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Abstract

FEATURE SELECTION USING MUTUAL INFORMATION IN

NETWORK INTRUSION DETECTION SYSTEM

by Mohammed Ambusaidi

Network technologies have made significant progress in development, while the se-

curity issues alongside these technologies have not been well addressed. Current

research on network security mainly focuses on developing preventative measures,

such as security policies and secure communication protocols. Meanwhile, attempts

have been made to protect computer systems and networks against malicious be-

haviours by deploying Intrusion Detection Systems (IDSs). The collaboration of

IDSs and preventative measures can provide a safe and secure communication envi-

ronment. Intrusion detection systems are now an essential complement to security

project infrastructure of most organisations. However, current IDSs suffer from

three significant issues that severely restrict their utility and performance. These

issues are: a large number of false alarms, very high volume of network traffic and

the classification problem when the class labels are not available.

In this thesis, these three issues are addressed and efficient intrusion detection sys-

tems are developed which are effective in detecting a wide variety of attacks and

result in very few false alarms and low computational cost. The principal contri-

bution is the efficient and effective use of mutual information, which offers a solid

theoretical framework for quantifying the amount of information that two random

variables share with each other. The goal of this thesis is to develop an IDS that is

accurate in detecting attacks and fast enough to make real-time decisions.

First, a nonlinear correlation coefficient-based similarity measure to help extract

both linear and nonlinear correlations between network traffic records is used. This

measure is based on mutual information. The extracted information is used to
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develop an IDS to detect malicious network behaviours. However, the current net-

work traffic data, which consist of a great number of traffic patterns, create a serious

challenge to IDSs. Therefore, to address this issue, two feature selection methods

are proposed; filter-based feature selection and hybrid feature selection algorithms,

added to our current IDS for supervised classification. These methods are used to

select a subset of features from the original feature set and use the selected subset

to build our IDS and enhance the detection performance.

The filter-based feature selection algorithm, named Flexible Mutual Information

Feature Selection (FMIFS), uses the theoretical analyses of mutual information as

evaluation criteria to measure the relevance between the input features and the

output classes. To eliminate the redundancy among selected features, FMIFS in-

troduces a new criterion to estimate the redundancy of the current selected features

with respect to the previously selected subset of features.

The hybrid feature selection algorithm is a combination of filter and wrapper al-

gorithms. The filter method searches for the best subset of features using mutual

information as a measure of relevance between the input features and the output

class. The wrapper method is used to further refine the selected subset from the

previous phase and select the optimal subset of features that can produce better

accuracy.

In addition to the supervised feature selection methods, the research is extended

to unsupervised feature selection methods, and an Extended Laplacian score EL

and a Modified Laplacian scoreML methods are proposed which can select features

in unsupervised scenarios. More specifically, each of EL and ML consists of two

main phases. In the first phase, the Laplacian score algorithm is applied to rank

the features by evaluating the power of locality preservation for each feature in the

initial data. In the second phase, a new redundancy penalization technique uses

mutual information to remove the redundancy among the selected features. The

final output of these algorithms is then used to build the detection model.
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The proposed IDSs are then tested on three publicly available datasets, the KDD

Cup 99, NSL-KDD and Kyoto dataset. Experimental results confirm the effec-

tiveness and feasibility of these proposed solutions in terms of detection accuracy,

false alarm rate, computational complexity and the capability of utilising unlabelled

data. The unsupervised feature selection methods have been further tested on five

more well-known datasets from the UCI Machine Learning Repository. These newly

added datasets are frequently used in literature to evaluate the performance of fea-

ture selection methods. Furthermore, these datasets have different sample sizes and

various numbers of features, so they are a lot more challenging for comprehensively

testing feature selection algorithms. The experimental results show that ML per-

forms better than EL and four other state-of-art methods (including the Variance

score algorithm and the Laplacian score algorithm) in terms of the classification

accuracy.
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Chapter 1

Introduction

This thesis addresses three important issues that affect the performance of anomaly

intrusion detection systems. These issues are: a large number of false alarms,

large-scale data in supervised learning applications and the absence of labels in an

unsupervised data classification. Section 1.1 of this chapter outlines the background

about intrusion detection systems. The motivations for the work presented in this

thesis and objectives are discussed in Section 1.2. The contributions and novelty of

the work are discussed in Section 1.3, followed by an outline of the structure of the

remainder of the thesis in Section 1.4.

1.1 Background

Despite increasing awareness of network security, the existing solutions remain in-

capable of fully protecting internet applications and computer networks against

the threats from ever-advancing cyber attack techniques. Developing effective and

1
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adaptive security approaches, therefore, has become more critical than ever before.

The traditional security techniques, as the first line of security defence, such as user

authentication, firewall and data encryption, are insufficient to fully cover the entire

landscape of network security while facing challenges from ever-evolving intrusion

skills and techniques [2]. Hence, another line of security defence is highly recom-

mended, such as IDS. Recently, an Intrusion Detection System (IDS) alongside

anti-virus software has become an important complement to the security infrastruc-

ture of most organisations. The combination of these two lines of defence provides

a high level of defence and strengthens network security against those threats.

Intrusion detection is the art of discovering and detecting network traffic or events on

host machines that present anomalous behaviours or cause violations of regulations.

It plays a significant role in monitoring and analysing daily activities occurring in

computer systems to detect occurrences of security threats. However, infiltration

techniques have become more sophisticated and have posed several challenges to the

security tools. Thus, there is a need for an efficient and reliable IDS to safeguard

computer networks from known as well as unknown attacks. To fulfil this purpose,

an IDS is required to be accurate in discovering intruders and fast enough in order

to make real-time decisions.

Intrusion detection techniques can be generally classified into two main categories.

The first category is signature-based or misuse-based detection systems that detect

on-going anomalies by looking for a match with any pre-defined attack signature

[3]. These systems are widely used because they are simple and efficient. More

importantly, they have a small number of false positive alarms. However, one of

the disadvantages of these systems is that the detection accuracy and efficiency

heavily depend on the quality of attack signatures. To extract such high quality
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signatures requires the involvement of experts who have done extensive study of

malicious behaviours, which is costly and time consuming. In addition, the signature

of an intrusion is required before the system can detect the respective intrusion.

Consequently, this type of IDS cannot detect any previously unknown attacks due to

the lack of attack signatures. These limitations make systems or networks that have

been protected by signature-based detection systems become vulnerable to those

previously unknown attacks at any time. In addition, such weaknesses cause more

critical issues in real practice because increasingly new and sophisticated infiltration

techniques have been developed to defeat the security tools. Thus, the signature

database of these systems needs to be continually updated in order to detect new

attacks.

The second category is anomaly-based detection systems, which have been in favour

with the research community. Anomaly-based detection makes an assumption that

intruders’ behaviours are different from those of normal network traffic [4, 5]. In

comparison with signature-based detection systems, anomaly-based detection sys-

tems enjoy the advantage of detecting unknown attacks and variants of known

attacks. That is because they make use of statistical analysis to evaluate the devi-

ations of the behaviours of observed traffic flows from those of the normal traffic.

They study normal traffic behaviours on a network and then create models for

normal flows. After that, any deviations from the normal flows are considered as

suspicious behaviours. The main advantages of these approaches are the ability

of recognising known and unknown attacks, and there is no need for a continuous

update of the attack knowledge base. However, the major weaknesses of these tech-

niques include that they are prone to a large number of false alarms with newly

occurring normal network traffic and poor detection efficiency with attacks that
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mimic normal network traffic behaviours, and are not good at handling a large vol-

ume of data. In addition, the availability of labelled data for training the detection

models is usually a major issue.

This thesis intends to address these limitations and focuses on developing anomaly-

based detection systems which can be applied efficiently in detecting a wide variety

of attacks. Although there is a current research direction to make use of the correla-

tions in building intrusion detection systems, most of the proposed systems [1, 6–8]

are based on linear correlation measures, such as Pearson’s Correlation Coefficient,

which are only capable of studying the linear correlations in a given sample set.

However, the existence of nonlinear correlation hidden in a sample set limits the

capability of these anomaly-based detection systems in extracting such correlation

and therefore the systems are vulnerable to increasing number of attacks. In this

thesis, a nonlinear correlation coefficient-based similarity measure is used to help

extract both linear and nonlinear correlations between network traffic records. In

addition, two supervised feature selection algorithms are proposed to cope with the

issue of large-scale data. Furthermore, an unsupervised feature selection algorithm

that can utilise unlabelled data is developed to select the best subset of features

from the original dataset. This subset is then used to train the detection model.
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1.2 Motivations and Objectives

Motivations

The quality of an anomaly detection system is defined by its effectiveness and adapt-

ability. The effectiveness of a system is evaluated via its detection (true positive)

rates as well as its false alarm (false positive) rates and the adaptability is measured

by the ability of detecting known intrusions as well as new intrusions. However,

three main challenges have to be overcome through the development of high qual-

ity anomaly based detection systems, which motivate this PhD research. These

challenges are detailed as follows.

The first challenge is that the detection system must be capable of handling a

large volume of data. These “big data” slow down the entire detection process

and may lead to unsatisfactory classification accuracy due to the computational

difficulties in handling such data. As a well-known intrusion evaluation dataset,

KDD Cup 99 dataset is a typical example of large-scale datasets. This dataset

consists of more than five millions of training samples and two millions of testing

samples respectively. Such a large scale dataset may retard the building and testing

processes of a classifier, or makes the classifier unable to perform due to system

failures caused by insufficient memory.

The second challenge is the unavailability of class labels of training data. Classifying

data in an unsupervised learning application, when the data labels are not available,

is much more difficult than in supervised learning scenarios [9]. This is because in

most of the real-world applications, the class labels are unknown which makes those

intrusion detection systems based on supervised learning techniques not applicable.
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The third challenge is that the detection system must accurately detect attacks

with very few false alarms. It is very essential for intrusion detection systems to

keep the number of false alarms as low as possible in order to maintain the level of

security and reliability of networks. This technical challenge has been along with the

development of IDSs since 1990s. A significant amount of work has been conducted

attempting to address this issue. Numerous machine learning techniques, including

Bayesian network [10], support vector machine [11] and Markov models [12], have

been used to strengthen the detection capability of IDSs. However, the false alarm

rate of those systems is still high.

Objectives

The overall aim of this thesis is to develop a novel anomaly-based IDS that is

accurate in detecting attacks with low false alarms, able to handle large-scale data

and fast enough to make real-time decisions. The specific objectives of this thesis

are listed as follows.

1. We will propose an anomaly-based IDS based on mutual information measure,

which is used to quantify the amount of information shared between two

random variables.

2. We will propose a novel framework for supervised feature selection which

considers the correlation among features. A filter-based supervised feature

selection algorithms is developed in this thesis.

3. We will propose a supervised hybrid feature selection method to enhance the

performance of the above filter method.
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4. We will develop a novel framework for unsupervised feature selection that

is capable of selecting the most optimal subset of features for unsupervised

classification of network intrusions.

1.3 Thesis Contributions

Owing to the increasing storage capacity of computing systems, much more infor-

mative data can now be stored. However, it is an expensive or even less possible

task to analyse all of these data due to the slow grow of computational capacity of

computing systems in companion with the increase of data. The following are the

main research contributions of this thesis.

1. In Chapter 3 of this thesis, we develop a new anomaly detection framework

that effectively detects attacks by investigating the correlations among net-

work traffic records [13, 14]. The proposed approach has the following prop-

erties:

• It is capable of extracting both linear and nonlinear correlations between

network traffic records, and

• It does not require any update of the attack knowledge base.

2. In Chapter 4, we develop a new information theoretic criterion referred to

as Flexible Mutual Information Feature Selection (FMIFS) to measure the

relevance of each input feature with the output class [15]. The proposed

algorithm has the following properties:
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• It effectively selects relevant features based on mutual information for

feature ranking,

• Introduces a new measure of redundancy to reduce the bias of mutual

information in favour of multivalued attributes and keep the value of MI

on the closed interval [0,1], and

• It does not require a user-defined parameter such as β for the selection

processes of the candidate feature set as is needed in most of the state-

of-the art methods.

3. To enhance the performance of the method proposed in Chapter 4, a new fea-

ture selection method, based on a hybrid filter/wrapper model, is developed

in Chapter 5. The hybrid feature selection algorithm consists of two phases

[16]. The upper phase conducts a preliminary search for an optimal subset

of features using FMIFS, in which the mutual information between the input

features and the output class serves as a determinant criterion. The selected

set of features from the previous phase is further refined in the lower phase

in a wrapper manner to retain a proper set of features with respect to the

classification accuracy. The algorithm includes an additional search step to-

gether with the backtracking step named “replacing the weak feature”. This

step attempts to find if replacing weak features in the current selected feature

set with new features can provide better performance.

4. The proposed feature selection algorithms in Chapter 4 and Chapter 5 are

supervised feature selection methods. While the labelled data needed by su-

pervised feature selection methods can be scarce, there is usually no shortage

of unlabelled data. Hence, developing unsupervised feature selection methods,
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which can utilise this data, attracts the attention of many researchers. There-

fore, in Chapter 6, we extend our research attention to unsupervised feature

selection algorithms [17, 18]. Specifically, the methods propose new Redun-

dancy Penalization (RP) technique based on mutual information to eliminate

the redundancy among selected features.

1.4 Thesis Structure

The remainder of this thesis is organised as follows. Chapter 2 provides a thor-

ough review of the related work. It commences with a brief introduction of anomaly

detection systems. Then, a review of some dependency measures that have been

successfully applied to anomaly detection systems is given. After that, the re-

view introduces the principle of feature selection and some of the related methods

based on feature selection. Chapter 3 presents the first attempt to use the mu-

tual information method to extract the correlation among the input samples. The

method is able to extract both linear and nonlinear correlations between network

traffic records. The extracted correlative information is then used to train the pro-

posed IDS to detect anomalous behaviours in the network. Chapter 4 presents a

filter-based feature selection algorithm using mutual information, named FMIFS,

to search for the most optimal subset of features. The aim is to use the theoretical

analysis of mutual information as evaluation criterion to measure the relevance be-

tween the input features and the output classes. The selected subset of features is

then used to train the proposed IDS. Chapter 5 proposes an enhancement to the

classification performance of FMIFS. It introduces a hybrid algorithm for feature

selection based on the combined filter and wrapper methods feature selection. The
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best set of candidate features is chosen, in a wrapper manner, from the top of the

ranking list by looking for the best subset that produces the highest classification

accuracy. The chosen subset is then used in building the proposed detection model.

Chapter 6 presents an unsupervised feature selection method for the classification

problem when the class labels are unknown. The algorithm is named the modified

Laplacian score, ML in short. Finally, Chapter 7 summarises the contributions of

this thesis and suggest avenues for future research.



Chapter 2

Related Work

In this chapter, background information is given to introduce the reader to the

works that have been achieved in the following chapters of this thesis. The outline

of this chapter is as follows. Section 2.1 introduces the problem of anomaly de-

tection systems and reviews some of existing anomaly detection methods. Section

2.2 presents an overview of some popular dependence measures, correlation coeffi-

cient, mutual information and nonlinear correlation coefficient that have been used

to improve the detection performance and reduce the false alarm rate of anomaly

detection systems. Section 2.3 is devoted providing details of the principle of fea-

ture selection. In this section, the general problem of feature selection is introduced

and the different categories of feature selection showing the advantages and disad-

vantages of each one are presented in some detail. The most related techniques for

supervised feature selection based on mutual information method are presented in

this section showing the strengths and weaknesses of each one. The unsupervised

feature selection problem and some of the related state-of-the-art methods are then

11
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discussed in Section 2.4. Section 2.5 describes three of the well known intrusion de-

tection datasets: KDD Cup 99, NSL-KDD and Kyoto 2006+ dataset that have been

widely used to evaluate the performance of intrusion detection systems. Finally, a

summary to the chapter is given in Section 2.6.

2.1 Anomaly Detection System

The definition of anomaly detection refers to the ability of discovering patterns in

data that do not match expected normal behaviour. These non-matching patterns

are often named anomalies, intruders or outliers in the computer network domain.

Detecting anomalies in network traffic has been researched in the research commu-

nity from as early as the 19th century [19]. Over time, several anomaly detection

techniques have been proposed in the domain of network security such as classifi-

cation, information theoretic, statistical and clustering detection methods [5]. In

general, anomaly detection systems operate in a two-phase fashion: a training phase,

where the detection model is trained using the training dataset, and a testing phase,

where the test data is passed through the trained model to check if it contains any

attack. The key point is to build a model of legitimate activities using the normal

data, named as the normal profile, and any deviation from the normal profile will

be considered as an anomaly [20].

During the past decades, various anomaly detection methods have been proposed

in literature. For example, the solid mathematical foundations of Support Vector

Machine (SVM) has attracted the attention of many IDS researchers [21]. A review

of the most commonly used techniques, made by Tsai et al. [22], indicates that
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statistically SVM is one of the most popularly used methods in the last decade.

SVM attempts to divide data into multiple classes by creating a hyperplane, which

helps minimise the classification error and maximise the geometric margin. Eskin et

al. [23] built adaptive probabilistic detection models, which adopted three machine-

learning algorithms, including SVM, clustering method and K-neighbor, to detect

anomalies within a noisy data. Their algorithm applied machine learning techniques

to estimate the probability distributions of the mixture for detecting the anomalies.

Hu et al. [24] proposed an anomaly detection system based on system call data

using Robust SVM to model system behaviour and distinguish between each pro-

cess in the system as normal or abnormal. Mukkamala et al. in [25] investigated

the possibility of assembling various learning methods, including Artificial Neural

Networks (ANN), SVMs and Multivariate Adaptive Regression Splines (MARS), to

detect intrusions. They trained five different classifiers to distinguish between the

normal traffic and four different types of attacks. They compared the performance

of each of the learning methods with their model and found that an ensemble of

ANNs, SVMs and MARS achieved the best performance in terms of classification

accuracies for all the five classes. Peddabachigari et al. [26] proposed an intelli-

gent system model (DT–SVM) based on a combination of Decision trees (DT) and

support vector machines (SVM). Experiments on KDD Cup 99 dataset have shown

that DT-SVM achieved high detection rate but has required a lot of computation

time when dealing with big datasets. Recently, Chandrasekhar and Raghuveer [27]

utilised neuro-fuzzy and radial SVM to build their detection approach. Their frame-

work consists of four main steps: initial clustering, fuzzy neural network training,

formation of SVM and classification using radial SVM. Toosi et al. [28] combined a
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set of neuro-fuzzy classifiers in their design of the detection system, in which a ge-

netic algorithm was applied to optimise the structures of neuro-fuzzy systems used

in the classifiers. Based on the pre-determined fuzzy inference system (for example,

classifiers), detection decision was made on the incoming traffic. The KDD Cup

1999 dataset was used to evaluate this neuro-fuzzy based detection system.

The aforementioned detection methods attempt to protect computer networks again-

st intrusions by passing incoming traffic through the trained classifier. The perfor-

mance of these systems could be further enhanced by using dependency measures

to extract the correlation between samples that are then used to train the classifier

of the detection system.

2.2 Dependency Measures for Anomaly Detec-

tion

Measuring the relevance between two random variables is an important and a fun-

damental problem. It has been used in many applications in several domains, such

as statistics, economics and signal processing [29]. During the past decades, several

researches have been conducted to develop a measure that can sensibly present the

relevant relationship between two random variables. Correlation Coefficient and

Mutual Information measures are the most popular dependence measures that have

been widely applied in different domains. A brief overview of both measures is given

below. In addition, an overview of the nonlinear correlation coefficient measure is

also given below.



Chapter 2. Related Work 15

2.2.1 Correlation Coefficient

The correlation coefficient measure is one of the basic and most popular linear cor-

relation methods used to measure linear dependence between two random variables

[30]. It is commonly used in many areas due to its simplicity, low computational

cost and ease of estimation. For any two random variables, their correlation coef-

ficient indicates the magnitude of the relationship between the two variables and

it is equal to the quotient of their covariance and the product of their standard

deviations.

Given two random variables X and Y , as shown in Equation (2.1) and Equation

(2.2) respectively,

X = {x1, x2, . . . , xn}, (2.1)

Y = {y1, y2, . . . , yn}, (2.2)

where n is the total number of samples. The correlation coefficient p(X, Y ) of the

variables X and Y is defined as:

p(X, Y ) =
cov(X, Y )

σXσY
=

∑n
i=1(xi −X)(yi − Y )√∑n

i=1(xi −X)2
∑n

i=1(yi − Y )2
, (2.3)

where cov(X, Y ) is the covariance between X and Y, and σX and σY are the standard

deviations and can be defined as:
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cov(X, Y ) =
1

n

n∑
i=1

(xi −X)(yi − Y ), (2.4)

σX =

√√√√ 1

n

n∑
i=1

(xi −X)2, (2.5)

σY =

√√√√ 1

n

n∑
i=1

(yi − Y )2, (2.6)

and X and Y indicate the means of X and Y , respectively and are defined as:

X =
1

n

n∑
i=1

xi, (2.7)

Y =
1

n

n∑
i=1

yi. (2.8)

The value of the correlation coefficient in Equation (2.3) is within the range [0,1].

It indicates the degree of the linear correlation between the two random variables.

When the value of p(X, Y ) is close to 1 or -1, it denotes a strong relationship. If

the value is close to 0, it means a weak relationship between the two variables.

A positive correlation coefficient denotes that the two variables are in the same

direction, and a negative one indicates that the two variables are in the opposite

direction.

Many researchers consider the correlation among traffic samples to distinguish nor-

mal traffic from abnormal. Beauquier et al. in [31] for example, proposed a model
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named Pearson’s Correlation Coefficients-Rank (PCC-R), which applied PCC to

evaluate distances between network traffic records. The experimental results have

shown a slight enhancement in the false alarm rates compared to other comparative

methods. Another attempt is done by Jin et al. in [6]. They utilised a covari-

ance matrix of sequential samples to detect multiple network attacks. In order to

investigate the performance of their model, they applied two different statistical

pattern recognition approaches, namely threshold based detection approach and

traditional decision tree approach, to detect anomalies. The experimental results

have shown that both approaches can distinguish multiple known attacks in the

covariance feature space effectively. However, one of the limitations of both models

is susceptibility to any attacks which linearly change the monitored features.

Some new ideas were proposed in recent years based on different linear correlation

techniques to deal with the problem of the linear changes of the monitored features

and to reduce the false positive rate. In 2009, a method based on Triangle Area

based Nearest Neighbours (TANN) was proposed by Tsai et al. in [7]. TANN

combined clustering and classification techniques to detect attacks. Compared with

the previously proposed methods, TANN shows a significant enhancement in the

detection rate and false positive rates. In 2010, Jamdagni et al. proposed the

Geometrical Structure Anomaly Detection (GSAD) model in [32]. GSAD is a pat-

tern recognition method using the Mahalanobis Distance Map (MDM) to extract

correlations between packet payload features. To reduce the processing overhead

of the GSAD model, Tan et al. in [33] proposed a two-tier system based on the

linear discriminant method. More recently, Tan et al. in [34] proposed an effective

Multivariate Correlation Analysis (MCA) technique that investigates geometrical

correlations (triangle areas) between features in a single network traffic record.
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However, even though the linear correlation coefficient measure is widely used in

different fields, it has some limitations that make it not always suitable to all ap-

plications. For example, it is well known that if two random variables are uncorre-

lated, in which their correlation coefficient is equal to zero, they are not necessarily

independent of each other [30]. In addition, considering that in real world com-

munication, the correlations can also be nonlinear. These limitations can increase

the rate of false alarms of an IDS. To address these limitations, information theory

provides a solid theoretical framework for analysing the information content of a

data using various measures such as entropy, mutual information and others [35].

2.2.2 Mutual Information

Mutual Information (MI) has successfully addressed some limitations of the correla-

tion coefficient. It provides a generalised correlation analogous to linear correlation

coefficient, but it is sensitive to both linear and nonlinear correlations [36]. The key

concept of mutual information is from information theory which was proposed in

1948 by Shannon [37]. It describes the amount of information shared between two

random variables. It is a symmetric measure of the relationship between two ran-

dom variables, and it yields a non-negative value [35]. A zero value of MI indicates

that the two observed variables are statistically independent.

Given two continuous random variables X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn},
where n is the total number of samples, the mutual information between X and Y

is defined in Equation (2.9).

I(X;Y ) = H(X) +H(Y )−H(X, Y ), (2.9)
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where H (X ) and H (Y ) are the information entropies of X and Y. The information

entropy is a measure of uncertainty of random variables X and Y, where H (X ) and

H (Y ) are defined in Equation (2.10) and Equation (2.11) respectively.

H(X) = −
∫
x

p(x) log p(x)dx, (2.10)

H(Y ) = −
∫
y

p(y) log p(y)dy. (2.11)

The H(X,Y) is the joint entropy of X and Y and is defined as

H(X, Y ) = −
∫
x

∫
y

p(x, y) log p(x, y)dxdy. (2.12)

Therefore, to quantify the amount of knowledge on variable X provided by variable

Y (and vice versa), which is known as mutual information, Equation (2.13) is used.

I(X;Y ) =

∫
x

∫
y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (2.13)

where p(x,y) is a joint probability density function (pdf), and p(x) and p(y) are the

marginal density functions and are defined as

p(x) =

∫
p(x, y)dy (2.14)

and
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p(y) =

∫
p(x, y)dx. (2.15)

For discrete variables, mutual information between two discrete random variables

with a joint probability mass function p(x,y) and marginal probabilities p(x ) and

p(y) is defined by replacing the integration notation with the summation notation

as shown in Equation (2.16),

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.16)

and the entropies of X and Y are defined as:

H(X) = −
∑
x∈X

p(x) log p(x), (2.17)

H(Y ) = −
∑
y∈Y

p(y) log p(y). (2.18)

Several anomaly detection methods based on mutual information have been pro-

posed in the literature. Das and Schneider in [38, 39] applied mutual information to

extract the dependence between all attribute sets and proposed an anomaly detec-

tion system which attempts to find unexpected behaviour and flag it as an anomaly

attempt. They set a threshold of mutual information and obtain a set of depen-

dent attribute pairs. Based on the results in this set, an anomaly factor for each

individual sample is defined. Kopylova et al. [40] investigated the use of mutual

information in network traffic anomaly detection using generalized Renyi entropy
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rather than the traditional Shannon entropy measure. The generalized Renyi en-

tropy measures the uncertainty and complexity of a collection of data samples. For

a system X, where X = {x1, x2, . . . , xm} for a finite set of m possible states, the

Shannon entropy of X is given by Equation (2.19)

H(X) = −
m∑
i=1

P (xi)logP (xi), (2.19)

where P (xi) indicates the probability of the system being in state xi.

Since the value of mutual information does not range in a closed interval [0,1] as the

correlation coefficient does, to indicate the degree of the nonlinear correlation, with

0 and 1 denotes the weakest and the strongest relation, respectively. To address this,

the proposed anomaly detection systems in Chapter 3 of this thesis applies a revised

version of the mutual information measure [41] to extract both linear and nonlinear

correlations between network traffic records, where the value of the revised version

ranges in [0,1], and uses the extracted information to detect anomalies. Chapter 3

of this thesis is developed based on the works published in [13, 14].

In general, an IDS deals with a large volume of data that consists of a great number

of traffic patterns. Each pattern in a dataset is characterised by a set of features (or

attributes) that are represented as a point in a multi-dimensional feature space. A

pattern may contain irrelevant and redundant features that slow down the training

and testing processes or even affect the classification performance by causing more

mathematical complexity. In practice, however, it is worthwhile to keep the number

of features as small as possible in order to reduce the computational cost and the

complexity of building a classifier. Therefore, the performance of the aforementioned

systems could be further improved by introducing an additional step, dimensionality
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reduction, as part of the preprocessing stage to eliminate these unimportant features

from the used dataset. Dimensionality reduction, such as feature extraction and

feature selection, has been successfully applied to machine learning and data mining

to solve this problem. Feature Extraction (FE) techniques attempt to transfer the

input features into a new feature set, while Feature Selection (FS) algorithms search

for the most informative features from the original input data [42]. This research

focuses on feature selection.

2.2.3 Nonlinear Correlation Coefficient

The disadvantage of MI is that it does not range in a definite closed interval [0, 1]

as the correlation coefficient does [41, 43, 44]. Therefore, Wang et al. [41] proposed

a revised version of the MI, named Nonlinear Correlation Coefficient, NCC in short.

To explain the Nonlinear Correlation Coefficient, we refer to the definitions pro-

posed in [41, 43, 44]. Considering two random variables X = {xi}1≤i≤N and

Y = {yi}1≤i≤N . Their values are first sorted in ascending order and placed into

b ranks with the first N/b values in the first rank, the second N/b values into the

second rank, and so on. Second, the sample pairs, {(xi, yi)}1≤i≤N , are placed into a

b× b rank grids by comparing the sample pairs to the rank sequences of X and Y .

After the processing in such a manner, the probability of a variable for state i is

pi = N/b
N

= 1
b
, and the joint entropy of the two variables is pij =

nij

N
, where nij

is the number of samples pairs distributed into the ijth rank grid. The Nonlinear

Correlation Coefficient (NCC) is defined in Equation (2.20)
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NCC(X;Y ) = Hr(X) +Hr(Y )−Hr(X, Y ), (2.20)

where Hr(X) is the revised entropy of the variable X, which is defined as.

Hr(X) = −
b∑

i=1

pilogbpi (2.21)

And Hr(X, Y ) is the revised joint entropy of the two variables X and Y , which is

given by Equation (2.22)

Hr(X, Y ) = −
b∑

i=1

b∑
j=1

pijlogbpij = −
b∑

i=1

b∑
j=1

nij

N
logb

nij

N
, (2.22)

Considering that the probability pi, for every state of variable X or Y , is constantly

1
b
, and the way in which the N value pairs are distributed into the b× b rank grids

indicates the statistical general relation between the two variables. Furthermore,

the number of samples distributed into each rank of X and Y is fixed, so

Hr(X) = −
b∑

i=1

N
b

N
logb

N
b

N
= −b ∗ 1

b
logb

1

b
= 1. (2.23)

Similarly, we have that Hr(Y ) = 1. Moreover, the nonlinear correlation coefficient

can be rewritten as

NCC(X;Y ) = 2 ∗ (−
b∑

i=1

1

b
logb

1

b
) +

b∑
i=1

b∑
j=1

pij logb pij. (2.24)
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Therefore,

NCC(X;Y ) = 2 +
b∑

i=1

b∑
j=1

pij logb pij = 2 +
b∑

i=1

b∑
j=1

nij

N
logb

nij

N
. (2.25)

NCC is sensitive to the nonlinear type of correlation between two variables. It can

describe this type of relationship with a number in a closed interval [0,1], where 0

indicates the minimum general correlation and 1 indicates the maximum one. If the

sample sequences are exactly the same, the last term in Equation (2.25) equals to -1

and thus, NCC(X;Y ) = 1. On the other hand, if the two variables are completely

uncorrelated, the sample pairs distribute equally into the b×b ranks, the sum equals

to -2 and thus, NCC(X;Y ) = 0.

2.3 Feature Selection Based on Mutual Informa-

tion

Feature selection is a technique for eliminating irrelevant and redundant features

and selecting the most optimal subset of features that produce a better characteri-

sation of patterns belonging to different classes. The feature selection problem has

been around since the early 1970’s. Due to its computational complexity, it still

remains an open problem for researchers. Feature selection reduces computational

cost, facilitates data understanding, improves the performance of modelling and

prediction and speeds up the detection process [45].

A feature fi in a feature space is relevant to the class if it embodies useful informa-

tion about the class and its removal degrades the performance of the classification.
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The irrelevant feature is the one that does not contain any useful information about

the class and its existence degrades the performance of the classification [46]. An

irrelevant feature can be a redundant feature or a noisy feature. The redundant fea-

ture cannot provide any additional information to the classification after selecting

the S subset of features because another feature has already given the same infor-

mation. The noisy feature, which is not redundant does not contain any information

about the class.

Methods for feature selection are generally classified into three main categories:

filter, wrapper and hybrid approaches. Filter algorithms start searching from an

empty subset and utilise an independent measure (such as, information measures,

distance measures, or consistency measures) as a criterion to estimate the relation

of a set of features. The searching process continues until a predefined stopping

criterion (for example, the search is completed, a desired number is reached, or

adding or deleting of any feature does not produce a better feature subset) is met.

An optimal subset of features that can provide the best representation of the data

is output from the algorithm. This approach is argued to be less computationally

expensive, easily applied to high-dimensional datasets and more general. However,

their results are not always acceptable. Due to the lack of interaction between the

classifier and the dependence among features, filter methods might fail to choose the

best available subset or might select redundant features [47]. Thus, the classification

performance of the learning models built based on these selected features is varied

and highly dependent on the quality of the selection criterion.

Wrapper algorithms utilise a particular learning algorithm (such as, the decision tree

or SVM) as a fitness function to evaluate the goodness of features. The searching
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process for an optimal subset of features continues until a predefined stopping cri-

terion is achieved. In comparison with filter methods, wrapper methods are argued

to be more accurate. However, wrapper approaches are often much more compu-

tationally complicated when dealing with high-dimensional data or large-scale data

than filter approaches [48].

To cope with the aforementioned drawbacks and to avoid the burden of specifying a

stopping criterion, many researchers attempt to exploit the advantages of both filter

and wrapper methods. Hybrid algorithms utilise both an independent measure and

a fitness evaluation function of the feature subset. They use the knowledge delivered

by a filter algorithm and a specific machine learning algorithm to choose the final

best subset of the feature [49]. As it has been claimed in [47], methods belonging

to this category are not fast as the filter approaches, but are argued to be more

effective and can achieve better classification performance.

In accordance with the existence of label of data or not, feature selection techniques

are generally classified into three groups: supervised, semi-supervised and unsuper-

vised feature selection. Supervised and semi-supervised methods are usually applied

on labelled data, while the unsupervised method is more appropriate for unlabelled

data [50]. In this work the focus will be more on supervised and unsupervised

feature selection.

2.3.1 Supervised Feature Selection

Given a training dataset T = D(F,C) with n features and m instances, where F =

{f1, ..., fn} and D = {i1, ..., im} are the sets of features and instances, respectively,
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C = {c1, ..., cl} represents the set of classes (or labels) which instances belong to.

Let J(S) be a criterion function of selecting a subset of features S from F , where

S ⊆ F . Without any loss of generality, it can be assumed that a subset of features

that achieve a higher value of J(·) demonstrates a better feature space. The task

of supervised feature selection is formally defined as selecting a subset of features

S from the original feature space F such that J(S) is as high as possible.

2.3.2 Existing Supervised Feature Selection Methods

As stated above, a feature is relevant to the class if it contains important information

about the class; otherwise it is irrelevant or redundant. Since mutual information is

good at quantifying the amount of information shared by two random variables, it is

often used as an evaluation criterion to evaluate the relevance between features and

the class labels. Under this context, features with high predictive power are the ones

that have larger mutual information I(C; f). On the contrary, in the case of I(C; f)

equal to zero, the feature f and the Class C are proven to be independent from each

other. This mean that feature f will contribute redundancy to the classification.

However, due to the reason that the value of the MI between attributes is used as

a criterion to select features from the original set, any computational errors could

result in a significant degradation of the accuracy of any feature selection algorithms

based on this measure. Therefore, the computation of MI, which requires the es-

timation of probability density functions (pdfs) or entropies from the input data

instances, is not an easy task. Thus, several estimation techniques could be applied

to compute MI. Histogram and kernel density estimations are the most popular

estimation methods to estimate the pdfs [51, 52]. Peng et al. [53] claimed that
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the histogram approach was computationally efficient, but could produce a large

number of estimation errors. They also stated that kernel density estimation had a

high estimation quality and at the same time high computational load. Another sig-

nificant challenge with histogram techniques is the restriction to a low-dimensional

data space [54]. It has also been pointed out by Rossi [55] that both histogram and

kernel density approaches suffer from the well-known curse of high-dimensionality.

As this study is working with high-dimensional data, these two estimations are

inapplicable.

To avoid the aforementioned problems, in this work, the estimator proposed by

Kraskov et al. [56] is applied. Unlike histogram and kernel density estimations, this

technique relies on estimating entropies from the data using an average distance of

the k-nearest neighbour. The novelty of this estimator is its ability to estimate MI

between two random variables of any data space. The main idea is to estimate the

entropy, with or without knowing the densities p(u,v), p(u) and p(v), based on the

k-nearest neighbours algorithm. More details about estimating MI can be found in

[56] and Appendix B.

Recently, mutual information has been used by a number of researchers to develop

an information theoretic feature selection criteria [42, 53, 57–59]. Battiti [57] defined

feature reduction as a process of selecting a subset S of the most relevant features

from the original feature set F and proposed a feature selection algorithm, MIFS

in short. Battiti’s MIFS [57] harnessed MI between inputs and outputs for a single

selection of features by calculating the I(C; fi) and I(fs, fi), where fs and fi are

candidate features and C is the class label. MIFS selects the feature that maximises

I(C; fi), which is the amount of information that feature fi carries about the class
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C, and is corrected by subtracting a quantity proportional to the MI with the

features selected previously.

Given an initial set F with n features, the task is to search for an optimal subset S

that can produce the best classification accuracy, where S ⊂ F . MIFS is a heuristic

incremental search algorithm and the selection process continues until a desired

number of K inputs are selected. Equation (2.26) shows the criterion function of

MIFS.

JMIFS = I(C; fi)− β
∑
fs∈S

I(fi; fs), (2.26)

where β is a user-defined parameter that is applied to account for the redundancy

between the candidate feature and the set of selected features.

As can be seen, Equation (2.26) consists of two terms. The left-hand side term,

I(C; fi), represents the amount of information that feature fi carries about the

class C. A relevant feature is the one that maximises this term. The right-hand

side term, β
∑
I(fs; fi), is used to eliminate the redundancy among the selected

features.

In the follow-up research, various methods have been proposed to enhance Battiti’s

MIFS. Most of the studies have been conducted on the right-hand side term of

Equation (2.26). Kwak and Choi in [58] made a better estimation of MI between

input features and output classes and proposed a greedy selection algorithm named

MIFS-U, in which U stands for uniform information distribution. The algorithm of

MIFS-U differs from that of MIFS in the right-hand side term as shown in Equation

(2.27).
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JMIFS−U = I(C; fi)− β
∑
fs∈S

I(C; fs)

H(fs)
I(fi; fs) (2.27)

Despite the redundancy parameter β used in the aforementioned methods to help

to control the redundancy among features, it remains an open question on how to

choose the most appropriate values for these parameters. If the chosen value is

too small, the redundancy between input features is not taken into consideration

and therefore both relevant and redundant features are involved in the selection

processes. If the chosen value is too large, the algorithms only consider the relation

between input features rather than the relation between each input feature and the

class [42]. Thus, it is hard to determine the value of the parameter. In addition,

both MIFS and MIFS-U neglect the influence of the number of selected features.

This reduces the influence of I(C; fi) on Battiti’s MIFS and Kwak’s MIFS-U when

the term on the right-hand side in MIFS and MIFS-U increases, which is because

this term is a cumulative sum [59]. This results in the irrelevant features being

selected into the set S.

The min-Redundancy Max-Relevance (mRMR) [53] and Modified MIFS (MMIFS)

[1] both show another variant of Battiti’s MIFS criterion. The mRMR removes the

burden of setting an optimal value for β and replaced it with 1/ | S |. mRMR is

defined in Equation (2.28)

JmRMR = I(C; fi)− 1

|S|
∑
fs∈S

I(fi; fs) (2.28)

while MMIFS set the value of parameter β to be equal to β
′
/ | S |, where β ′

is the

redundancy parameter, as shown in Equation (2.29).
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JMMIFS = I(C; fi)− (
β

′

| S |)
∑
fs∈S

I(fi; fs), (2.29)

where |S| in Equation (2.28) and Equation (2.29) is the cardinality of the set S,

which is used to control the influence of the number of selected features since the

right-hand side of the algorithm is a cumulative sum.

However, in the case of β = 1/ | S | or β = β
′
/ | S |, in Equation (2.28) and

Equation (2.29) respectively, then mRMR and MMIFS are equal to Battiti’s MIFS.

Therefore, the unbalance between the left and right hand sides in Equation (2.28)

and Equation (2.29) remains unsolved totally in mRMR [59] and MMIFS [1]. This

might result in selecting irrelevant features. In addition, similar to Battiti’s MIFS

and Kwak’s MIFS-U, selecting an appropriate value for the parameter β
′
in MMIFS

remains an open question.

Normalised Mutual Information Feature Selection (NMIFS) [59] is an improved

version of mRMR. NMIFS introduced a better solution for the unbalance between

the two terms in Equation (2.28) and Equation (2.29). The authors explained that

in order to achieve a good balance between the two terms, the right-hand side of

the equation should be normalised by the entropy of the current feature fi and the

selected feature fs. Equation (2.30) shows the selection criterion of the NMIFS.

JNMIFS = I(C; fi)− 1

|S|
∑
fs∈S

NI(fi; fs) (2.30)

where
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NI(fi; fs) =
I(fi; fs)

min{H(fi), H(fs)} (2.31)

Vinh et al. in [60] stated that NMIFS solved the unbalance limitation only in

the case of two classes and it might face a problem when the number of classes

increases. That is because when dealing with multi-class problems the left-hand

side of Equation (2.30) breaks the maximum bound 1, while the right-hand side

takes values in the range [0,1]. This might lead to neglecting the value of the right

term and therefore selecting noisy features. Vinh et al. in [60] proposed another

modification to MIFS as shown in Equation (2.32).

f(Xi) =
I(Xi;C)

min{H(Xi), H(C)} −
1

|S|
∑
Xs∈S

I(Xs;Xi)

min{H(Xs), H(Xi)} . (2.32)

However, in the case of I(Xs;Xi) ≥ I(Xi;C), the value of Equation (2.32) may well

be outside the closed interval [0,1] and this may lead to select irrelevant features.

Therefore, after investigating the aforementioned limitations of the related feature

selection methods based on mutual information in the work [15] submitted to IEEE

Transaction on Computers and [16], a new feature selection method for anomaly

detection system is proposed. Chapter 4 and Chapter 5 of this thesis are developed

based on the works in [15] and [16] respectively.

All of the feature selection algorithms discussed above and the proposed feature

selection algorithms in Chapter 4 and Chapter 5 are supervised feature selection

methods. These methods require labelled data. However, labelled data are not al-

ways available and are also hard or expensive to obtain which makes these methods
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not able to be applied to such data. Hence, developing unsupervised feature selec-

tion algorithms, which can utilise unlabelled data, attracts the attention of many

researchers. In Chapter 6 of this thesis, this research is extended to unsupervised

feature selection method.

2.4 Unsupervised Feature Selection Methods

As mentioned in the above section, feature selection methods can be supervised,

semi-supervised and unsupervised in regard to the availability of the class labels.

However, many applications (such as real-world applications) do not contain any

label, hence, the unsupervised feature selection process become difficult and hard

to achieve [61]. This section discusses the related unsupervised feature selection

methods to the work proposed in Chapter 6 of this thesis.

2.4.1 Unsupervised Feature Selection

Given a training datasetD = {xi = [f1, ..., fn]} ⊂ �n without labels, with n features

and m instances, F = {f1, ..., fn} and D = {i1, ..., im} are the sets of features

and instances, respectively. xi represents the i-th data instances containing n-th

features. Let J(S) be a criterion function for selecting subset of features S from F .

The task of unsupervised feature selection methods is to select an optimal feature

subset S from the original feature space F where J(S) is as high as possible. The

basic assumption is that samples belonging to the same class are probably close to

each other, otherwise they are from a different class.
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2.4.2 Existing Unsupervised Feature Selection Methods

Selecting features in unsupervised learning applications is much harder than in the

case of supervised learning where the class label is available. It is not an easy

task to assess the relevance of a feature or a subset of features when there are no

labels available with the data. Therefore, several attempts have been conducted to

develop an unsupervised feature selection technique that can utilise this data. The

Laplacian score [62] is one of the popular unsupervised feature selection methods

that uses a k-nearest neighbour graph to investigate the locality preserving power

of every features in the data.

Let Lr denote the Laplacian score of the r−th feature and fri denote the r−th
feature of the i−th sample. Given a data X = {x1, x2, . . . , xn}, if xi and xj are

close to each other, an edge with weight Sij between both samples is built. This

means that xi is one of the k nearest neighbours of xj or xj is one of the k nearest

neighbours of xi. The weight matrix Sij between sample xi and xj can be defined

as:

Sij =

⎧⎪⎨
⎪⎩
exp(−d(xi;xj)

2

t ), if xi ∈ kNN(xj) or xj ∈ kNN(xi)

0, otherwise

(2.33)

where t is a suitable constant. A good feature is the one that minimises the following

object function:

Lr =

∑
i,j(fri − frj)

2Sij

V ar(fr)
, (2.34)
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where, V ar(fr) is the variance of the r−th feature. Equation (2.34) aims to select

features that hold the best locality preserving power among the input features.

Features that have large variance values are preferred. These features are expected

to have the most representative power among others. Equation (2.34) can be further

explained as follows.

For the matrix S, define the diagonal matrix Dii =
∑

j Sij and the graph Laplacian

matrix L = D−S. Based on D, the weighted data variance can be calculated using

Equation (2.35).

V ar(fr) = f̌T
r Df̌r, (2.35)

where

f̌r = fr − fT
r D1

1TD1
1, (2.36)

A good feature is the one that has bigger Sij and smaller (fri − frj). Thus,

∑
ij

(fri − frj)
2Sij = 2fT

r Lfr = 2f̌T
r Lf̌r. (2.37)

Therefore, the Laplacian score Lr of the r-th feature is given by Equation (2.38).

Lr =
f̌T
r Lf̌r

f̌T
r Df̌r

(2.38)
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Unlike the Laplacian score, Local and Global structure preserving (LGFS) [9] not

only considers the locality structure preserving power of each feature but also its

globality structure preserving. The assumption behind LGFS methods is that sam-

ples belonging to the same class are probably located close to each other, otherwise

far away from each other.

LGFS first extracts a k1 nearest neighbours graph on X that has a similarity matrix

Sn, where each sample xi is linked with its k1NN , as follows.

Sn
ij =

⎧⎨
⎩

exp(−d(xi;xj)
2

t ), if xi ∈ Nk1
(xj) or xj ∈ Nk1

(xi)

0, otherwise

where d(xi, xj) represents the Euclidean distance between xi and xj, and t is a

suitable positive constant.

Second, LGFS constructs a k2 farthest neighbourhood graph on X with similarity

matrix Sf , where each sample xi is linked with its K2FN , as follows.

Sf
ij =

⎧⎨
⎩

exp(−d(xi;xj)
2

t ), if xi ∈ Fk2
(xj) or xj ∈ Fk2

(xi)

0, otherwise.

Figure 2.1 shows the k1 Nearest neighbourhood graph and Fk2 Farthest neighbour-

hood graph. From the figure, it can be seen that xi and its k1 nearest neighbours are

connected to each other and belong to the same class, while xi and its k2 farthest

neighbours belong to the different class.

After that, Dis matrix, where Disij = d(xi; xj)
2 and i, j = 1, 2, . . . ,m, is calculated

to select the features that have the best locality and globality preserving power
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Figure 2.1: Nearest and farthest neighbourhood graph. (a) Nk1 Nearest neigh-
bourhood graph, (b) Fk2 Farthest neighbourhood graph [9]

using Equation (2.39). The parameter t > 0 is set to be the mean value of all the

elements in the matrix Dis. Then, the LGFS can be defined as follows.

LGFS =

∑
i,j(fri − frj)

2Sf
ij∑

i,j(fri − frj)2Sn
ij

(2.39)

From Equation (2.39), it is clear that when two samples have a near edge, a good

feature should have similar values on both of these two samples. On the other hand,

when two samples have a far edge, a good feature should have large different values

on both of these two samples and thus LGFS should be maximised.

By defining the diagonal matrix Dn and Ln for Sn, where Dn
ii =

∑
j S

n
ij and Ln =

Dn − Sn and similarly for Sf defining the diagonal matrix Df and Lf , we get:
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Sn =
∑
ij

(fri − frj)
2Sn

ij =
∑
ij

(f 2
ri + f 2

rj − 2frifrj)S
n
ij

= 2
∑
ij

f 2
riS

n
ij − 2

∑
ij

friS
n
ijfrj

= 2fT
r D

nfr − 2fT
r S

nfr = 2fT
r L

nfr

and

Sf =
∑
ij

(fri − frj)
2Sf

ij = 2fT
r L

ffr.

Therefore, Equation (2.39) can be rewritten as follows.

LGFSr =
fT
r L

ffr
fT
r L

nfr
, (2.40)

However, as stated in [9], both Laplacian score and LGFS are not considering the

redundancy among features, which might lead to the selection of redundant features

and therefore affect the classification performance. Ren et al. in [9] proposed an

Extended version of LGFS, named Extended Local and Global structure preserving

(E-LGFS). E-LGFS applies the normalised mutual information method, that has

been proposed in [59], to eliminate redundancy among selected features.

In E-LGFS, LGFS in Equation (2.40) is first normalised using a linear transforma-

tion to fix the value of LGFS to the range of [0, 1], as shown in Equation (2.41).



Chapter 2. Related Work 39

NLGFSr =
LGFSr − a

b− a
(2.41)

where a and b are the minimum and maximum of {LGFS1, LGFS2, ..., LGFSn}, re-
spectively. The value of NLGFSr is within the range of [0, 1], where the value 0 or 1

indicates that LGFSr is the minimum or maximum of {LGFS1, LGFS2, ..., LGFSn}
respectively.

Finally, the normalised mutual information method, which is defined in [59], is used

to eliminate the redundancy among selected features using Equation (2.42).

NI(fi; fj) =
I(fi; fj)

min{H(fi), H(fj)} (2.42)

Thus, the final selection criterion of E-LGFS can be rewritten as follows:

Ji = NLGFSi −NI(fi;S) (2.43)

However, E-LGFS has high computational complexity when dealing with high di-

mensional data and large-scale data.

Therefore, an Extended Laplacian score EL and a Modified Laplacian score ML

methods are proposed in [17, 18]. These methods provide a solution for eliminating

redundancies among selected features without the need for extracting the global

structure information. Chapter 6 is developed based on the work in [17, 18].
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2.5 Description of the Benchmark Datasets for

Intrusion Detection

Currently, there are only a few public datasets for intrusion detection evaluation.

According to the review by Tsai et al. [22], the majority of the IDS experiments are

performed on the KDD Cup 99 datasets. Other two intrusion detection datasets

are named as NSL-KDD dataset and Kyoto 2006+ dataset. Therefore, in order

to facilitate a fair and rational comparison with other state-of-the-art detection

approaches, we have selected these three datasets to evaluate the performance of

our detection system.

2.5.1 KDD Cup 99 Dataset

KDD Cup 99 datasets is the most comprehensive dataset that is still widely applied

to compare and measure the performance of IDSs [63–65]. This dataset was derived

from the DARPA 1998 dataset. It contains training data, “10% KDD Cup 99”,

with approximately five millions of connection records and test data, “kddcup test-

data”, with about two millions of connection records. In addition, the KDD Cup

99 contains one more dataset named “Corrected labels KDD”. Each record in these

datasets is labelled as either normal or an attack, and it has 41 different quantitative

and qualitative features. The 41 features are generally categorised into three main

groups. The first group is the basic features (that is, attributes 1 to 9) that can be

extracted from a TCP/IP connection. The second group refers to features 10 to 22

that are named as content-based features presenting the information derived from

network packet payloads. The third group corresponds to the traffic-based features,
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which are carried by features 23 to 41 of each record. A complete list of the set of

features and the detailed description are given by Table 2.1.

The attacks are divided into four different types, namely Probe, Denial of Service

(DoS), User to Root (U2R) and Remote to User (R2U). Table 2.2 shows a brief

distribution of each attack.

The corrected labels KDD Cup 99 dataset has been used to validate some of state-

of-the-art IDSs such as [28, 66–70]. Therefore, to make a fair comparison with

those systems, we use this dataset to test the performance of our detection model.

This set contains approximately 311,029 TCP/IP connection records, where around

74.4% of the samples are DoS attacks, and the remaining ones are distributed as

follows: 19.4% normal, 1.33% probe, 4.73% R2L and 0.028% U2R traffic.

2.5.2 NSL-KDD Dataset

Even though KDD Cup 99 dataset is a well-known dataset and widely used for

network-based intrusion detection techniques, it contains some problems such as

including a huge number of redundant records, which affect the effectiveness of

evaluated systems greatly as a consequence. To overcome these issues, Tavallaee

et al. [71] in 2009, presented a new revised version of KDD Cup 99 named as

NSL-KDD. The KDDTrain+ and KDDTest+ sets of NSL-KDD dataset consist of

approximately 125,973 and 22,544 connection records respectively. Similar to KDD

Cup 99, each record in this data is unique with 41 features and labelled as normal

or attack. NSL-KDD dataset contains the same four types of attacks as the original

KDD 99 dataset.
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Table 2.1: The different group of features in KDD Cup 99 and NSL-KDD dataset

Group Feature name Description Type

1. Duration Length (number of seconds) of the connection Continuous
2. Protocol-type Type of the protocol, e.g. tcp, udp, etc. Discrete
3. Service Network service on the destination, e.g., http, telnet,

etc.
Discrete

4. Src-bytes Number of data bytes from source to destination Continuous
G 1 5. Dst-bytes Number of data bytes from destination to source Continuous

6. Flag Normal or error status of the connection Discrete
7. Land 1 if connection is from/to the same host/port; 0 oth-

erwise
Discrete

8. wrong-fragment Number of “wrong” fragments Continuous
9. Urgent Number of urgent packets Continuous

10. Hot Number of “hot” indicators Continuous
11. Num-failed- logins Number of failed login attempts Continuous
12. Logged-in 1 if successfully logged in; 0 otherwise Discrete
13. Num- compromised Number of “compromised” conditions Continuous
14. Root-shell 1 if root shell is obtained; 0 otherwise Discrete
15. Su-attempted 1 if “su root” command attempted; 0 otherwise Discrete

G 2 16. Num-root Number of “root” accesses Continuous
17. Num-file- creations Number of file creation operations Continuous
18. Num-shells Number of shell prompts Continuous
19. Num-access- files Number of operations on access control files Continuous
20. Num- outbound-cmds Number of outbound commands in an ftp session Continuous
21. Is-hot-login 1 if the login belongs to the “hot” list; 0 otherwise Discrete
22. Is-guest-login 1 if the login is a “guest”login; 0 otherwise Discrete

23. Count Number of connections to the same host as the current
connection in the past two seconds

Continuous

24. Srv-count Number of connections to the same service as the cur-
rent connection in the past two seconds

Continuous

25. Serror-rate % of connections that have “SYN′′ errors Continuous
26. Rerror-rate % of connections that have “REJ” errors Continuous

G 3 27. Same-srv-rate % of connections to the same service continuous
28. Diff-srv-rate % of connections to different services Continuous
29. Srv-serror-rate % of connections that have “SYN” errors Continuous
30. Srv-rerror-rate % of connections that have “REJ” errors Continuous
31. Srv-diff-host-rate % of connections to different hosts Continuous

32. Dst-host-count Count for destination host Continuous
33. Dst-host-srv-count Srv-count for destination host Continuous
34. Dst-host-same-srv-rate Same-srv-rate for destination host Continuous
35. Dst-host-diff-srv-rate Diff-srv-rate for destination host Continuous

G 4 36. Dst-host-same-src-port-rate Same-src-port-rate for destination host Continuous
37. Dst-host-srv-diff-host-rate Diff-host-rate for destination host Continuous
38. Dst-host-serror-rate Serror-rate for destination host Continuous
39. Dst-host-srv-serror-rate Srv-serror-rate for destination host Continuous
40. Dst-host-rerror-rate Rerror-rate for destination host Continuous
41. Dst-host-srv-rerror-rate Srv-serror-rate for destination host Continuous
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Table 2.2: The different types of attacks and description

Attack type Attack name Description
nmap
ipsweep The attacker in Probe attacks

Probing portsweep scans a network searching for
satan important information about

target computers.
back
land The attacker in DoS attacks

DoS neptune sends many requests to net-
work

pod resources to make it too busy
or

smurf full and not able to handle
teardrop legitimate requests.
rootkit The attacker in U2R attacks
perl gets access to normal user

U2R loadmodule account on the network system
buffer-overflow and exploits vulnerability to

gain root access to the system.
ftp-write

spy The attacker in R2U attacks
phf send packets to a target ma-

chine
R2L guess-passwd through a network, then ex-

ploits
imap vulnerability to gain local ac-

cess
warezcliecnt as a normal user.
wrezmaster
multihop

In addition, the NSL-KDD dataset includes one more test set, named KDDTest−21,

which consists of approximately 11,850 data records. This set contains some new

attacks that do not appear in the KDDTrain+ dataset which makes the detection

of those attacks even harder.
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Table 2.3: A list of all features in Kyoto 2006+ dataset

Feature name Description

1. Duration Length (number of seconds) of the connection
2. Service The connection’s service type, e.g., http, telnet, etc
3. Source bytes The number of data bytes sent by the source IP address
4. Destination bytes The number of data bytes sent by the destination IP address
5. Count The number of connections to the same host as the current con-

nection in the past two seconds
6. Same-srv-rate % of connections to the same service in Count feature
7. Serror-rate % of connections that have “SYN” errors in Count feature
8. Srv-serror-rate % of connections that have “SYN” errors (same-service connec-

tion)
9. Dst-host-count Among the past 100 connections whose destination IP address is

the same to that of the current connection, the number of con-
nections whose source IP address is also the same to that of the
current connection

10. Dst-host-srv-count among the past 100 connections whose destination IP address is
the same to that of the current connection, the number of connec-
tions whose service type is also the same to that of the current
connection

11. Dst-host-same-src-port-rate % of connections whose source port is the same to that of the
current connection in Dst host count feature

12. Dst-host-serror-rate % of connections that have “SYN” errors in Dst host count feature
13. Dst-host-srv-serror-rate % of connections that “SYN” errors in Dst-host-srv-count feature
14. Flag the state of the connection at the time the summary was written

(which is usually when the connection terminated). The different
states are summarised in the below section.

15. IDS-detection reflects whether IDS(Intrusion Detection System) triggered an
alert for the connection.

16. Malware-detection indicates whether malware, also known as malicious software, was
observed in the connection.

17. Ashula-detection means whether shellcodes and exploit codes were used in the con-
nection by using the dedicated software.

18. Label indicates whether the session was attack or not; ‘1’ means the
session was normal, ‘-1’ means known attack was observed in the
session, and ‘-2’ means unknown attack was observed in the ses-
sion.

19. Source-IP-Address indicates the source IP address used in the session.
20. Source-Port-Number indicates the source port number used in the session.
21. Destination-IP-Address indicates the source IP address used in the session.
22. Destination-Port-Number indicates the destination port number used in the session.
23. Start-Time indicates when the session was started.
24. Duration indicates how long the session was being established.
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2.5.3 Kyoto 2006+ Dataset

Kyoto 2006+ dataset was presented by Song et al. [72]. The dataset covers over

three years of real traffic data collected from both honeypots and regular servers

that are deployed at Kyoto University. It consists of approximately 50,033,015 nor-

mal sessions, 43,043,255 attack sessions and 425,719 sessions which were unknown

attacks. Each connection in the dataset is unique with 24 features. Among those

features, the authors extracted 14 statistical features from KDD Cup 99 dataset as

well as 10 features from their networks. They claim that these features are the most

suitable for network IDS. For experimental purposes in this study, all categorical

features are converted to binary and normalised.

The dataset generally represents two types of records: normal and attack. In addi-

tion, samples belonging to known and unknown attacks are considered as a single

attack class, because no much information about the attack types is given in the

dataset, and labelled as -1. Table 2.3 shows a list of all features in the Kyoto 2006+

dataset and the detailed description of each feature as it is shown in [72].

2.6 Summary

This chapter has presented an introduction to anomaly detection and briefly dis-

cussed some of the existing network anomaly-based detection techniques. Then, it

has presented an overview of some benefits of using dependency measures in reduc-

ing the false alarm rates of anomaly detection systems. After that, it has discussed

the possibility, and advantages of including a feature selection step as part of the

detection process. Two main directions of research in feature selection are reviewed:
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supervised and unsupervised feature selections. This chapter has investigated some

of the limitations of the related feature selection methods and pointed out some

possible solutions for overcoming these limitations that will be discussed in some

detail in the following chapters. This chapter can be summarised as follows.

Several attempts have been made to develop an efficient dependency measure. One

of the most popular measures is the correlation coefficient that has been applied in

various domains due to its simplicity and ease of implementation. However, there

are two main limitations for linear correlation measures that make them vulnerable

to an increasing number of false alarms. Firstly, in the case of the correlation co-

efficient between two random variables being equal to zero, these two variables are

not necessarily independent of each other as has been discussed in Section 2.2 when

using this measure. The second weakness is that these methods are not able to

extract nonlinear relationships between variables. Mutual information measure ad-

dresses some of the linear correlation coefficient deficiencies. MI has been proven to

be sensitive to both linear and nonlinear correlations. It provides a solid framework

for quantifying the amount of information shared between two random variables.

Therefore, applying mutual information to extract the linear and nonlinear cor-

relations between network traffic records and to build anomaly detection systems

reduces the high rate of false alarms of these systems.

There is a substantial body of research on supervised feature selection methods

based on mutual information. As discussed above, these methods have some short-

comings. For example, there is not a specific formula to select an appropriate value

for the parameter β
′
in Battiti’s MIFS, Kwak’s MIFS-U and Amiri’s MMIFS. In

addition, the unbalance between the left hand side and right hand side of the se-

lection criterion provided by NMIFS, mRMR, MMIFS and Vinh’s method remains
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not fully solved. As a consequence, this may be lead to the selection of irrelevant

features in the optimal subset of features.

The research literature on graph-based unsupervised feature selection methods has

pointed out two limitations. Firstly, Laplacian score and LGFS methods ignore the

redundancy between the selected features. This may lead to select redundant fea-

tures and affect the classification accuracy. Secondly, E-LGFS, which is an enhanced

version of LGF, considers the redundant features among the selected features but

has very high computational cost when dealing with high dimensional data and

large-scale data.

The following chapters discuss the contributions to the research in detail. The next

chapter presents an anomaly detection system based on mutual information and

describes how MI can be used to build an efficient detection system with minimum

false alarms.

1



Chapter 3

Anomaly Detection System Based

on Nonlinear Correlation Measure

Cyber crimes and malicious network activities have posed serious threats to the

entire internet and its users. This issue is becoming more critical, as network-based

services are more widespread and closely related to the daily life. Current research

on network security mainly focuses on developing preventative measures, such as

security policies and secure communication protocols. Meanwhile, attempts have

been made to protect computer systems and networks against malicious behaviours

by using intrusion detection systems. Clearly, the collaboration of IDSs and pre-

ventative measures can provide a safe and secure communication environment.

As shown in Chapter 2, a significant amount of work has been conducted to develop

intelligent intrusion detection systems. However, one technical challenge, namely

reducing false alarms, has been associated with the development of anomaly-based

IDSs since 1990s. This may be due to the fact that most of the existing approaches

48
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either ignore the correlations between traffic records or do not take nonlinear corre-

lation into account. Recent literatures on intrusion detection techniques have shown

that correlation analysis is one of the effective ways to improve the detection ability

and reduce the false alarm rates. Detection systems proposed in [6, 31, 32, 34]

are examples of anomaly detection techniques that use different linear correlation

measures to develop their systems. However, the false positive rate of these systems

is still high. This is because in most communication (for example the real-work

communication), the correlation can be linear and nonlinear.

The goal of this chapter is to use a Nonlinear Correlation Coefficient (NCC) based on

similarity measure to extract both linear and nonlinear correlations between network

traffic records. This extracted information is used in building an anomaly detector

that enhances the detection rate with a relatively low false rate. The main objective

is the efficient use of mutual information, which provides a theoretical framework

for measuring the relationship between two random variables. It is sensitive to both

linear and nonlinear correlations and helps to improve the detection accuracy and

decrease the rate of false alarms of the proposed detection system. This approach

is designed based on the works published in [13] and [14].

The outline of this chapter is as follows. Section 3.1 provides a description of the

Linear and nonlinear-based correlation measures. Section 3.2 describes the proposed

intrusion detection framework showing the different stages required to build the

detection method. Section 3.3 presents the experimental details and results. Finally,

a summary to the chapter is drawn in Section 3.4.
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3.1 Linear and Nonlinear Correlation Analysis

Measuring the correlation between two random variables has been an active re-

search study over the past decades. It has been applied to solve many statistical

problems. Thus, several measures have been proposed in literature. Chapter 2 has

introduced the definitions of two of the most popular correlation measures, linear

correlation coefficient and mutual information. This section elaborates on the way

these measures are used on the proposed detection approach.

3.1.1 Pearson’s Correlation Coefficient

Pearson’s Correlation Coefficient (PCC) is the most common measure of correlation

coefficient, which is sensitive only to a linear relation between two random variables.

Given two random variables X and Y , where

X = {x1, x2, . . . , xN} (3.1)

Y = {y1, y2, . . . , yN} (3.2)

in which X is a collection of N samples of random variable and Y is a collection

of N samples of a second random variable, the PCC of the variables X and Y is

defined as follows.

PCC(X, Y ) =

∑N
i=1(xi −X)(yi − Y )√∑N

i=1(xi −X)2
∑N

i=1(yi − Y )2
. (3.3)
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Equation (3.3) calculates the similarity between variable X and Y, and ranges from

0 to 1, in which a strong relationship means the value of PCC is close to 1 and

a weak relationship means a value close to 0. However, as mentioned in Chapter

2, although the linear correlation coefficient is widely applied, it is not totally sat-

isfactory to measure the correlation between random variables as it provides little

information about their relationship structure [73]. The mutual information mea-

sure has successfully addressed some deficiencies of the linear correlation coefficient.

It is able to measure dependence in the presence of a linear and nonlinear structure

between the random variables. However, the disadvantage of MI is that it does

not range in a definite closed interval [0, 1] as the correlation coefficient does [41].

Therefore, Wang et al. [41] developed a revised version of the MI, named Nonlinear

Correlation Coefficient, NCC in short.

3.1.2 Nonlinear Correlation Coefficient

Nonlinear Correlation Coefficient is based on mutual information, which is a quan-

tity measuring the relationship between two random variables. Given the same

random variables X and Y , the Nonlinear Correlation Coefficient (NCC), as dis-

cussed in Chapter 2, is denoted by Equation (3.4).

NCC(X;Y ) = 2 +
b∑

i=1

b∑
j=1

nij

N
logb

nij

N
. (3.4)

where, nij is the number of samples distributed in the ijth rank grid, and N is the

total number of sample pairs.
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For a multi-record scenario, the correlation matrix S of n observed records is used

and can be written as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s11 s12 · · · s1n

s21 s22 · · · s2n
...

...
. . .

...

sn1 sn2 · · · snn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.5)

The elements of the matrix S are the correlation coefficients between distinct pairs

of records. The values of elements can be obtained using Equation (3.3) for linear

correlation PCC and Equation (3.4) for nonlinear correlation respectively NCC.

It is noticed that S is a symmetric matrix and the element values along its diagonal

are equal to one; this is because sij = sji, when i �= j, 1 ≤ i ≤ n and 1 ≤ j ≤ n.

3.2 Intrusion Detection Based on Correlation Co-

efficient

The framework of the proposed intrusion detection system is depicted in Figure

3.1. The detection framework is comprised of four main stages: (1) data collection,

where a sequence of network packets is collected; (2) data preprocessing, where

training and test data are preprocessed; (3) detection model, where the detection

model is trained; and (4) attack recognition, where the trained detection model is

used to detect intrusions on the test data.
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Figure 3.1: Overall procedures of the proposed intrusion detection framework

Data Collection:

Data collection is the first and a critical step to intrusion detection. The type

of data source and the location where data is collected from are two determinate

factors in the design and the effectiveness of an IDS. To provide the best suited

protection for the targeted host or networks, this study proposes a network-based

IDS in this work. The proposed IDS runs on the nearest router to the victim(s)

and monitors the inbound network traffic. During the training stage, the collected

data samples are categorised with respect to the transport/internet layer protocols

and are labelled against the domain knowledge. However, the data collected in the

test stage are categorised according to the protocol types only.
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Data Preprocessing:

The data obtained during the phase of data collection are first processed to generate

the basic features such as the ones in the NSL-KDD dataset [71]. This phase

contains two main steps shown as follows.

(a) Data transferring: The detection model requires each record in the input

data to be represented as a vector of real number value. Thus, every symbolic

feature in a dataset is first converted into a numerical value. For example,

the NSL-KDD dataset contains numerical as well as symbolic features. These

symbolic features include the type of protocol that is TCP, UDP and ICMP,

service type for example, HTTP, FTP, Telnet and TCP status flag for example,

SF, REJ. The method simply replaces the values of the categorical attributes

with numeric values.

(b) Data normalisation: An essential step of data preprocessing after trans-

ferring all symbolic attributes into numerical values is normalisation. Data

normalisation is a process of scaling the value of each attribute into a well-

proportioned range, so that the bias in favor of features with greater values is

eliminated from the dataset. Data used in Section 3.3 are standardized. Every

feature within each record is normalised by the respective maximum value and

falls into the same range of [0-1]. The transferring and normalisation process

will also be applied for test data.
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Detection Model:

Once the training dataset is preprocessed, this data is then taken into the detection

model phase to build the intrusion detection model. This model is then used to

distinguish Normal data from non-Normal. It is to be noticed that, in order to

train the detection model, two main components are required: normal profile and

a pre-defined threshold σ.

To determine the similarity between the normal record and a new incoming record,

the detection method is divided into two different stages. Firstly, normal profile

is built for normal records and the mean value of correlation coefficient among the

normal ones is obtained. Secondly, a threshold value is used to determine whether

the new incoming record is normal or not. The following subsections describe the

technique that is used to create the normal profile and select the threshold value.

(a) Normal Profile Generation Using NCC: Given a set of n normal train-

ing traffic samples Xnormal = {xnormal
1 , xnormal

1 , . . . , xnormal
n }, the NCC is first

calculated using Equation (3.4), between the n normal records and then the

correlation matrix S using Equation (3.5) for the normal records is generated.

After that, the mean Sc of each column c in S is defined as

Sc =
1

n

n∑
i=1

Sic =
1

n

n∑
i=1

NCCic, (3.6)

where NCCic represents the NCC between record i and record c and n is the

number of rows in each column of matrix S.
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Equation (3.6) shows the mean value of the NCC values in each column in

the matrix S. Finally, the mean value of the results obtained using Equation

(3.6) is calculated using Equation (3.7) and denoted by NCCn.

NCCn =
1

n

n∑
c=1

Sc (3.7)

(b) Threshold Selection: The selection of the threshold value σ is a delicate

task when designing IDS. It directly influences the False Positive Rate (FPR)

and Detection Rate (DR). In other words, a larger value of threshold generates

less FPR and a smaller value of threshold leads to higher DR.

In fact, the key point of both PCC measure and NCC measure, as explained in

Section 3.1, is measuring the correlation between two random variables. To the

best of our knowledge, there is no exact mathematical solution to determine

the threshold value as the degree of strong or weak correlations. Therefore,

during the training phase various values for the threshold range from 0 to 1

have been tested. The experimental result shows that a larger threshold value

leads to less false positive alarms but less DR as well. Therefore, empirically

the threshold values between 0.1 and 0.5 give high DRs and low FPR. More

explanation about the threshold selection is given in Section 3.3.

Attack Recognition:

After completing the whole iteration process, the final detection model can be de-

termined which can differentiate between the normal and intrusion traffics using
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the saved trained model. The test data is then directed to the saved trained de-

tection model to detect intrusions. If the detection model confirms that the record

is abnormal, an alarm will be sent to the administrator indicating that there is an

attack.

Detection Algorithm: Similar to the normal profile development process, for

any new incoming record n + 1, the NCCn,n+1 between the new incoming record

and the records in the normal profile is calculated using Equation (3.4). Then, an

n× 1 matrix Gn+1 = [Gi(n+1)]n×1, where Gi(n+1) stands for the correlation between

the n+1 (i.e., the new) record and the i-th record in the normal profile, is generated.

After that, the mean of Gn+1, denoted by Gn+1 is calculated by

Gn+1 =
1

n

n∑
i=1

Gi(n+1) =
1

n

n∑
i=1

NCCn,n+1
i (3.8)

where NCCn,n+1
i = Gi(n+1) represents the NCC between record n + 1 and the i-th

record in the normal profile.

Let us denote the Gn+1 obtained above by NCCn,n+1. After that, the difference

between the mean of the normal profile given in Equation (3.7) and the mean in

Equation (3.8) is calculated by

| NCCn −NCCn,n+1 | . (3.9)

Finally, the incoming record is considered as an attack or abnormal if the difference

between NCCn and NCCn,n+1 is greater than a pre-defined threshold σ or not.



Chapter 3. Intrusion Detection Method based on Nonlinear Correlation
Measure 58

The flow chart given in Figure 3.2 illustrates the aforementioned processes of the

detection algorithm. In the case of developing an intrusion detection model based

on the PCC measure, similar processes to the above detection algorithm are applied.

The comparison results of both NCC intrusion detection system and PCC intrusion

detection system are given in the next section. Both systems are evaluated in terms

of false positive rate and detection rate.

3.3 Experimental Results and Analysis

This section describes the results obtained by applying the proposed intrusion de-

tection model in Section 3.2 to detect the normal records and six different types of

DoS attacks.

3.3.1 Dataset Selection

In this experimentation, NSL-KDD dataset (http://iscx.ca/NSL-KDD), which is an

enhanced version of KDD Cup 99 dataset, is utilised to demonstrate the effectiveness

of the proposed approach. As shown in Chapter 2, the KDD Cup 99 dataset has

some problems such as including a very large number of redundant records, which

affect the performance of intrusion detection systems. Thus, Tavallaee et al. in [71]

addressed these limitations and presented a new revised version of KDD Cup 99

termed the NSL-KDD. More details about both KDD Cup 99 and NSL-KDD can

be found in Chapter 2, Section 2.5.



Chapter 3. Intrusion Detection Method based on Nonlinear Correlation
Measure 59

 

Calculate the NCC between the 
incoming records and normal 

records n+1,n 

Compute n+1,n 

n - n+1,n   σ 

Normal 

End 

Abnormal 

Compute the mean for each 
column in the NCC matrix 

n 
Define the threshold value σ 

New incoming record n+1 

Start 

Select n normal records 

Calculate the NCC between the 
records and generate the NCC 

matrix 

No 

Yes 

Figure 3.2: The flow chart of the proposed algorithm
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For training and testing purposes, six types of DoS attacks including smurf, neptune,

land, teardrop, back and pod attacks are randomly selected to train and test the

detection system. The distribution of records of various types in training and testing

phases are listed in Table 3.1 and Table 3.2 respectively.

Table 3.1: Sample distribution on the training dataset

Normal Attack Total

Neptune Land Smurf Teardrop Back Pod

590 19 251 169 365 162

1980 1556 3536

Table 3.2: Sample distribution on the testing dataset

Normal Attack Total

Neptune Land Smurf Teardrop Back Pod

1840 19 1566 1313 988 1761

14590 7487 22077

3.3.2 Performance Evaluation

The performance of intrusion detection technique is defined by its ability to make

correct predictions. Comparing an event with the predictions from the IDS, there

are four possible outcomes, as shown in Table 3.3. These outcomes are known

as the confusion matrix. Several experiments have been conducted to examine

the performance and effectiveness of the proposed detection system in terms of

the Detection Rate (DR) and False Positive Rate (FPR). The DR represents the
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capability of IDS in detecting attacks, while the FPR refers to the probability of

IDS triggering an alarm when there is no attack occurring. The definition of the

detection rate and false positive rate are given by Equation (3.10) and Equation

(3.11) respectively.

DetectionRate =
TP

TP + FN
=

#correct intrusions

#intrusions
, (3.10)

FalsePositiveRate =
FP

FP + TN
=

#intrusions as normal

#intrusions
, (3.11)

where

• True Positive (TP) is the number of actual attacks classified as attacks,

• True Negative (TN) is the number of actual normal records classified as normal

ones,

• False Positive (FP) is the number of actual normal records classified as attacks,

and

• False Negative (FN) is the number of actual attacks classified as normal

records.

3.3.3 Results and Discussion

During the training phase, both NCC measure and PCC measure are applied. By

following the proposed detection algorithm shown in Figure 3.2, the correlation coef-

ficients (sij) between the selected records is calculated to generate the normal profile
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Table 3.3: Confusion matrix

Actual Prediction

Normal Attack

Normal TP FN

Attack FP TN

using both PCC measure and NCC measure respectively. Figure 3.3 illustrates the

two different correlation matrices SPCC and SNCC of normal profiles for the same

samples. Each element sij in the matrices describes the correlation between the ith

and jth records.

However, to differentiate normal and abnormal records, it is necessary to define

the pre-defined sensitive threshold σ firstly. To the best of our knowledge, there is

no good way to solve this value theoretically. Hence, the conventional method is

adopted to determine this value by setting different values for the threshold. The

value varies from 0.1 to 0.5 with the step length 0.1, and the results obtained by

each value are discussed in Table 3.4 and Figure 3.4. The results in Table 3.4 and

Figure 3.4 are based on the detection rate and the false positive rate respectively. It

can be seen from the obtained results that the detection performance of the system

completely depends on the value of the threshold σ. For example, good detection

results are achieved when the value of σ is neither too small nor too large, such as

σ = 0.2 or 0.3.

From the comparison between the various threshold values and results illustrated

in Table 3.4 and Figure 3.4, when σ = 0.3, the DR for normal records decreases

slightly from 100% to when σ = 0.5 with a DR of 99.85%. Another example is for

Neptune attacks, the DR is equal to 98.81% when σ = 0.5 and is equal to 99.66%
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(a) PCC-based correlation matrix

(b) NCC-based correlation matrix

Figure 3.3: Matrices expressions of two different measures for normal profiles,
(a) PCC-based correlation matrix (b) NCC-based correlation matrix

when σ = 0.3. In addition, even though there is a slight difference in the DR when

σ = 0.3 and σ = 0.1 in some cases, as shown in Table 3.4, the FPRs, shown in

Figure 3.4, when σ = 0.1 is obviously higher than when σ = 0.3. To sum up, it was

to optimise performance that we choose σ = 0.3 as a fixed threshold value for the
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proposed detection model.

During the test process, the mean correlation coefficient NCCn+1,i among each new

record and the corresponding normal profile which is built based on the normal

traffic records is calculated. If the distance between the mean coefficient of normal

profile and NCCn+1,i exceeds the pre-defined threshold 0.3, it would be treated as

an abnormal record. Otherwise it would be considered as legitimate traffic.

Table 3.4: DRs for various threshold values on the training dataset

Type of Attack

records 0.1 0.2 0.3 0.4 0.5

Normal 100% 100% 100% 99.94% 99.85%

Teardrop 100% 99.41% 99.41% 98.22% 94.08%

Smurf 100% 99.60% 99.60% 98.41% 97.61%

Pod 100% 100% 100% 100% 98.76%

Neptune 99.83% 99.66% 99.66% 99.32% 98.81%

Back 99.45% 99.45% 99.18% 98.35% 97.26%

Land 100% 100% 100% 95% 95%

Considering the selected threshold value σ = 0.3, the confusion matrix presented

in Table 3.5 shows that the intrusion detection algorithm using NCC measure

achieves high accuracy in detecting both normal records (99.84%) and attack records

(99.55%).
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Figure 3.4: FPRs for various threshold values on the training dataset

Table 3.5: Confusion matrix for NCC-training set

Predicted actual Normal Attack Correct

Normal 1977 3 99.84%

Attack 7 1549 99.55%

3.3.4 Comparative Study

Considering the selected threshold value σ = 0.3, the results presented in Table

3.6 show that during the testing phase the proposed detection system achieves a

detection rate of 98.754% and a false positive rate of 1.246%, which is better than

the DR (of 97.632%) and FPR (of 2.367%) achieved by the PCC measure. This can

be attributed to the fact that the proposed model utilises both linear and nonlinear

correlations between network traffic records when detecting attacks.
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In addition, compared to some of the state-of-the-art systems, the DR of the NCC-

based IDS outperforms the DR obtained by other proposed methods. More im-

portantly, the FPR of NCC-based IDS also performs better than other existing

methods.

Table 3.6: Comparison of detection and false alarm between different IDS using
NSL-KDD dataset

Methods False positive rates (%) Detection rates (%)

NCC-MI (proposed method) 1.246 98.754

PCC 2.367 97.632

Näıve Bayes Tree [74] 2.0 **

SVM [75] 14 93.4

DM – Näıve Bayes [76] 3.0 96.5

Note: ** Indicates data not provided by the authors in their paper.

Additionally, given the columns in PCC and NCC matrices are SPCC
j and SNCC

j

respectively, the covariance of these two columns is used to illustrate the significant

difference as shown in Equation (3.12).

Cov(SPCC
j , SNCC

j ) = E[(SPCC
j − ESPCC

j )(SNCC
j − ESNCC

j )] (3.12)

It should be noticed that the correlation coefficient matrices are symmetric. There-

fore, the dimension of columns for which the need to calculate the covariance de-

creases gradually.
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3.4 Summary

This chapter has utilized a Nonlinear Correlation Coefficient (NCC) measure to

quantitatively measure the linear and nonlinear relations between two random vari-

ables. NCC is designed based on mutual information. An intrusion detection system

based on the assumption that intrusion behaves differently from normal network

traffic is proposed. To equip the intrusion detection model with high detection per-

formance in recognising the deviation of an attack from the normal traffic flow, the

NCC is adopted into the proposed detection model to extract the correlation be-

tween network traffic records. This makes the algorithm feasible in not only linear

correlation extraction but also nonlinear correlation extraction.

The findings is verified by experimentation and comparison with PCC measure.

The experimental results have shown that a NCC-based intrusion detection system

achieves not only lower FPR but also higher DR than those of a PCC-based in-

trusion detection algorithm. Furthermore, the performance of the proposed model

outperforms some of the existing IDSs.

However, the proposed intrusion detection scheme still needs to be further studied

in some aspects. For example, in general, we need to develop an IDS to deal with

a large volume of network traffic data which has a very high computational cost.

Chapter 4 and Chapter 5 will address this problem and propose solutions to reduce

the computational complexity of the proposed detection model. In addition, more

sophisticated classification techniques will be employed, such as machine learning

methods, in the future work to improve the classification accuracy of the IDS and

alleviate the false positive rate.



Chapter 4

Supervised Filter-based Feature

Selection Algorithm for IDS

Along with fast improvement of data acquisition systems, large-scale data are easy to

accumulate. A large amount of data usually causes many mathematical difficulties

which then leads to higher computational complexity. It needs large storage space

and a long time for training and testing processes. This problem raises a major

challenge to intrusion detection systems, which need to examine all features in the

data to identify intrusive patterns. To solve this problem, feature selection becomes

an important part of most IDS applications. This technique aims to remove noisy

and redundant features from the data by selecting a subset of the most important

features to the classification purposes.

As shown in section 2.3.2 of Chapter 2, several filter-based feature selection algo-

rithms have been proposed in literature based on the principle of mutual informa-

tion. Battiti’s MIFS [57] was one of the earliest methods that evaluates features

68
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based on their relevance to the classification, by maximising the information that

feature fi carries about the output class, corrected by subtracting a quantity propor-

tional to the average mutual information with the features that have been selected

previously. One can find more details about Battiti’s MIFS [57] in Chapter 2. Nu-

merous studies have been conducted to improve Battiti’s MIFS including those in

[42, 53, 58, 59]. The enhancements in all of these methods have been made on

the right-hand side of Battiti’s MIFS [57]. However, these methods present some

limitations. For example, there is not a specific guideline to select an appropriate

value for the parameter β in MIFS [57], MIFS-U [58] and MMIFS [1], where β is a

user-defined parameter that is applied to account for the redundancy between the

candidate feature and the set of selected features. In addition, the unbalance be-

tween the left and right hand sides of the selection criterion in all proposed methods

has not been completely solved.

This chapter presents a new filter-based feature selection method, in which theoreti-

cal analysis of mutual information is introduced to evaluate the dependence between

features and output classes. The most relevant features are retained and used to

construct classifiers for respective classes. This will help the classifier to shorten the

training and testing time as well as to enhance the classification accuracy. Due to

the generality of the proposed algorithm, its flexibility allows it to be applied in var-

ious domains, thus we name it Flexible Mutual Information based Feature Selection

(FMIFS). As an enhancement of Mutual Information Feature Selection (MIFS) [57]

and Modified Mutual Information-based Feature Selection (MMIFS) [1], the pro-

posed feature selection method does not have any free parameter, such as β in

MIFS and MMIFS. Therefore, its performance is free from being influenced by any

inappropriate assignment of value to a free parameter and can be guaranteed. Its
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effectiveness is evaluated in the cases of network intrusion detection. An Intrusion

Detection System (IDS), named Least Square Support Vector Machine based IDS

(LSSVM-IDS), is built using the features selected by our proposed feature selection

algorithm. This approach is designed based on the work in [15] submitted to IEEE

Transaction on Computers.

The outline of this chapter is as follows. Section 4.1 introduces the proposed feature

selection algorithm FMIFS. Section 4.2 briefly describes the concept of LS-SVM

and details the detection framework showing the additional stages involved in the

proposed scheme. Section 4.3 presents the experimental details and results. Finally,

a summary to the chapter is drawn in Section 4.4.

4.1 Filter-based Feature Selection

If one considers correlations between network traffic records to be linear associ-

ations, then a linear measure of dependence such as linear correlation coefficient

can be used to measure the dependence between two random variables. However,

considering the real world communication, the correlation between variables can

be nonlinear as well. Apparently, a linear measure cannot reveal the relation be-

tween two nonlinearly dependent variables. Thus, we need a measure capable of

analysing the relation between two variables no matter whether they are linearly or

nonlinearly dependent. For these reasons, this work intends to explore a means of

selecting optimal features from a feature space regardless of the type of correlation

between them.
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4.1.1 Flexible Mutual Information based Feature Selection

To remove the burden of setting an appropriate value for β as it is required in

Battiti’s MIFS [57] and Amiri’s MMIFS [1], a new variation of MIFS is proposed

in this section. This new feature selection approach suggests an enhancement to

the feature selection criterion involved in the computation of the right-hand side of

MIFS algorithm as shown in Equation (2.26). Equation (4.1) below recalls Equation

(2.26) used for setting the criterion for feature selection of MIFS.

JMIFS = I(C; fi)− β
∑
fs∈S

I(fi; fs). (4.1)

where β is the redundancy parameter. The term I(C; fi) is the amount of informa-

tion that feature fi carries about the class C. The term β
∑

fs∈S I(fi; fs) estimates

the redundancy of the ith feature with respect to the subset of previously selected

features.

Equation (4.2) shows a new formulation to the feature selection criterion involved,

which is intended to determine a feature that maximises the term in Equation (4.2).

Given a training dataset T = D(F,C) with n features and m instances, where F =

{f1, ..., fn} and D = {i1, ..., im} are the sets of features and instances, respectively,

C = {c1, ..., cl} represents the set of classes (or labels) which instances belong to.

The task is to select the best subset of features S = {s1, s2, ..., s|S|}, where |S| is the
number of selected features. The scheme proposed in Equation (4.2) is to select a

feature from an initial input feature set that maximises I(C; fi), which measures the

relevance of the feature to the output class, and minimises the average of redundancy

MRs simultaneously.
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GMI = argmax
fi∈F

(I(C; fi)− 1

| S |
∑
fs∈S

MR), (4.2)

MR, in Equation (4.2), is the relative minimum redundancy of feature fi against

feature fs and is given by Equation (4.3).

MR =
I(fi; fs)

I(C; fi)
(4.3)

where fi ∈ F and fs ∈ S. In the case of I(C; fi) = 0, feature fi can be discarded

without computing Equation (4.2). If fi and fs are relatively highly dependent

with regard to I(C; fi), feature fi will contribute redundancy. This is because fi

and C are proven to be independent. Thus, to reduce the number of features that

needs to be examined in order to select the optimal number of features, a numerical

threshold Th(= 0) value is applied to GMI in (4.2) so that GMI has the following

properties:

1. If (GMI = 0), then the current feature fi is irrelevant or unimportant to the

output C because it cannot provide any additional information to the classi-

fication after selecting the S subset of features. Thus, the current candidate

fi should be removed from S.

2. If (GMI > 0), then the current feature fi is relevant or important to the output

C because it can provide some additional information to the classification after

selecting the S subset of the feature. Thus, the current candidate fi should

be added into S.
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3. If (GMI < 0), then the current feature fi is redundant to the output C because

it can cause reduction in the amount of MI between the selected subset S and

the output C. It is worth noting that the right hand term in Equation (4.2),

which measures the redundancy among features, is larger than the left hand

term, which measures the relevancy between feature fi and the output class.

Thus, feature fi should be removed from S.

The selection process of FMIFS is given by Algorithm 1.
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Algorithm 1 Flexible mutual information based feature selection

Input: Feature set F = {fi, i = 1, ..., n}
Output: S - the selected feature subset

begin

Step1. Initialization: set S = φ

Step2. Calculate I(C; fi) for each feature, i = 1, ..., n

Step3. nf = n; Select the feature fi such that:

argmax
fi

(I(C; fi)), i = 1, ..., nf ,

Then, set F ← F\ { fi }; S ← S ∪ { fi }; nf = nf − 1.

Step4. while F �= φ do

Calculate GMI in (4.2) to find fi where i ∈ {1, 2, · · · , nf};
nf = nf − 1;

F ← F\{fi};
if (GMI > 0) then

S ← S ∪ { fi }.
end

end

Step 5. Sort S according to the value of GMI of each selected feature.

return S
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4.1.2 Feature Selection Based on Linear Correlation Coef-

ficient

In order to demonstrate the flexibility and effectiveness of FMIFS against feature se-

lection based on linear dependence measure, we substitute MI by Linear Correlation

Coefficient (LCC) in Algorithm 1.

As discussed in Chapter 2, Linear Correlation Coefficient (LCC) [77] is one of the

most popular dependence measures evaluating the relationship between two ran-

dom variables. Whilst LCC is fast and accurate in measuring the correlations

between random linearly dependent variables, it is insensitive to nonlinear correla-

tions. Given that two random variables X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn},
where n is the total number of samples, the correlation coefficient between these

two variables is defined in Equation (4.4).

corr(X;Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
. (4.4)

The value of corr (X;Y ) falls in a definite closed interval [-1,1]. A value close to

either -1 or 1 indicates a strong relationship between the two variables. Otherwise,

the value infers a weak relationship between them. The following shows a different

feature selection algorithm based on LCC, and this algorithm is called Flexible

Linear Correlation Coefficient Feature Selection (FLCFS). Algorithm 2 is designed

to select a feature that maximises Gcorr in Equation (4.5) and to eliminate irrelevant

and redundant features.
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Gcorr = argmax
fi∈F

(corr(C; fi)− 1

| S |
∑
fs∈S

corr(fi; fs)

corr(C; fi)
). (4.5)

Equation (4.5) is based on the definition of the linear correlation coefficient. The

left-hand side of Equation (4.5) calculates the correlation between the candidate

feature and the class, while the right-hand side is to eliminate the redundancy

between candidate feature and the previously selected features.
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Algorithm 2 Flexible Linear Correlation Coefficient based Feature Selection

Input: Feature set F = {fi, i = 1, ..., n}
Output: S - the selected feature subset

begin

Step1. Initialization: S = φ

Step2. Calculate corr(C; fi) for each feature, i = 1, ..., n

Step3. nf = n; Select the feature fi such that:

argmax
fi

(corr(C; fi)), i = 1, ..., nf ,

Then, set F ← F\ { fi }; S ← S ∪ { fi }; nf = nf − 1.

Step4. while F �= φ do

Calculate Gcorr in (4.5) to find fi where i ∈ {1, 2, · · · , nf};
nf = nf − 1;

F ← F\{fi};
if (Gcorr > 0) then

S ← S ∪ { fi }.
end

end

Step 5. Sort S according to the value of Gcorr of each selected feature.

return S
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4.2 Intrusion Detection Framework-based on Least

Square Support Vector Machine

The previous chapter introduced the proposed detection framework and described

the four different stages involved in the intrusion detection system. These stages

are: (1) data collection, sequences of network packets are collected; (2) data prepro-

cessing, where training and test data are preprocessed; (3) classifier training, where

the training data is trained for classification problem; and (4) attack recognition,

where the classifier is trained using LS-SVM to detect intrusions on the test data.

The proposed framework in this chapter provides an enhancement to the previous

proposed framework by including a feature selection step as part of the preprocessing

stage and utilising a machine learning method (for example, LSSVM) to classify

normal traffic and attacks. The detection framework is depicted in Figure 4.1.

For experimental purposes and to make a fair comparison with those systems that

have been evaluated on different types of attacks included in the KDD Cup 99

dataset, five different classes are constructed. One of these classes contains purely

the normal records and the other four hold different types of attacks (such as, DoS,

Probe, U2R, R2L), respectively. More details about these attacks can be found in

Chapter 2.

An essential step of the data preprocessing stage after transferring all symbolic

attributes into numerical values and scaling the value of each attribute into a well-

proportioned range is feature selection. Even though every connection in a dataset

is represented by various features, not all of these features are needed to build an

IDS. Therefore, it is important to identify the most informative features of traffic
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data to achieve higher performance. In the previous section using Algorithm 1, a

flexible method for the problem of feature selection, FMIFS, is developed. How-

ever, the proposed feature selection algorithm can only rank features in terms of

their relevance but they cannot reveal the best number of features that are needed

to train a classifier. Therefore, this study applies the same technique proposed in

[1] to determine the optimal number of required features. To do so, the technique

first utilises the proposed feature selection algorithm to rank all features based on

their importance to the classification processes. Then, incrementally the technique

adds features to the classifier one by one. The final decision of the optimal number

of features in each method is taken once the highest classification accuracy in the

training dataset is achieved. This technique is also applied for MIFS and FLCFS.

The selected features for all datasets are depicted in Table 4.1 [A-C], where each

row lists the number and the indexes of the selected features with respect to the cor-

responding feature selection algorithm. In addition, for KDD Cup 99, the proposed

feature selection algorithm is applied for the aforementioned classes. The selected

features are shown in Table 4.3.

As a classification method to classify normal traffic from abnormal traffic, least

squares support vector machine method is applied in this study. Support vector

machine is a supervised learning method [78]. It studies a given labelled dataset

and constructs an optimal hyperplane in the corresponding data space to sepa-

rate the data into different classes. Instead of solving the classification problem

by quadratic programming, Suykens and Vandewalle [79] suggested re-framing the

task of classification into a linear programming problem. They named this new for-

mulation the Least Squares SVM (LS-SVM). LS-SVM is a generalized scheme for

classification and also incurs low computation complexity in comparison with the
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Figure 4.1: The framework of the LS-SVM-based intrusion detection system

ordinary SVM scheme [80]. One can find more details about calculating LS-SVM

in Appendix A.

Since SVMs can only handle binary classification problems and because for KDD

Cup 99 five optimal feature subsets are selected for all classes, five LS-SVM classi-

fiers need to be employed. Each classifier distinguishes one class of records from the

others. For example the classifier of Normal class distinguishes Normal data from

non-Normal (All types of attacks). The DoS class distinguishes DoS traffic from

non-DoS data (including Normal, Probe, R2L and U2R instances) and so on. The

five LS-SVM classifiers are then combined to build the intrusion detection model to

distinguish all different classes.

In general, it is simpler to build a classifier to distinguish between two classes than

to consider multiclass in a problem. This is because the decision boundaries in the

first case can be simpler. The first part of the experiments in this chapter is using
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two classes, where records matching to the normal class are reported as normal

data, otherwise are considered as attacks.

However, to deal with a problem having more than two classes, there are two popular

techniques: “One-Vs-One” (OVO) and “One-Vs-All” (OVA). Given a classification

problem with M classes (M > 2), OVO approach on one hand divides an M-class

problem into M∗(M−1)
2

binary problems. Each problem is handled by a separate

binary classifier, which is responsible for separating data of a pair of classes. OVA

approach, on the other hand, divides an M-class problem into M binary problems.

Each problem is handled by a binary classifier, which is responsible for separating

data of a single class from all other classes. Obviously, the OVO approach requires

more binary classifiers than OVA. Therefore, it is more computationally intensive.

Rifkin and Klautau [81] demonstrated that the OVA technique was preferred over

OVO. As such, the OVA technique is applied to the proposed IDS to distinguish

between normal and abnormal data using the LS-SVM method. Therefore, if the

classifier model confirms that the record is abnormal, the subclass of the abnormal

record (type of attacks) can be used to determine the record’s type. Algorithm 3

and Algorithm 4 describe the detection processes.
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Algorithm 3 Intrusion detection based on LS-SVM {Distinguishing intrusive net-
work traffic from normal network traffic in the case of multiclass}
Input: LS-SVM Normal Classifier, selected features (normal class), an observed

data item x
Output: Lx - the classification label of x

begin
Lx ← classification of x with LS-SVM of Normal class

if Lx == “Normal” then

Return LX

else

do: Run Algorithm 4 to determine the class of attack
end
end

Algorithm 4 Attack classification based on LS-SVM

Input: LS-SVM Normal Classifier, selected features (normal class), an observed

data item x

Output: Lx - the classification label of x

begin

Lx ← classification of x with LS-SVM of DoS class

if Lx==“DoS” then

Return LX

else

Lx ← classification of x with LS-SVM of Probe class

if Lx == “Probe” then

Return LX

else

Lx ← classification of x with LS-SVM of R2L class

if Lx == “R2L” then

Return LX

else

Lx == “U2R”;

Return LX

end

end
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4.3 Experimental Results and Analysis

4.3.1 Experimental Setup

In all experiments, the value of MI is estimated using the estimator proposed by

Kraskov et al. [56] (discussed in Appendix B). To select the best value of k used

in the estimator for the approach of k-nearest neoghbors, several experiments with

different values for k are conducted. Through the experiments, we have found that

the best estimated value of MI was achieved when k = 6, which is the same as the

value suggested in [56]. In addition, the control parameter β for MIFS algorithm

is varied in the range of [0,1], which is the range suggested in [57] and [58], with a

step size of 0.1. The optimal value of β that gives the best accuracy rate is selected

for a comparison with the proposed approach.

Empirical evidence shows that 0.3 is the best value for β in the three datasets, so

we included the results with this optimal β value for comparison. We have also

included the results with the value of β equal to 1, which is the same as the value

applied in [58]. The reason of choosing different values of β is to test all possibilities

of the feature rankings since the best value is undefined for the given problem. The

experimental results of different values of β indicate that when the value is closer

to 1 the MIFS algorithm assigns larger weights to the redundant features. In other

words, the algorithm places more emphasis on the relation between input features

rather than between input features and the class and vice versa.

Based on the above findings, to demonstrate the superiority of the proposed feature

selection algorithm, five LSSVM-IDSs are built based on all features and the features

that are chosen using four different feature selection algorithms (i.e., the proposed
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FMIFS, MIFS (β = 0.3), MIFS (β = 1), FLCFS), respectively, with k = 6. Three

different datasets, namely KDD Cup 99 [82], NSL-KDD [71] and Kyoto 2006+

dataset [72], are used to evaluate the performance of these IDSs . The experimental

results of the LSSVM-IDS based on FMIFS are compared with the results using the

other four LSSVM-IDSs and several other state-of-the-art IDSs.

For the experiments on Kyoto 2006+ dataset, the data of 27, 28, 29, 30 and 31

August 2009 are selected, which contain the latest updated data. For the ex-

perimental aims on each dataset, 152460 samples are randomly selected. A 10-

fold cross-validation is used to evaluate the detection performance of the proposed

LSSVM-IDS. In addition, in order to make a comparison with the detection system

proposed in [83], the same sets of data captured from 1st to 3rd November 2007 are

chosen for evaluation too. The comparison results are shown in Table 4.6.

4.3.2 Performance Evaluation

Several experiments have been conducted to evaluate the performance and effective-

ness of the proposed LSSVM-IDS. For this purpose, the accuracy and F -measure

metrics are applied. The accuracy metric is given by

Accuracy =
TP + TN

TP + TN + FN + FP
, (4.6)

where

• True Positive (TP) is the number of actual attacks classified as attacks,
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• True Negative (TN) is the number of actual normal records classified as normal

ones,

• False Positive (FP) is the number of actual normal records classified as attacks,

and

• False Negative (FN) is the number of actual attacks classified as normal

records.

The F-measure is a harmonic mean between precision p and recall r [84]. In other

words, it is a statistical technique for examining the accuracy of a system by con-

sidering both precision and recall of the system. F-measure is given by Equation

(4.7)

F −measure =
(β2 + 1)(Precision ∗Recall)
β2 ∗ Precision+Recall

, β = 1. (4.7)

The precision is the proportion of predicted positives values which are actually

positive. The precision value directly affects the performance of the system. A

higher value of precision means a lower false positive rate and vice versa. The

precision is given by Equation (4.8).

Precision =
TP

TP + FP
. (4.8)

The recall is another important value for measuring the performance of the detection

system and to indicate the proportion of the actual number of positives which are

correctly identified. The recall is defined as:
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Table 4.1: Comparison of feature ranking

(a) Feature ranking results on the KDD Cup 99 dataset

Algorithm # Feature Feature ranking

FMIFS 19 f5, f23, f6, f3, f36, f12, f24, f37, f2,f32, f9, f31, f29,
f26, f17, f33, f35, f39, f34

MIFS (β=0.3) 25 f5, f23, f6, f9, f32, f18, f19, f15, f17, f16, f14, f7, f20,
f11, f21, f13, f8, f22, f29, f31, f41, f1, f26, f10, f37

MIFS (β=1) 25 f5, f7, f17, f32, f18, f20, f9, f15, f14, f21, f16, f8, f22,
f19, f13, f11, f29, f1, f41, f31, f10, f27, f26, f12, f28

FLCFS 17 f23, f29, f12, f24, f3, f36, f32, f2, f8, f31, f25, f1, f11,
f39, f10, f4, f19

(b) Feature ranking results on the NSL-KDD dataset

Algorithm # Features Feature ranking

FMIFS 18 f5, f30, f6, f3, f4, f29, f12, f33, f26, f37,f39, f34, f25,
f38, f23, f35, f36, f28

MIFS (β=0.3) 23 f5, f3, f26, f9, f18, f22, f20, f21, f14, f8, f11, f12, f7,
f17, f16, f19, f1, f15, f41,f32, f13, f28, f36

MIFS (β=1) 28 f5, f22, f9, f26, f18, f20, f14, f21, f16, f8, f11, f1, f17,
f7, f12, f19, f15, f40, f32, f13, f10, f28, f31, f27, f2,
f36, f23, f3

FLCFS 22 f29, f12, f33, f39, f4, f23, f34, f25, f26, f38, f8, f35,
f19, f32, f18, f3, f6, f40, f30, f5, f27, f22

(c) Feature ranking results on the Kyoto 2006+ dataset

Algorithm # Feature Feature ranking

FMIFS 4 f19, f10, f2, f4

MIFS (β=0.3) 6 f19, f2, f10, f16, f7, f12

MIFS (β=1) 15 f19, f7, f16, f6, f12, f11, f17, f13,f8, f15, f18, f5, f9,
f1, f2

FLCFS 7 f10, f17, f2, f12, f8, f6, f5
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Recall =
TP

TP + FN
. (4.9)

4.3.3 Results and Discussion

The classification performance of the detection model combined with FMIFS, MIFS

(β = 0.3), MIFS (β = 1), FLCFS and all features based on the three datasets

are shown in Table 4.2 and Figure 4.2. The results clearly demonstrate that the

classification performance of an IDS is enhanced by the feature selection step. In

addition, the proposed feature selection algorithm FMIFS shows promising results

in terms of low computational cost and high classification results.

Table 4.2 summarises the classification results of the different selection methods in

regard to detection rates, false positive rates and accuracy rates. It shows clearly

that the detection model combined with the FMIFS achieved an accuracy rate

of 99.79%, 99.91% and 99.77% for KDD Cup 99, NSL-KDD and Kyoto 2006+,

respectively, and so significantly outperforms all other methods. In addition, the

proposed detection model enjoys the highest detection rate and the lowest false

positive rate in comparison with other combined detection models.

The proposed feature selection algorithm is computationally efficient when it is ap-

plied to the LSSVM-IDS. Figure 4.2 shows the building (training) and test times

consumed by the detection model using FMIFS compared with the detection model

using all features. The figure shows that the LSSVM-IDS + FMIFS performs bet-

ter than using all features in all datasets. There are significant differences when

performing experiments on KDD Cup 99 and NSL-KDD and a slight difference on

Kyoto 2006+ dataset by comparison with the two aforementioned models.
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Table 4.2: Performance classification for all attacks based on the three datasets

KDD Cup 99 NSL-KDD Kyoto 2006+

DR FPR Accuracy DR FPR Accuracy DR FPR Accuracy

LSSVM-IDS + FMIFS 99.46 0.13 99.79 98.76 0.28 99.91 99.64 0.13 99.77

LSSVM-IDS + MIFS (β=0.3) 99.38 0.23 99.70 95.96 0.53 97.96 98.59 0.16 99.32

LSSVM-IDS + MIFS (β=1) 89.26 0.34 97.63 93.26 0.47 96.75 98.10 0.58 99.12

LSSVM-IDS + FLCFS 98.47 0.61 98.41 92.29 0.41 96.45 98.07 0.82 98.99

LSSVM-IDS + All features 99.16 0.97 99.19 91.12 0.38 95.96 94.29 0.33 97.42
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Figure 4.2: Building and testing time using all features and FMIFS, respec-
tively, on three datasets.

4.3.4 Comparative Study

In order to demonstrate the performance of the LSSVM-IDS + FMIFS, experiments

have been conducted to make comparisons with some state-of-the-art approaches.

As mentioned in Section 4.2, the KDD Cup 99 is divided into five different classes

and many experiments have been conducted on DoS, Probe, U2R and R2L attacks.

Table 4.3 shows the selected features for the different attack classes. Table 4.4,

Table 4.5 and Table 4.6 depict the comparison results based on KDD Cup test,

NSL-KDDTrain+ and Kyoto 2006+ datasets respectively. The results illustrated in

these tables strongly indicate that the proposed detection model shows promising

results compared with other models.
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Table 4.4 shows the accuracy percentage achieved by different detection models for

the five classes on KDD Cup 99 dataset. Regarding the results obtained by other

authors, it can be seen that the proposed approach enjoys the best accuracy among

all models in all of the classes.

Table 4.3: Feature ranking results for the four types of attacks on the KDD
Cup 99 dataset

Class # Feature Feature ranking

DoS 12 f23, f5, f3, f6, f32, f24, f12, f2, f37, f36, f8, f31

Probe 19 f5, f27, f3, f35, f40, f37, f33, f17, f41, f30, f34, f28, f22, f4,
f24, f25, f19, f32, f29

U2R 23 f37, f17, f8, f18, f16, f1, f4, f15, f7, f22, f20, f21, f31, f19, f12,
f13, f14, f6, f32, f29, f3, f40, f2

R2L 15 f3, f15, f5, f10, f9, f32, f33, f22, f1, f17, f24, f11, f23, f8, f6

Table 4.5 demonstrates the result achieved by LSSVM-IDS + FMIFS compared with

other approaches tested on NSL-KDDTrain+ datasets in terms of the detection,

false positive and accuracy rate. It is clear that LSSVM-IDS + FMIFS enjoys the

best results at 99.94% accuracy, 98.93% detection rate and 0.28% false positive rate.

Table 4.6 shows a comparison with the results achieved by CSV-ISVM proposed

in [83] that has been tested on Kyoto 2006+ dataset. Through the results, both

systems show continuous improvement in detection rates and reduction in false

positive rates. However, from the very first iteration, the obtained results of the

LSSVM-IDS are better, compared to CSV-ISVM. The final results achieved by

LSSVM-IDS in the 10th iteration show 97.80% and 0.43% of the final detection and

false positive rates respectively, while CSV-ISVM produces 90.15% and 2.31% of

the final detection and false positive rates respectively. The training and testing
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Table 4.4: Comparison results in terms of accuracy rate with other approaches
based on the KDD Cup 99 dataset (n/a means not available by authors)

System Normal DoS Probe U2R R2L

LSSVM-IDS + FMIFS 99.75 99.86 99.91 99.97 99.92

SVM with PBR [85] 99.59 99.22 99.38 99.87 99.78

SVM [25] 99.55 99.25 99.70 99.87 99.78

Bayesian Network [86] 98.78 98.95 99.57 48.00 98.93

Flexible Neural Tree [87] 99.19 98.75 98.39 99.70 99.09

SVM + PSO and FS [88] 99.45 n/a n/a n/a n/a

SVM + SA and FS [89] 99.42 n/a n/a n/a n/a

TUIDS [90] 94.76 n/a n/a n/a n/a

Radial SVM [27] n/a 98.94 97.11 97.80 97.78

Table 4.5: Comparison results based on NSL-KDD dataset (n/a means not
available by authors)

System # Feature DR FPR Accuracy

LSSVM-IDS + FMIFS 18 98.93 0.28 99.94
DMNB [76] all n/a 3.0 96.50
DBN-SVM [91] all n/a n/a 92.84
Bi-layer behavioral-based [92] 20 n/a n/a 99.20
TUIDS [90] all 98.88 1.12 96.55
FVBRM [93] 24 n/a n/a 97.78
C4.5 with linear correlation-based [94] 17 n/a n/a 99.10
PSOM [75] 10 n/a n/a 88.30
HTTP based IDS [95] 13 99.03 1.0 99.38
Hybrid IDS [96] all 99.10 1.2 n/a

times taken by both systems are also demonstrated in Table 4.6. Unlike CSV-

ISVM, LSSVM-IDS take much less time. This is because LSSVM-IDS was using a

feature selection stage that reduced the number of needed features for the classifier

to five features. These features are: {source IP address, service, dst host srv count,

destination bytes, src bytes}.
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Table 4.6: Comparison performance of classification on the Kyoto 2006+
dataset (the days 2007, Nov. 1,2 and 3), #I is the number of Iteration

#I LSSVM-IDS + FMIFS CSV-ISVM [83]

DR FPR Train(s) Test(s) DR FPR Train(s) Test(s)

1 96.01 0.84 0.152 0.246 79.65 4.54 1.823 7.76

2 97.01 0.64 0.296 0.396 84.72 4.03 3.463 10.363

3 97.13 0.64 0.505 0.656 85.58 3.92 5.26 15.443

4 97.18 0.64 1.140 1.343 86.08 3.80 9.662 19.532

5 97.26 0.60 1.475 1.773 86.81 3.54 11.302 22.735

6 97.32 0.57 2.228 2.643 87.24 3.33 13.593 25.887

7 97.61 0.55 3.214 3.773 88.08 3.03 14.348 28.23

8 97.61 0.53 4.343 5.172 88.10 3.01 17.475 31.615

9 97.70 0.45 5.585 6.508 89.64 2.52 23.02 35.547

10 97.80 0.43 7.275 8.408 90.15 2.31 27.257 40.097

4.3.5 Additional Comparison

The performance of the LSSVM-IDS model was further compared with the PLSSVM

model [1], which also used a feature selection algorithm based on the mutual in-

formation method, named MMIFS. The comparison results shown in Table 4.7 are

based on the corrected labels dataset. The effectiveness of the two models is com-

pared in three aspects: the accuracy rate, average building time and testing time

in minutes.

From Table 4.7, it can be observed that the proposed system reduces the building

time and testing time very considerably for all categories. In addition, with respect

to the accuracy both models have shown promising results for all classes. It is clear
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Table 4.7: Accuracy, building time (min) and testing time (min) for all differ-
ent classes on corrected labels of KDD Cup 99 dataset compare with PLSSVM

proposed by Amiri in [1].

Class Name Model Accuracy (%) Building
time (min)

Testing
time (min)

Normal LSSVM-IDS + FMIFS 98.39 7.92 5.51

PLSSVM + MMIFS 99.1 25 11

DoS LSSVM-IDS + FMIFS 98.93 10.06 4.50

PLSSVM + MMIFS 84.11 19 8

Probe LSSVM-IDS + FMIFS 99.57 13.04 8.49

PLSSVM + MMIFS 86.12 35 13

U2R LSSVM-IDS + FMIFS 99.66 0.47 0.32

PLSSVM + MMIFS 99.47 23 10

R2L LSSVM-IDS + FMIFS 90.08 1.06 0.44

PLSSVM + MMIFS 98.70 5 4

Overall LSSVM-IDS + FMIFS 97.33 6.51 3.85

PLSSVM + MMIFS 93.50 21.4 9.20

from the table that LSSVM-IDS has better accuracy in DoS, Probe and U2R classes,

while the PLSVM produces a better accuracy rate when applied to Normal and R2L

class. Moreover, the table shows that LSSVM-IDS outperforms the PLSSVM model

in the overall performance.

Furthermore, the detection rate of LSSVM-IDS has been compared and shown in

Table 4.8 with some other approaches that have been tested on the corrected labels

dataset. Through Table 4.8, compared to the KDD Cup 99 winner’s detection

system and other systems, LSSVM-IDS achieves the best detection rates for U2R

and R2L attacks with rates of 22.11% and 88.38% respectively. The detection model

proposed in [70] provides the best detection rate for the Probe attack of 97.5%. For

the normal class, all of the KDD Cup 99 winner [66], Association rule [69] and
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Table 4.8: Detection rate (%) for different algorithm performances on the test
dataset with corrected labels of KDD Cup 99 dataset (n/a means not available

by authors)

System Normal DoS Probe U2R R2L Overall

LSSVM-IDS + FMIFS 98.98 98.76 86.08 22.11 88.38 78.86

KDD’99 winner [66] 99.50 97.10 83.30 13.20 8.40 60.3

Kernel Miner [67] 99.42 97.47 84.52 11.84 7.32 60.11

PNrule [97] 99.50 96.90 73.20 6.60 10.70 57.38

SVM IDS [68] 99.3 91.6 36.65 12 22 52.31

Association rule [69] 99.50 96.80 74.90 3.8 7.9 56.58

ESC-IDS [28] 98.20 99.50 84.10 14.10 31.50 65.48

Clustering [70] 99.3 99.5 97.5 19.7 28.8 68.96

TUIDS [90] 90.01 n/a n/a n/a n/a n/a

PNrule [97] achieve the best result with 99.50% detection rate. However, overall

LSSVM-IDS has achieved the best detection rate among all systems.

Figure 4.3 illustrates a comparison between LSSVM-IDS and the other two detection

models proposed by Tsang [98] in terms of F-measure rates. These two methods

have applied the genetic-fuzzy rule mining technique to evaluate the importance of

IDS features. This figure, makes it obvious that the proposed model outperforms

Tsang models in most of the classes including Normal, DoS, Probe and R2L with

89.31%, 99.27%, 84.16 and 48.13%, respectively. MOGFIDS provides the highest

result in U2R class of 25.09%. Overall, the results of the LSSVM-IDS shown in this

figure demonstrate satisfying performance improvements compared with the other

two methods.

Figure 4.4 shows a comparison between those system proposed in [71], [99] and [100]

that have been tested on the KDDTest−21 in terms of the classification accuracy.
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Figure 4.3: Comparison results of F−measure rate on the corrected labels of
KDD Cup 99 dataset

Among those systems, the proposed detection model achieved the best classification

accuracy of 94.68%.

To sum up, the large number of unseen attacks in these datasets that do not appear

in the training datasets make it even harder for an IDS. For example in the corrected

labels dataset, Bouzida [101] has shown that snmpgetattck and normal records have

almost the same features, and this makes it impossible for any IDS to detect this

type of attack.

4.4 Summary

Recent studies have shown that two main components are essential to build an IDS.

They are a robust classification method and an efficient feature selection algorithm.
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Figure 4.4: Comparison results of classification accuracy on KDDTest−21

In this chapter, a supervised filter-based feature selection algorithm has been pro-

posed, namely Flexible Mutual Information Feature Selection (FMIFS). FMIFS is

an improvement over MIFS and MMIFS. FMIFS suggests a modification to Bat-

titi’s algorithm to reduce the redundancy among features. FMIFS eliminates the

redundancy parameter β required in MIFS and MMIFS. This is desirable in prac-

tice since there is no specific procedure or guideline to select the best value for this

parameter.

FMIFS is then combined with the LSSVM method to build an IDS. LSSVM is

a least square version of SVM that works with equality constraints instead of in-

equality constraints in the formulation designed to solve a set of linear equations

for classification problems rather than a quadratic programming problem. The pro-

posed LSSVM-IDS has been evaluated using three well known intrusion detection
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datasets: KDD Cup 99, NSL-KDD and Kyoto 2006+ datasets. The performance

of LSSVM-IDS using kddcup testdata, KDDTest+ and the days 2007, Nov. 1,2

and 3 of Kyoto dataset has exhibited better classification performance in terms

of classification accuracy, detection rate, false positive rate and F-measure than

some of the existing detection approaches. In addition, the proposed LSSVM-IDS

has shown comparable results with other state-of-the-art approaches when using

the corrected labels KDD Cup 99 dataset and tested on Normal, DoS, and Probe

classes; it outperforms other detection models when tested on U2R and R2L classes.

Furthermore, for the experiments on the KDDTest−21 dataset, LSSVM-IDS pro-

duces the best classification accuracy among other detection systems tested on the

same dataset. Finally, based on the experimental results achieved on all datasets,

it can be concluded that the proposed detection system has achieved promising

performance in detecting intrusions over computer networks. Overall, LSSVM-IDS

has performed the best when compared with the other state-of-the-art models.

However, the detection performance of the proposed intrusion detection system

needs to be further enhanced in order to achieve a high level of defence and strengthen

network security against malicious attacks. There are a number of research direc-

tions that can be use to extend the work achieved in this chapter. Thus, the follow-

ing chapter puts the classification performance as the main target and proposes a

hybrid feature selection algorithm in combination with filter and wrapper methods.



Chapter 5

Supervised Hybrid Feature

Selection Algorithm for IDS

As discussed in Chapter 2, the filter-based feature selection methods have less com-

putational cost and are easy to apply. However, the lack of interaction between

the classifier and the dependence among features make these methods fail to select

the optimal available subset [47]. The wrapper methods are considered to be more

accurate but often have much more computational complexity when dealing with

a large volume of data and high dimensional data compared to filter approaches

[48]. The hybrid methods, on the other hand, exploit the advantages of both filter

and wrapper methods. These methods utilise both an independent measure and a

fitness evaluation function of the feature subset to select the final optimal subset of

features [49]. Hybrid methods are considered to be more effective and can achieve

promising classification performance.

98
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In this chapter, a hybrid feature selection algorithm is designed. The proposed

approach is a combination of two main stages: (1) filter feature ranking; and (2)

wrapper-based Improved Forward Floating Selection (IFFS) using LSSVM and clas-

sification accuracy. The filter method aims to reduce the computational cost of the

wrapper search by eliminating irrelevant and redundancy features from the initial

feature set. This phase applies the filter method FMIFS proposed in Chapter 4.

The wrapper method is used to search for a proper subset that improves the classifi-

cation accuracy. The aim of the proposed hybrid method is to achieve both the high

accuracy of wrapper approaches and the efficiency of filter approaches. Finally, in

order to examine the effectiveness and feasibility of the proposed feature selection

method, the final proper subset is then passed through LSSVM classifier to build

an IDS.

The outline of this chapter is as follows. Section 5.1 describes the principle of the

improved forward floating selection algorithm. Section 5.2 introduces the proposed

hybrid feature selection algorithm. Section 5.3 details the detection framework

showing the different detection stages. Section 5.4 presents the experimental details

and results. Finally, a summary of the chapter is drawn in Section 5.5.

5.1 Improved Forward Floating Selection

The sequential search looks for the optimal feature subset by either adding (or

removing) one feature at a time until the specified criteria is reached. Sequen-

tial Forward/Backward Selection (SFS/SBS) are two of the most commonly used

searching techniques in selecting the most optimal subsets and decreasing very large



Chapter 5. Supervised Hybrid-based Feature Selection Algorithm for IDS
Application 100

feature sets [102]. SFS starts with an empty set and incrementally adds features to

the selected subset based on their importance. SBS, on the other hand, starts with

all features and deletes one feature at a time. However, these methods suffer from

the so called “nesting effect” problem. Once a feature is added (or deleted), it will

not be considered in upcoming selection iterations.

Sequential Forward/Backward Floating Search (SFFS/ SBFS) have been success-

fully applied to overcome the “nesting effect” problem by backtracking after each

sequential iteration to select a better subset [103]. The SFFS method starts the

search with an empty set and uses the SFS to add one feature at a time to the

selected feature set. Every time a new feature is added, the SFFS algorithm uses

SBS to backtrack and remove one feature at a time to find a better subset. The

SBFS method starts the search from all input features and uses the SBS to re-

move one feature at a time from the original feature set. After each backward step,

SFBS performs forward steps to find a better subset that can produce a better

performance.

Improved Forward Floating Selection (IFFS) [104] was introduced to improve the

selection process in the SFFS algorithms. The IFFS adds an additional search step

together with the backtracking step called “replace weak features”. The method

further investigates the feature subset if removing an old feature and adding a new

one to a selected subset at each iteration will improve the quality of the selected

subset.
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5.2 Proposed Hybrid Feature Selection

This section proposes a hybrid feature selection approach that combines the advan-

tages of both filter and wrapper methods. The framework of the proposed algorithm,

as shown in Figure 5.1, consists of two main phases. The first is the upper phase

at which the mutual information is used for feature ranking and elimination. The

second is the lower phase which determines the optimal subset of features Sbest and

contributes the maximum classification accuracy on the training dataset.

Suppose that the total number of features considered in the dataset is n. The

filtering process is applied to rank the features incrementally with a starting value

at 1 to eliminate any irrelevant and redundant features from the initial features set.

This phase will be continued until L features are selected. The wrapper method is

applied to evaluate all possible sets to select the best feature set that produces the

best classification accuracy among other available subsets.

5.2.1 Filter Method for Feature Pre-selection

The Flexible Mutual Information Feature Selection algorithm (FMIFS) proposed in

the previous chapter is applied in the upper phase of the proposed hybrid method.

It is designed to eliminate irrelevant and redundancy features from the original data.

This helps the wrapper method (the lower phase) to decrease the searching range

from the entire original feature space to the pre-selected features (the output of the

upper phase).

As discussed in Chapter 4, FMIFS algorithm searches for relevant features by look-

ing at the characteristics of each individual feature using mutual information as
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Figure 5.1: The overall scheme of the proposed hybrid feature selection

an evaluation criterion to guide the selection process. It selects the feature that

maximises the term I(C; fi), which represents the amount of information that fea-

ture fi carries about the class C, corrected by subtracting the average Minimum

Redundancy (MR) between the candidate feature and the set of previously selected

features. Therefore, FMIFS intends to determine the feature that maximises the

term G in Equation (5.1).
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G = I(C; fi)− 1

| S |
∑
fs∈S

MR, (5.1)

where MR is the relative minimum redundancy of feature fi against feature fs and

is denoted by

MR =
I(fi; fs)

I(C; fi)
. (5.2)

5.2.2 Wrapper-based IFFS for Feature Selection Using LS-

SVM

Once the filter method finishes its task, the lower phase evaluates all possible sub-

sets that can be generated from the output subset of the upper phase in a wrapper

manner. This is to determine the optimal subset of feature Sbest that can produce

the best classification performance. To do so, LS-SVM and the classification accu-

racy are employed. If the performance reaches the best accuracy rate, the selection

process is completed and the output is the last optimal subset of features with car-

dinality of ω. Otherwise, the selection procedure carries the searching at cardinality

of m+1 by adding one feature from the remaining features, replacing the weak fea-

tures that produce low accuracy and repeating the above steps. Figure 5.2 shows

the overall scheme of the wrapper-based IFFS.

As shown in Figure 5.2, the wrapper phase involves two important steps: (1) back-

tracking and (2) replacing the weak feature.
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Figure 5.2: The overall procedure of the proposed wrapper algorithm-based
IFFS

5.2.2.1 Backtracking

To avoid the “nesting problem” [48], the proposed algorithm uses SFS to add one

feature at a time to the subset of features. When a new feature is added to the
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current selected subset, the algorithm uses SBS for backtracking to remove one

feature in each iteration to find a better subset.

5.2.2.2 Replacing the Weak Feature

The proposed algorithm not only backtracks to find the best subset but also at-

tempts to find if replacing weak features in the current selected feature set can

provide a better subset. The aim is to further investigate if removing one fea-

ture in the selected feature set and adding a new one using SFS can enhance the

classification accuracy of the current selected feature set.

5.3 Intrusion Detection Framework Based on LS-

SVM

The framework of the proposed IDS, as shown in Figure 5.3, is comprised of the same

four stages as discussed in Chapter 3 and Chapter 4. These stages are: (A) data

collection, where a sequence of network packets is collected; (B) data preprocessing,

where training and test data are preprocessed; (C) classifier training, where the

training data is trained for the classification problem; and (D) attack recognition,

where the classifier is trained using LS-SVM to detect intrusions on the test data.

Compared to the framework proposed in Chapter 4, this chapter employs the pro-

posed hybrid feature selection. The output of the proposed feature selection is then

used to build the classification model of the detection system. More details about

the framework stages can be found in Chapter 3 and Chapter 4.
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Figure 5.3: The framework of the LS-SVM-based intrusion detection system

Algorithm 5 The detection algorithm to distinguish intrusive network traffic from
normal network traffic
Input: LS-SVM Normal Classifier, selected features (normal class), an observed

data item x
Output: Lx-the classification label of x
begin Lx ← classification of x with LS-SVM of Normal class
if Lx = “Normal” then

Return LX

else
Lx = “Abnormal”
Return LX

end

After completing the whole iteration process, the final optimal subset of features

is determined which includes the most correlated features for the class and can

differentiate between the normal and intrusion traffics using the saved trained model.

The testing data is then passed through the trained model to detect intrusions. As

shown in algorithm 5, records matching the normal class are considered as normal
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data, otherwise they are reported as attacks.

5.4 Experiments and Results

To facilitates a fair and rational comparison with other previously proposed detec-

tion approaches, the KDD Cup 99 dataset and Kyoto 2006+ dataset are utilised

to evaluate the performance of the proposed detection system. As shown in the

literature review, a significant number of state-of-the-art IDSs, such as those in

[25, 27, 85–87] , were evaluated using “10% KDD Cup 99” data. Therefore, train-

ing and testing the proposed detection system on the “10% KDD Cup 99” data can

assist to provide a fair comparison with those systems. As discussed in Chapter

2, the “10% KDD Cup 99” contains about 494,021 TCP/IP connection records.

Such large size data cannot be fed to an LS-SVM classifier in the training phase, so

15,246 records from the two different classes are randomly selected as the training

data and the remaining 478,775 (= 494,021 - 15,246) samples are used for evaluation

purposes. Both the training and testing samples used in these experiments consist

of 41 features.

Furthermore, to validate the performance of the hybrid feature selection, the pro-

posed detection model is tested using the corrected labels KDD Cup 99. This

dataset has been used to validate some of state-of-the-art IDSs such as those in

[28, 66–68, 70]. Therefore, for a fair comparison with those detection systems,

this dataset is utilised to test the performance of the detection model. The cor-

rected labels KDD Cup 99 dataset contains 311,029 TCP/IP connection records,
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Table 5.1: Comparison of feature ranking

(a) Feature ranking results on the KDD Cup 99 dataset

Algorithm # Feature Feature ranking

Proposed method 6 f5, f3, f23, f32, f34, f35

Filter method 19 f5, f23, f6, f3, f36, f12, f24, f37, f2,f32, f9, f31,
f29, f26, f17, f33, f35, f39, f34

MIFS (β=0.3) 25 f5 ,f23 ,f6 ,f9 ,f32 ,f18 ,f19 , f15 ,f17 ,f16 ,f14 ,f7
,f20 ,f11 ,f21 ,f13 ,f8, f22, f29 ,f31,f41 ,f1 ,f26 ,f10
,f37

MIFS (β=1) 25 f5 ,f7 ,f17 ,f32 ,f18 ,f20 ,f9 , f15 ,f14 ,f21 ,f16 ,f8
,f22 ,f19 ,f13 ,f11 ,f29, f1, f41 ,f31,f10 ,f27 ,f26
,f12 ,f28

(b) Feature ranking results on the Kyoto 2006+ dataset

Algorithm # Feature Feature ranking

Proposed method 6 f19, f10, f2, f4, f16, f9

Filter method 4 f19, f10, f2, f4

MIFS (β=0.3) 6 f19, f2, f10, f16, f7, f12

MIFS (β=1) 15 f19, f7, f16, f6, f12, f11, f17, f13,f8, f15, f18, f5,
f9, f1, f2

where around 80.6% of the samples are attacks and the remaining ones are normal

records.

For these experiments on Kyoto 2006+ dataset, the data of the days 2009 August

27, 28, 29, 30 and 31 are selected, which contain the latest updated data. For

training purposes, 15,246 samples are randomly selected and the remaining are

used as testing data.
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5.4.1 Results and Discussion

For the proposed feature selection algorithm, the search terminates when the num-

ber of features in the current selected subset reaches ω to allow enough backtracking.

For these experiments, the value of ω is chosen to be six. This choice is not critical,

but is to avoid high computational time.

To compare with Battiti’s MIFS algorithm, several experiments are conducted with

different values for β as discussed in the previous chapter. Similarly, the control

parameter β is chosen to be between 0.3 to 1. Then, the best value for β that gives

the best accuracy rate is selected for a comparison with the proposed approach.

Table 5.1[A-B] shows the selected feature subsets of the different feature selection

methods on KDD Cup 99 dataset and Kyoto 2006+ dataset.

As discussed in Chapter 4, experiments using different values for β have shown that

0.3 is the best value for β in this dataset. For the same reason discussed in Chapter

4, the value of β is chosen to be equal to 1, which is the same value applied in [58].

In addition, the results of the detection model using the proposed hybrid feature

selection algorithm are compared with the detection model when only using the

filter algorithm (discussed in Section 5.2.1). Table 5.2 summarises the classification

results of the different selection methods in respect to detection rates, false positive

rates, accuracy rates and F-measure. Through Table 5.2, it can be seen that the

detection model with the proposed hybrid method achieves the highest accuracy

rates with 99.90%. In addition, with respect to the false positive rate and detection

rate, the proposed approach obtains the best rates among other approaches with

0.07% and 99.93%, respectively.
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The F-measure is also applied to examine the level of accuracy of the different

classifiers in relation to the Precision (P) and Recall (R). F-measure is given by (4)

F −measure =
(β2 + 1)(P ∗R)
β2 ∗ P +R

, β = 1. (5.3)

It can be observed from the results that feature selection improves the classification

performance in comparison with using all features. In general, in terms of the F-

measure results for all methods, the proposed detection method with hybrid feature

selection enjoys higher rates.

Table 5.2: Performance of classification based on the evaluation data on KDD
Cup 99

IDS with: DR FR Accuracy F-measure

Proposed method 99.93 ± 0.08 0.07 ± 0.04 99.90 ± 0.03 99.53 ± 0.05

Filter method 99.43 ± 0.08 0.17 ± 0.02 99.75 ± 0.04 99.34 ± 0.03

MIFS (β=0.3) 99.38 ± 0.14 0.23 ± 0.02 99.70 ± 0.3 99.21 ± 0.09

MIFS (β=1) 99.02 ± 0.04 0.30 ± 0.06 99.57 ± 0.3 98.86 ± 0.09

All features 99.86 ± 0.01 0.97 ± 0.05 99.19 ± 0.04 97.89 ± 0.05

Table 5.3 shows the classification results of the different selection methods in regard

to detection rates, false positive rates and accuracy rates based on Kyoto 2006+

dataset. From the table, it is clear that the proposed method enjoys better accuracy

and lower false positive rate than other methods. In terms of the detection rate the

proposed detection method achieved 99.64%, which is similar to the detection rate

achieved by the filter method.

Figure 5.4 shows the average training and testing time (in seconds) of the proposed

detection model with hybrid feature selection compared with using only the filter
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Table 5.3: Performance of classification based on Kyoto 2006+ data

Detection model with: DR FR Accuracy

Proposed method 99.64 0.11 99.78

Filter method 99.64 0.13 99.77

MIFS (β=0.3) 98.59 0.16 99.32

MIFS (β=1) 98.10 0.58 99.12

All features 94.29 0.33 97.42

method and those using all 41 features. Through Figure 5.4, it can be observed that

the detection model with a feature selection phase has less building and testing times

than these using all features. In addition, the proposed approach illustrates the best

average times of building and testing processes.

Figure 5.4: Building and testing times using all features and FMIFS and the
proposed method, respectively, on KDD Cup 99.

To sum up the above tables, the results in all tables strongly indicate that the feature

selection algorithm is a necessary step in building an IDS. In addition, compared to
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Table 5.4: Comparison results in terms of accuracy rate with other approaches
based on the evaluation dataset

System Accuracy rate(%)

Proposed method 99.90

Filter method 99.75

SVM with PBR[85] 99.59

Method proposed in [25] 99.55

Bayesian Network [86] 98.78

Flexible Neural Tree [87] 99.19

the filter algorithm and the MIFS methods, the proposed hybrid approach achieves

promising classification accuracies, detection rates, false alarm rates and F-measure

rates. Furthermore, the proposed method is faster in building and testing times

than those methods that need to examine all input features.

5.4.2 Comparative Study

In order to demonstrate the performance of the proposed detection model, several

experiments are conducted to compare with some state-of-the-art approaches. Ta-

ble 5.4 and Table 5.5 depict the comparisons results over the evaluation and test

datasets.

Through Table 5.4, the accuracy rate of the proposed detection approach is com-

pared with those approaches that have been evaluated on the “10% KDD Cup 99”

dataset. Regarding the results obtained by other authors, it can be seen that the

proposed detection approach enjoys the best accuracy over all approaches. There-

fore, it can be indicated that the proposed model has shown a good performance in

identifying intrusions in network traffic.
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Table 5.5: Performance of classification based on the corrected labels of KDD
Cup 99 data (n/a means not available by authors)

System DR FP Accuracy

Proposed method 99.47 0.521 98.90

KDD’99 winner [66] 99.50 0.6 91.8

Kernel Miner [67] 99.42 0.6 91.5

Method proposed in [68] 99.3 n/a n/a

ESC-IDS [28] 98.20 1.9 95.3

Clustering feature [70] 99.3 0.7 95.7

PLSSVM [1] 95.69 0.65 99.1

Table 5.5 shows further comparison results with those detection systems that have

been evaluated on the corrected labels KDD Cup 99. Approximately 18,729 samples

of attacks in this dataset are previously unseen attacks, which only appear in the test

dataset and do not appear in the “10% KDD Cup 99”. This makes it even harder

for an IDS trained by the training dataset to show good accuracy in detecting these

attacks.

As shown in Table 5.5, compared to all detection systems, this system score the

lowest false positive rate with 0.521%. Although the KDD Cup 99 winner [66]

provides better performance than that of this study in terms of detection rates, the

difference is insignificant. The PLSSVM [1] shows the best accuracy rate among

all systems with 99.1%, while the proposed system achieves the second best with a

small difference 98.90%.
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5.5 Summary

In this chapter, a hybrid-based feature selection approach in combination with filter

and wrapper selection processes has been proposed for feature selection and intru-

sion detection data classification. The approach features two main phases: (1) filter

feature ranking and eliminating phase; and (2) wrapper feature selection using LS-

SVM and classification accuracy. The aim is to achieve both the efficiency of filter

approaches and the high accuracy of wrapper approaches.

The filter feature ranking is a pre-selection step with the aim of reducing the compu-

tational cost of the wrapper search by removing irrelevant and redundancy features

from the input feature set. The wrapper method searches for the optimal subset

that improves the classification performance by comparing the accuracy of the cur-

rent selected subset with the previously selected one. This phase employs two main

steps: (1) backtracking to avoid the nesting problem and (2) replacing the weak

features to check if the replacement of some features can provide a better subset.

The proposed feature selection method has been evaluated through developing an

IDS. Two well-known IDS datasets have been used to evaluate the performance

of the proposed method. They are KDD Cup 99 data and Kyoto 2006+ data.

Two types of KDD Cup 99 datasets have been involved in the evaluation processes

of the detection model. Experiments on the “10% KDD Cup 99” dataset exhibit

promising results in terms of classification accuracy, low computational cost and F-

measure. In addition, compared with those systems that have been evaluated on the

corrected labels KDD Cup 99 dataset, the detection model has shown comparable

results in terms of detection rate, false positive rate and accuracy rate. Furthermore,

the proposed detection method enjoys better performance on Kyoto 2006+ dataset
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compared with other comparable methods. Thus, the experimental results achieved

on both datasets show that the proposed detection system has achieved a promising

performance in detecting intrusions over computer networks.

The proposed feature selection methods in Chapter 4 and Chapter 5 are supervised

feature selection methods in which the class labels are required. However, labelled

data are not always available, and they are expensive or hard to obtain. Hence,

many attempts have been made to develop unsupervised feature selection algorithms

that can utilise this data. In Chapter 6 of this thesis, we extend this research to

unsupervised feature selection method.



Chapter 6

Unsupervised Feature Selection

Algorithm for IDS

Due to the lack of categorised information in many practical applications, unsu-

pervised feature selection has been proven to be more practically important but at

the same time more difficult. It is not an easy task to assess the relevance of a

feature or a subset of features when there are no labels available with the data. The

basic assumption behind unsupervised feature selection techniques is that samples

belonging to the same class are probably located close to each other, otherwise they

are from a different class.

As shown in Chapter 2, several attempts have been made to develop an intelligent

unsupervised feature selection technique which can utilise unlabeled data. The

Variance score method is one of the simplest unsupervised feature selection methods

that calculates the variance of each of the features individually and selects the

ones that have larger variance values [105]. Another unsupervised feature selection

116
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method is the Laplacian score [62]. The Laplacian score algorithm not only selects

the features with high variances, but also investigates the locality preserving power

of every feature in the data. Unlike the Laplacian score, Local and Global structure

preserving (LGFS) [9] not only considers the locality structure preserving power

of each feature but also its globality structure preserving. The assumption behind

LGFS method is that samples belonging to the same class are probably located close

to each other, otherwise they are from a different class. These methods, however,

neglect the redundancy among selected features, so they select many redundant

features, and affect the classification performance. Ren et al. in [9] proposed an

Extended version of LGFS, named Extended Local and Global structure preserving

(E-LGFS). E-LGFS applies the normalised mutual information method, that has

been proposed in [59], to eliminate redundancy among selected features. However,

in many applications (such as many real-world applications), extracting the local

structure information is much important than the global structure information in

order to find the best features in the data [62, 106].

To address the aforementioned problems on the methods for unsupervised feature

selection, this chapter considers the feature selection problem for data classification

in the absence of data labels. In this chapter, two unsupervised feature selection

algorithms are proposed and they named as Extended Laplacian score EL and

Modified Laplacian score ML. These two algorithms are enhanced versions of the

Laplacian score method that consider the locality structure preserving power of each

feature and the redundancies among features. More specifically, each of EL and

ML consists of two main phases. In the first phase, the Laplacian score algorithm

is applied to rank the features by evaluating the power of locality preservation for

each feature in the initial data. In the second phase, a new redundancy penalization
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technique uses mutual information to remove the redundancy among the selected

features. This technique makes feature selection in each round of iterations based on

the entropies of the already selected features in the previous rounds. ML differs from

that of EL in the redundancy measurement. ML measures redundancy between

a candidate feature and the previously selected features based on the entropies of

all remaining candidate features. The experimental results show that ML performs

better than EL and four other state-of-art methods (including the Variance score

algorithm and the Laplacian score algorithm) in terms of the classification accuracy.

The outline of this chapter is as follows. Section 6.1 provides a description of the

Laplacian Score algorithm. Section 6.2 discusses the proposed unsupervised feature

selection method. Section 6.3 details our detection framework showing different

detection stages involved in the proposed scheme. Section 6.4 presents the experi-

mental details and results. Finally, a summary to the chapter is drawn in Section

6.5.

6.1 Laplacian Score

To explain the Laplacian Score, we refer to the definition proposed in [62]. Lapla-

cian Score (LS) is fundamentally based on Laplacian Eigenmaps [107] and Locality

Preserving Projection [108]. The basic idea of LS is to evaluate the features accord-

ing to their locality preserving power. In Section 6.1, we re-state the algorithm to

calculate the Laplacian Score as shown in [62].
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The Algorithm Let xp = [f1p, f2p, f3p, . . . , fnp], be the p-th traffic sample in

this chapter, where p = 1, 2, . . . , P . Then, fip denotes the p-th sample of the i-th

feature. Let Li denote the Laplacian Score of the i-th feature, where i = 1, ..., n.

The algorithm can be stated as follows.

1. Construct a nearest neighbor graph with P nodes. The p-th node is denoted

by xp. We put an edge between nodes p and q if xp and xq are “close”, i.e.

xp is among k nearest neighbors of xq or xq is among k nearest neighbors of

xp. When the label information is available, one can put an edge between two

nodes sharing the same label.

2. If nodes p and q are connected, put Spq = e−
||xp−xq ||2

t , where t is a suitable

constant. Otherwise, put Spq = 0. The weight matrix S of the graph models

the local structure of the data space.

3. For the i-th feature, we define: fi = [fi1, fi2, ..., fiP ]
T , D = diag(S1), 1 =

[1, . . . , 1]T , L = D − S where the matrix L is often called graph Laplacian

[109]. Let

f̌i = fi − fTi D1

1TD1
1 (6.1)

4. Compute the Laplacian Score of the i-th feature as follows.

Li =
f̌
T

i Lf̌i

f̌
T

i Df̌i
(6.2)
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6.2 Modified Laplacian Score

To ensure the values of Li and mutual information do not vary greatly, both values

are adapted to the range [0,1]. Therefore, in this paper, a linear transformation

normalisation to the value of Li in Equation (6.2) is used as follows.

NLi =
Li − Lmin

Lmax − Lmin

(6.3)

where Lmin and Lmax are the minimum and maximum values of {L1, L2, ..., Ln},
respectively.

As discussed above, the Laplacian score does not take into consideration the re-

dundancy among selected features. To address this issue, a scheme is proposed to

eliminate redundancy among the selected features based on mutual information and

appended to the Laplacian score.

Given a features set F = {f1, f2, . . . , fn}, where n is the total number of features,

the task is to select the best subset of features G = {g1, g2, . . . , g|G|}, where |G| is
the number of selected features. The scheme is to normalise the value of mutual

information between a candidate feature and the set of previously selected features

by the entropies of the selected features as shown in Equation (6.4) in order to select

the m-th feature, gm, from F \ {g1, g2, ..., gm−1}.

RPI(fi;G) =
1

m− 1

m−1∑
j=1

I(fi; gj)

H(gj)
. (6.4)
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gm = argmax
fi

(NLi −RPI(fi;G)), (6.5)

where NLi represents the normalised Laplacian score of the i feature as shown in

Equation (6.3).

The overall procedure of EL algorithm is as follows.

Algorithm 6 Overall procedure of EL

Input: Feature set F = {fi, i = 1, ..., n}, R : the number of selected features,

R ≤ n.

Output: G- the selected feature subset.

1. Initialization: set G = φ.

2. Calculate NLi (i = 1, ..., n) according to Equation (6.2) and Equation (6.3) for

each feature in F .

3. Select the feature fi that maximises NLi.

Set F ←− F\ { fi }; G←− G ∪ { fi }.
4. while |G| < R do

for each feature fi ∈ F do

Calculate RPI(fi;G) in Equation (6.4) for all pairs of (fi;G).

end

Using Equation (6.5) select gm.

Set F←− F \ { gm } and G ←− G ∪ { gm }.
end

return G

We perform the unsupervised feature selection method in a different way from the



Chapter 6. Unsupervised feature selection algorithm for IDS Application 122

one in EL. We normalise the value of MI between candidate feature fi in F \
{g1, g2, ..., gm−1} and the set of previously selected features, {g1, g2, ..., gm−1}, based
on the entropies of features in

F \ {g1, g2, ..., gm−1} as shown in Equation (6.6) in order to select the m-th feature,

gm, from F \ {g1, g2, ..., gm−1}.

MRPI(fi;G) =
1

m− 1

m−1∑
j=1

I(fi; gj)

H(fi)
, (6.6)

where i ∈ {1, 2, . . . , n} and n is the total number of features in F .

Therefore, the main criterion of the ML is to iteratively select the feature that

maximises the formula in Equation (6.7).

gm = argmax
fi

(NLi −MRPI(fi;G)), (6.7)

where NLi represents the normalised Laplacian score of the i feature as shown in

Equation (6.3).

The overall procedure of ML algorithm is as follows.
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Algorithm 7 Overall procedure of ML

Input: Feature set F = {fi, i = 1, ..., n}, R : the number of selected features,

R ≤ n.

Output: G- the selected feature subset.

1. Initialization: set G = φ.

2. Calculate NLi (i = 1, ..., n) according to Equation (6.2) and Equation (6.3) for

each feature in F .

3. Select the feature fi that maximises NLi.

Set F ←− F\ { fi }; G←− G ∪ { fi }.
4. while |G| < R do

for each feature fi ∈ F do

Calculate MRPI(fi;G) in Equation (6.6) for all pairs of (fi;G).

end

Using Equation (6.7) select gm.

Set F←− F \ { gm } and G ←− G ∪ { gm }.
end

return G

6.3 Intrusion Detection Based on Unsupervised

Feature Selection

The framework proposed in this chapter differs from the ones proposed in the previ-

ous chapters in the pre-selection stage, in which the proposed unsupervised feature

selection is applied. The framework of the proposed detection model is shown in
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Figure 6.1. It can be seen from the figure that the detection framework is comprised

of four main stages:

• Data Collection. It is the first and most important stage to intrusion detection

where a sequence of network packets is collected.

• Data Pre-processing. In this stage, the obtained training and test data from

the data collection stage are first pre-processed to generate basic features. This

phase involves three main steps. The first step is data transferring, in which

every symbolic feature in a dataset is first converted into a numerical value.

The second step is data normalisation, in which each feature in the data is

scaled into a well-proportioned range to eliminate the bias in favour of features

with greater values from the dataset. The third step is feature selection, in

which the proposed feature selection algorithm is used to nominate the most

Figure 6.1: The framework of the proposed intrusion detection system
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important features that are then used to train the classifier and build the

intrusion detection model.

• Classifier Training. In this stage, the classifier is trained. Once the best

subset of features is selected, this subset is then passed into the classifier

training stage where a specific classification method is employed.

• Attack Recognition. In this stage, the trained model is used to detect intru-

sions on the test data. After completing all the iteration steps and the final

classifier is trained which includes the most correlated and important features,

the normal and intrusion traffics can be recognised by using the saved trained

classifier. The test data is then taken through the trained model to detect

attacks.

6.4 Experiments and results

To validate performance fairly, eight well-known benchmark datasets are adopted

in our experiments. These eight datasets are Pen dataset, Wine dataset, Wave-

form dataset, Satimage dataset and Sonar dataset from the UCI Machine Learning

Repository [110] and KDD Cup 99 datasets [82], NSL-KDD datasets [71] and Ky-

oto 2006+ datasets [72] from IDS. All of theses datasets are freely accessed. These

datasets are frequently used in literature to assess and verify the performance of

feature selection methods. In addition, these datasets have different types, sample

sizes and various numbers of features which can provide suitable and comprehen-

sive tests in validating feature selection algorithms. As our scheme is also studying

feature behaviour and feature selection techniques, these datasets can be used to
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demonstrate the validity and novelty of our scheme. Table 6.1 summarises some

details and general description information about these datasets.

To evaluate the effectiveness of our proposed algorithm, binary classification and

multi-classification are performed. In this paper, two classifiers are used to serve

the purpose of evaluations and comparisons, and they are the nearest neighborhood

classifier and Support Vector Machine (LIBSVM package [111]). These classifiers

represent different learning types and are often used in literature due to their effi-

ciency and performance. The results obtained using our proposedML algorithm are

compared against the results obtained using the EL method, Variance score method

[105] and Laplacian score method [62]. The comparison results about classification

accuracies on all datasets for both classifiers using these four feature selection algo-

rithms are presented in Tables [2-5] and Figures [2-3]. In addition, the performance

of our proposed feature selection algorithm is further compared with the results of

the LGFS and E-LGFS methods reported in [9] on three UCI datasets, which are

Pen dataset, Satimage dataset and Sonar dataset. To facilitates a fair and rational

comparisons with these two methods, we select the same number of samples. Table

6.6 and Table 6.7 show the comparison results.

6.4.1 Experimental settings

During the experiments, the value of R is given by the user in advance, which repre-

sents the number of desired features. To set the best value of k, we have conducted

several experiments. The optimal value of k that gives the best classification accu-

racy is selected. In these experiments, the value of k is selected to be 4 for both

the Laplacian Score and our proposed ML algorithm. To achieve impartial results
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and decrease the random selection effect, all of the experimental results presented

in this paper are the averages of 10 independent runs. The best achieved results

among all feature selection methods are highlighted in bold font.

To avoid the bias in favor of features with greater values in all datasets, every feature

within each record is normalised by the respective maximum value and falls into

the same range of [0,1].

Table 6.1: General information and summary of datasets used in the experi-
ments

Dataset # Sample # feature # Class # Training # Testing

Waveform 5000 21 3 2500 2500

Wine 178 13 3 89 89

Sonar 208 60 2 104 104

Pen 10992 16 10 2000 8992
Satimage 420 36 6 210 210
KDD Cup 99 1000 41 5 500 500

NSL-KDD 1000 41 2 500 500
Kyoto 2006+ 1000 23 2 500 500

6.4.2 Benchmark Datasets

The Waveform dataset has two versions available at the UCI repository [110]. Both

versions are problems with three different classes. For this study, we conduct our

experiments on Waveform version 1. This version includes 5000 samples and is

defined by 21 different numerical features. The sonar dataset contains information

of 208 various objects with 60 features, and two different classes, rock and mine. The

Wine dataset consists of 178 samples and each sample is unique with 13 features.

This dataset contains three different types of wines (classes) and the goal is to
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classify each one. For experimental purposes on these three datasets, we select all

samples. Half of the samples are selected as training data, and the remaining are

used as testing data.

The dataset Pen consists of 10,992 samples from 10 different classes and 16 features.

We select all data samples in Pen dataset and all classes. We randomly select 2000

samples for training and the remaining are used as testing data. The Satimage

dataset [111] consists of approximately 4435 samples with 36 features and 6 classes.

We randomly select 420 samples for our experiments, half of the samples are used

as training data, and the other half are used as testing data.

The KDD Cup 99 dataset is one of the most popular intrusion detection datasets

and is widely applied to evaluate the performance of intrusion detection systems

[22]. It consists of five different classes, which are normal and four types of attacks

(i.e., DoS, Probe, U2R and R2L). The NSL-KDD is a new revised version of the

KDD Cup 99 that has been proposed by Tavallaee et al. in [71]. This dataset

addresses some problems included in the KDD Cup 99 dataset such as the huge

number of redundant records in KDD Cup 99 data. Similar to the KDD Cup 99

dataset, each record in the NSL-KDD dataset has 41 different quantitative and

qualitative features. The Kyoto 2006+ dataset was presented by Song et al. [72].

The dataset covers over three years of real traffic data collected from both honeypots

and regular servers that are deployed at Kyoto University. Each connection in this

dataset is unique with 23 features. For the experiments on Kyoto dataset, samples

that form the data of the days 2009 August 27, 28, 29, 30 and 31 are selected and

they contain the latest updated data. For experimental purposes on IDS datasets,

1000 samples from each dataset are randomly selected. Half of the samples are used

as training data, and the other half is used as testing data.
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6.4.3 Results on UCI datasets

The experimental results about classification accuracies on UCI datasets [110] using

three different feature selection algorithms are presented in Table 6.2 and Table 6.3.

The tables show the average classification accuracies using five different values of

R on each dataset. As we can see in Table 6.2 and Table 6.3, based on 1NN and

SVM classifiers, the results obtained using the ML and EL are better than those

obtained from the Variance score and Laplacian score methods on all datasets in

most of the cases. This is because both ML and EL consider the redundancies

among features and they can select features with smaller redundancies.

Although, on Table 6.2, the accuracies of our method on Pen dataset when R = 6

and R = 16 are slightly lower than those using the Variance score method, they are

still comparable and are better on the rest of cases. Similar case appears in Table

6.3 when R = 16 and SVM classifier is applied.

Considering the variances obtained using both classifiers, the proposed method has

the lowest variances in most of the cases. However, in some other cases, the variances

of ML are a bit higher than the best results of the other methods. For example, on

Waveform dataset, using 1NN classifier (see Table 6.2), our method has achieved

the lowest variances when R = 4, R = 16 and R = 36, while the Variance score

method has achieved the lowest variances when R = 8 and R = 12. However,

considering both the accuracy rates and the variances, our method has obtained

better results than the Variance score method because the accuracy range of our

method is higher than the Variance score method. As another example, on the

Satimage dataset, although our method has bigger variances when R = 6, R = 8

and R = 36, it has better accuracies in all cases. Similar to the above argument on
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the Waveform dataset, when taking into account of both accuracies and variances,

our method always gives the best results. On Satimage datasets, using the SVM

classifier (see Table 6.3), although our method has higher variances than EL when

R = 2, R = 6 and R = 8, it has better accuracies in all cases and has better results

when taking into account both accuracies and variances.

Note that when R is increased to n (i.e., when all featues are used) from the last

selected numbers, the accuracy rates obtained using either ML or EL do not show

big improvements when testing on most of the datasets, and in some of the datasets

the accuracy rates are fluctuated. This concludes that many features are not im-

portant to the classification processes and they may only be redundant features.

For example, in the case of Sonar dataset when using ML and using the 1NN clas-

sifier (see Table 6.2), there is only a slight increase (from 82.42% to 82.88%) on the

classification accuracies when R is increased to 60 (i.e., the maximum value) from

the last selected value, 40. On the Waveform dataset, when using the 1NN classifier

(see Table 6.2), our method has achieved an accuracy of 78.64% when R = 16 (the

last selected) and the accuracy decreases to 77.61% when R = 21 (the maximum

feature number).

Figure 6.2 plots the classification accuracies of 1NN and SVM classifiers achieved

usingML, Variance score and Laplacian score methods with R increasing from 1 to

n. The x axis represents the number of selected features and the y axis represents

the classification accuracy. The results shown in the figure are based on three UCI

datasets: Pen, Wine and Waveform datasets. The figure shows that, in general,

the classification accuracy improves when the number of selected features increases.

It can be seen from the figure that the curve of ML is above the curves of other
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Table 6.2: A comparison of classification accuracies using three feature selection
algorithms on UCI datasets based on 1NN

#R Variance score Laplacian Score EL Proposed ML
Wine (n = 13)
3 71.42 ± 9.45 83.93 ± 7.36 84.49 ± 6.82 88.60 ± 3.12
6 87.98 ± 7.14 94.49 ± 4.30 95.39 ± 3.77 95.77 ± 2.53
9 94.04 ± 5.93 95.28 ± 4.29 95.16 ± 3.18 95.84 ± 2.54
12 95.58 ± 3.96 95.69 ± 2.75 95.62 ± 2.05 95.81 ± 1.78
13 95.51 ± 2.82 95.51 ± 1.76 95.51 ± 1.88 95.51 ± 1.64
Pen (n = 16)
3 60.39 ± 1.30 60.85 ± 0.55 65.99 ± 0.24 66.37 ± 1.29
6 88.44 ± 0.46 87.01 ± 1.03 87.28 ± 1.83 88.27 ± 0.91
9 95.22 ± 0.07 94.29 ± 1.19 94.37 ± 0.81 95.53 ± 0.06
12 96.79 ± 0.08 96.86 ± 0.041 96.93 ± 0.05 97.20 ± 0.06
16 98.53 ± 0.03 98.50 ± 0.03 98.52 ± 0.02 98.52 ± 0.02
Waveform (n = 21)
4 62.17 ± 3.83 61.43 ± 3.31 62.67 ± 3.95 64.46 ± 2.81
8 71.12 ± 1.33 70.49 ± 4.47 70.83 ± 2.55 72.84 ± 2.55
12 77.86 ± 0.41 77.29 ± 0.66 78.21 ± 0.42 78.21 ± 0.42
16 77.77 ± 0.53 77.94 ± 0.63 78.53 ± 0.67 78.64 ± 0.53
21 77.26 ± 0.29 77.29 ± 0.28 77.33 ± 0.25 77.61 ± 0.15
Satimage (n = 36)
2 85.14 ± 4.63 87.62 ± 4.18 88.38 ± 2.53 88.76 ± 2.03
4 90.43 ± 3.60 89.86 ± 5.39 90.81 ± 5.44 90.86 ± 3.11
6 91.19 ± 2.28 91.05 ± 2.86 91.43 ± 2.21 92.29 ± 2.42
8 91.81 ± 2.70 91.52 ± 2.86 91.77 ± 1.62 92.24 ± 1.67
36 94.09 ± 1.56 94.33 ± 0.83 94.38 ± 0.99 94.38 ± 0.99
Sonar (n = 60)
10 69.13 ± 9.99 72.31 ± 9.18 73.17 ± 8.63 73.27 ± 7.42
20 74.04 ± 7.82 78.94 ± 6.88 79.04 ± 6.86 79.81 ± 6.65
30 79.13 ± 5.32 79.42 ± 7.64 79.53 ± 6.18 79.81 ± 6.01
40 80.19 ± 5.56 81.64 ± 5.20 81.64 ± 5.53 82.42 ± 5.02
60 83.49 ± 3.16 83.27 ± 3.06 83.88 ± 3.04 83.88 ± 3.04

methods for almost all R values, to the performance of ML method is better than

those of Laplacian score and Variance score methods in all of the cases.
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Table 6.3: A comparison of classification accuracies using three feature selection
algorithms on seven datasets based on SVM

#R Variance score Laplacian Score EL Proposed ML
Wine (n = 13)
3 72.13 ± 9.26 85.40 ± 4.22 87.07 ± 4.03 88.76 ± 2.21
6 90.11 ± 4.86 93.93 ± 3.98 94.42 ± 2.59 94.88 ± 2.11
9 94.94 ± 3.49 95.96 ± 2.58 96.74 ± 2.33 97.01 ± 1.14
12 96.67 ± 1.69 96.85 ± 1.46 97.30 ± 2.58 97.80 ± 0.92
13 97.60 ± 1.87 97.64 ± 1.80 97.64 ± 1.53 97.64 ± 1.53
Pen (n = 16)
3 66.09 ± 1.14 67.29 ± 1.34 70.74 ± 0.07 71.35 ± 1.49
6 87.53 ± 2.59 88.53 ± 3.04 89.11 ± 2.74 90.37 ± 2.42
9 95.75 ± 0.39 95.48 ± 0.49 95.78 ± 0.43 96.05 ± 0.33
12 97.92 ± 0.05 98.02 ± 0.05 98.04 ± 0.04 98.13 ± 0.02
16 99.03 ± 0.02 99.02 ± 0.02 99.02 ± 0.02 99.02 ± 0.02
Waveform (n = 21)
4 69.29 ± 2.02 69.64 ± 1.17 69.81 ± 2.22 71.40 ± 1.05
8 76.63 ± 1.31 76.92 ± 2.54 77.02 ± 1.08 77.66 ± 1.04
12 82.85 ± 0.55 82.84 ± 0.60 83.04 ± 0.60 83.15 ± 0.61
16 82.84 ± 0.11 83.24 ± 0.62 83.52 ± 0.27 83.65 ± 0.24
21 83.21 ± 0.38 83.35 ± 0.30 83.37 ± 0.23 83.43 ± 0.23
Satimage (n = 36)
2 83.95 ± 5.85 84.33 ± 4.39 86.76 ± 3.24 87.19 ± 3.65
4 88.71 ± 4.96 89.67 ± 3.91 90.24 ± 4.88 91.05 ± 3.89
6 90.67 ± 4.25 90.29 ± 4.29 91.67 ± 1.32 92.19 ± 2.83
8 92.62 ± 2.43 92.90 ± 2.69 93.28 ± 2.04 93.48 ± 2.52
36 94.38 ± 1.60 94.28 ± 1.01 94.43 ± 0.71 94.43 ± 0.71
Sonar (n = 60)
10 71.63 ± 8.84 71.44 ± 8.25 75.87 ± 7.65 75.87 ± 7.62
20 77.12 ± 7.24 77.88 ± 6.79 78.75 ± 7.34 78.85 ± 5.32
30 76.35 ± 4.75 78.08 ± 4.37 79.03 ± 4.06 79.13 ± 3.34
40 74.33 ± 3.87 80.10 ± 3.24 80.29 ± 3.05 80.29 ± 2.95
60 83.46 ± 2.05 83.46 ± 2.05 83.46 ± 2.05 83.46 ± 2.05
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Figure 6.2: Effect of number of selected features on UCI datasets
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6.4.4 Results on IDS datasets

In order to further investigate the performance of the proposed feature selection

algorithm, three intrusion detection datasets are used. The aim is to further ex-

amine the advantages of removing redundancies among the selected features. The

experimental results on the IDS datasets, which are again based on 1NN and SVM

classifiers, using our algorithm (i.e., ML), EL, Laplacian score and Variance score

are presented in Table 6.4, Table 6.5 and Figure 6.3.

Through Table 6.4 and Table 6.5, the accuracies with bold font represent the highest

accuracies of the four comparing algorithms. The results in both tables are the

average classification accuracies of five different values of R on each dataset. It can

be seen clearly that the classification accuracies obtained by both classifiers using

our ML method are the best compared to those obtained using other methods in

all datasets. In addition, the proposed ML outperforms EL using both classifiers

on all datasets. Considering the variances obtained using both classifiers on all

IDS datasets, the proposed method has achieved the lowest variances in most of

the cases. In some cases, such as on the KDD dataset when R = 8, our method

has a bit higher variance than EL when using 1NN classifier (see 6.4). However,

considering both the accuracies and variances, our method still performs better than

EL because the accuracy range usingML is still higher than that of EL. Similarly,

when tested on the Kyoto dataset with R = 12 using 1NN and on the NSL dataset

with when R = 16 using SVM, our method has higher variances but overall has

better accuracies than EL.

Figure 6.3 shows the classification accuracies using the 1NN and SVM classifiers

achieved by the three algorithms with R increasing from 1 to n. As it can be seen
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Table 6.4: A comparison of classification accuracies using three feature selection
algorithms on IDS datasets based on 1NN

#R Variance score Laplacian Score EL Proposed ML
KDD (n = 41)
4 75.18 ± 9.17 79.54 ± 9.39 87.12 ± 8.75 89.22 ± 7.19
8 89.48 ± 4.72 87.44 ± 4.95 89.08 ± 4.54 89.92 ± 4.68
12 93.24 ± 3.71 92.4 ± 4.50 93.58 ± 3.32 94.32 ± 2.61
16 97.27 ± 1.59 97.18 ± 2.01 97.18 ± 1.33 97.38 ± 0.47
41 99.58 ± 0.18 99.58 ± 0.18 99.58 ± 0.18 99.58 ± 0.18
NSL (n = 41)
4 62.76 ± 8.72 60 ± 9.35 60.96 ± 9.03 68.76 ± 8.33
8 80.04 ± 6.24 75.58 ± 6.47 79.58 ± 6.76 84.86 ± 5.92
12 89.22 ± 3.50 89.20 ± 3.28 90.54 ± 3.30 91.96 ± 3.09
16 95.16 ± 1.49 95.10 ± 1.02 95.24 ± 2.01 95.42 ± 0.93
41 97.28 ± 0.27 97.27 ± 0.27 97.28 ± 0.27 97.28 ± 0.27
Kyoto (n = 23)
3 79.84 ± 11.56 82.6 ± 9.95 86.14 ± 9.74 88.36 ± 9.46
6 92.26 ± 2.98 94.20 ± 2.01 94.66 ± 6.37 95.42 ± 1.55
9 96.54 ± 0.98 96.66 ± 0.61 96.78 ±0.48 96.94 ± 0.25
12 96.64 ± 0.60 96.78 ± 0.69 97.06 ± 0.56 97.56 ± 0.64
23 97.38 ± 0.47 97.22 ± 0.41 97.44 ± 0.41 97.44 ± 0.41

from the figure, in general, the accuracies improve when the number of selected

features increases. In addition, the results show that the accuracies based on both

classifiers using our algorithm is better than those using other methods.

6.4.5 Comparison with LGFS and E-LGFS

In the following experiments, we compare the results obtained using our algorithm

with the results achieved in [9] for LGFS and E-LGFS methods on three UCI

datasets: Pen, Satimage and Sonar dataset. Similar to LGFS and E-LGFS, for

experiments on the Pen dataset, we select 300 samples from classes 3, 8 and 9.
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Figure 6.3: Effect of number of selected features on IDS datasets with the two
classifiers
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Table 6.5: A comparison of classification accuracies using three feature selection
algorithms on seven datasets based on SVM

#R Variance score Laplacian Score EL Proposed ML
KDD (n = 41)
4 87.15 ± 9.19 89.8 ± 7.56 89.8 ± 8.13 90.7 ± 7.04
8 90.39 ± 6.83 88.22 ± 6.96 90.4 ± 6.74 90.94 ± 6.42
12 94.26 ± 2.06 93.26 ± 3.98 94.10 ± 3.43 94.74 ± 1.60
16 96.38 ± 1.22 96.06 ± 1.51 96.10 ± 1.25 96.56 ± 1.17
41 99.08 ± 0.22 99.08 ± 0.22 99.08 ± 0.22 99.08 ± 0.22
NSL (n = 41)
4 63.91 ± 8.27 64.87 ± 8.12 65.18 ± 8.19 65.56 ± 8.07
8 81.09 ± 7.16 79.4 ± 6.33 82.70 ± 6.38 82.76 ± 6.25
12 92.71 ± 4.72 91.14 ± 5.71 93.32 ± 5.29 95.50 ± 3.24
16 96.10 ± 0.87 95.86 ± 0.91 95.88 ± 0.74 96.44 ± 0.77
41 96.51 ± 0.55 96.52 ± 0.53 96.52 ± 0.51 96.52 ± 0.51
Kyoto (n = 23)
3 71.82 ± 9.38 74.94 ± 7.63 76.42± 7.42 78.38 ± 7.26
6 85.23 ± 6.98 93.40 ± 2.61 93.46 ± 2.29 94.90 ± 1.25
9 97.22 ± 1.81 97.54 ± 0.40 97.44 ± 0.72 97.66 ± 0.84
12 96.98 ± 0.53 97.18 ± 0.89 97.36 ± 0.58 97.72 ± 0.47
23 97.60 ± 0.58 97.40 ± 0.62 97.68 ± 0.54 97.74 ± 0.54

From each class, we randomly select 100 samples. Again Similar to LGFS and E-

LGFS, we select all available samples from the Sonar datasets and randomly select

420 samples from the Satimage dataset.

Table 6.6 and Table 6.7 summarize the average classification accuracies obtained

using 1NN and SVM classifiers of the three feature selection algorithms. The results

in both tables are based on 4 different values of R on each dataset. The best results

achieved among these feature selection methods are emphasized in bold font. The

results presented in both tables are the averages of 50 independent runs.

From the results in Table 6.6 and Table 6.7, one can observe that both E-LGFS

and the proposed ML enjoy the best classification accuracies on all datasets in
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Table 6.6: A comparison of classification accuracies using three feature selection
algorithms on four UCI datasets based on 1NN

#R LGFS E-LGFS Proposed ML
Pen (n = 16)
2 81.91 ± 6.88 84.56 ± 4.25 82.33 ± 5.11
5 95.88 ± 1.52 96.32 ± 1.59 96.43 ± 1.53
8 96.33 ± 1.41 97.11 ± 1.49 98.45 ± 0.97
11 98.08 ± 1.26 98.11 ± 1.35 99.19 ± 0.55
Satimage (n = 36)
6 85.34 ± 2.23 85.88 ± 1.99 91.46 ± 2.23
12 88.85 ± 2.35 89.36 ± 2.28 92.16 ± 2.84
18 90.20 ± 1.96 90.70 ± 1.97 92.83 ± 1.76
24 90.80 ± 1.78 91.51 ± 1.77 93.62 ± 1.77
Sonar (n = 60)
10 74.46 ± 4.60 76.23 ± 4.67 75.96 ± 4.64
20 80.59 ± 3.60 81.22 ± 3.46 81.73 ± 3.25
30 81.16 ± 3.78 81.64 ± 3.56 81.58 ± 3.82
40 82.59 ± 3.66 82.60 ± 3.66 82.62 ± 3.68

most of the cases. This can be regarded to the fact that these two methods take

into consideration the redundancies among features during the selection processes.

Therefore, features with high redundancies will be neglected. In contrast, features

that can provide useful information to the classification have high probabilities to

be selected by both algorithms.

Compared to E-LGFS, our method performs better in most of the cases, and in

the other cases the differences are very small. For example, on the Sonar dataset,

our method has obtained comparable results with those of E-LGFS. However, the

results obtained by ML on the Pen and Satimage datasets are much better than

those obtained using E-LGFS. In addition, although our method has achieved lower

accuracy on the Pen dataset when R = 2 using 1NN (see Table 6.6) than E-LGFS,
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Table 6.7: A comparison of classification accuracies using three feature selection
algorithms on four UCI datasets based on SVM

#R LGFS E-LGFS Proposed ML
Pen (n = 16)
2 85.96 ± 6.73 88.04 ± 3.67 86.93 ± 5.73
5 94.63 ± 1.40 95.93 ± 1.81 96.17 ± 1.68
8 96.55 ± 1.78 97.07 ± 1.71 98.76 ± 0.65
11 97.72 ± 1.04 97.80 ± 1.02 99.44 ± 0.22
Satimage (n = 36)
6 83.54 ± 2.84 84.35 ± 2.35 92.18 ± 3.16
12 87.28 ± 1.86 87.55 ± 1.68 92.78 ± 3.78
18 88.26 ± 1.40 88.81 ± 1.69 93.23 ± 1.68
24 88.69 ± 1.56 89.18 ± 1.61 93.49 ± 1.79
Sonar (n = 60)
10 73.24 ± 6.02 74.17 ± 5.75 74.46 ± 5.61
20 76.40 ± 4.99 77.33 ± 4.28 79.96 ± 4.09
30 79.20 ± 3.71 79.87 ± 3.56 80.76 ± 3.49
40 81.30 ± 3.79 81.39 ± 3.69 81.43 ± 3.38

it outperforms E-LGFS for bigger R values. Similarly, although the variances of

our method are higher on the Satimage dataset using SVM (see Table 6.7), overall

our method has achieved better accuracies in all cases.

To sum up, the results obtained form the three datasets indicate that eliminating

redundancies among features improves the classification performance of classifiers.

In addition, as it has been claimed in [62, 106], extracting the local structure infor-

mation of features in some applications may be enough to select the best subset of

features and achieve promising classification performance.
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6.5 Summary

This Chapter has proposed an unsupervised feature selection algorithm, which is an

enhancement over the Laplacian score method. The algorithm is named a Modified

Laplacian score, ML in short. More specifically, two main phases are involved in

ML during the selection processes. In the first phase, a k-nearest neighbor graph

is used to capture the locality preserving power of each feature. In the second

phase, a Redundancy Penalization (RP) function is used to eliminate redundancies

among the selected features. RP is based on the principle of mutual information.

This method is a modified version of our work EL proposed in a paper accepted by

TrustCom-2015 conference. ML differs from that of EL in the redundancy measure

technique. ML proposes a measure of redundancy between the candidate feature

fi and the subset of previously selected features gj (as shown in Equations (6.6)

and Equation (6.7). The measure is to normalise the value of mutual information

between fi and gj by the entropy of the candidate feature fi instead of the entropy

of previously selected features gj.

To investigate the effectiveness of the proposed method, several experiments have

been conducted on five UCI datasets and three IDS datasets. The performance

of ML is compared against the results obtained using EL, Laplacian score and

Variance score methods. Experimental results have shown that our method has

achieved encouraging results and outperformed the Laplacian score and Variance

score algorithms in terms of classification accuracies in almost all cases. Compared

to the EL method, using 1NN and SVM classifiers, the proposed ML enjoys better

classification accuracies on the utilized datasets in almost all of the cases. In ad-

dition, compared with the LGFS and E-LGFS methods, using both classifiers, ML
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has achieved the best accuracies in most of cases when tested on the Pen, Waveform

and Sonar datasets.



Chapter 7

Conclusion and Future Work

7.1 Summary of Contributions

Intrusion Detection is a well-established and active field of research in computer

security and networks. Intrusion detection systems play a critical role in securing

the communications infrastructure of most organisations. This thesis has proposed

novel frameworks addressing three significant issues that severely affect the per-

formance and utility of the present intrusion detection systems. The three issues

are:

• Large number of false alarms,

• High volume network traffic, and

• The classification problem when the class labels are not available.
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To address these three issues, we have conducted in-depth research on IDS and de-

veloped efficient detection models to detect a variety of attacks with very few false

alarms and low computational costs. An introduction to the works presented in this

thesis have been given in Chapter 2. The chapter has briefly presented the concept

of anomaly-based intrusion detection with existing detection techniques. Then, it

has presented a review of some of the advantages utilising dependency measures in

enhancing the detection performance and reducing the false alarm rates of anomaly

detection systems. An overview of feature selection and the most related feature

selection methods relevant to this thesis have been presented. Two main categories

of feature selection techniques have been reviewed in this chapter: the supervised

feature selection and the unsupervised feature selection. The chapter has also anal-

ysed and outlined the limitations of the existing feature selection algorithms. A

summary of the contributions conducted in this thesis is given in the following.

• Chapter 3 has introduced a Nonlinear Correlation Coefficient (NCC) based

on a similarity measure for extracting the relationship between network traf-

fic records. NCC is designed based on the definition of mutual information,

which is capable of extracting both linear and nonlinear correlation. Then,

the extracted information is used to build an IDS to detect abnormal be-

haviours. The detection framework proposed in this chapter is comprised of

four main stages: the data collection stage, where a sequence of network pack-

ets is collected; the data preprocessing stage, where training and test data are

preprocessed and important features that can distinguish one class from the

others are selected; the classifier training stage, where the model for classifi-

cation is trained; and the attack recognition stage, where the trained classifier
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is used to detect intrusions on the test data. The proposed NCC-based in-

trusion detection system has achieved a lower false positive rate and a higher

detection rate compared to some of the state-of-the-art detection systems.

• Chapter 4 has presented a filter-based supervised feature selection algorithm,

called Flexible Mutual Information Feature Selection (FMIFS), to cope with

the issue of large-scale data. FMIFS uses a mutual information method as an

evaluation criterion to measure the relevance between the input features and

the output classes. FMIFS introduces a new criterion to eliminate the redun-

dancy among selected features with respect to the already selected subset of

features. The proposed FMIFS is an enhanced version of Battiti’s MIFS and

Amiri’s MMIFS. It eliminates the redundancy parameter β required by MIFS

and MMIFS. This is very useful in practice since the selection of an appropri-

ate value for this parameter is still an open question. FMIFS is then combined

with the LS-SVM method to build an intrusion detection system. LS-SVM is

a least square version of SVM that works with equality constraints instead of

inequality constraints in the formulation to solve a set of linear equations for

classification problems rather than a quadratic programming problem. The

combined detection model has shown an improvement in building and testing

time in comparison with those systems that need to examine all features. In

addition, the performance of the proposed system exhibited better classifica-

tion rates and promising results in terms of classification accuracy, detection

rate, false positive rate and F-measure than the other existing related ap-

proaches.

• Chapter 5 has proposed a hybrid feature selection algorithm to enhance the

classification accuracy of the FMIFS proposed in Chapter 4. Two main stages
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are involved in this method: the filter feature ranking and the wrapper-based

Improved Forward Floating Selection (IFFS) using LS-SVM and classification

accuracy. The filter feature ranking stage is used as an upper phase to reduce

the computational cost of the lower phase, where the wrapper method is ap-

plied, by eliminating noisy features from the original feature set. The lower

phase chooses the optimal subset of features that produce the best classifica-

tion performance by calculating the accuracy of the current selected subset

and comparing it with the previously selected one. The wrapper method

consists of two steps: backtracking step, which is used to avoid the nesting

problem, and replacing the weak features step, which is used to check if the

replacements can provide a better subset. The proposed feature selection al-

gorithm has been assessed through building an IDS. The developed detection

model has exhibited a promising results in terms of classification accuracy,

low computational cost and F-measure.

• Chapter 6 has proposed unsupervised feature selection algorithms, which are

an enhancement of the Laplacian score method, named an Extended Lapla-

cian score EL and a Modified Laplacian score ML. The proposed EL and

ML consist of two main stages. The k-nearest neighbor graph is applied in

the first phase to extract the locality preserving power of each feature. In

the second phase, a new redundancy penalization method has been used to

remove redundancies among the selected features. The redundancy penal-

ization is based on the principle of the mutual information and the entropy.

The proposed algorithms EL andML have shown that extracting the locality

structure information of samples with removing redundancy among selected

features achieves promising results. The final output of these algorithms is
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then used to build the detection model. The experimental results on three

well-known IDS datasets have shown that the IDS with EL or ML proposed

in this study achieves better classification accuracy than the one with the

Laplacian score Variance score methods.

7.2 Future work

Based on the results obtained in this thesis, some future extensions to the proposed

research work are summarised in the following points.

• The feature selection methods presented in this thesis evaluate features indi-

vidually using a specific evaluation criterion. However, evaluating a combina-

tion of features each time will be very useful in reducing the computational

costs of feature selection methods. In particular, features can be evaluated

jointly instead of individually. In future, this idea will be further investigated.

• The proposed FMIFS and ML feature selection algorithms are greedy selec-

tion methods, in which the number of desired features needs to be predefined.

In the experiments, to set this value, the best feature set which yields the best

classification accuracy is always selected. However, this requires the examina-

tion of the total range of feature set size to identify the best one. Therefore, in

order to make these methods applicable to real situations, the number should

be be automatically determined.

• The proposed feature selection algorithm in Chapter 6 has shown good effi-

ciency. However, it could be further enhanced. For example, adoptive learn-

ing algorithms can be used to select an appropriate value for the parameter k.
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This will be very useful since the proposed method is sensitive to the selection

of this parameter. This will be considered when working on enhancements to

the method.

• One of the problems that lead to degrade the performance of the detection

model is the unbalanced sample distribution on the available IDS datasets.

This issue creates another challenging task for IDSs. Therefore, it needs to be

carefully studied in future research.



Appendix A

Least Squares Support Vector

Machine

Given a training dataset with M data points {(xr, yr)}Mr=1, where xr ∈ Rn is a

n-dimensional feature vector (i.e., the r − th data point) and yr ∈ R indicates the

class to which the point belongs, the LS-SVM can be defined in Equation (A.1).

y(x) = wTϑ(xr) + b, (A.1)

where w and b are two parameters, and ϑ(.) is a mapping function transforming

a data point into a higher dimensional data space. The classification problem in

LS-SVM is defined as the optimisation problem shown in Equation (A.2).

min
w,b,e

j(w, b, e) =
1

2
wTw +

1

2
γ

M∑
r=1

e2r, (A.2)
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subject to yr = ωTϕ(xr) + b+ er, r = 1, ...,M.

To find the optimal control law, one defines the Lagrangian as given in Equation

(A.3).

L(w, b, e;α) = j(w, b, e)−
M∑
r=1

αr{yr[wTϕ(xr) + b]− 1 + er}, (A.3)

with the Lagrange multipliers αr ∈ R. The conditions for optimality are defined in

Equation (A.4).

δL
δw

= 0 −→ ω =
M∑
r=1

αryrϕ(xr),

δL
δb

= 0 −→
M∑
r=1

αryr = 0,

δL
δer

= 0 −→ αr = γer, r = 1, ...,M,

δL
δαr

= 0 −→ yr[w
Tϕ(xr) + b]− 1 + er = 0, r = 1, ...,M,

(A.4)

and they it can be rewritten as the solution to the set of linear equations shown in

Equation (A.5). ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 −ZT

0 0 0 −Y T

0 0 γI −I
Z Y I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w

b

e

α

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

�1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (A.5)

where z = [ϑ(x1)
Ty1, ..., ϑ(xM)TyM ], Y = [y1, ..., yM ], �1 = [1, ..., 1], e = [e1, ..., eM ]

and α = [α1, ..., αM ]. After eliminating w and e, the solution can be simplified as
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Equation (A.6).

⎡
⎣ 0 −Y T

Y ZZT + γ−1I

⎤
⎦
⎡
⎣b
α

⎤
⎦ =

⎡
⎣0
�1

⎤
⎦ . (A.6)

Mercer’s condition can be used again to the matrix Ω = ZZT , where

Ωrl = yrylϑ(xr)
Tϑ(xl)

= yry1ψ(xr, xl).
(A.7)

Therefore, the classifier Equation (A.1) is found by solving the linear set of Equation

(A.6)- Equation (A.7) instead of quadratic programming. Interested readers please

refer to [79] for more details about the estimation of the various parameters.



Appendix B

Estimating Mutual Information

Assume that a set of M input-output pairs zi = (ui, vi), where i = 1, ...,M , are

considered to be realisations of an i.i.d (independent and identically distributed)

random variable of a random variable Z = (U, V ) with density PU,V (u, v). Both U

and V have values in the data space R or in RP . The Euclidean norm is then used

in those spaces.

Input-output pairs are compared through the maximum norm

‖ z − z′ ‖∞= max(‖ u− u′ ‖, ‖ v − v′ ‖). (B.1)

Considering k as a fixed positive integer, zk(i) = (uk(i), vk(i)) is the k-th nearest

neighbor of zi, which has the maximum norm. uk(i) and vk(i) denote the input and

output of zk(i), respectively. Let us denote by εi/2 the distance from zi to its k-th

neighbor and by εui /2 and εvi /2 the distances between the same points projected into

the U and V subspaces, where,
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εi/2 =‖ zi − zki ‖∞, (B.2)

εui /2 =‖ ui − uki ‖, εvi /2 =‖ vi − vki ‖ . (B.3)

Obviously, εi = max(εui , ε
v
i ). Then, we count the number of samples mu

i of points

uj whose distances from ui is strictly less than εi/2, and similarly for v. Mutual

information can then be estimated by:

MI(U ;V ) = ψ(k)− 1

k
− 1

M

M∑
i=1

[ψ(mu
i )− ψ(mv

i )] + ψ(M) (B.4)

where ψ is the digamma function and given by:

ψ(m) = Γ(m)−1dΓ(m)

dm
, (B.5)

where

Γ(m) =

∫ ∞

0

um−1e−udu (B.6)

The accuracy of this estimator is closely related to the value chosen for k. A small

value of k leads to a large variance and a small bias of the estimator, vice versa.
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