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Abstract

FEATURE SELECTION USING MUTUAL INFORMATION IN

NETWORK INTRUSION DETECTION SYSTEM

by Mohammed Ambusaidi

Network technologies have made significant progress in development, while the se-

curity issues alongside these technologies have not been well addressed. Current

research on network security mainly focuses on developing preventative measures,

such as security policies and secure communication protocols. Meanwhile, attempts

have been made to protect computer systems and networks against malicious be-

haviours by deploying Intrusion Detection Systems (IDSs). The collaboration of

IDSs and preventative measures can provide a safe and secure communication envi-

ronment. Intrusion detection systems are now an essential complement to security

project infrastructure of most organisations. However, current IDSs suffer from

three significant issues that severely restrict their utility and performance. These

issues are: a large number of false alarms, very high volume of network traffic and

the classification problem when the class labels are not available.

In this thesis, these three issues are addressed and efficient intrusion detection sys-

tems are developed which are effective in detecting a wide variety of attacks and

result in very few false alarms and low computational cost. The principal contri-

bution is the efficient and effective use of mutual information, which offers a solid

theoretical framework for quantifying the amount of information that two random

variables share with each other. The goal of this thesis is to develop an IDS that is

accurate in detecting attacks and fast enough to make real-time decisions.

First, a nonlinear correlation coefficient-based similarity measure to help extract

both linear and nonlinear correlations between network traffic records is used. This

measure is based on mutual information. The extracted information is used to
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develop an IDS to detect malicious network behaviours. However, the current net-

work traffic data, which consist of a great number of traffic patterns, create a serious

challenge to IDSs. Therefore, to address this issue, two feature selection methods

are proposed; filter-based feature selection and hybrid feature selection algorithms,

added to our current IDS for supervised classification. These methods are used to

select a subset of features from the original feature set and use the selected subset

to build our IDS and enhance the detection performance.

The filter-based feature selection algorithm, named Flexible Mutual Information

Feature Selection (FMIFS), uses the theoretical analyses of mutual information as

evaluation criteria to measure the relevance between the input features and the

output classes. To eliminate the redundancy among selected features, FMIFS in-

troduces a new criterion to estimate the redundancy of the current selected features

with respect to the previously selected subset of features.

The hybrid feature selection algorithm is a combination of filter and wrapper al-

gorithms. The filter method searches for the best subset of features using mutual

information as a measure of relevance between the input features and the output

class. The wrapper method is used to further refine the selected subset from the

previous phase and select the optimal subset of features that can produce better

accuracy.

In addition to the supervised feature selection methods, the research is extended

to unsupervised feature selection methods, and an Extended Laplacian score EL

and a Modified Laplacian scoreML methods are proposed which can select features

in unsupervised scenarios. More specifically, each of EL and ML consists of two

main phases. In the first phase, the Laplacian score algorithm is applied to rank

the features by evaluating the power of locality preservation for each feature in the

initial data. In the second phase, a new redundancy penalization technique uses

mutual information to remove the redundancy among the selected features. The

final output of these algorithms is then used to build the detection model.
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The proposed IDSs are then tested on three publicly available datasets, the KDD

Cup 99, NSL-KDD and Kyoto dataset. Experimental results confirm the effec-

tiveness and feasibility of these proposed solutions in terms of detection accuracy,

false alarm rate, computational complexity and the capability of utilising unlabelled

data. The unsupervised feature selection methods have been further tested on five

more well-known datasets from the UCI Machine Learning Repository. These newly

added datasets are frequently used in literature to evaluate the performance of fea-

ture selection methods. Furthermore, these datasets have different sample sizes and

various numbers of features, so they are a lot more challenging for comprehensively

testing feature selection algorithms. The experimental results show that ML per-

forms better than EL and four other state-of-art methods (including the Variance

score algorithm and the Laplacian score algorithm) in terms of the classification

accuracy.
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