of breast cancer among the parameters of the model (5.5). The theoretical assessment

will be statistically investigated in depth in the subsection 5.3.

5.2.2 Fitting Algorithm

In order to fit the data and extract the proper parameters of (5.5),the sum of squared

error functions (SSE) which calculate the differences between the measured frequency-

dependent complex permittivities and their predicted values by one of these models over

a range of consecutive THz frequencies is employed. Set yyy = (ε∞,Δε1,Δε2,Δε3, σ)
T =

(yyy1, yyy2, yyy3, yyy4, yyy5)
T. The optimization problem in order to fit the measured data is the

following nonlinear least-square

min
yyy, τ1, τ2, α

M∑
i=1

|ε̃(ωi)− ε̃m(ωi)|
2

subject to yyy1 ≥ 1, yyy2 ≥ 0, yyy3 ≤ 0, yyy4 ≥ 0, yyy5 ≥ 0

yyy1 + y3y3y3 + yyy4 ≥ 1

0.5 ≤ τ1, 0 ≤ τ2 ≤ 0.5, α ≥ 0.

(5.6)

where ε̃(ωi) defined by (5.5) is a highly nonlinear function of 8-dimensional variable

(yyy, τ1, τ2, α), while ε̃m(ωi) stands for the measured complex permittivity at a frequency

ωi. M is the number of sampling frequencies. The constraints of the model parameters

in (5.6) are chosen to maintain the necessary physics properties of the complex dielectric

model.

The problem (5.6) is seen as a very challenging optimization problem, for which the

standard optimization tools and software are hardly suitable. Our first step is to analyse

partially convex structures of (5.6) that are useful for computational purpose. It is seen

from (5.5) that the objective function in (5.6) is convex quadratic in yyy when the three
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variables τ1, τ2, α are held fixed. Thus, by setting xxx = (xxx1,xxx2,xxx3) = (τ1, τ2, α), the

total squared error function SSE in (5.6) is reexpressed by

f(xxx,yyy) = yyyT
M∑
i=1

Ai(xxx)yyy +

M∑
i=1

bTi (xxx)yyy +

M∑
i=1

di, (5.7)

where

Ai(xxx) = a∗i (xxx)a
T
i (xxx), b

T
i = −2Re(cia

H
i ), di = |ε̃m(ωi)|

2,

A(xxx) =

M∑
i=1

Ai(xxx), b
T(xxx) =

M∑
i=1

bTi (xxx), d =

M∑
i=1

di,

ai(xxx) =

[
1,

ωiτ1
1 + (jωiτ1)α

,
−1

1 + (jωiτ1)α
,

1

1 + jωiτ2
,
1

jωi

]T
.

Eventually, instead of the optimization problem (5.6) in eight decision variables, the

following optimization in three-dimensional variable xxx is considered:

min
xxx∈X

F (xxx) (5.8)

with

F (xxx) = min
yyy∈Y

f(xxx,yyy). (5.9)

Here X and Y are linear constraints of xxx and yyy respectively defined from (5.6):

X = {xxx ∈ R3 : 0.5 ≤ xxx1, 0 ≤ xxx2 ≤ 0.5, xxx3 ≥ 0}

and

Y = {yyy ∈ R5 : yyy1 ≥ 1, yyy2 ≥ 0, yyy3 ≤ 0, yyy4 ≥ 0,

yyy5 ≥ 0, yyy1 + y3y3y3 + yyy4 ≥ 1}.

It is simple to calculate each value F (xxx) by using any existing convex quadratic solver

such as SeduMi [Sturm, 1999]. However, F (xxx) is a 3D non-convex and nonsmooth

function in the sense that almost everywhere there is only single y(x) ∈ Y such that

f(x, y(x)) = F (x) ⇔ y(x) = argmin
y∈Y

f(x, y) (5.10)

94



5.2 Dielectric Properties Modelling

for which,

∇F (x) =
∂f(x, y)

∂x
|y=y(x) (5.11)

For solution of (5.8), the robust gradient sampling algorithm introduced by [Burke

et al., 2005] is employed. The beforehand selected parameters are:

• Backtracking reduction factor 0 < γ < 1. We choose γ = 0.5.

• Armijo parameter in line search 0 < β < 1. However, it only needs to choose a

very small value of the Armijo parameter, which is practically equivalent to its

nonstandard choice of 0.

• Sampling size m > dim(x) = 3, thus set m = 7.

• Optimality tolerance reduction factor θ = 1.

• Sampling radius reduction factor μ = 0.5.

Initial parameters that will be iteratively updated are

• Sampling radius ratio ε0 = 0.1.

• Optimality tolerance ν0 ≥ 0 is fixed to 10−6 throughout.

Iterations initialized from x(0) ∈ X. For κ = 0, 1, ....

• Step 1 (gradient sampling). Take u(κ1), ...., u(κm) sampled uniformly from the

unit ball {u ∈ R3 : ||u|| ≤ 1} such that

x(κ0) = x(κ),

x
(κj)
i = x(κ)(1 + εκu

(κj)) ∈ X, j = 1, 2, ..., m.
(5.12)

For each x(κj) solve the quadratic program (5.10) to find y(x(κj)) and define the

gradient ∇F (x(κj)) according to (5.11).
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• Step 2 (direction search). Solve the quadratic program

min
τj ,j=0,1,...,m

||τj∇F (x
(κj))||2 : τj ≥ 0,

m∑
j=0

τj = 1 (5.13)

to have its optimal solution τj for the direction definition

g(κ) = −
m∑
j=0

τj∇F (x
(κj)) (5.14)

If ||g(κ)|| = 0 stop (x(κ) is the optimal solution). If ||g(κ)|| ≤ ν0 set tκ = 0, set

the sampling radius εκ+1 = μεκ and go to Step 4. Otherwise keep εκ+1 = εκ and

d(κ) = −g(κ)/||g(κ)|| (normalized direction for line search), and go to Step 3.

• Step 3 (step length). Use enumeration to solve

tκ = max
s=0,1,2,...

γs :

F (x(κ) + γsd(κ)) < F (x(κ))− βγs||g(κ)||
(5.15)

(it is finite according to Armijo rule) and go to Step 4.

• Step 4 (update). Set

x(κ+1) = x(κ) + tκd
(κ) (5.16)

and κ + 1 = κ. Go to Step 1.

5.2.3 Data for Simulation

Refractive indices and absorption coefficients of 74 breast samples are used to test the

validity of the proposed model (5.5). The data were presented with group average

values and error bars in [Ashworth et al., 2009]. Measurement procedures using THz

spectroscopy in transmission geometry were also fully described by Ashworth et al.

[2009]. In brief, breast specimens were excised from 20 non-consecutive female patients

and preserved in refrigerated and humid condition. A THz time-domain spectrometer

(TPIspectra1000, TeraView Ltd, Cambridge, UK) was used to measure the transmitted
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THz pulses through the tissue samples prepared from the patient specimens. The THz

properties of the samples were calculated by averaging the measured refractive indices

and absorption coefficients. The percentage content of fat (healthy adipose tissue),

fibrous (healthy fibrous tissue), and cancer/tumour for each sample was determined

by a Consultant Breast Pathologist and this served as a true reference to evaluate the

THz data. Then, each of these samples was categorized according to its predominant

constituent which occupied more than 50% of the whole tissue. Complex permittivities

calculated from these spectra represent the standard dielectric response of fat, fibrous

tissue and tumour of human breast to THz radiation. More details of the calculations

to obtain the data were thoroughly provided in [Ashworth et al., 2009].

5.2.4 Fitting Results

In this section, the capability of the model (5.5) to simulate the complex permittivity of

human breast tissue is investigated through fitting this model to the data of pure adipose

tissue, fibrous tissue and tumour. We employ the adjusted R-square value (R2
adj), which

is the square of the correlation between the response values and the predicted response

values, to analyse the fitting quality [MATLAB, 2012].

Sample ε∞ Δε1 Δε2 Δε3 σ τ1(ps) τ2(ps) α SSE R2
adj

Adipose 2.50 3.54 -1.89 0.47 0.39 9.67 0.13 1.49 0.06 0.996
Normal 3.34 1.33 -3.05 0.71 5.27 1.91 0.11 1.20 0.41 0.998
BCC 2.86 28.64 -3.45 1.59 8.33 3.58 0.10 2.91 1.09 0.997

Table 5.1: The extracted parameters of the THz-nDB model (5.5) by fitting it to
averaged complex permittivities of three types of human breast tissue.

It can be seen in Table 5.1 that R2
adj in all three cases achieves the overall value from 0.99

. Fig. 5.3-5.5 demonstrate the comparison between complex permittivity simulated by

(5.5) and the measured data for adipose tissue, healthy breast tissue and breast tumour

respectively. The proposed dielectric model (5.5) mimics very well the dielectric

properties of breast tissue not only at the high range of frequency beyond 1 THz but
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Figure 5.3: The measured average complex permittivities of healthy fat tissue from
[Ashworth et al., 2009] and its fitting by the THz-nDB model.

also at the lower frequencies. It is worth emphasizing that the non-Debye response

of the real part of the breast tissue complex permittivity can be characterized well

by (5.5). This advance of the THz-nDB model (5.5) is practically essential for breast

cancer detection as the maximum difference between healthy and cancerous tissue in

optical properties was found at the low spectral range, especially 0.32 THz [Ashworth

et al., 2009]. The fitting parameters of (5.5) and R2
adjs for healthy tissue and tumour

are recorded in Table 5.2. Accordingly, the contrast values in the THz-nDB parameters

of (5.5) between healthy and cancerous tissue suggest the potential of treating these

parameters as indicators to classify the breast Tumours.
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Figure 5.4: The measured complex permittivities of healthy fibrous breast tissue from
[Ashworth et al., 2009] and its fitting by the THz-nDB model.

The fitting parameters of (5.5) and R2
adjs for all samples are recorded in groups of fat,

fibrous and tumour with their average values (AVR) and corresponding standard errors

(SE) in Table 5.2. According to the statistical values of R2
adj, the THz-nDB model

(5.5) can simulate the measured complex permittivities of fibrous tissue and tumour

better than those of fat tissue. This may be explained by the higher water content of

the former, especially tumour. In fact, since THz radiation is very sensitive to water,

the dielectric properties of tumour and fibre possess less non-smooth responses and

noise both of which can negative impact on the predictability of the model (5.5). In

general, the AVRs of ε∞, Δε1, Δε3, τ1, τ2, α are not apparently different between

breast tissue types whilst the large SEs of these parameters reveal the high possibility
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Figure 5.5: The measured complex permittivities of a breast tumour from [Ashworth
et al., 2009] and its fitting by the THz-nDB model.

of overlaps of their values between tissue groups. On the contrary, Δε2 and σ have

obvious different AVRs between dominantly fat, fibrous and tumour tissues while their

SE are rather small in comparison to these differences. This suggests Δε2 and σ to be

essential signatures of breast cancer applications, especially the cancer margin detection

in THz imaging. An analysis in terms of the classification potential of the THz-nDB

parameters is exposed in the next section.

100



5.3 Statistical Analysis

Parameter Fat Fibrous Tumour

ε∞ 2.41 ± 0.20 2.80 ± 0.31 3.15 ± 0.13
Δε1 2.69 ± 2.15 38.22 ± 33.14 545.60 ± 980.60
Δε2 -1.12 ± 0.56 -2.47 ± 0.67 -2.82 ± 0.43
Δε3 0.61 ± 0.26 1.31 ± 0.25 1.34 ± 0.13
σ 1.12 ± 0.27 4.41 ± 0.88 7.89 ± 0.71

τ1(ps) 2.07 ± 0.61 3.50 ± 1.50 4.69 ± 4.25
τ2(ps) 0.12 ± 0.03 0.14 ± 0.04 0.10 ± 0.01
α 1.67 ± 0.30 1.91 ± 0.37 1.90 ± 0.28

Table 5.2: The group average of the extracted parameters with their standard errors
and the corresponding average R2

adj of the fittings for all 74 data samples.

5.3 Statistical Analysis

All 74 human breast samples are fitted by the THz-nDB model (5.5) using the described

gradient sampling algorithm. The average value of each model parameter and its stan-

dard error in each breast tissue group is tabulated in Table 5.2. The contrast values

in these parameters between tissue groups suggest their possible application for breast

cancer classification. In the following subsections, we shall employ essential statistical

measures to analyse the differences offered by these model parameters, and accordingly

select potential parameters for breast cancer classification.

5.3.1 Correlation

Pearson correlations between the THz-nDB parameters and tissue histopathology are

presented in Table 5.3. The parameter σ of the THz-nDB model (5.5) provide the

Component ε∞ Δε1 Δε2 Δε3 σ τ1(ps) τ2(ps) α

Fat -0.50 -0.09 -0.50 -0.61 -0.75 -0.122 -0.01 -0.09
Fibre tissue -0.01 -0.05 0.14 0.25 -0.17 0.02 0.29 -0.16
Tumour 0.42 0.11 0.29 0.30 0.75 0.09 -0.21 0.08

Table 5.3: Pearson correlation between the parameters of the THz-nDB model (5.5)
and the percentage of tissue components
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highest correlation −0.75 with the fat percentage of tissue. This negative value of cor-

relation implies that the reduction in the value of σ is proportional to the increase of fat

percentage in the examined samples. Alternately, the correlation 0.75 of σ with tumour

content explains the contribution of increasing neoplasm to the rise of this parameter.

In fact, the similarity between fat and tumour in terms of high correlation with σ repre-

sents the nature that tumour has less adipose tissue and a more homogeneous structure

in that respect as compared to fibrous tissue.

One of the recent challenges in breast cancer detection with THz imaging is that the

dielectric properties/optical properties of fibrous tissue and tumour are similar [Ash-

worth et al., 2009]. In fact, fibrous tissue together with glands and connective duct

have a high water content and hence respond to THz radiation as comparably as can-

cerous tissue does [Chen, Chen, Tseng, Lu, Kuo, Fu, Lee, Tsai, Huang, Chuang, Hwang

and Sun, 2011]. As a result, it is clinically more apparent to detect tumours buried in

fatty tissues rather than those in fibrous tissues. However, tumour is still expected to

contain more water (up to 20% higher) than fibrous tissue, which could be essential for

distinguishing between these two types of tissues. In addition, the similarity between

fat and tumour in terms of high correlation with σ represents the nature that tumour

has less adipose tissue and a more homogeneous structure in that respect as compared

to fibrous tissue. Indeed, the significantly higher average value 7.89 of σ for tumours

than the value 4.41 of fibrous tissue can be found in Table 5.2. In short, σ marks itself

a highly prominent feature for differentiating tumour from fibrous tissue. Despite that

we could not find the correlation between fibrous percentage and the parameters of

the THz-nDB model (5.5), it is worth reminding that Pearson correlation only mea-

sures the linear relationship between two variables. Therefore, the relationship between

the model parameters and fibrous content may be nonlinear and Pearson correlation is

probably not a suitable statistical measure for such a case.
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5.3.2 Significance of Difference

As the Pearson correlation is to reveal the physical meaning behind the values of the

THz-nDB parameters rather than to directly analyse the contrast between tissue group,

we use the independent 2-tailed t-test for these parameters. The specific p-values of the

test corresponding to each pair of healthy tissue and tumour were provided in Table

5.3.2. The parameter σ demonstrates the statistically significant difference between

Pair of groups ε∞ Δε1 Δε2 Δε3 σ τ1 τ2 α

Fat-Tumour 1.9E-6 0.29 4.16E-5 3.8E-5 3.9E-20 0.25 0.27 0.28
Fibrous-Tumour 0.05 0.33 0.40 0.84 4.6E-7 0.61 0.08 1.00
Normal-Tumour 6.1E-5 0.31 0.00 0.01 1.8E-14 0.42 0.04 0.58

Table 5.4: P-value of independent two-tailed sample t-test for each pair of sample
groups

fibrous tissue and tumour with the p-value of approximately 0 which is considerably

lower than the critical value 0.05 of the t-test. Similar statistical results are also seen

between fat and tumour. While ε∞, Δε2, Δε3, σ, τ1, τ2 can demonstrate significant

differences between healthy breast tissue and tumour, only ε∞, σ is capable to specify

the difference between fibrous tissue and tumour.

5.3.3 ROC Analysis

Both the Pearson correlation analysis and independent two-tailed sample t-test intro-

duce the two parameters Δε3 and σ of (5.5) as an advantageous indicator which is highly

sensitive to histopathology of breast samples. Therefore, an analysis from the perspec-

tive of classification is essential to accurately select rich features as well as confirm the

potential of our model-parameter approach in breast cancer margin detection with THz

imaging. A common technique to explore the sensitivity and specificity of classifiers

in medical community is the receiver operating characteristic (ROC) plot [Fawcett,

2004]. Fig. 5.6 demonstrates the ROC plot for σ as a classifier with its threshold
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Figure 5.6: ROC plot for various thresholds of σ.

values chosen by averaging two consecutive test values of σ. For the purpose of evalu-

ating σ regarding its merit of classification, the area under the ROC curve was used.

The AUROC values of all eight THz-nDB parameters were calculated and recorded in

Table 5.5. Particularly, the AUROC of σ is the highest with the value of 0.93. To

Parameter ε∞ Δε1 Δε2 Δε3 σ τ1 τ2 α

AUC 0.77 0.51 0.69 0.67 0.93 0.52 0.40 0.50

Table 5.5: AUROC values obtained by ROC of each THz-nDB parameter of (5.5)

the best of our knowledge, this outcome is remarkably higher than the best AUROC
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value of up to 0.78 in literature [St.Peter et al., 2013]. Therefore, σ is selected to be

the principal classification feature. The remaining parameters of the THz-nDB model

(5.5) can be considered as supporting features to improve the classification capability.

However, combination of well-correlated parameters does not facilitate improvement of

classification capability, thus it is necessary to find the independence parameters for the

combination. As a result, linear correlations between all eight THz-nDB parameters

were calculated to determine the independent parameters for classification.

5.4 Classification Potential

5.4.1 Support Vector Machine

The support vector machine has been emerging as the newest and among the most

popular learning algorithms for pattern recognition [Burges, 1998]. The statistical sig-

nificance of difference in the parameters of the THz-nDB model (5.5) between healthy

breast tissue and tumour logically suggests the applicability of SVM as this classi-

fication algorithm aims to search for a hyperplane separating two data classes in a

multi-dimensional space. Similarly to section 4.4.2, the SVM toolbox of Chang and

Lin [2011] in the Matlab environment was used for classifying breast tumours with the

parameters of nDB. Based on a number of trial simulations, the Gaussian radial basic

(RBF) kernel function was applied due to its best classification performance for the

data. This kernel function requires adjusting its parameter (C, γ) to suitable values in

order to optimize the classification performance. Therefore, the grid-search was used

to simultaneously find the optimal (C, γ).

5.4.2 Bayesian Neural Networks

The initial results with the SVM presented later in section 5.4.4 are encouraging but

not able to fully reflect the classification potential of the model parameters in terms
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of combining them. In fact, more parameters incorporated into the classification could

not improve the classification accuracy. This motivates taking further steps towards

using other applicable methods to improve the classification performance of these pa-

rameter combinations. Therefore, this section explores the limitation of the support

vector machine classifier as well as the applicability of the Bayesian neural networks

to improve the classification accuracy using combinations of the THz-nDB parameters

for breast cancer detection. The Bayesian learning algorithm for neural networks not

only enhances the their generalization but also makes the best use of data, thus making

it preferable to small data with increasing noisy information and complexity [Bishop,

1995].

A traditional learning method such as SVM and regular neural networks commonly

encounters crucial issues of generalisation that is defined by how well an obtained

prediction model can detect new cases excluding from training data. The generalization

loss leads to either underfitting or overfitting the data structure. The problem can be

solved by determining appropriate complexity of the prediction model through globally

searching its design parameters. This approach is very intensive and requires using a

part of data for validation of the parameter search, thus not being able to optimize the

use of data source [Hagan et al., 2014].

Bayesian neural networks (BNN) have been seen as a practical and powerful tool to

improve the generalization and performance of neural networks since they were intro-

duced by [MacKay, 1995]. The Bayesian framework applied in this method allows the

learning process to overcome the aforementioned challenge. Particularly, based on the

Bayes’ theorem a probability distribution of network parameters is obtainable in the

Bayesian learning. By that it means that uncertainty and noisy information of data

can be taken into consideration to improve the prediction performance. In addition,

the learning process using the Bayesian regulation facilitates automatic adjustment of

network hyper-parameters, which are regulation constants controlling the complexity

of the prediction model, to the most appropriate values. This allows the elimination of
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using the validation set of data, thus maximizing data resource for training. As a result,

BNN is of great interest to handling our small data. Besides, by viewing our multipa-

rameter problem in this paper from the advantages of BNN, we can find it a probable

solution to dealing with the increasing complexity of the prediction model when more

model parameters are incorporated into the classification. Indeed, this complexity issue

is directly concerned with adjusting more regulation constants, which is considered as

an important advantage of the Bayesian approach [MacKay, 1995].

5.4.3 Accuracy Estimation

Both LOOCV and RRSCV are applied to validate the classification accuracy. Despite

that LOOCV provides an unbiased estimation of accuracy, its prediction has not only

high variance but also possibility of being too optimistic. On the contrary, the RRSCV

with a significant proportion of data left out for testing does not make the best use

of data for training but offers a better balance between bias and variance when esti-

mating the classification accuracy. Combing the two validation methods is necessary

for accurately justifying the classification performance. For the study in this section,

it was chosen to use 80% of the data (59 samples) for training and 20% (15 samples)

for testing in the RRSCV with 1000 repetitions of the training-testing process for each

classifier.

5.4.4 Results

The LOOCV values of the eight THz-nDB parameters are presented in Table 5.6.

As expected, σ has the highest LOOCV accuracy of 86.49% among the THz-nDB

Parameters ε∞ Δε1 Δε2 Δε3 σ τ1 τ2 α

LOOCV 81.1 68.9 74.3 63.5 86.5 67.6 63.5 63.5

Table 5.6: SVM Classification Accuracy (%) in LOOCV corresponding to each THz-
nDB parameter.
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parameters. As expected, ε∞ obtains the second highest LOOCV value which is followed

by the classification accuracy of Δε3. The LOOCV accuracies of the other THz-nDB

parameters are far lower. In fact, these results reflect the earlier statistical analysis of

these model parameters in section 5.3.

According to the LOOCVs of the THz-nDB parameters, their ten classification combi-

nations are chosen to investigate and annotated by C1 to C10 respectively as can be

seen in both Table 5.7 and 5.8. In fact, based on the statistical analysis in section 5.3,

it is possible to form a variety of potential combinations for the classification. How-

ever, by analysing the LOOCV and RRSCV accuracy simultaneously with either the

SVM or BNN a number of the combinations were filtered, and hence, only the best ten

combinations were selected to present. They are not only able to achieve the highest

classification accuracies but also optimal in terms of low dimension and complexity.

Combination Parameter C γ LOOCV(%) RRSCV(%)

C1. σ 1 0.25 86.5 85.0 ± 8.1
C2. (ε∞, σ) 512 0.125 91.9 86.6 ± 8.9
C3. (σ, τ1) 16 0.125 91.9 88.3 ± 8.5
C4. (ε∞,Δε1, σ) 4 0.0625 87.8 81.0 ± 9.5
C5. (ε∞,Δε2, σ) 1 0.03125 85.1 85.6 ± 8.5
C6. (ε∞,Δε3, σ) 256 0.25 93.2 87.6 ± 8.8
C7. (ε∞, σ, τ2) 512 0.125 90.5 86.4 ± 8.6
C8. (ε∞, σ, α) 512 0.125 89.2 84.2 ± 9.6
C9. (ε∞,Δε2,Δε3, σ) 1 0.03125 85.1 85.3 ± 8.3
C10. (ε∞, σ, τ2, α) 512 0.125 89.2 84.6 ± 9.6

Table 5.7: The estimated accuracies (%) by LOOCV and RRSCV for applying the
double Debye parameters with the SVM to classify the healthy breast tissue and the
breast tumour.

Table 5.7 shows the LOOCVs and the average classification accuracies with their stan-

dard deviations estimated by RRSCV for using SVM classifiers with combinations of

the THz-nDB parameters in (5.5). The optimal kernel parameters including C and γ

for each set of the model parameters are accountable for the best LOOCV of the com-

bination. Under the impact of the smaller training set, C6 obtains the highest LOOCV
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(93.2%) but a far lower RRSCV accuracy (87.6%). Despite that C1 only contains σ, its

classification performance is still better than the higher-dimension combinations such

as C5 and C9. In fact, σ has been considered as the most potential parameter of the

THz-nDB model (5.5) for breast cancer classification [Truong et al., 2015]. C3 should

be the most suitable for the SVM method thanks to its high and stable accuracies

predicted by LOOCV (91.9%) and RRSCV (88.3%). However, the combinations with

more THz-nDB parameters such as C4–C10 do not improve or even weaken the clas-

sification performance using SVM. As mentioned earlier, this remains the challenge of

applying the SVM approach for the data, which motivates further investigation into

the applicability of BNN.

Combination Parameter LOOCV(%) RRSCV(%)

C1. σ 86.5 86.5 ± 8.7
C2. (ε∞, σ) 91.9 92.9 ± 6.6
C3. (σ, τ1) 94.6 88.6 ± 7.4
C4. (ε∞,Δε1, σ) 94.6 93.1 ± 6.5
C5. (ε∞,Δε2, σ) 96.0 92.3 ± 6.5
C6. (ε∞,Δε3, σ) 94.6 93.0 ± 5.8
C7. (ε∞, σ, τ2) 93.2 93.4 ± 6.5
C8. (ε∞, σ, α) 96.0 92.2 ± 6.6
C9. (ε∞,Δε2,Δε3, σ) 97.3 92.4 ± 6.4
C10. (ε∞, σ, τ2, α) 97.3 93.6 ± 6.4

Table 5.8: The estimated accuracies (%) by LOOCV and RRSCV for applying the
double Debye parameters with the BNN to classify the healthy breast tissue and the
breast tumour.

According to Table 5.8, the problem of SVM indeed can be overcome by BNN struc-

tured by 10 hidden nodes. To be more specific, the overall classification performance

of the combinations is improved whenever an extra THz-nDB parameter is added to

the classification. Accordingly, the best accuracy obtained with the four-parameter

combinations including C9 and C10 is 97.3% in LOOCV and 93.6% in RRSCV. The

highest LOOCVs of the three- and two-parameter combinations including C2-C8 are

96.0% and 94.6% respectively. However, although the average accuracies of C2-C10
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in RRSCV achieve very high values from 92.2%, the impact of increasing the number

of input parameters on the classification is not significant. The similarity in C1,C2,C4

between LOOCVs and RRSCV accuracies suggests BNN can learn the data structure of

these combinations very well regardless of the smaller data set for training in RRSCV.

Conversely, the impressive LOOCVs of the rest are not achievable in RRSCV due to the

shortage of training data. By and large, classifying the breast tumour using the com-

binations of the model parameters in (5.5) with BNN offers better overall performance

than that with SVM.

5.5 Discussion and Conclusion

The THz-nDB model for complex permittivity of breast tissue at THz frequencies as

given in equation (5.5) is proposed for the first time. This dielectric model is developed

based on combining non-Debye relaxation theory and the Debye relaxation process due

to the non-exponential dielectric response of breast tissue at low THz frequencies and

the impact of a considerable proportion of water in breast tissue. Our fitting proce-

dure employed the gradient sampling algorithm for non-optimization to extract optimal

parameters of the THz-nDB model. Simulations prove that our proposed models can

accurately mimic the measured data of fat/adipose tissue, healthy fibrous and cancer-

ous breast tissue. A variety of statistical measures was used to investigate the potential

of the THz-nDB parameters in terms of unveiling the tissue histopathology and cancer

classification. Our analysis demonstrates two encouraging results: the parameter σ of

the THz-nDB model highly correlates with fat tissue and tumour percentage of exam-

ined breast tissue samples, which marks this parameter as an indicator for pathology

diagnosis; the ROC analysis confirms the more remarkable discrimination ability of σ

to classify breast cancer as compared to previous studies.

The classification results with the SVM classifier generally indicate its ability to im-

prove the classification performance with the combinations of up to only two THz-nDB
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parameters, such as C2 and C3. Especially, C3 provide the LOOCV of 91.9% together

with the RRSCV of 88.3% which is also the best performance among the SVM classifiers.

Thus, the SVM method is limited in terms of efficiently learning the data structure of

the combinations of the THz-nDB parameters for classification. Therefore, we revised

the problem and successfully applied the BNN classifier to improve performance of the

combinations. Particularly, ten parameter combinations C1-C10 were introduced for in-

vestigation with both SVM and BNN. Using the BNN, the best LOOCV is enhanced to

97.3% with the four-parameter combinations as compared to 93.2% with the SVM. The

advance of BNN in classifying the data is also expressed over the estimated accuracies

in RRSCV. The average accuracies vary between about 92.17–93.57% corresponding

the different combinations, which are also by far higher than 88.3% (RRSCV) with

the SVM. Apart from that, the classification accuracies predicted by cross validation

methods in this study may be statistically insufficient for making a confirmation of

the true classification accuracies in practice due to the used small data. However, our

encouraging results should be basic to future studies that examine larger data such as

THz images of breast tumour in order to improve the cancer-margin detection in BCS.

Further developments of this study will also include selection of the best parameter

combinations and improvement of classification methodologies.

The empirical THz-nDB model also requires more specific elaboration on physical pro-

cess underlying the non-Debye dielectric response of breast tissue in the future. Know-

ing the best model to describe the dielectric properties allows applying the FDTD

techniques using the proposed model to simulate the interaction of THz radiation with

breast tissue. Thus, it becomes possible to recognize the theoretical differences in pulse

shape between normal and tumour tissue as well as improve our understanding of how

normal tissue changes its response due to tumorigenesis. This will be beneficial to deal

with heterogeneous tissue which includes both characteristics of tumour and normal.

Furthermore, successfully modelling the dielectric response of breast tissue with the

model THz-nDB implies that the low THz frequency range is the most accountable for
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producing the data to classify breast cancer. However, applying the low frequencies for

a practical THz imaging system, mainly THz Pulse Imaging (TPI) or Single Frequency

THz Imaging, leads to a sacrifice in spatial resolution since the minimum size of tumour

identifiable by THz needs to be larger. For instance, 1 THz generally has a spatial

resolution of around 300 microns. Consequently, the application of THz imaging is

limited to sampled areas larger than this size.
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6.1 Summary

This thesis demonstrates the studies of the terahertz dielectric properties of human

skin and breast tissue with the aim of not only providing a better understanding of

the contrasts due to carcinogenesis in their THz images but also introducing potential

features for cancer classification. The database used, consisting of refractive indices

and absorption coefficients measured from the ex vivo specimens of these tissues, was

widely published in previous studies [Kindt and Schmuttenmaer, 1996; Pickwell et al.,

2005; Wallace et al., 2006; Ashworth et al., 2009]. The method of the investigation is

generally based on modelling the dielectric spectral responses of the examined tissues

and then analysing the extracted parameters of the dielectric models in terms of their

cancer discrimination capability. As skin and breast tissues have relatively different

compositions, their respective dielectric spectra in the terahertz regime display distinct

features. As a result, two separate dielectric models are taken into account for skin and

breast tissue in this thesis.

Numerous studies have indicated that the double Debye model is capable of describing

the dielectric properties of human skin in terahertz frequencies due to its high water

content. However, it is shown that the model parameters obtained by previous studies

using the nonlinear least square method cannot facilitate fitting the data well over an

entire spectral range of up to 2 Hz. This means that the existing parameter extrac-

tion method is not optimal. Therefore, two global-based optimization algorithms have

been introduced to improve the fitting quality and thus extract the optimal model pa-

rameters in this thesis. They focus on handling the proposed parametric optimization

problem derived from a sum-of-square-error function between the dielectric data and

the double Debye model. The first algorithm employs a grinding-based technique that

locates the optimal solution through comparing values of the objective function at each

point in its variable space. The outcomes prove that this approach is robust and able to

significantly improve the fitting quality throughout the examined frequency domain as
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compared to the initial method in literature. However, the grinding-based optimization

algorithm poses an intensive computation, thus making it less practical to be used for

THz imaging. Therefore, the second algorithm based on the BB technique of global

optimization has been developed. The simulation results show that this method con-

siderably improves the computation efficiency by reducing the number of QPs from

thousands in the grinding-based approach to few hundreds while still satisfying the op-

timality of the extracted parameters. The optimal results of these proposed algorithms

not only confirm the applicability of the double Debye model in the frequency band

0.2–2 THz but also facilitate precise transformation of information from the measured

dielectric properties to this modelling.

To investigate the potential of the double Debye model in terms of cancer discrimina-

tion, the model parameters were extracted from the complex permittivity of 23 skin

samples using the GO based algorithms. These tissue samples, which are either healthy

or cancerous with a certain percentage of BCC, were excised from ten patients under-

going MMS. Statistical analysis of the model parameters indicates that εs is the only

Debye parameter showing a significant difference between normal and BCC samples

with 33% difference in mean. It also found that this parameter highly correlates with

the BCC percentage in the samples. Furthermore, the frequency-dependent parame-

ters including �(εmr (ω)), �(ε(ω)
D
r ), �(D1(ω)) and �(D2(ω)) are significantly different

between normal tissue and BCC while their variations have high correlations with the

BCC content. As regards cancer discrimination, εs and these four combination pa-

rameters show their strong capability through their average AUCs ranging between

0.79–0.93. The LP and SVM classifiers were used to classify the BCC samples with all

these parameters whereas the classification accuracy was estimated by both LOOCV

and RSCV. The results indicate that εs is the best among the DD parameters as it ob-

tains high and consistent classification accuracies with the SVM in both cross-validation

estimations (91.3% LOOCV and 90.9% RSCV). The combination of εs and ε2 improves

the classification accuracy that, as a result, reaches the LOOCV of 95.7% with both
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LP and SVM method. In addition, �(ε)Dr (0.5 THz) is the most valuable among the

frequency-dependent parameters, which provides the LOOCV of 95.7% and RSCV of

88%. The SVMs generally perform better than the LP classifiers in most cases by virtue

of the advantages of SVM to deal with linearly inseparable data. All the outcomes con-

firm the cancer classification potential of the dielectric approach based on the double

Debye model.

As breast tissue is constructed by a significant proportion of fat cells and proteins as

well as containing less free water compared to skin tissue, its terahertz dielectric spectra

might pose non-Debye responses. This results in the failure of the double Debye model

to describe the dielectric properties of breast tissue. Therefore, the non-Debye model

(THz-nDB) for breast tissue has been developed to replace the double Debye model.

The gradient sampling algorithm for nonsmooth optimization has been applied to fit

this model to the measured data. The simulation results of 74 excised breast samples

indicate that the proposed modelling can successfully fit the measured complex per-

mittivities of all the breast samples. The statistical analysis of the extracted model

parameters suggests σ as the most promising parameter for breast cancer discrimina-

tion. This parameter not only varies significantly between normal and cancerous breast

tissue according to the t-test but also correlates well with fat and, more importantly,

the tumour content of the tested samples. In addition to the statistical assessment,

the AUROC value of 0.93 for σ in the ROC analysis is completely distinct from the

remaining model parameters, thus confirming the cancer discrimination capability of

this parameter.

Recent popular classifiers such as SVM and BNN were employed to examine the actual

classification performance of the THz-nDB parameters. Both the methods obtain the

same classification accuracy of 86.5% with σ, which also represents the best perfor-

mance among all the model parameters. Furthermore, the essential advantage of the

advance classification algorithms is their ability to handle high-dimensional data and

multi-features. Therefore, ten classification parameters C1–C10 including σ and its
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combinations with the remaining parameters of the THz-nDB model were considered

for the classification improvement. The outcomes of the SVM classification suggest C3,

consisting of only σ and τ1, as the best classification feature for the SVM. This combina-

tion provides the LOOCV of 91.2% and RRSCV of 88.3%. However, the combinations

with more than two model parameters in the SVM classification do not improve the

performance or even make it worse. On the contrary, the BNN method applied for the

combinations of four model parameters is capable of classifying the breast tumour with

LOOCV and RSSCV accuracies of up to 97.3% and 93.6% respectively. The highest

obtained accuracies correspond to the combination C10. In addition to this remarkable

improvement, the BNN surpasses the SVM in terms of overall performance as it has

been shown that the accuracies, approximated by both LOOCV and RRSCV, for the

BNN classification with the majority of the combinations, are higher than those for the

SVM. According to all the results and analysis, BNN proves to be more appropriate

for the THz-nDB parameters and their combinations than SVM. Last but not least, a

much larger amount of data is of particular importance in confirming the pilot study

of using the non-Debye model THz-nDB for breast cancer classification.

6.2 Future Research

Optical data applied in the study of this thesis was collected from ex vivo measure-

ments in the transmission setup. It has been shown that in vivo and in vivo data are

not exactly the same because in vivo measurements are performed in the reflection

geometry. In addition, excisions in ex vivo experiments potentially cause tissue defor-

mation and shrinkage [Wallace, Fitzgerald, Shankar, Flanagan, Pye, Cluff and Arnone,

2004]. Therefore, in vivo data will need to be investigated with the dielectric models

in order to fully understand their applicability to the THz imaging in vivo.

Future study will conduct classification on THz images in order to confirm the ac-

curacy of cancer margin detection in both MMS for skin cancer and BCS for breast
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cancer. Since the applied dielectric models such as the double Debye model or the

non-Debye model reflect the molecular interaction between THz interaction and biolog-

ical molecules, it is reasonable to expect the model parameters to be the origin of the

terahertz contrast between normal and diseased tissue. In fact, this means that direct

comparison between these parameters and the existing time- and frequency-domain

parameters for imaging should be verified. In addition to the feature selection, the

classification efficiency can be improved through testing and developing classification

algorithms.

The calculation of the refractive index and absorption coefficient is not error-free due

to the imperfection of measurements [Withayachumnankul et al., 2008]. The random

and systematic errors are mostly related to the sample thickness and signal alignment.

Furthermore, the applied transmission/reflection models for calculating the optical con-

stants from the measured THz pulses are unable to take these error sources into account

[Duvillaret et al., 1996, 1999; Dorney et al., 2001; Pupeza et al., 2007]. As a result, the

uncertainties of determining the optical properties of the sample need to be considered

in further studies because can potentially affect the outcomes of the dielectric-modelling

approach.

A THz intraoperative probe has been developed that can perform measurements in re-

flection geometry during surgical processes such as MMS and BCS [Parrott et al., 2011].

The outcomes of the dielectric studies presented in this thesis will facilitate choosing

classification features from the reflected signal collected using this probe. However, the

currently-applied extraction procedure for the dielectric models is often performed in

the transmission mode. It is also relatively time-consuming due to the optimization

steps. This makes the dielectric approach quite impractical for real-time implementa-

tion in the THz imaging probe system. Therefore, solutions for improving the speed of

the parameter extraction procedure will be considered in future works.
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