

WEB SERVICE INTERFACES DESIGN FOR E-BUSINESS
APPLICATIONS

by

Sia Minh Hong

PhD Thesis

Presented to the Faculty of the Graduate School of

The University of Technology, Sydney

in Partial Fulfilment

of the Requirements

for the Degree of

Doctor of Philosophy in the

School of Software,
Faculty of Engineering and Information Technology

Supervisor: Dr. George Feuerlicht

October 2015

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a
degree nor has it been submitted as part of requirements for a degree except as
fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have
received in my research work and the preparation of the thesis itself has been
acknowledged. In addition, I certify that all information sources and literature
used are indicated in the thesis.

Signature of Student:

Date:

ACKNOWLEDGEMENTS

I would like to express my thanks to my principal supervisor, Dr. George Feuerlicht,
for his guidance and support during the course of my PhD studies. He gave me
much encouragement and ideas, which allowed me to complete this thesis. We
worked together and I found his comments and feedback to be very useful.

I also would like to thank my co-supervisor Richard White, who is the CEO of Eagle
Datamation International (EDI). He provided me with the opportunity to undertake
this research work at the company on several occasions. I gained access to and
obtained much valuable commercial experience when designing these Global Trade
e-business Web Service interfaces.

Thanks are also extended to the project's funding or partner organisations:
Australian Research Council (ARC Linkage Projects) and Eagle Datamation
International (UTS contribution to ARC projects). This research thesis may not have
happened without their support.

Thanks also go to my family and especially my wife for fully supporting and
understanding what this long journey entailed. Thanks also go to Mr. Phillip Thomas
who proof-read my thesis and provided me with advice regarding English
corrections and expression.

Finally, my thanks go to the examiners for providing their valuable time for reading
this thesis.

Table of Content

LIST OF ACRONYMS & ABBREVIATIONS

Abstract

2.4.2 Universal Business Language (UBL) BY OASIS

3.1.1 Web Service design based on Elementary Business Function
3.1.2 Web Service design based on Requirement Analysis

3.1.4 Web Service design based on Shareable Components
3.1.5 Web Service design based on Data Centric Approach with Factual Dependency
3.1.6 Generic Web Service Interface design methodology
3.1.7 REST style Web Service design methodology

3.2.1 Web Service design based on Document Engineering

3.3.1 Web Service composition
3.3.2 Composition design based on UML
3.3.3 Composition Design based on Formal Language
3.3.4 Composition Design based on Case-Based Reasoning
3.3.5 Composition Design based on RosettaNet PIPs

Objective

6.3.1 Reusability Principle

6.3.4 Extensibility
6.3.5 Flexibility
6.3.6 Maintainability
6.3.7 Comparison of the outcomes

Appendix 1: Script to generate Database Table for case study
Appendix 2: Available Web Method as Web Service
Appendix 3: Persistence Unit for the Prototype Application
Appendix 4: Business Entities of the Prototype application
Appendix 5: Data Access Object of the Prototype application
Appendix 6: Business Value Object of the Prototype application
Appendix 7: Purchase Order Schema of the Prototype application
Appendix 8: Object Serializer of the Prototype application
Appendix 9: Prototype application Web Services
Appendix 10: Prototype application Web Service Interface
Appendix 11: Client’s GUI of the Prototype application
Appendix 12: Overview of the Project Prototype application
Appendix 13: Web Service interface showing available ports and operations
Appendix 14: Sample UBL 2.0 Purchase Order example (Source: OAGIS)
Appendix 15: Sample UBL 2.0 Purchase Order Response example (Source: OAGIS)
Appendix 16: Sample UBL 2.0 Change Purchase Order Response example (Source: OAGIS)

Appendix 17: Sample UBL 2.0 Purchase Order Cancellation example (Source: OAGIS)

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

i

LIST OF ACRONYMS & ABBREVIATIONS

Abbreviation

ABIE Aggregate Business Information Entity

ACC Aggregate Core Component

B2B Business-to-business

BBC Basic Core Component

BBIE Basic Business Information Entity

BIE Business Information Entity

BOD Business Object Document

BPEL Business Process Execution Language

CBL Common Business Library

CCL Core Component Library

CCT Core Component Type

CCTS Core Components Technical Specification

CEFACT Centre for Trade Facilitation and Electronic Business

ebXML Electronic Business eXtensible Markup Language

EDI Electronic Data Interchange

EDIFACT Electronic Data Interchange For Administration, Commerce and

Transport

EPC Electronic Product Code

GDD Global Data Dictionary

GDT Global data type

GS1 Global Standards One

HTTP Hypertext Transfer Protocol

HTTPS Secured HyperText Transfer Protocol

IATA International Air Transport Association

ISO International Organization for Standardization

MIME Multipurpose Internet Mail Extension

NDR Naming and Design Rules

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

ii

OAGI Open Applications Group, Inc.

OAGIS Open Applications Group Integration Specification

OASIS Organization for the Advancement of Structured Information

Standards

OTA Open Travel Alliance

OWL Web Ontology Language

UBL Universal Business Language

UDDI Universal Description, Discovery and Integration

UMM UN/CEFACT Modelling Methodology

WS-CAF Web Services Composite Application Framework

WSDL Web Services Description Language

xCBL XML Common Business Library

XML Extensible Markup Language

XSD XML Schema

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

iii

ABSTRACT

As a result of the rapid developments in Web Service standards and technologies during

the last decade, many organisations are implementing applications using Web Services.

Some organisations are making significant commitments to Web Service standards and

technology platforms. Successful projects using Web Services will to a large extent

depend on the effective design and development methodologies used in the construction

of an e-business application. While the importance of application design in general is

recognised, so far only limited attention has been paid to design issues for service-

oriented e-business applications. Currently there are no comprehensive methodologies

for designing service interfaces.

The traditional e-business interoperability approach is for business partners to

interchange the industry standard business documents or XML messages (i.e. UBL,

OTA). This approach is complex and inefficient because the business document is large

and results in many optional and repeated elements that are redundant. Developing Web

Services for e-business is time-consuming due to the considerable effort required to

define the interfaces and maintaining a large volume of standard business documents.

This work proposes to use the minimalist design approach to optimise a set of standard

business documents and interfaces. The proposed interface is exposed as an abstract

layer to the external parties and is able to process multiple actions corresponding to a

business document. The method is based on analysing existing business documents,

identifying the key elements responsible for an operation, and then exposing the

operation interface that corresponds to the business document rather than the business

event. This can be achieved by inserting business event action elements into the XML

schema. Doing so will not only reduce the number of operation interfaces but also

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

iv

increase the Web Service interface’s flexibility and extendibility. Web Service

implementation projects conducted in the absence of a design framework are likely to

suffer from poor reuse and extensibility. In order to achieve reusability, this method

enables the operation to be invoked based on individual action or multiple actions for

the same interface. This is because a single action operation typically represents a fine-

grained business task. Consequently, the interface is always extendable due to using

multiple actions in the operation.

Finally, this thesis will detail the above mentioned methodology to optimise e-business

Web Service interface to become more flexible, reusable and extendable. We will

illustrate the design methodology using a purchase order business process example

based on the Universal Business Language specification in order to demonstrate its

effectiveness.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

1

CHAPTER 1

INTRODUCTION

In this chapter, we first review the background of e-business particularly in the global

trade context in Section 1.1. The Web Services and Web Service interfaces for e-

business are described in Sections 1.2 and 1.3. In the next Section 1.4, we identify the

problems concerning current Web Service interface design followed by Section 1.5,

which discusses the granularity of the Web Services. Section 1.6 describes the

requirements for Web Service interface design and following this, Section 1.7 will

identify the problem and definition, while Sections 1.8 and 1.9 will specify the thesis

objectives and contributions to the research. The thesis research methodology and its

evaluation approach are described in Section 1.10 and is followed by the structure of the

thesis in Section 1.11.

1.1 Background

Economic pressures are rapidly forcing businesses to automate e-business (electronic

business) transactions. Successful e-business relies on accurate and secure interchange

of information between different organisations, typically within specific vertical

application domains such as travel, health and education. The principal challenge is to

ensure e-business interoperability in an environment characterised by a large number of

autonomous partner organisations with different technology platforms and business

semantics. Traditional approaches such as using EDI (Electronic Data Interchange)

(UNECE, 2004), or ebXML (ebXML, 2004) which use document interchange as the

interoperability mechanism suffer from limited scalability (especially when the number

of partner organisations increases) poor flexibility, and high implementation costs. The

emergence of Web Service standards (WC3, 2004) and technologies and their wide

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

2

adoption by the IT (Information Technology) industry is an opportunity to solve the e-

business interoperability challenge in the context of service-oriented computing. This

research thesis is concerned with the application of service-oriented techniques to

solving the problem of e-business interoperability, focusing on the design of service

interfaces for domain-specific Web Service applications.

The importance of Web Service interface design is addressed in numerous publications.

The challenge of this research is to develop an engineering method for Web Service

interface design. This research focuses on seeking a design framework that will provide

guiding principles to identify a consistent set of service interfaces. It can then be used to

compose complex enterprise services in order to maximise reuse, avoid duplication and

enable extendibility.

Traditional business approaches such as exchanging paper-based business documents

between partners via fax or e-mail are slow, inefficient and costly. Electronic Business

(e-business) on the other hand, is more suitable for the rapidly changing environment

where any business requirement change has to be acknowledged and applied instantly.

In this way, enterprises do not design, manufacture and sell products by themselves, but

look for the best partners worldwide to establish alliances. They follow this approach in

order to minimise costs and achieve their objectives in the shortest amount of time.

These partners are distributed globally and their services can be changed and replaced

by others. This transformation should not impact on the current information systems.

An information system platform is a necessary part of the infrastructure for integrating

an enterprise’s partners so that they can exchange information and work together

without time and costs pressures. Due to the characteristics of business processes in e-

business, an information system platform of e-business has its own requirements.

Firstly, the chosen information system platform must be suitable for the environment as

enterprise systems for e-business are distributed geographically. Secondly, these

systems must be an open platform. Since the enterprise partners are dynamic and

distributed, the information system must be constructed in an open environment.

Thirdly and lastly, the information system must be developed with loose coupling,

where the enterprise partners are free to switch and change to others.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

3

Web Services can be deployed on the Internet for distributed computing and

transmission hence commercial business can be carried out together by several partners

distributed geographically. Commercial services can be published by enterprises so that

their business aims can take the form of Web Services. The integration of Web Services

into e-business helps broaden the opportunity of business interaction between industry

partners and the government sector. Applications can be developed based on standard

Internet technology for distribution and integration. In particular with reference to e-

business, Web Services have been designed and promoted to support both Business to

Consumer (B2C) interaction and Business-to-Business (B2B) integration. More

complex business applications can be expanded to each other’s services.

Curbera (2001) defined a Web Service as a networked application that is able to interact

with standard application-to-application web protocols over a well-defined interface,

and is described as using standard functional description languages. A Web Service is

essentially a semantically well-defined abstraction of a set of computational or activities

involving a number of resources in order to fulfil some e-business requirements that are

based on standardised XML messaging. Web Services allow applications to interact

internally or externally; enterprise applications expose their business processes publicly

as a service interface and are accessible on the Internet, for example: Google search

service, Amazon online service and Flight Centre Booking Services. The success of

these leading industry Web Services and the continued growth of others indicates that

we will need a more standard and optimal abstraction Web Service interface to

interoperate more effectively. Currently therefore, Web Service is the ideal candidate

for integrating enterprise applications and setting up open and loose coupling

information platforms for e-business.

1.2 Web Services for e-business

Web Services consist of a set of key technologies and standards that are suitable for e-

business and can be developed so that it is capable of larger complex applications using

existing technology and hardware. This makes it suitable to develop an e-business

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

4

application by reusing existing services. This can reduce costs and generate faster time

to the market. It should be pointed out that there are still several issues including

reusability, extendibility and flexibility that need to be addressed before the full

potential of the e-business platform is realised concerning Web Service architectures.

Standards organisations such as OTA, OASIS, and UNEDIFACT design and maintain

various domain-specific e-business specifications across vertical industries. These

specifications such as the service interface and standard documents are essential for e-

business systems to communicate in the same domain. As a result, each standards

organisation will be required to define and maintain a large set of Web Service

interfaces and business documents. A new version of the interfaces often takes months

and years to be standardised and published (e.g. UBL version 1.0 released on 2004,

UBL version 2.0 released in 2006 and UBL version 2.1 released in 2013). Both

providers and clients need to revisit and design their interfaces to adopt the new version

changes. This process is both complex and difficult; hence, upgradability and

extensibility have become major hurdles in the e-business Web Service interface design

issue.

1.3 Web Service Interfaces

Web Services provide a standard web application programming interface for e-business

so that they can communicate on the Internet. A Web Service interface can be viewed as

a universal Application Programming Interface (API) in which the interface is written in

a platform independent manner. Service interfaces should cover all significant functions

in the application domain. The number of operations provided should be adjusted

carefully in order to decrease the complexity of application development. In order to

create a good interface design, a set of design principles must be taken into account in

the design methodology.

Web Services for e-business are typically based on a standard domain (i.e. UBL for

standard Global Trade). Any providers and clients of the services must follow the

specification guidelines in order to exchange the message. The business documents are

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

5

typically a collection of large coarse-grained complex schemas and they evolve over

time. The business process operation is a business transaction that accepts a request

message and produces a corresponding response message (i.e. purchaseOrderRequest

and purchaseOrderResponse). Hence these request and response messages are typically

coupled and will not be reused by others.

In traditional component oriented programming, method interfaces are separated from

their implementation to provide an abstract definition; the developer can generate

unique interface implementations using the same method. The method interfaces are the

basic unit of reuse in an application program. In general, a program is an association of

many small component interfaces: the contract that links the interfaces responsible for

governing the parameter’s exchange and the signature specifications for using that

method. In contrast, Web Service interface is a logical grouping of method signatures

that act as the contract between Web Service clients and Web Service providers. A Web

Service composition is a combination of distinct Web Services to form a larger

operation (e.g. a purchase order service can be combined with the payment service and

the delivery service). Clients can locate and invoke any published Web Service interface

and can even switch between different Web Service providers in a composition, as long

as they are signature compatible. Very few changes are needed since a client only needs

to modify the interface invocation.

In order to propose a methodology for the design of Web Service interfaces, in

particularly for the Global Trade Domain, we will begin by exploring the fundamental

properties of Web Service. Service-Oriented Architecture (SOA) is a platform for

information exchange on the Internet and is becoming a leading paradigm for the

development of information systems and application integration. With open and

standard application interfaces and technologies, Web Services implement SOA’s

features to support loosely coupled applications and their integration. One of the main

goals of SOA is to provide enterprise e-business solutions that can be extended or

changed on demand while remaining compatible with an existing system (Papazoglou,

2003). The SOA is supposed to transform the web into a distributed business

computation network (Lu, 2006). SOA bridges the gap between business and

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

6

information technologies by providing an approach for reengineering business processes

with services oriented approaches. These solutions focus on the design of reusable,

extendable Web Services and therefore, result in a well-defined interface since it

provides a mechanism for integrating existing legacy applications with platform or

language independently.

As Web Service interface design involves defining both the interfaces (i.e. service

operation) and its payload (i.e. business document), essentially the key to a well-

designed Web Service interface is to design an optimised standard document and its

interface. Web Services for e-business tend to adopt coarse-grained messages (i.e.

provide all required information in a single business document) due to a large collection

of business objects contained in the document. This will reduce the amount of services

invoked to fulfil a business process and hence minimise the number of requested and

responses. Therefore, every business process will become a Web Service operation and

consume one business document. As a result, the design of Web Service interfaces will

involve analysis and modelling of the three abstraction layers in order to understand

what will constitute an operation or a service. If we can move some of the business

logics (i.e. processing instructions) to the business document, then we will be able to

reduce the number of interfaces while maintaining the functionality. This thesis will

provide a methodology in Chapter 4 to guide the design of transforming existing

interfaces into a minimalist service interface in order to facilitate reusability and

extensibility.

1.4 Web Service Interface Design Issues

There are several issues that need to be considered when designing a Web Service

interface. Hui (2006) highlights three design concern areas. The first area of concern is

the concept of development and choosing the granularity of the service. Every Web

Service interface represents an abstraction model of a business process; the developer

needs to understand and design the framework that matches the nature of the Web

Service model. Furthermore, a developer choosing the right balance of granularity of a

Web Service will provide a benefit to both the service provider and client. Decisions on

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

7

the level of service granularity should be based on the business requirement rather than

a precise design approach. For instance, by adopting the multi-grained approach, a

business document can be either a fine-grained, coarse-grained or mixed grain message

depending on the business usage. The second concern area is that of maintenance and

this refers to integration of services in order to maximise interoperability. The interface

must be standardised across the domain and maintained by a standards organisation.

For the Method Centric Approach, an initial research solution is the interface adapter

framework, which uses an abstract interface on top to represent the service in a

hierarchical relationship. For the Message Centric interface, these messages are

developed and maintained by a few standard business alliances; this will help in

promoting interoperability. However, they are designed for a specific domain in mind,

and it is often not easy to integrate them with outside specific interactions. Another

issue concerning maintenance is evolution of service, which represents the life span of

the service interface. Some solutions include using a more flexible multiple version

business document format instead of discrete input arguments. Alternatively, we can

generalise and standardise the operational design so that the public can be used. The

latter concern area is distributed environment and this refers to issues such as service

error handling. Web Services for e-business are built on a distributed environment; we

should consider this related issue during the design phase. Since network latency is an

unavoidable problem, developers should consider re-requesting or resending the

message during long network latency.

1.5 Granularity Consideration

Web Service granularity represents the abstraction level of a business process, and

therefore it is important to find a balance between clients’ needs and application

requirements. Since Web Services have exposed the interface to the public, the decision

on what constitutes an operation and the number of operations of a Web Service is a

design issue. Web Services can have a coarse-grained, fine-grained or multi-grained

interface.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

8

Coarse-grained interface approach

The coarse-grained design approach focuses on higher-level abstraction and how the

components interact within the larger business process context. In this approach, the

client operations are generalisations of the corresponding server operations and hence

the client interface can have fewer operations with less restrictive types. The advantage

of coarse-grained design is that the client interfaces are not directly coupled to the

service provider’s interfaces, and each can evolve independently. The disadvantage is

that the client may incur some performance cost due to dispatch large and complex

messages. A coarse-grained interface is more suited for distributed processing and

resource constrained thin-client operations.

Fine-grained interface approach

Fine-grained interface design results in operations that represent single tasks and lead to

complex interaction dialogues. Consequently, the interface needs to be updated

whenever the server interfaces changes. In addition, where a fine-grained service is

changed, numerous related services also need to be updated because of high

dependency. This is the major drawback of a fine-grained Web Service and can become

a serious problem for distributed processing and large-scale deployment. The principal

advantage of this approach includes reusability and the ability to reduce redundancy.

Multi-grained interface approach

In between coarse-grained and fine-grained interfaces, a developer can combine

interface approaches to produce a multi-grained interface according to Stevens (2002).

This is achieved by initially creating fine-grained services, and then wrapping them in

coarse-grained facades, which create a multi-grained strategy. The author suggests that

it is better to make fine-grained based services that access coarse-grained ones, as they

are easier to deploy and manage. Smaller services will provide more options for their

physical deployment.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

9

1.6 Requirements for Web Service interface design

Web Service interface design is important because interfaces are the contract between

the service provider and client. The quality and reliability of the interaction depend on

the stability and effective design of the interface. Web Service interface design consists

of tasks such as the selection of a service’s operations, and their input and output

parameters. This mostly depends on the fundamental design principle being applied.

The Web Service protocol SOAP was designed as a simple way to undertake remote

procedure calls (RPCs) over the Internet. A service designed with RPC-style interfaces

will clearly separate operations and contain well-defined parameters. However,

Document Style interface’s design concentrates on the content of the messages in the

system, and that the interfaces should minimise the set of operations. Eventually, this

relies on the design of the interface’s granularity. Service interface with optimal

granularity will mostly be reusable and extendable. To date, there is no widely accepted

design methodology for service interface design. We will discuss several existing Web

Service designs and Composition design methodologies in the following paragraphs to

illustrate the available support for them.

A Web Service can be viewed as a universal API in which the interface is expressed in a

platform neutral manner. In order to have a good interface design, a set of design

considerations/ principles must be borne in mind. These set of design considerations/

principles are supported by design methodology. According to Artus (2006), Bean

(2009) and Erl, (2008) it is suggested that Web Services should be designed with

flexibility in mind by increasing both loose coupling and ease of process

implementation. Below is a summary of several design requirements:

i. Loose Coupling: The SOA design principle is to reduce dependencies between

the client and the provider. A change made by the service provider should not

necessitate corresponding changes in the client system; this includes platform,

location, availability and versions. Loose Coupling helps to minimise the impact

of changes to clients.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

10

ii. Consistency and Interoperability: Across the application domain, Service

interfaces should be uniformity defined (using the same rules for the names of

Web Services, operations, input and output parameters) and consistently

defined, i.e. list in the same order and apply the same pattern. This will greatly

increase the interface’s usability regardless of any technology platform; and

therefore reduces development, integration and maintenance requirements.

iii. Standard, formally defined interfaces: Web Service interfaces should be

defined with clarity and information should be defined to include the following:

the task that the Web Service operation performs, its prerequisites and its

outcomes, and the meaning of its parameters. Naming convention should be

meaningful in the domain of expertise of the service client, where business

concepts are chosen over technical concepts.

iv. Maximise reuse: Any Web Services should be intended to be reusable and can

avoid focusing on the requirements of a service’s initial clients. Instead,

developers should determine a more complete requirement and consider the

potential evolution of a service, which can evolve to respond to the new

requirements in a controlled manner. This is because if the number of clients

rises, requirements may well differ from the initial situation. Therefore,

reusability can optimise the design and development process and thus reduce

development time and costs.

v. Well-chosen granularity: This balances the number of operations a service

should have. We can have few services with more operations or limited

operations with more services. Depending on the Web Service, choosing the

right granularity will maximise maintainability, operability and consumability.

vi. Cohesive and Completeness: Service interfaces should be developed in such a

way that computing modules’ internal elements are well linked to one another.

This will increase stability because cohesion limits the scope of change in a

specific service.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

11

Service interfaces should cover all significant functions in the application domain. The

number of operations provided should be adjusted carefully because interfaces with

excessive or insufficient operations will increase the complexity of application

development.

1.7 Problem Identification and Definition

A traditional e-business approach such as the Document Centric Model from Global

Trade Domain focuses on interchanging documents between business partners. This is

similar to the old-fashioned paper-based model; all requested data are encapsulated in a

single coarse-grained XML business document. These standard documents are governed

by explicit domain organisations (i.e. UBL, OTA and UN/EFIFACT). The principal

advantage of this approach is the ability to seamlessly integrate across multiple

platforms and is independent of the implementation languages. Business partners can

easily communicate via these standard documents and interfaces. However, this

approach requires complex and large sets of business processes and documents.

Standardising these business documents and Web Service interfaces involve many

organisations and requires considerable time and effort. This approach also suffers from

poor reusability due to adopting coarse-grained operations and business documents

(Feuerlicht, 2007). Each operation is coupled with a single business document and

hence will impact on the extensibility since adding new operations and new elements

require standardisation and release of a new version of the interface along with the

corresponding business documents. Flexibility and reusability have also been neglected

and not addressed in current methodologies (Feuerlicht, 2004). Furthermore, adopting

these industry standard business documents is a complex task with many redundant

elements. Numerous organisations are implementing B2B Web Services and some are

making significant commitments to Web Service standard and technology platforms.

The successes of projects using Web Services will to a large extent depend on the

effective design and development methodologies used in the construction of e-business

applications. As Web Services constitute basic building blocks of service-oriented

applications, decisions about which operations should comprise a service, and what

service interface should be exposed, are all of vital importance for e-business.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

12

Ultimately they determine the quality and reliability of Web Service applications.

Hence, a well-designed Web Service interface is a key requirement for ensuring a high

level of interoperability in complex e-business applications. A good Web Service

interface should be designed with a focus on reusability and any new functionality

extension should have minimal impact (if any) of the existing interface. Web Service

implementation projects conducted in the absence of a design framework are likely to

suffer from poor reuse and extensibility. While the importance of application design in

general is recognised, to date, only limited attention has been paid to design issues for

service-oriented e-business applications. Currently, there are no comprehensive

methodologies for designing of service interfaces.

1.8 Thesis Objective

The main objective of this research is to develop a methodology for the design of Web

Service interfaces for e-business based on various literature reviews about existing e-

business document-centric approaches. The overall aim is to develop reusable,

extendable and flexible Web Service interfaces. An interface that will fulfil multiple

business functions resulting in a minimal number of operations. This would lead to

reduced impact of changes in the Web Service implementation or document structure

that in turn improves stability of the interface and fosters loose coupling. A novel Web

Service interface design methodology is proposed by combining the “command”

software design pattern and generic interfaces which is also based on the principle of

minimalism. According to this principle, we can simplify and optimise the Web Service

interface to its minimal form (i.e. smallest set of methods) while keeping the required

functionality. Following a top-down design approach, the design methodology will

transform a set of e-business standard documents and interfaces into one well-optimised

business document and service interface.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

13

Specific Objectives:

The specific objectives of this research are as follows:

1 Propose a design method that will transform any existing Web Service interface

into a more reusable service interface. Multi-grained operations will need to be

supported to maximise reusability; individual fine-grained or coarse-grained

operations should be reused by composition from and to other services. This is the

basic requirement of any Web Services and conforms to the extensibility principle

such that a new functionality can be added to the existing interface.

2 The transformed Web Service interfaces based on the design method should be

extendable. The proposed minimalist design will make the interface more generic.

Extension of new functionality is achieved by adding new actions with

corresponding elements inside the business document. Updating any Web Service

interfaces should not break any existing business integration. Service interface is a

data contract agreed upon by many stakeholders while they are in development,

and changing any elements should result in minimal impact (if any) to any service

integration.

3 The resulting Web Service interfaces should also be flexible. Flexibility allows

Web Services to incorporate multiple actions and thus minimise invocation calls.

The proposed interface will allow multiple fine-grained operations to be processed

in a single business document. This will permit sending only the required

information and thus providing clear processing instructions to the provider.

4 Implementation and evaluation will be undertaken in order to assess the proposed

interface design behaviour. The proposed Web Service interface based on the

design method should conform to the service design principles.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

14

1.9 Summary of Contributions

The main contribution of this thesis is the proposed design methodology for the Web

Service interface design. Existing Web Service design methodologies mainly

concentrate on the service design at the high or enterprise level. Our design

methodology is concentrated on the design at a low level, i.e. Web Service interface.

We will outline the design steps for developing the service interface and provide

additional guidelines to map the interface to WSDL, to create a Web Service (Section

4.1.2). Furthermore, we will develop a Web Service application prototype to verify our

proposed method (Section 4.2).

This research will contribute to Web Service design and development for e-business

developers and companies. Developers can reuse Web Services rather than have to build

a new application. For companies and users of Web Service applications, the proposed

interface will be more reusable and extendable. Below are the contributions this thesis

makes to the topic:

• This research will contribute a new approach to the design of Web Service

interface and a new business document pattern (Section 4.1.2). The proposed

service interfaces will be exposed based on business documents rather than

business events. This can minimise the number of interfaces and therefore make

maintenance easier. We can reveal a smaller number of interfaces while

providing comparable or more aspects of the original functionality.

• The proposed interface will support multi-grained operation by adopting the

command pattern design. The resulting interface and document will be

optimised for reusability and extensibility.

• The proposed method will be developed and evaluated against the design

principles using a simple Web Service application prototype based on the UBL

specification.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

15

• By defining an efficient and flexible service interface, Web Service applications

will become more responsive and effective. This allows more application

integration to be achieved across the e-business industry.

• As the proposed method is a generic interface design pattern, this will not only

be applied to Web Service interface design but also to any other e-business

interface design regardless of the implementation style, such as using the REST

style.

1.10 Research Methodology

The design methodology is based on a top-down design approach by a transformation of

the existing Web Service interface and related business documents. A survey of existing

business document patterns and designs will be conducted in order to study the strength

and limitation of the current e-business applications. Furthermore, an extensive

literature review of existing Web Services and Web Service interface designs in both

published articles and industry-based sources will be carried out in order to understand

their limitations and issues. From the study of the existing design of service-oriented

applications, we will propose a new engineering methodology for designing a Web

Service interface by transforming the standard business document and its interface into

a more reusable, extendable and flexible Web Service interface. This method will then

be applied to design a consistent set of service interfaces for the Global Trade Domain,

in particularly, based on UBL.

EVALUATION

An evaluation (Chapter 6) is also presented to assess the proposed Web Service

interface design in comparison with the reference UBL business documents. In Section

6.2, we will carry out a quantitative approach evaluation by comparing the results from

processing two different types of messages, as mentioned above. Multiple test case

scenarios will be setup and done to examine the effectiveness of the proposed design

document in contrast to the UBL document approach. In Section 6.3, a qualitative

approach evaluation will be presented in order to verify that the proposed document

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

16

design conforms to the principles of the Service-Oriented Design developed by Legner

(2007) and Erl (2008) in Section 6.1 including: Abstraction, reusability and business

suitability. Each principle will be evaluated and compared using both the proposed

document designs and the reference UBL e-Business documents. We will also extend

and generalise the design framework to ensure applicability to other types of vertical

domains.

1.11 Structure of the Thesis

The rest of this thesis is organised as follows. Chapter 2 will review several domain-

specific e-business document standards and explain the concept of industry standard

business documents and how they are designed. Several document design patterns also

will be studied in this chapter and their advantages and disadvantages explained.

Chapter 3 will review the existing Web Services and interface designs and identify their

limitations. This chapter reviews the literature on existing Web Service interface design

methods and several other composition design methods. Based on the findings of

Chapters 2 and 3 we then present a comprehensive methodology for designing a Web

Service interface for e-business in Chapter 4. That particular chapter explains the details

concerning the proposed design method and how it will satisfy the objectives of this

thesis. Chapter 5 describes the methodology’s implementation with the domain-specific

Web Service application (Global Trade Application). Chapter 5 also outlines the

requirements for implementing the prototype application. Chapter 6 will verify the

methodology for design issues: in-depth discussion and verification against the service

design principles; and compare and benchmark the proposed methodology’s results

against the traditional UBL approach’s results. Finally, Chapter 7 will conclude the

thesis and provide suggestions for further research. This final chapter will also discuss

the findings outlined in the objectives and how the proposed solution will satisfy the

requirements.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

17

CHAPTER 2

E-BUSINESS DOCUMENT STANDARDS

There are many standards organisations, for example OTA, OASIS, and UNEDIFACT

that design and maintain different domain-specific e-business documents across vertical

industries. These standard business documents are essential for e-business systems to

communicate in the same domain. If every company develops and designs their own

documents, interoperability will become very difficult due to complicated data mapping

and errors. Web Service interface design involves defining both the interfaces (i.e.

identifies operation) and its operation’s payload (i.e. business document). Since e-

business relies on exchanging a large number of documents, designing an optimised

standard document and its interface are essentially the key to a well-designed Web

Service interface. In this chapter, we will review several e-business document standards

and particularly their relationship to their pattern design. This chapter will study several

business document design patterns and focus on how the standard business documents

are formed, their common elements library, the operation invocation styles and in

particularly focussing on the extensibility and reusability of the elements and

operations. Based on these findings, we will understand their limitations and constraints

in the current business document design. We also study the differences in Web Service

invocation methods, which then lead to a review of business document designs along

with multiple industry standard practices.

2.1 Web Service Invocation Methods

We discussed the SOA and applications of Web Services for e-business in section 1.2.

In this section, we will describe different Web Service invocation methods. There are

two main types and these are: firstly, Remote Procedure Call (RPC); and secondly,

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

18

Document (DOC) Style, which refers to passing a document as the argument. We will

compare the differences between these two styles and recommended one of them for e-

business Web Services. Understanding the Web Service invoking techniques will help

us design the message within Web Services so that it is more acceptable to the industry.

Web Service Description Language (WSDL) can be described using both styles, which

are defined in the SOAP message. Remote Procedure Call (RPC) is similar to the

traditional programming interface in that it passes one or more parameters as the

argument for the Web Services. This style has been widely used on the Internet, for

example flight booking and trip planning services. The RPC style consists of a fixed set

of predefined elements that are embedded in the message. The advantage of RPC

includes a fine-grained operation that is more reusable. The processing of the RPC

message is faster because it is smaller and RPC use is easier since the elements are

predefined in the operation. However, there are certain disadvantages in using RPC such

as requiring additional information to maintain the state of the operation, and a complex

business process that requires numerous invocations to fulfil the task. Another

disadvantage of RPC is the tight coupling to the application method. When a method

name or the parameters changes this will result in redefining the Web Service operation.

Since the industry is increasingly exchanging information between business partners,

Document Style is the recommended way for communication in the Web Services

(Vinoski, 2002). A business document is designed to be self-described, that is it should

contain all the information needed to allow recipients to understand the context of the e-

business process that the document supports. It is also relevant that it performs tasks

without the need to refer to a previously sent document. Document Style relies on

exchanging a business document to fulfil a business requirement. All the required

business information will be put into the document in the form of a XML document.

The XML document schema provides a template that includes all the necessary

elements and their defined type.

The advantage of the Document Style is that it includes: firstly, definable complex data

elements; secondly, less invocation calls by putting all the requested information in the

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

19

payload; thirdly, stated information can be maintained in the document; and fourthly,

the XML document can be validated against the schema. Disadvantages of the

Document-Centric approach include the complex structure of a document, which makes

it difficult for it to be understood from a programming point of view. This leads to

complexity in the development of translation software used to integrate e-business

documents into the partner’s internal systems. Document Style also tends to be less

reusable due to its coarse-grained nature and specific business process development.

A Web Service might provide multiple versions of the interface by specifying the

version in the WSDL. A Web Service might also process different versions of a

business document by introducing the version number to the request and response

schema when invoking the operation. This will maintain backward compatibility to any

existing clients while the new interface is introduced. However, this may lead to

multiple translators for each partner because of the above requirements. Several large

organisations are using ESB (Enterprise Service Bus) for translating or adapting to

interface versioning. ESB is a software middleware communication layer responsible

for monitoring and control routing of the invocation messages.

Although there are industry standard groups such as UBL, UN/EdiFact and OTA (Open

Travel Alliance) that promote their own standard business documents and public

business processes, these standards are usually difficult to interpret and take a long time

to implement. This is explained by the existence of large amounts of data and the

requirement of participating companies to agree on the precise meaning of transmitted

information, which is difficult to achieve (Feuerlicht, 2004). Consequently, if business

conditions change, document standards need to be changed accordingly.

2.2 Web Service with Business Document

The industry tends to use coarse-grained messages (business document) instead of fine-

grained ones to communicate between services. These business documents are normally

domain-specific (e.g. Travel domain, Global Trade domain) and are maintained by a

specific standards organisation (e.g. OTA, OASIS, UNEDIFACT). Their advantages

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

20

include: a business document contains all a query’s information in a single XML file

(e.g. a purchase order business document contains buyer, seller information, list of

items and quantity), which are transferred only once. This will reduce the number of

services invoked to fulfil a business process. The cost of transferring more data in a

single document is marginal compared to the latency cost of going back and forth. This

is particularly true for a large collection of business objects contained in the document.

This simplifies the number of operations needed to interact with the application and

minimises the number of requested responses. The developer only needs to design the

document once and update it with a version number. XSD Schema makes this easy to

construct by embedding types as elements within larger types. This will improve the

interface’s cohesiveness since a change in one element type will update all the inherited

elements.

Web Services that consume business documents are normally coarse-grained operations.

They focus on the client application’s perspective and how the components interact

within the larger business process context, which is where the two parties exchange

their document (XML schema) to fulfil the business goal. These Web Service interfaces

are exposed to the operations via the business process to fulfil a specific business task.

Therefore, every business process will be equivalent to a Web Service’s operation and

consume one business document. It should be noted that one business process might

contain many fine-grained operations calling simultaneously, i.e. a “purchase order”

document may contain finer-grained operations such as: generating a new order ID,

assigning date and time, customer database look up, currency converter and checking

inventory where all these inter-related finer-grained operations are processed

immediately at the end point. Consequently, the client interface requires fewer

operations with less restrictive types since all the processes are done in one transaction.

The advantage of a coarse-grained Web Service is loose coupling which is more

suitable for distributed processing and a resource constrained thin client operation.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

21

2.3 Normalisation of XML Messages / Business Document

Web Service interface uses XML message (Business Document) as their input/output

parameter. Provost (2002) describes using the normalising method in relational database

design and the application of the XML message. The author assumes that XML is the

native language for data expression, and attempts to apply the concepts of normalisation

to schema design. The goals of normalisation are to eliminate ambiguity in data

expression, minimise redundancy, facilitate preservation of data consistency and enable

rational maintenance of data. This concept can be applied from small to medium-sized

messages with ease; however, if the message is very large and contains complex data

types, the process will become very complicated and time-consuming to model and

translate.

Arenas (2006) proposed the normalisation theory for XML. In this method, XFDs were

defined in XML using the concept of “tree tuple” which in turn is based on the concept

of the total un-nesting of a nested relation. Then a normal form for XML was defined

(XNF) and an algorithm was presented, which converted an un-normalised XML

document into one in XNF. Finally, the problematic implications for XFDs were

investigated and complex results were provided for various classes of DTDs.

Justification for XNF was also addressed. Using an approach based on information

theory and entropy, it emerged that a slightly modified definition of XNF is a necessary

and sufficient condition to maximise the amount of information stored in a XML

document. The motivation for this normal form is similar to that of the Boyce-Codd

Normal Form (BCNF) in a relational database, i.e. avoiding redundancy in database

design. The standard decomposition technique produces a set of BCNF relations; this

approach can convert a XML document into a set of documents in XNF.

Since a XML document has a hierarchical structure, representing XML in a tree tuple

can enhance modelling elements and attributes instead of a flat structure as occurs in a

relational database. Normalisation can further reduce the redundancy of the XML

elements and attributes. However, this method can only apply to any single instance of

XML. It is not concerned with the interaction between two exchange messages as in the

nature of B2B interaction or the extensibility of the schema

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

22

2.4 Business documents and their design pattern

According to Hinkelman (2006) there are several basic business content design patterns.

They have been adopted by various standards organisations to develop industry-specific

business documents. According to Kabak and Dogac (2010), no single standard

business document requirements satisfy all purposes of the all the e-business industries,

as the requirements vary significantly different across different domains and geo-

locations. The aim of the standard business document is to fulfil and adapt to a specific

context, extensibility and customisation. This is despite the fact that most business

document standards adopt the UN/CEFACT Core Component Technical Specification

(CCTS) as the basis for describing the schema. According to Kabak and Dogac (2010),

the UBL standard has been endorsed by governments throughout northern Europe such

as the UK, Finland, Norway, Sweden, Iceland and Denmark as the official business

documents for electronic government applications. Business Object Document (BOD)

on the other hand receives the support of more than 40 countries and 38 industries. The

majority of the BOD users are in the automotive vertical industry but also in the human

resources, chemical and aerospace industries. GS1 documents are employed in more

than 20 countries and across 20 industries. As a consequence, there is no particular

reason for choosing one standard over another rather than by following what is

considered to be conventional for a particular industry domain.

2.4.1 BUSINESS OBJECT DOCUMENT (BOD) BY OAGIS

Business Object Document (BOD) or Business Content Envelope pattern proposed by

OAGIS is a business document pattern designed to integrate business information with

interaction and process indicators in the XML document. These are utilised in the

design framework for Application-to-Application (A2A) or B2B. This pattern is

considered more robust in that it takes on various processing abstractions. OAGIS uses

this pattern to define the Business Object Document used for specifying business

operations and transferring data between application systems. According to Stanley

(2001) a BOD contains two parts: namely, Application area and Data area (Figure 2.1).

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

23

The Application area is similar to a message header, which contains application-specific

information such as sender, time, date and code, which are common to all BODs. In

contrast the Data area is similar to the payload, which contain the business data, referred

as a “Noun”, and its associated actions are referred to as a “Verb” (Listing 2.1).

Figure 2.1 Layout of Business Object Document (Source: OAGIS)

Listing 2.1 Sample Business Object Document XML

<ApplicationArea>
 <CreationDateTime>2009-10-17T10:09:02.01Z
 </CreationDateTime>
 <BODID>PC2009-11-17-052</BODID>
</ApplicationArea>
<DataArea>
 <Process>
 <ActionCriteria>
 <ActionExpression actionCode="Add"> </ActionExpression>
 <ChangeStatus>
 <ReasonCode>New Purchase Order</ReasonCode>
 </ChangeStatus>
 </ActionCriteria>
 </Process>
</DataArea>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

24

Table 2.1 Summary of Business Object Document pattern Interface

Table 2.1 summarises all the relevant BODs for the PurchaseOrder business document.

There are in total fourteen actions associated with this document that correspond to

fourteen different operations. Because of the large number of operations supported by

the business document, there will be many schemas that correspond to the operations,

making it difficult to maintain and increase the complexity of the interaction.

Web Service
Interface

Business Function Web Service Operation Business Document

Purchase-

Order.wsdl

CreateOrder() AddPurchaseOrder() AddPurchaseOrder.XML

UpdateOrder() UpdatePurchaseOrder() UpdatePurchaseOrder.XML

ChangeOrder() ChangePurchaseOrder() ChangePurchaseOrder.XML

CancelOrder() CancelPurchase() CancelPurchase.XML

NotifyOrder() NotifyPurchaseOrder() NotifyPurchaseOrder.XML

ConfirmOrder() ConfirmPurchaseOrder() Confirm-PurchaseOrder.XML

ResponseOrder()
Response-

PurchaseOrder()

Response-

PurchaseOrder.XML

AcknowledgeOrder()
Acknowledge-

PurchaseOrder()

Acknowledge-

PurchaseOrder.XML

GetListOrder() GetListPurchaseOrder() GetListPurchaseOrder.XML

GetOrder() GetPurchaseOrder() GetPurchaseOrder.XML

ListOrder() ListPurchaseOrder() ListPurchaseOrder.XML

ProcessOrder() ProcessPurchaseOrder() ProcessPuchaseOrder.XML

ShowOrder() ShowPurchaseOrder() ShowPurchaseOrder.XML

SyncOrder() SyncPurchaseOrder() SyncPurchaseOrder.XML

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

25

Figure 2.2 Sequence Diagram of Purchase Order Scenario designed using Business Object Document

For instance in Figure 2.2 (a “PurchaseOrder.wsdl” Web Service interface),

“PurchaseOrder” is the “Noun” and followed by its associated actions/operations such

as: “AddPurchaseOrder, DeletePurchaseOrder and CancelPurchaseOrder”. For every

operation, each will have a corresponding schema that processes the document

depending on the Verb in the schema’s data area. For example Operation

“AddPurhaseOrder” will take an “AddPurchaseOrder.xsd” schema and the Verb will be

“Add” in the data area even though the element “PurchaseOrder” is the same for every

operation. Consequently, BOD reveals every possible operation with each action that

has a corresponding schema. Extensibility is achieved by identifying new actions,

adding extra operations and schemas.

2.4.2 UNIVERSAL BUSINESS LANGUAGE (UBL) BY OASIS

Universal Business Language (UBL) or Web Service-Based infrastructure pattern is

designed based on a Web Service without concern for low-level infrastructure details.

This is a “Usage-context free” pattern, which contains no action or processing

instruction inside the document. According to Glushko (2005) the main focus is to

define business processes based on an industry domain rather than where these

processes define the business content. These business contents are intended to

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

26

accommodate both partners’ requirements. One of the standards organisations adopting

this pattern is OASIS, which developed the UBL. This framework is primarily focused

on document exchange in B2B relying on the document as a common interface to retain

a clean and stable relationship with its business partner despite some changes to its

internal business processes. For example in a purchase order scenario the business

process is identified first: PlaceOrder, ChangeOrder, CancelOrder and OrderResponse;

then define a message for each business process. A “Place Order” Operation will

process an “OrderRequest.XML” (Listing 2.2) and an “OrderChange” Operation will

process an “OrderChange.XML”. Since this framework concentrates on the business

content, composing these messages is easier without concerns about how to handle the

document. However, these documents do impose redundant data that are not necessary

for some business interactions. For instance in Figure 2.3 to change an item in an Order,

the developer must send an updated version of OrderChange.XML to accommodate the

change.

Listing 2.2 Sample Universal Business Document OrderRequest XML

<ID>4500004875</ID>
 <IssueDate>2001-12-17</IssueDate>
 <BuyerParty>
 <ID>R300</ID>

<PartyName>
 <Name>ABC</Name>
 </PartyName>
 <Address>
 <ID></ID>
 <Street>West Chester Pike</Street>
 <CityName>Sydney</CityName>
 <Country>
 <Code listID="3166-1" listAgencyID="ISO">AU</Code>
 </Country>
 </Address>
 <BuyerContact>
 <ID></ID>

<Name>Joe Bloggs</Name>
 </BuyerContact>
 </BuyerParty>
 <OrderLine>
 <BuyersID></BuyersID>
 <Quantity unitCode="unit">10</Quantity>
 <Item>
 <ID>R100016</ID>
 <Description>Tuner X300</Description>
 <BasePrice>
 <PriceAmount currencyID="AUD">350</PriceAmount>
 </BasePrice>
 </Item>
 </OrderLine>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

27

Table 2.2 Summary of Universal Business Document Pattern Interface

Table 2.2 summarises of all the related “Order” business documents. There are total five

different documents corresponding to five operations in the Web Service interface.

Although this has fewer operations and documents than the BOD pattern, it includes all

the essential business functions enough for B2B interactions since it is mainly designed

for Web Service.

Figure 2.3 Sequence Diagram of Purchase Order Scenario designed using a Web Service-based

infrastructure

As a result a UBL document does incur many redundant elements since updating a

purchase order means sending an updated version of the order document.

Web
Service

Interface

Business Function Web Service Operation Business document

Purchase-

Order.wsdl

CreateOrder() OrderRequest() OrderRequest.XML

ResponseSimpleOrder() OrderResponseSimple() OrderResponseSimple.XML

ChangeOrder() OrderChange() OrderChange.XML

ResponseOrder() OrderResponse() OrderResponse.XML

CancelOrder() OrderDelete() OrderDelete.XML

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

28

2.4.3 OPEN TRAVEL ALLIANCE (OTA) BUSINESS DOCUMENT

Open Travel Alliance (OTA) business document or wrapped content pattern is designed

based on wrapping the primary business content with a single style of interaction such

as Request/Response. One standards organisation that adopted this pattern is OTA,

which is a Global Travel domain-specific e-business document. The aim is to

standardise all the activities concerning the travel industry. Every business process is

designed based on Request/Response pattern for input and output (Figure 2.4). In

addition to business content, organisations can define a common set of reusable process

indicators that are built into request/response messages. These indicators are used to

accommodate some usages that are common in a specific industry. For example, Echo

Token, Status Code and transaction identifier serve to indicate the desired version of the

payload response message. This Wrapped pattern is intended for Information query

application where changing the business content is not a concern.

Table 2.3 Summary of Wrapped Content pattern Interface

Figure 2.4: Sequence Diagram of Flight Enquiry Scenario based on Wrapped Content Pattern

Business Process Web Service Operation Business document

FlightEnquiry
AirAvailRQ() AirAvailRQ.XML

AirAvaiRS () AirAvaiRS.XML

FlightBooking
AirBookRQ () AirBookRQ.XML

AirBookRS () AirBookRS.XML

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

29

Some modification business process documents from OTA such as AirBookChange,

HotelBookChange and CarBookChange use the modificationType value (Listing 2.3). It

indicates changes to the document and “actionType” to specify changes to each

element.

Listing 2.3: ModificationType from OTA

Value Description

1 Cancel entire booking file

2 Cancel partly

3 Name change - correction

4 Name change - new

5 Other

6 Split only

7 Split and update

8 Delete and add name

Listing 2.3 represents the ModificationType Code list derived from the OTA

specification. These Code lists can be used within any modification document such as

airbook, hotelbook, and carbook.

Listing 2.4 below represents the generic operation applied to any modification

document in OTA. These actions give the instructions to the service provider on how to

process the corresponding elements.

Listing 2.4: ActionType from OTA

Value Description

Add-Update Typically used to add an item where it does not exist or to update an item where it does exist.

Add Typically used to add data whether data already exists or otherwise.

Cancel Typically used to cancel an existing item.

Replace Typically used to overlay existing data.

Delete Typically used to remove specified data.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

30

Listing 2.5: Fragment of a Modification of a traveller within an airBookModifyRQ Document [Source:
OTA]

Listing 2.5 shows an example of modification details concerning a passenger in an

airbook document. The “modificationType” is “5” which refers to “other” changes. To

change the “phoneNumber”, “email”, and “address”, the sender must send an action

type “delete” to the old information and send action type “add” with the new

information. More information can also be added by using an action type “add”, for

instance “cusLoyalty” program.

From the above example (Listing 2.5), OTA applies different Code Values (Listing 2.3)

as well as Action Types (Listing 2.4) to an AirBookModify Request Message. OTA

uses these values to indicate to the receiving end on how to deal with these intermittent

elements. This is an illustration of using the command pattern (see Section 2.5) where

commands are passed as parameters for executing instructions. However, OTA’s use of

the Command pattern approach is limited to “modify request” messages and these do

not apply to all messages.

<AirBookModifyRQ ModificationType="5">
 <TravelerInfo>
 <AirTraveler PassengerTypeCode="ADT">
 <PersonName>
 <GivenName>Bertram</GivenName>
 <Surname>King</Surname>
 <NameTitle>Mr</NameTitle>
 </PersonName>
 <Telephone PhoneLocationType="5" PhoneTechType="1" PhoneNumber="043 317 36 75" Operation="Delete" />
 <Telephone PhoneLocationType="5" PhoneTechType="1" PhoneNumber="01 812 00 73" Operation="Add" />
 <Email EmailType="2" Operation="Delete">b.king@eemail.com</Email>
 <Email EmailType="2" Operation="Add">b.king@email.com</Email>
 <Address FormattedInd="false" Type="1" Operation="Delete">
 <AddressLine>Hauptstrasse 37b</AddressLine>

<AddressLine>8302 Kloten</AddressLine>
 <AddressLine>Switzerland</AddressLine>
 </Address>
 <Address FormattedInd="false" Type="1" Operation="Add">
 <AddressLine>Zeltweg 3a</AddressLine>
 <AddressLine>8302 Kloten</AddressLine>
 <AddressLine>Switzerland</AddressLine>
 </Address>
 <CustLoyalty ProgramID="LX" MembershipID="234234343" LoyalLevel="Platinum" Operation="Add"
VendorCode="LX" />
 <TravelerRefNumber RPH="1" />
 </AirTraveler>
 </TravelerInfo>
</AirBookModifyRQ>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

31

2.4.4 XML COMMON BUSINESS LANGUAGE (XCBL)

XML Common Business Language (xCBL) is a set of standard XML business

documents that facilitates global trading in e-commerce and version 4.0 is currently the

latest revision. These documents are designed and built based on the standard UBL

specification, including a common business library such as description of businesses

and individuals, measurements, date, time and codes. The design principle’s aims are to

model the information requirements for business to business, enabling interoperability

and modular composition of XML documents from the standards and reusable building

blocks, and supports a variety of programming models. Apart from some standard

business documents such as orderRequest, AvailabilityCheck, and PriceCheck, xCBL

also supports multiple changes or cancel line items within an orderChange XML

document.

These are a few example XML documents from xCBL. Listing 2.6 shows an item detail

from an original xCBL order document. To send a new order, the sender needs to fill in

every necessary element.

Listing 2.6. Fragment of an item detail within an Order Detail of an original Order Document [Source:
xCBL]

<ItemDetail>
 <BaseItemDetail>
 <LineItemNum>
 <core:BuyerLineItemNum>00011</core:BuyerLineItemNum>
 </LineItemNum>
 <ItemIdentifiers>
 <core:PartNumbers>
 <core:SellerPartNumber>
 <core:PartID>R-3456</core:PartID>
 </core:SellerPartNumber>
 <core:BuyerPartNumber>
 <core:PartID>R-3456</core:PartID>
 </core:BuyerPartNumber>
 </core:PartNumbers>
 </ItemIdentifiers>
 <TotalQuantity>
 <core:QuantityValue>1</core:QuantityValue>
 <core:UnitOfMeasurement>
 <core:UOMCoded>EA</core:UOMCoded>
 </core:UnitOfMeasurement>
 </TotalQuantity>
 </BaseItemDetail>
 <PricingDetail>
 <core:ListOfPrice>
 <core:Price>
 <core:UnitPrice>
 <core:UnitPriceValue>1000.00</core:UnitPriceValue>
 <core:Currency>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

32

 <core:CurrencyCoded>USD</core:CurrencyCoded>
 </core:Currency>
 </core:UnitPrice>
 <core:CalculatedPriceBasisQuantity>
 <core:QuantityValue>1</core:QuantityValue>
 <core:UnitOfMeasurement>
 <core:UOMCoded>EA</core:UOMCoded>
 </core:UnitOfMeasurement>
 </core:CalculatedPriceBasisQuantity>
 </core:Price>
 </core:ListOfPrice>
 <core:LineItemTotal>
 <core:MonetaryAmount>1000.00</core:MonetaryAmount>
 </core:LineItemTotal>
 </PricingDetail>
 <DeliveryDetail>
 <core:ListOfScheduleLine>
 <core:ScheduleLine>
 <core:Quantity>
 <core:QuantityValue>1</core:QuantityValue>
 <core:UnitOfMeasurement>
 <core:UOMCoded>EA</core:UOMCoded>
 </core:UnitOfMeasurement>
 </core:Quantity>
 <core:RequestedDeliveryDate>2001-02-07T00:12:00</core:RequestedDeliveryDate>
 </core:ScheduleLine>
 </core:ListOfScheduleLine>
 </DeliveryDetail>
 <LineItemNote>Item text manually entered</LineItemNote>
 <ListOfStructuredNote>
 </ItemDetail>

Listing 2.7: Fragment of a line item within a ChangeOrder Detail of a ChangeOrder Document [Source:
xCBL]

<ChangeOrderDetail>
 <ListOfChangeOrderItemDetail>
 <ChangeOrderItemDetail>
 <ItemDetailChangeCoded>QuantityIncrease</ItemDetailChangeCoded>
 <OriginalItemDetailWithChanges>
 <BaseItemDetail>

<LineItemNum>
 <core:BuyerLineItemNum>00011</core:BuyerLineItemNum>

 </LineItemNum>
 <TotalQuantity>
 <core:QuantityValue>5</core:QuantityValue>
 <core:UnitOfMeasurement>
 <core:UOMCoded>EA</core:UOMCoded>
 </core:UnitOfMeasurement>
 </TotalQuantity>
 </BaseItemDetail>
 </OriginalItemDetailWithChanges>
 <LineItemNote>Change quantity from 1 to 5.</LineItemNote>
 </ChangeOrderItemDetail>
 </ListOfChangeOrderItemDetail>
</ChangeOrderDetail>

Listing 2.7 is an example demonstrating how to change a line item, where we only need

to specify the BuyerLineItemNum (i.e. 00011), itemDetailChangeCoded (i.e.

QuanityIncrease) and to specify well the reason in LineItemNote (i.e. Change quantity

from 1 to 5). xCBL supported other changes as well such as Price, Quantity, Delivery

Date, Address, Shipping and Replaced. This approach provides flexibility and

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

33

extensibility to the document since the ChangeCoded can be added or deleted without

affecting the business document. Senders can use a generic action “other” in Listing 2.8

to specify any instruction in the “LineItemNote” that does not belong to any of the Code

lists.

xCBL design is another example of using the command pattern (see Section 2.4) to use

parameters as execution instructions. However, this approach still requires multiple

documents such as order, orderChange and orderResponse, and the ChangeCoded lists

(Listing 2.8) are long and complicated. For instance, if a user makes changes to the date

for delivery, the value change code of “ChangeOfDates” will be used in the change

order. The ChangeOrder Document also includes repeated and redundant elements such

as the original order details.

Listing 2.8: Detailed Change code list from xCBL [Source: xCBL]

 <xsd:enumeration value="Other">
 <xsd:enumeration value="AbideOutcomeOfNegotiations">
 <xsd:enumeration value="AddAdditionalItems">
 <xsd:enumeration value="Audited">
 <xsd:enumeration value="BuyerClaimsAgainstInvoice">
 <xsd:enumeration value="BuyerHasDeductedAmount">
 <xsd:enumeration value="CallOffDelivery">
 <xsd:enumeration value="Cancelled">
 <xsd:enumeration value="ChangeOfDates">
 <xsd:enumeration value="ChangeOfDateTerms">
 <xsd:enumeration value="ChangesToItemLevelAllowanceOrCharges">
 <xsd:enumeration value="ChangesToLineItems">
 <xsd:enumeration value="ChangesToTerms">
 <xsd:enumeration value="ChargeBackToSeller">
 <xsd:enumeration value="Closed">
 <xsd:enumeration value="ClosedAfterReopening">
 <xsd:enumeration value="ConditionallyPaid">
 <xsd:enumeration value="CorrectionOfError">
 <xsd:enumeration value="EquipmentProvisionallyRepaired">
 <xsd:enumeration value="ItemDeleted">
 <xsd:enumeration value="ItemNumberChanged">
 <xsd:enumeration value="New">
 <xsd:enumeration value="NoAction">
 <xsd:enumeration value="NoDelivery">
 <xsd:enumeration value="NotPaidPredeterminationPricingOnly">
 <xsd:enumeration value="OnAppeal">
 <xsd:enumeration value="PreviousPaymentDecisionReversed">
 <xsd:enumeration value="PriceChanged">
 <xsd:enumeration value="Proposed">
 <xsd:enumeration value="ProposedAmendment">
 <xsd:enumeration value="QuantityDecrease">
 <xsd:enumeration value="QuantityIncrease">
 <xsd:enumeration value="Reaudited">
 <xsd:enumeration value="Redetermined">
 <xsd:enumeration value="ReferredIemRejected">
 <xsd:enumeration value="ReferredItemAccepted">
 <xsd:enumeration value="Reopened">
 <xsd:enumeration value="ReplaceAllDates">
 <xsd:enumeration value="ReplaceAllValues">
 <xsd:enumeration value="Replaced">
 <xsd:enumeration value="ReplacementItem">

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

34

 <xsd:enumeration value="ReplacementItemWithModifications">
 <xsd:enumeration value="ReplaceModeOfShipment">
 <xsd:enumeration value="Reschedule">
 <xsd:enumeration value="Reschedule-QuantityChange">
 <xsd:enumeration value="Reviewed">
 <xsd:enumeration value="Schedule">
 <xsd:enumeration value="SellerWillIssueACreditNote">
 <xsd:enumeration value="TermsChangedForNewTerms">
 <xsd:enumeration value="TransferItem">
 <xsd:enumeration value="UnitPrice-QuantityChange">
 <xsd:enumeration value="UnitPrice-RescheduleChange">
 <xsd:enumeration value="ChangeToTotalLevelAllowanceOrCharge">
 <xsd:enumeration value="ConcurrentItemNoChange">

2.4.5 GS1 MESSAGES BY GLOBAL LANGUAGE OF BUSINESS

GS1 XML is a set of standard XML business documents designed to allow automatic

electronic transmission of data. GS1 is part of eCom (Electronic business messaging

standards) and is a component of the GS1 System. GS1 XML document consists of

three layers, these being the transport layer, service layer and business layer. The

transport layer contains information for routing and processing of the XML document.

The service layer provides instructions or commands for the receiver to perform the

action on the documents. The business layer contains the business document with all the

required values to fulfil business requirements. The advantages of GS1 XML include a

smaller number of business documents. Different commands can be supported in the

same document. Therefore, instead of published multiple business documents such as

“add order”, “change order” or “delete order”, different commands can be applied to the

order document such as “add”, “change” and “delete”. Furthermore, the same

commands can be reused on different documents and consequently, this means adding

new functionality without affecting existing document definitions. Additional values

can be added to the command lists and used by interested parties only, while others

remain unchanged. Typical commands used in GS1 are add, change by refresh, correct

and delete. For instance, to send a new order (Listing 2.9 - line 1) we need to use the

command “add” along with the order document. To update an order (Listing 2.10), we

need to employ the command “change by refresh” or “correct” with the modified

version of the order document. To cancel an order (Listing 2.11), we are required to

send the command “delete” along with the order document. GS1 also supports batch

processing, which contains multiple commands and multiple transactions.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

35

Listing 2.9: Sample GS1 new order document [Source: GS1]

<documentCommandHeader type="ADD">
 <entityIdentification>
 <uniqueCreatorIdentification>246810N</uniqueCreatorIdentification>
 <contentOwner>
 <gln>8712345678920</gln>
 </contentOwner>
 </entityIdentification>
</documentCommandHeader>
<documentCommandOperand>
 <order:multiShipmentOrder documentStatus="ORIGINAL" creationDateTime="2009-08-07T09:00:00Z">
 <multiShipmentOrderLineItem number="1">
 <requestedQuantity>
 <value>15</value>
 </requestedQuantity>
 <tradeItemIdentification>
 <gtin>88123456798906</gtin>
 </tradeItemIdentification>
 </multiShipmentOrderLineItem>
 <multiShipmentOrderLineItem number="2">
 <requestedQuantity>
 <value>20</value>
 </requestedQuantity>
 <tradeItemIdentification>
 <gtin>88123456798760</gtin>
 </tradeItemIdentification>
 </multiShipmentOrderLineItem>
 </order:multiShipmentOrder>
</documentCommandOperand>

Listing 2.9 represents a new order using GS1 XML with 2 line items. Line item 1

contains 15 and line item 2 contains 20. A new order is represented in the command

header with type = “add” along with all the required information. Listing 2.10

represents an updated order using GS1 XML with 2 line items. This revised update

changes line item 1 to a quantity 10, and keeps the line item 2 as unchanged. A change

order is represented in the command header with type equal to “change by refresh”

along with all the updated information. Basically it means overwriting with the latest

information.

Listing 2.10: Sample GS1 change order document [Source: GS1]

<documentCommandHeader type="CHANGE_BY_REFRESH">
 <entityIdentification>
 <uniqueCreatorIdentification>246820M</uniqueCreatorIdentification>
 <contentOwner>
 <gln>8712345678920</gln>
 </contentOwner>
 </entityIdentification>
</documentCommandHeader>
<documentCommandOperand>
 <order:multiShipmentOrder documentStatus="ORIGINAL" creationDateTime="2009-08-07T09:45:00Z">
 <multiShipmentOrderLineItem number="1">
 <requestedQuantity>
 <value>10</value>
 </requestedQuantity>
 <tradeItemIdentification>
 <gtin>88123456798753</gtin>
 </tradeItemIdentification>
 </multiShipmentOrderLineItem>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

36

 <multiShipmentOrderLineItem number="2">
 <requestedQuantity>
 <value>20</value>
 </requestedQuantity>
 <tradeItemIdentification>
 <gtin>88123456798760</gtin>
 </tradeItemIdentification>
 </multiShipmentOrderLineItem>
 </order:multiShipmentOrder>
</documentCommandOperand>

Listing 2.11 represents a cancel order using GS1 XML with 2 line items. Line item 1

contains 15 and line item 2 contains 20. A cancel order is represented in the command

header with type = “delete” along with all the required information.

Listing 2.11: Sample GS1 cancel order document [Source: GS1]

<documentCommandHeader type="DELETE">
 <entityIdentification>
 <uniqueCreatorIdentification>246830C</uniqueCreatorIdentification>
 <contentOwner>
 <gln>8712345678920</gln>
 </contentOwner>
 </entityIdentification>
</documentCommandHeader>
<documentCommandOperand>
 <order:multiShipmentOrder documentStatus="ORIGINAL" creationDateTime="2009-08-07T09:45:00Z">
 <multiShipmentOrderLineItem number="1">
 <requestedQuantity>
 <value>15</value>
 </requestedQuantity>
 <tradeItemIdentification>
 <gtin>88123456798906</gtin>
 </tradeItemIdentification>
 </multiShipmentOrderLineItem>
 <multiShipmentOrderLineItem number="2">
 <requestedQuantity>
 <value>20</value>
 </requestedQuantity>
 <tradeItemIdentification>
 <gtin>88123456798760</gtin>
 </tradeItemIdentification>
 </multiShipmentOrderLineItem>
 </order:multiShipmentOrder>
</documentCommandOperand>
</eanucc:documentCommand>

From these above examples, we can observe the flexibility when using GS1 documents.

However, the disadvantage of GS1 XML document is that of limited commands and the

fact that it contains redundant elements. For instance to update an order, we are required

to send the revised version of the order document, and to cancel the order we need to

send the entire order document.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

37

2.5 Command Pattern Interface

Other design patterns that were mentioned previously all follow the pattern where one

operation processes a single message (i.e. a one to one relationship between the business

document and its operation, an operation will not process other documents). In contrast

to Command design patterns, this pattern supports processing instructions that are

embedded in the request message. For instance, many operations can be combined into

one operation while producing the same result (i.e. many to one relationship between

the operation and its business document). This will not only provide a simpler unique

interface but also provide extensibility by the action terms. Consequently, we chose to

study the command pattern due to the support of transactional behaviour, its simplicity

and practicality.

Command pattern (Object behaviour pattern) applies to different kinds of controllers

that share a simple common interface, and commands are often referred to as an

“action”. Command pattern can be defined as encapsulating a request as an object,

thereby letting the user parameterise clients with different requests, queue or log

requests and support undoable operations (Erich, 1995). A command in a Command

pattern is a single object that is passed by the client along with the message to the

receiver in order to evaluate the message accordingly.

A command can contain one or more actions in the message. It can be placed and stored

in the queues for invocation, and subsequently be dynamically modified to vary the

receiver or message parameters. Each command has a common interface that contains

the performAction() method. The command object stores the action information and

applies the actual change when the performAction() method is called. This permits a

decoupling of the invoker of the command and the handlers of the command (Crawford

and Kaplan, 2003).

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

38

Figure 2.5: Command Pattern Interface

In Figure 2.5 the Invoker (the user of the interface) can invoke the object (command)

execute() method to use the object’s service. The ConcreteCommand (abstract base

class) is responsible for mapping the action in the object to the receiver (a pointer to an

operation). The Receiver will receive the action and process the operation(). The

command classes were executed remotely in a command executor, located in the

application’s business layer. Therefore the command decouples the objects that invoke

the operation from the one who knows how to execute it. The sequence of command

(combined command) objects can be assembled into composite commands for the

remote call. This utilises the flexibility of the command design pattern and saves as

many remote calls to the business layer as possible.

According to Crawford and Kaplan (2003) the Command pattern has several

advantages. It has inherent reusability, the interface and actions can be reused to execute

similar operations, and they refer to the same object. This also increases reuse of classes

by decoupling the interface from the implementation that provides weak coupling

between clients and systems. This enables a developer to vary the behaviour of a class

independent of its context. The Command pattern interface is highly extensible because

it can employ any action object in the interface. Furthermore, since commands are

passed as objects in the interface, it can be stored in the queues and applied later. It

stores all the data necessary for a particular request. This is a typical example of a

transactional operation, which often consists of various steps. If any step fails or due to

the user cancelling it at any point, it is necessary to roll back any changes that occurred.

Therefore, it supports undoable operations by reversing the command actions and

Invoker

Client

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

39

undoing whatever changes it made. Commands interface also supports run time

association of a request to an object and is known as dynamic binding. Dynamic binding

means that the execution of operations is determined at runtime. Therefore any object

that has the correct interface will accept the request.

Command pattern in Web Services has been addressed and outlined in Java design Web

Service guidelines (Java Blueprint, 2004). In order to have multiple methods for each

document type such as “submitSupplierInvoice”, “submitBillingInfo”, the Web Service

interface has a common method known as “submitDocument” that receives all

document types (Figure 2.6). The receiver will map these documents to the processing

logic that handles them. This means using commands to manage and identify all

schemas of the various document types. Adding a new document is simply adding a

new command to handle the new schema. The interface will not change to

accommodate new document types, only the service implementation changes. This is

because the command mappings are located in the interaction layer instead of the

business layer.

Figure 2.6: Command pattern in Web Service

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

40

Using this approach, we can define additional commands to include some of the

document content only, thus increase the extensibility of the interface. This pattern can

also be used as a centralised manager broker for Web Service interactions to consolidate

their interaction layer. This can consolidate all clients’ incoming and outgoing message

interactions, and route the requests to the appropriate business operations in the

processing layer. Without a centralised manager, a business enterprise may have many

point-to-point interactions with internal and external partners, which results in multiple

remote calls for one transaction.

According to Jakub (2006), applying the command pattern in distributed applications

allows the execution of multiple calls as one bulk call, which can greatly improve

performance by eliminating unnecessary remote calls. However, this Web Service

Command pattern requires maintaining a list of commands or a command class along

with a list of schemas in the repository. No design methodology has been mentioned

regarding how to turn a Web Service into a command pattern interface. The selected

operation “submitDocument” is too general, which ultimately can be applied to any

document.

2.6 Discussion

In this chapter, we have reviewed several e-business document standards and their

design patterns focussing on how the standard business documents are formed, their

common elements library, the operation invocation styles and in particularly on the

extensibility and reusability of the elements and operations. These documents all

promote interoperability by using the UN/CEFACT Core Components-based elements.

The use of “command” or “action” code list in the message allows flexibility and

extendibility. Flexibility is due to multiple different commands being sent and

processed. Extensibility is due to the Code list being added or deleted without affecting

other documents. However, these approaches still contain redundant or repeated

elements (buyer and seller details) and are therefore inefficient and slow.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

41

Based on the research studies in this chapter, several implementations of standard

business documents from BOD, UBL, xCBL and GS1 may be based on different Web

Service interfaces design, different interaction patterns and may have different schemas;

despite carrying out the same business logic (e.g. a purchase order request). For instance

BOD, xCBL and GS1 patterns are integrating process indicators (processing codes) and

business information (the actual message content) in the XML document. Hence these

patterns represent a more robust abstraction interface where processing instructions

(unique change codes) indicate how to handle the message. Unlike UBL and OTA,

which contain no action or processing instruction inside the document, these interfaces

are more focussed on fulfilling the requirement of the business process. Business

applications may require multiple design aspects to suit their requirements. Thus after

finding an appropriate service for integration, a client must study and analyse the

WSDL description in order to understand the interface and data structure, then program

an appropriate module to invoke the service. These studies have shown that most

existing business document design patterns are based on coarse-grained design and

expose the operation through the business process (e.g. request order, change order,

cancel order, response order and etc.), i.e. one operation corresponds to one business

process and consumes one business document (Section 2.4). For instance, is the

“ChangeOrder.xsd”, “CancelOrder.xsd” different to “Order.xsd”? Then there will be a

requirement for three different business processes and three different business

documents to fulfil the goal.

The advantages of a coarse-grained based transaction are two-fold: firstly, it has the

ability to send a complete purchase order that contains multiple items in a single

business document; and secondly, as a consequence of this, instigate a single transaction

process. This is in contrast to multiple fine-grained invocations that process items

individually. However, updating a purchase order that adopts the coarse-grained

approach means sending a revised purchase order that can be processed in two ways:

either by discarding all previous orders and processing with the updated document; or

by finding out the differences in the updated order and processing those differences. In

either case, this will incur difficulty and require unnecessary additional processing.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

42

Based on research studies so far, the difficulty can be overcome by putting a processing

instruction into the document element. By adopting the Command pattern, every object

can be deployed with different actions. As a result, the client is sending clear

instructions to the service provider including only the information that needs to be

processed and avoiding any unnecessary data. Put in other words, the Command pattern

can be utilised in a Web Service design by treating the document as an object and this

document as a collection of different business objects. For example, there could be an

Order.xsd, which is a collection of “order detail” objects, “customer party” objects, and

“order item” objects. The remote “command” interface will become the Web Service

interface. The “ConcreteCommand” interface will become the “action” switching

interface in the session facade. The receiver will receive the “action” and invoke the

business logic accordingly. In this way, defining one operation for each business

document will permit business content for processing to be the focus, in other words

now exposing the operations through the business documents instead of business events.

In other words, instead of advertising a Web Service interface having these operations

on this document, one can say that this Web Service interface can have any operations

on this document.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

43

CHAPTER 3

REVIEW OF EXISTING WEB SERVICE
INTERFACE DESIGN, BUSINESS
DOCUMENT DESIGN AND WEB SERVICE
COMPOSITION DESIGN METHODOLOGIES

In this chapter, in order to study Web Service interface design we discuss several Web

Service interface design methodologies (Section 3.1) through several literature reviews

and especially focusing on Business Document design and Document Engineering,

which are the bases for UBL, documents design (Section 3.2). Web Service composition

(the orchestration sequence between multiple services) allows many e-business partners

to complete a procurement process such as communicating with partners for stock

enquiry services to other partners that handle stock ordering services and to partners that

support the delivery booking services. In Section 3.3, Web Service composition designs

will be examined including the standards and requirements in the Web Service

composition to help further understand what are the elements in the services

composition and how to design a composable service. This will address whether the

proposed interface design method can replace any existing Web Service interfaces or be

composable by other Web Services (i.e. in order to maximise its reusability). Then in

Section 3.4 the current challenges of Web Service design methodology are discussed.

3.1 Existing Web Service interface design methodologies

3.1.1 WEB SERVICE DESIGN BASED ON ELEMENTARY BUSINESS FUNCTION

Feuerlicht (2004) proposed a Web Service interface design method based on

decomposing complex business documents into elementary business functions, and then

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

44

mapping these to Web Service operations. The author argues that the traditional e-

business approaches that rely on the document-centric model often require a large and

complex data structure, which may result in redundant and duplicated data elements.

This design methodology can be utilised to transform a document-centric interface into

a well-designed fine-grained interface resulting in a higher-level of interface

abstraction.

The first step is to identify service operations by decomposing a complex business

function into elementary (Atomic) functions, including identification of input and

output parameters for each operation. This step is similar to maximising the method's

cohesion, for example, in the object-oriented design. This assists the cohesion of a

function since atomic functions represent a single task and cannot be decomposed any

further. The second step is to refine the service interfaces, which aim to minimise

interdependencies between applications and side effects. This step is similar to the

minimisation of method coupling as in the object-oriented programming. The author

applies data normalisation rules to assign the input and output parameters to the

elementary functions. In general, rules 1 and 2 state that output parameters are

determined by input parameters of that function only; the parameters will form a

minimal set of input and output. These rules imply that the parameters are mutually

dependent. Rule 3 defines that output parameters must be fully and functionally

dependent on the input parameter set. The resulting set of output parameters must be

directly generated by the set of input parameters. Applying and following these rules to

refine the service interfaces can lead to maximised encapsulation and minimised method

coupling, thus the removal of any redundant data.

This method helps to transform a document-centric service interface into a well-defined

service-centric interface by following the design framework. The main goal of this

design method is to rely on the principles of maximising method cohesion by: firstly,

decomposing a large business process into smaller fine-grained service operations; and

secondly, minimising method coupling by applying the data normalisation technique.

The author claims that this method follows the standardised service interfaces as in the

API (Application Programming Interfaces) design, and the benefits include: software

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

45

reliability, reusability, extensibility, maintainability and evolution by publishing new

versions of existing interfaces. However, this service interface design method can only

be applied to transform a coarse-grained business process into multiple fine-grained

service interfaces. The outcome leads to more service operations for a given interface

and thus increases the number of RPC calls for a business function. It is difficult to

apply this method to a business document since it is a large coarse-grained message

usually designed to accommodate only single business processes. For example, a

purchaseOrder cannot be decomposed further into smaller fine-grained service

operations.

3.1.2 WEB SERVICE DESIGN BASED ON REQUIREMENT ANALYSIS

Lau and Mylopoulos (2004) proposed a methodology for designing a Web Service

based on Requirement Analysis. Software services are designed by starting with

stakeholder goals, and by analysing these goals in order to define alternative solutions.

The first step is a requirement analysis, which consists of two phases: early

requirements and late requirements analysis.

Early requirements analysis is concerned with understanding the organisational context.

During this type of analysis, developers identify the domain stakeholders and model

them as social actors and identify aims to be achieved. Late requirements analysis is

concerned with defining functional and non-functional requirements. Here the

conceptual model developed earlier is extended to include functional and non-functional

requirements. The next step will be architectural design; this will identify each actor’s

ability along with the actor diagram and assigned skills to each person. Therefore, data

types and activities involved in achieving a system goal can be identified. Actor

capability then transforms into operations to perform specific tasks along with the data

types as inputs and outputs.

This design method is considered to be more generic and customisable, and the

objective is to satisfy the client’s requirements by using this method. Requirement

analysis provides a mechanism to express additional detail regarding Web Service

behaviour; alternative solutions can be determined through analysis to satisfy the goals

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

46

of major stakeholders. This method allows developers to understand the work scope of

each requirement but does not take into consideration the granularity design of the

services.

3.1.3 WEB SERVICE DESIGN BASED ON TRANSACTIONAL SERVICE

This methodology proposed by Schmit (2005) is based on UML, which separates the

four concerns of structure, transactions, workflow and security. This method is intended

to solve the fields of distributed long running transactions. The four concerns can be

modelled by an independent expert using OCL (Object Constraint Language) to

establish a reference between diagrams.

The first layer is a Structural diagram and this method uses the UML state chart diagram

as a modelling tool; only functional aspects are defined in this diagram. The structural

diagram’s elements can be referenced from higher-level diagrams using OCL. The

second layer is a Transactional diagram formed by a UML class diagram. The designer

can use OCL references at this layer to identify locations within the structural diagram

where transactions are started, committed or aborted. The designer describes the

additional constraints using a UML profile for the transactional diagram. A transaction

is depicted as a Business Activity (a long running transaction), or an Atomic transaction

(an ACID transaction) (OASIS, 2007). The transaction diagram includes some features

(Quality of Service – QoS) such as compensation (composable) and timeout;

participating in Web Services and referencing from the start until the end of that

transaction. The third layer is security; the methods propose the inclusion of security

parameters, for example Web Service calls/transactions needing to be encrypted or

signed. The final layer is workflow, which represents the high level view of the

composite Web Services. This layer will consist of reference elements of the structural

and transaction view, and may reference some standard patterns typical of Web

Services.

Following the modelling, a methodology can help the software designer to identify

some common mistakes early in the development phase, which occurs in the following

four areas: Structural, Transactions, Security and Workflow. The author claims that

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

47

using separate diagrams for different design aspects makes the model easier to view,

and different experts can work on the design simultaneously. However, this method

does not cater for reusability and extensibility.

3.1.4 WEB SERVICE DESIGN BASED ON SHAREABLE COMPONENTS

Share Service Approach proposed by Radeka (2003) is a top-down Web Service design

method, which defines shareable component services that can be reused in multiple

enterprise applications. This method allows us to decide how to scope component

services and then create them so that they can be combined and recombined at will to

produce new aggregated services. To do this, multiple contexts must be understood so

that a service is not too particular within the initial context to perform the task in a

different context. The next step suggested by this method requires an understanding of

the business process. In this step, several scenarios are written to describe the needs of

users, what the users want to experience and what is likely to be most important to

them. This will help to identify the touch points where services could be shared across

problem domains without impacting on the schedule. These scenarios are then used to

develop high-level business process models. The models are beginning with a rather

low level in details and are then manipulated to maximise the number of processes that

were reused in all diagrams. This will identify opportunities for shared services. As the

services are defined the business process steps are replaced by the names of the services

and with the information required to flow from service to service. This is the basis for

the beginning of writing the interfaces. The next step in the process is to design the

XML interfaces between the services.

The main objective of this method is to design shareable services that can be used in

multiple contexts. By keeping the overall process general and the documentation simple

rather than focusing on a single context, models are kept in sync with the reality of a

changing environment. However, this method does not cater for extensibility.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

48

3.1.5 WEB SERVICE DESIGN BASED ON DATA CENTRIC APPROACH WITH FACTUAL

DEPENDENCY

Factual Dependency was described by Baghdadi (2005) as a dynamic constraint

between two attributes, X and Y. The concept of factual dependency makes it possible

to aggregate attributes that describe tangible or intangibles elements with respect to

business events. An attribute Y is factually dependent on an attribute X if the attributes

X and Y are concerned with the same Create, Retrieve, Update, Delete (CRUD)

operation, i.e. having the same interface. First, it is necessary to identify business

objects/artefacts as described in the universe of discourse; then define the attributes

from the business objects. All attributes can be combined to form all factual

dependencies. In order to reduce the factual dependency to only what is relevant, this

method utilises the well-known functional dependency to address the relationship of

attributes within a business object with reference to the CRUD operation. For example a

create PurchaseOrder requires id, name, address, balance and payment. Then from these

relationships, one can identify the business event corresponding to the CRUD

operations. A business event is the cause of the attributes’ values. Web Services can be

generated from these business events along with input and output depending on the

operation.

This methodology concentrates on a single business object and from this object, one can

realise the Web Services from the attributes. However, due to the complexity of the

XML Document in B2B interaction, there is generally more than one business object

contained in the document. For instance, it could comprise a flight booking process with

“Flight”, “Traveller”, “Payment”, or business objects, which in turn generate many

redundant factual dependencies for every operation.

3.1.6 GENERIC WEB SERVICE INTERFACE DESIGN METHODOLOGY

In order to extend the functionality of a Web Service, a new version of that service

needs to be released in tandem with the old version to maintain backwards compatibility

with external parties. This incurs additional development costs and time when trying to

maintain multiple versions or introduce adaptors for integration compatibility. Generic

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

49

Web Service as proposed by Vadym (2009) can help add new functionality while

preserving backwards compatibility. This Generic Web Service interface design method

is based on the concept of Generic interface. According to Vadym (2009) Generic Web

Service (GWS) is defined as a Web Service having at least one operation with a relaxed

signature, which reduces operation signature rigidity. Signature rigidity encourages

flexibility when defining the operation signature (input and output parameters).

This method relies on the relaxation in the input and output parameters to dynamically

define the semantics of the operations at the run time rather than being statically defined

at the design stage. In other words, based on a Generic Web Service interface, the

signature and semantics of an operation can vary, depending on the Service calls. As a

consequence of this, a generic operation will contain at least one identity or controlling

parameter that defines or extends its operational semantics. This method can be utilised

to transform a set of operations that perform the same kind of functionality and are

replaced by a generic interface. For instance, instead of exposing several Web Services

operations referring to a data set, one can replace them with a generic interface that

executes the same functionality with one or more identity parameters, which retrieve the

specified result sets. The advantage of GWS is that it adds functionality by extending

the domain of its identity parameters without changing its operation signature. GWS

also benefits from functional aggregations that can replace several fine-grained related

operations with a generic relaxed operation. However, a GWS interface might or might

not support all types of control identity. Invoking the interface with an incompatible

identity might result in unexpected behaviour.

3.1.7 REST STYLE WEB SERVICE DESIGN METHODOLOGY

Traditional e-business Web Service designs are based on SOAP with loose coupling

designs similar to document style; whereas REST (Representational State Transfer)

Services use a uniform interface for the invocation call; therefore, the same interface

can be applied to the different e-business domain to access the resources. However,

REST is not a standard; it is an architectural style, which is similar to World Wide Web

(Rodriguez, 2008). A developer can take this approach and apply it to Web Service

design. This interface contains a fixed set of standardised operations; the operations in

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

50

the interface depict the basic operations needed for requesting information (the get

operation), creating entities (the create operation), updating entities (the put operation)

or deleting entities (the delete operation).

REST is based on URLs (Uniform Resource Locators) and four basic methods are

associated with the content to execute the operation. Simple commands such as: GET,

POST, PUT and DELETE will cover all cases of invocation. As stated by Fielding

(2000), in REST architecture, operations are defined in the messages, and each object is

identified by a URL, which supports the defined standard operations. Furthermore, each

invocation will result in the transfer of a representation of this object (typically in JSON

(Java Script Object Notation), XML or Plain Text). REST Web Services can be either

stateful or stateless. Stateful require the server to maintain the state and control the flow

of the client application while stateless run independently of the server. Clients will

maintain the stage and decide the page flows by themselves. As describe by Fielding

(2000), HATEOAS (Hypermedia As The Engine Of Application Stage) is a constraint

of the REST architecture application. As REST is a resource-driven approach

architecture, all resources (i.e. entities) besides containing the values should also include

its URI in the response. For example, a purchase order will contain a list of items, and

each item should contain a URI in the response to provide clear information on how to

access these resources. A hyperlink of the item will provide a REST action (GET,

REQUEST, PUT, DELETE) request to the item for additional information. As a result,

the REST interface provider can develop it to support unlimited possible extensions to

the client. A server can provide concurrent support of both new and existing interfaces

through the versioned API such as /REST_SERVER/apiv1/poservice and

/REST_SERVER/apiv2/poservice.

According to Costello (2005), in order to design Web Services in the REST style, you

firstly need to identify all the conceptual entities that one wishes to expose as services

(e.g. PurchaseOrder, parts and Customer). Secondly, it is necessary in order to create a

URL for each resource locator. A URL is typically a combination of the “Address”,

“Object” and a “Process ID”. A GET request from this URL will result in a XML

document giving more information about this object and a POST/DELETE command is

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

51

used to manipulate the objects in the document. A URI is usually formatted by “web

domain address/entity/identifier”. Using this document along with the four methods can

change the state of the object by navigating to a different URL. A URI within a

document will enable a client to explore further information related to that entity. The

REST style does not require the client to know any details about the process’s

implementation, but the exchange data formats need to be agreed upon by both parties.

Therefore, a client interface can be reused for all types of processes as long as the data

structure conforms to the server required. Application can access and consume the

service by using the given URL. For example, interfaces to retrieve an Order ID

“ABC123” would be “GET /REST_SERVER/poservice/ABC123”. To delete an

OrderID “ABC123” they would be “DELETE /REST_SERVER/poservice/ABC123”.

REST can provide fine-grained service such as delete an item in a purchase OrderID

“ABC123”; it would be “DELETE /REST_SERVER/poservice/ABC123/item/2”.

REST style helps simplify the Web Service interface and works well in the context of

the Web. However, REST style relying on the four standard methods for invocation for

simpler interfaces, can limit and restrict the service interface description. In contrast to

SOAP standard based Web Services, which clearly provides the WSDL endpoint, the

operations, the schema, the header (sender, receiver, security, encryption) and the error

handling. Most of these pieces of information are neglected in the REST style thus Web

Service clients and providers need to come up with some custom solutions in order to

communicate successfully.

3.1.8 VALUE-BASED SERVICE MODELING AND DESIGN

Weigand (2009) proposed a service design method that starts from a value model and

then identifies the core and enhancing services and possible Web Services based on the

business engineering approach. Weigand (2009) defined the service as a valuable

resource to be processed and exchanged between parties in a value network. A service

must have a goal to modify (i.e. add value to) other resources. To realise a service, the

process must achieve at least the goal of the service. Below are the three steps required

in order to model and identify these services.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

52

Step one is to model the business activities from an economic perspective using e3value

modelling devised by Gordigin (2000). It helps to understand which enterprises and

actors are involved in the exchange of resources. This model defines actors, resources,

value ports and value interfaces. An actor is a business entity such as any party involved

(e.g. client and provider). A resource or value object is the benefit value between the

actors (e.g. purchase order). A value port is the channel in which the actors provide or

receive the resources and the interface is the collection of ports that belong to the same

actor. A value model represents the exchanges or conversions of the resource. The

modelling begins by identifying the focal actor and services needed by that actor. These

services are complementary services, supporting services and core services.

Complementary services (Weigand, 2009) are those that are part of the same service

exchange process and their goals concern the same resources. Supporting services are

services that aim to produce another service. Core services are those that have the goal

of being included in another service.

The second step is to identify more business services based on the value model in step

one. A business service is an economic service provided by an actor to fulfil a

customer’s need, such as enhancing services and coordination services that support the

resource exchanges. Enhancing services are services that add value to another service

such as: firstly, a publication service which provides information about another service

or resource; secondly, an access service that invokes another service; and thirdly, a

management service which aims to maintain or optimise other services (monitoring,

controlling, authorisation and evaluation). Coordination services are used in the

exchange process to ensure the communicating parties in a business relationship are

coordinated and synchronised. The business service identification will produce the

specification of business rules and policies governing the services. The final step is to

identify the software service at the information level and infrastructure level. This can

be done using the top-down approach or the meet-in-the-middle approach.

As noted by the author, the service identification itself is very much a negotiation

process and cannot be logically derived from the e3value model. However, generic

solutions can be applied and their implementation can be based on standard business

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

53

practices. The advantage of the proposed method is the identification of services and

this leads to potential Web Services, and helps to identify additional functional

properties such as security and availability.

3.1.9 MODEL DRIVEN DESIGN OF WEB SERVICE OPERATIONS USING WEB

ENGINEERING PRACTICE

Ruiz and Pelechano (2007) proposed a Web Service design process based on the

Software Process Engineering Metamodel (SPEM) developed by OMG. This design

process follows three disciplines: Requirement elicitation, OO-Method (Object-

oriented-method) and OOWS (Object-oriented-web-solution). Requirement elicitation

creates a requirement model based on an analysis of the user's needs. The requirement

model is based on the concept of task. The operations (the functional requirements of

the system) can be identified from the task diagram. A task diagram is defined for each

party involved, its goal and the user’s activities to achieve these goals. The interaction

between the users and systems are also described for each task. Additional leaf tasks are

derived from the task diagram (i.e. decomposed into subtasks by following structural

refinements). The candidate operations can be identified based on those leaf tasks that

do not participate in a structural relationship and the parent tasks of a structural

relationship.

Operation arguments are detected from the graphical descriptions associated with the

task. Each node in the activity, i.e. a system action or an interaction point, depicts the

achievement or goal of a task. Based on the output and together with the participant

class in the operation, the arguments and its entity can be obtained. Then from the

requirement model, the OO-Method defines the conceptual model of the application

requirement. This step’s output is a conceptual model consisting of class, state,

sequence diagram and functional models. OOWS defines the web interface of the

application based on the conceptual model. These include identifying the users,

navigation and presentation models. User models are identified based on their assigned

role, access permission and associated functions. The operations are identified based on

their authentication, administration and management of user's permission. The

navigation model defines the valid navigation paths for the system. Operations defined

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

54

by the exploration link and sequence link can facilitate retrieving the information based

on the navigation context. Finally there is the presentation model, which comprises the

operations for handling the information paging, ordering criteria and information layout.

The proposed method based on the OO-Method and the OOWS method guide the

developer in the operations defined in the requirement model. After the transformation

process, we can use the tool to generate the WSDL document. However, this model-

driven design does not consider the granularity of the operation. Most of the time, the

operations realised are too fine-grained and this results in a large number of operations

being required for the application.

3.1.10 PRAGMATIC WEB SERVICE DESIGN APPROACH

Millard (2009) presented an agile method known as Service Responsibility and the

Interaction Design Method (SRI-DM) to achieve a pragmatic Web Service design. The

design process is an agile approach, which is iterative and adaptive to changes in

requirements. This methodology includes three parts: a scenario, service profiles and a

sequence diagram. It begins with a scenario that describes a problem and a model using

case diagrams at a high level and a brief narrative description, which explains the roles

of the different actors involved. Service profiles provide the abstract description of

several services that act on the same data model.

Service Responsibility and Collaboration cards (SRCs) are used for modelling the

capability of a service in the case being considered. The service name is on the top of

the card. The left hand side of the card indicates the responsibilities of the service (what

it is and what it does). This is also used for defining the granularity of a service.

Initially, fine-grained services are realised and then subsequent iteration will form a

coarser grained message. The right hand side of the card lists and groups other services

that fulfil the identified responsibilities.

In order to design the SRC a six-step process is involved. The first step is to identify the

verbs in the responsibilities that indicate the operations and nouns, which are the data

models. In the second, it is necessary to group the responsibilities based on their

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

55

operations. Third, move common operations from other SRCs to the collaborations, and

in the fourth, link the responsibilities with the collaboration. In the fifth step, it is

necessary to compare the design with different scenarios and finally re-factor them if

necessary after revisiting SRC and other SRC. A sequence diagram is used to represent

the interactions between different services, which also verifies their service's

responsibility in the previous step. The author notes that this design method only

provides an overview model rather than a detailed process model. It is up to the

developer to turn the SRC responsibilities into a service. All processes need to be

revisited many times until the service interaction and responsibilities are well

understood.

3.1.11 EVOLVING WEB SERVICE INTERFACE DESIGN

Kaminski (2006) discussed the version management problems of the Web Service and

proposed a method based on the Chain of Adapters approach. The requirement for the

proposed interface must be backwards compatibility. Existing clients must continue to

function correctly when the service migrates to a new version. The application must use

a common data store regardless of which version is running. This entails creating a v1

of the interface with namespace v1 from the current interface. When developing v2 of

the interface, an adapter for exchanges between v1 and v2 also has to be created. First,

if there is an additional parameter to an existing operation, the adapter must provide a

default value for this parameter. Second, if the data element is changed, the adapter

must provide the mapping for the translation. Third, if the operation is removed, then

the adapter must implement this method. Fourth and last, if the contract of operation is

changed, the adapter must implement this contract to compensate for the changes.

When a new operation or new optional element is added to the interface, there are no

required changes for the adapter to consider. The adapter is handling for processing the

differences between the new and old versions. Subsequently, if v3 of the interface is

ready for release, then a new adapter has to be created for v2 and v3. Therefore, if the

client is using v1 of the interface, the adapter between v1 and v2 will be processed first,

followed by processing the adapter between v2 and the current interface. Any existing

interfaces and adapters will be fixed or frozen and not configured again to compensate

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

56

for the effect of any downstream adapters. Thus only the new and current adapter needs

to be configured when a new version of the interface is released. These will form a

Chain of Adapters that will support multiple versions of the interface concurrently.

Furthermore, the developer can write an adapter by merging the changes between any

versions to bypass those versions in between (i.e. adapter between v1 and v3 will

bypass v2).

3.2 Business Document Design

3.2.1 WEB SERVICE DESIGN BASED ON DOCUMENT ENGINEERING

Web Service relies on message exchange to fulfil a business goal between two parties.

Therefore, we need to assess current design methods for business documents that refer

to Web Service interface design. One of the most common techniques is the “Document

Engineering approach” which was adopted by OASIS to develop the UBL standard.

This methodology proposed by Glushko (2005) employs documents as a common

interface to retain a clean and stable relationship with the business partner despite some

changes in internal business processes. It is concerned with the semantic components in

the document being exchanged and the information exchanged within and between

enterprises and the techniques for contextualising them for a domain. The author uses

two dimensions of model abstraction and model granularity to define a model matrix,

revealing the relationship between models of processes and models of documents. At

the centre of the model matrix where processes are described as transactions, processes

and documents constitute two parts of the same thing. Process descriptions emphasise

business concerns and determine if ways of doing business are compatible. Document

descriptions emphasise information content and also determine whether business

systems are compatible.

The Document Engineering method requires a set of analysis, assembly and

implementation tasks, and the first step is to understand the context of use. Developers

are required to identify the requirements and the rules. They must start from a high level

in order to understand the main business activity, party and organisation involved. This

task is done by drawing a business use case diagram. The model at this level describes

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

57

the broad context of how documents and processes are utilised. The second step is to

allocate patterns for the Business Process. Patterns are models that are sufficiently

general, adaptable and reusable; Document Engineering emphasises the reuse of

existing specifications or standards. Doing so will reduce costs and risks while

increasing reliability and interoperability. Patterns may be structural, presentational or

content patterns and this is realised by drawing activity diagrams. Within the activity

diagram, operations are identified by any interaction between two parties. The next step

is analysing documents and their components, and after we have realised the operation

or business process, the selected process model or pattern will identify the roles that a

document plays. Analyses of documents will reveal the business rules that govern the

content, structure, presentation, syntax and semantics of the information contained in

them (Data Style Sheet). The component analysis phase starts with the harvesting task.

This identifies the individual semantic components contained in each selected

document. In the component assembly phase, we assemble sets of these information

components into meaningful structures to create a coherent conceptual view known as

the document component model (XSD Schema), using data analysis techniques that

normalise the components into a structure based on their functional dependency. The

fourth step is designing the Document Model; we create models for new types of

documents based on the components, structures and associations that satisfy the context

of use (Document Assembly Model or XML, for instance). Using functional

dependencies to normalise the XML document for designing the logical structure, this

ensures that all data elements in a group are discrete and all members apart from the

primary identifier are functionally independent of one another. The last step will

implement the Model; model-based applications can then be initiated using software

whose generic functionality is made context-specific. This is done by configuring or

extending it to use the context dependent information and behaviour specified in the

model.

With reference to service reusability, the Business Information document must be built

using common building blocks or Core Components. A Core Component is defined as a

building block that contains pieces of business information belonging to a single

concept, for example a person. In order to model the class diagram for business

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

58

information exchange, we must determine the business entities that are affected by the

transaction (e.g. Security Person). Each business entity is described by the information

needed to fulfil the transaction only. The information is built by reusing core

components and putting them into the context of the business transaction. This will

become the Business Information Entity (BIE). Eventually, a business document will

contain many of these BIEs.

The main purpose of Glushko’s method is to focus on analysing and designing

documents that accommodate both partners’ requirements. These documents are

designed to be generic so they can be reused in different business domains, for instance

a Purchase Order. However, we can apply these documents to any e-business

application with a specific context (for example, Purchase Order for Furniture). This

method is approached by reaching a common understanding about how their processes

should be designed, how they can be decomposed into document-based service

components, and the information they exchange with the documents. However, the

author did not specify how to identify the input and output of an operation, nor suggest

how to define the granularity of these operations. Although this approach is widely used

in the industry, the resulting documents are complex and contain redundant elements

(e.g. CancelPurchaseOrder needs to be sent to all parties with purchase order details).

We can extend this to our methodology by adopting these documents and re-

engineering them with the focus on Web Service interface design. This includes, for

example, identifying the atomic operation in the document and adjusting the granularity

for the best result.

3.2.2 WEB SERVICE DESIGN BASED ON UN/CEFACT’S MODELLING METHODOLOGY

(UMM)

An alternative to the Document Engineering method is UMM, which also uses Core

Component to build up business documents. This method proposed by Christian (2005)

was the first design for ebXML but was later extended to Web Service design. UMM

concentrates on the business semantics of a B2B partnership; the goal of UMM is to

capture the commitments made by business partners. UMM consists of four views or

layers. The first layer is the Business Domain View (BDV), which is used to gather

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

59

existing knowledge. It defines business processes in the domain of business problems

and is important to stakeholders, while business processes in this stage are discovered

but not constructed. The second layer is the Business Requirement View (BRV), which

identifies possible business collaborations and harmonises the requirements of different

stakeholders. This outcome of a requirement’s specification for a business collaboration

is shared by stakeholders. From the BDV, we can identify the multiparty collaboration,

and we then decompose it into a binary collaboration (between 2 parties only). From

this binary collaboration, we can decompose it into a business transaction. Business

collaboration is designed by choreography of business state change, which represents

the lifecycle of the business collaboration.

The final layer is the Business Transaction View (BTV), the objective of which is to

ensure that all the identified services realise all the required business processes. This

transforms the requirements into an analysis model; the analysis model defines the

business collaboration protocol, which defines the choreography amongst the business

transaction activities. The choreography (activity graph) is always composed of two

business actions and the data model (class diagram), which represent the document of

information exchanges. Business information is described by views on reusable core

components. This is followed by defined service flows that depict the sequential inter-

component service interaction of a business process, and a defined service composition

depicting the view of the service orchestration. It is expressed as BPEL and WSDL. The

last step is to define the inputs and outputs of these Web Service operations by mapping

the UMM model to XML schemas. There is an optional layer Business Service View

(BSV) that transforms the artefacts of the previous view to show message exchanges

between network components.

This method focuses on analysing and identifying the collaboration between partners.

Through this collaboration, we can define the required business transactions as well as

business documents. This approach tends to be coarse-grained because documents are

defined based on business activity but not on operations.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

60

3.3 Existing Web Service Composition design methodology

Web Service compositions aim to fulfil the requirements of a standard-based

coordinated and collaborative service that support many stakeholders and service

transactions (Hall, 2003). This is an important aspect of making Web Services reusable,

and providing a closer representation of business transactions across the application

domain. Especially in the Global Trade Domain where a purchase order can be sourced

from multiple different vendors (i.e. the need to fulfil an order from different Web

Service providers) and the dispatch might be requiring to contact multiple delivery Web

Service providers for the service. As a result, the study and research of the current Web

Service composition design methodology will allow us to understand whether the

propose interface design method can replace any existing Web Service interfaces or be

composed by other Web Services. One language that aims to consolidate previous

efforts by specifying a composition language is the Business Process Execution

Language (BPEL). BPEL is mostly the result of work undertaken previously by industry

standards to build such specifications, such as from XLANG (Microsoft) and Web

Service Flow Language (WSFL) by IBM. BPEL is recognised as a standard service

composition language by OASIS and has been positioned in a standards stack for

clarification, with the consensus of where it is related to other emerging standards.

BPEL is a specification language that expresses the composition of existing Web

Services. Expressions include how to invoke the external Web Services, and the

execution order of operations and elements. The BPEL models the composition services

as a normal service and can be published for external invocation.

3.3.1 WEB SERVICE COMPOSITION

BPEL combines the efforts of both Web Service Flow Language (WSFL) and XLANG.

BPEL is a XML language for Web Service composition jointly developed by BEA,

IBM, Microsoft, SAP and Siebel. BPEL was approved by OASIS as a standard (Vander,

2003). In BPEL, the composition outcome is called a process and participating services

are called partners. Message exchange or intermediate result passing is referred to as an

activity. BPEL offers the ability to scope activities and specifies fault handlers and

compensation handlers for scopes. A fault handler is executed when an exception arises

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

61

while compensation handlers are triggered due to faults or through activities that force

compensation within a scope.

The requirements for Service Composition are as follows:

i. Connectivity: this requirement describes the possibility of reasoning about input

and output parameters of a Web Service. Milanovic and Malek (2004) claim that

currently, all composition approaches offer service connectivity. Different

approaches have various ways of modelling the connectivity. However, they aim

to map and orchestrate input and output messages between the partner services’

ports. Therefore, with reliable connectivity we can identify which services are

composed.

ii. Non-functional properties: service composition for non-functional properties

should also be considered such as performance, execution time, cost and

security. The author notes that most approaches neglect specification of non-

functional properties such as security, dependability or performance. Currently,

only OWLS (Ontology Web Service Language) lets users define some non-

functional properties. OWLS enables automatic service discovery, invocation,

composition, interoperation and execution monitoring.

iii. Correctness: verification of service composition is required to confirm correct

executions and prevent deadlocks or livelocks. To support correctness in

composition, developers have to translate the business processes into a formal

language such as Pi-calculus, Petri nets or Finite state machine. BPEL and

OWLS only deal with implementation rather than specification, and hence they

cannot verify the level of correctness. Due to some complex systems, in reality

the numbers of inputs, outputs and states are too large; we cannot apply the

model to the whole scenario because translating from WSDL to mathematical

solutions is time-consuming and impractical.

iv. Scalability: since Web Service is a distributed environment, where changes can

occur regularly, thus this is required to be scalable. The approach should

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

62

consider scalability to additional functional and non-functional requirements for

a service composition.

Currently, static Web Service compositions are the most used format in both industry

and academia (Zein and Kermarrec, 2006). They are formed by manually identifying

(i.e. by human assessment) the applicability of a Web Service to a particular problem

domain. The composition is therefore limited to the Web Service encompassed in the

design. Static compositions are represented by known paths; known data representations

and expected results are part of a formal and technical link with the Web Service.

Dynamic Web Service compositions form the basis for discovery and flexibility in Web

Service invocations. Although WSDL details the technical interface and locates a given

service, it does not identify what the service does, what function it performs in order to

fulfil the request, and nor does it suggest what level of service it will provide.

3.3.2 COMPOSITION DESIGN BASED ON UML

According to Gardner (2003) the author describes an approach to specifying business

processes through a subset of the UML profiles (driven by a process class with

attributes and methods). The behaviour of the interacting process classes is shown using

an activity graph. While this approach indicates partnered processes working together, it

is unclear how multiple scenarios of each process would be specified (Woodman et al.,

2004). However, the authors provide examples in UML Sequence Diagrams and

Activity graphs, building requirements in process algebra using pi-Calculus to represent

the concurrent and alternative paths possible in a composite Web Service process.

Additional work, combining model-driven-based approaches such as UML with

processes specified in algebra, have been discussed by Pistore et al (2004). The authors

use an extended version of the TROPOS methodology to capture business requirement

and then generate a BPEL source code from these requirements. The main concern with

this approach is that it appears to represent a single scenario process only.

Another composition method using UML was proposed by Skogen (2004), and this

employs UML as a tool to model Web Service composition and then translate the UML

model into executable WSDL specification. Firstly, we create a preliminary model of

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

63

the new composite service and identify their candidate Web Services. This step obtains

an overview of the composite Web Services and identifies which services are involved.

The preliminary interface will be described in the UML diagram, and the UML activity

model will suggest how the new operation should be composed. We can then search for

the candidate Web Services from the UDDI registry based on the preliminary model for

the matching service criterion. The selected Web Service interface will then be

transformed into UML to identify the actual operation. Activity flow and data flow are

then modelled and transformations are necessary when the data between Web Services

do not match. This step will be repeatedly designed until a final composition is

produced. Then the UML model will be transformed into an executable specification

(XML) and translated to the WSDL interface for publication as a new Web Service.

This method relies on utilising UML as a common integration platform. The UML

composite model can produce a composite Web Service. The author also claims that the

UML is a sufficient model since they can satisfy the five basic patterns for composition,

i.e. sequence, parallel split, synchronisation, exclusive choice and simple merge.

3.3.3 COMPOSITION DESIGN BASED ON FORMAL LANGUAGE

Interface formalisms proposed by Dirk (2005) are used to avoid errors in component-

based system design. Applying this methodology, the developer can check the

compatibility and substitutability of two or more Web Services. The compatibility

checking algorithm verifies that two or more interfaces fulfil each other’s constraints,

whereas the substitutive checking algorithm confirms that a service demands

fewer/higher and fulfils more/less constraints than another service. If two or more

interfaces are compatible, corresponding components work together properly at the run-

time, i.e. the number and types of the parameters of a function call and the function

definition match. Since a Web Service often depends on another Web Service and is

implemented by different vendors, using formal language to specify rules between

interactions can help to check interface compatibility and refinement. For example,

model checking can reduce the burden on testing for system integration and validation.

Interface checking stands a much better chance of succeeding in practice than

implementation checking, as interfaces are usually less complex than the corresponding

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

64

implementations. The author suggests that a good interface design should reveal all

information about a Web Service that is needed to use the service properly, and that the

interface does not reveal more than that.

3.3.4 COMPOSITION DESIGN BASED ON CASE-BASED REASONING

Limthanmaphon (2003) proposed a Case-Based Reasoning (CBR) approach for Web

Service composition. This method aims to solve problems by comparing them to old

ones that were overcome (Leake, 1996). The first step is to identify the service case

base, which is a collection of service cases. A service case is a pre-assembly composite

service. The following step is to retrieve the service case from the client query; each

query is extracted to match the case base in order to find the relationship solution for the

composition service. Together with the constraint and relationship, the service’s

composer then integrates all the allocated services to achieve the intended outcome.

The case-based reasoning technique for Web Service composition can be applied in the

process of service discovery. CBR are the common query results of any two or more

services with the constraint limited. The author claims that there are three main

advantages. First, this method can reduce the cost of composition. Second, these

collaboration services are designed to satisfy the client. Third, it is an efficient service

discovery. Developers need to identify all the possible cases to meet a number of

constraints. The author focuses on describing the relationship between services.

However, he does not define the elements in the service in such a way that they can be

fitted together.

3.3.5 COMPOSITION DESIGN BASED ON ROSETTANET PIPS

Khalaf (2006) proposed a “Template-specialization-implementation” approach for

designing BPEL, based on RosettaNet PIPs. The RosettaNet standard consists of a set of

specifications such as a dictionary, an implementation framework and a Partner

Interface Process (PIP). The first step is to create a template (abstract BPEL) to capture

the message flow pattern of the two parties. This template will show all the

conversations and variables except elements/attributes. The next step is to create a fully

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

65

valid abstract BPEL process from these templates that represents a specialisation of that

pattern. The abstract process will include all partner links, correlation sets, operation

names and variable details. The last step is implementation, which means following on

from the abstract BPEL process to define the process that is customer-dependent, i.e.

different fault handler, different assigned variable, etc. The transformation starts by

mapping partner roles in PIP to <Partner> in BPEL. Correlation sets, operation names

and variable details are also translated and implemented as part of the executable

business process in BPEL.

This bottom-up three-level approach focuses on BPEL designs based on RosettaNet

PIPs. The author claims this method can be generalised to similar environments having

multi-party processes. The advantages include: compatibility can be checked during the

template creation step when using Petri Net or other formal methods; and compliance is

evident between the abstract and executable processes.

3.4 Discussion

We have discussed several Web Service interface designs, along with various Web

Service composition design techniques. And highlighted the importance of identifying

the optimal level of service granularity. While some developers prefer a coarse-grained

approach to minimise Web Service invocation, others prefer a fine-grained strategy to

maximise reusability. Therefore, we need to investigate the correct granularity a service

should reveal for the best results. This is also one of the main objectives of this

research.

Looking at fine-grained Web Service design Feuerlicht (2004) investigated Web Service

designs with an approach based on decomposing and mapping atomic functions to Web

Service operations. These are used to transform any document-centric interface into a

fine-grained service interface. The author focuses on minimising data coupling so that

inter-dependencies and side effects are minimised. This approach can be used for any

web application design within a vertical domain. On the other hand, Radeka (2003) uses

business process decomposition to identify Web Services. This involved creating a

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

66

scenario for each business process to identify a shared service. However, the method

proposed does not address how to identify the service operation, nor suggest the

granularity of a Web Service interface.

The majority of industry developers adopt the document exchange style (UBL,

UN/Cefact, OTA) (Glusko, 2002) due to e-business requiring loose couple operations.

However, this approach as pointed out earlier will contain excessive amounts of data

because these documents contain repeated and redundant elements, i.e. they are self-

described. Furthermore, making changes to and updating any record will eventually

require sending an updated version of that document to accommodate changes. This

approach is inefficient. Since a coarse-grained Web Service contains large document

schema, to simplify the Web Service message (i.e. XML schema), Provost (2002)

describes using the normalising method in relational database design to eliminate

ambiguity, minimise redundancy and facilitate preservation. However, applying this

method on a large scale can be complex and time-consuming.

If all enterprises develop and publish their Web Services only according to their own

business agreements, then enterprises will have programming interfaces that differ from

those of other enterprises even if they conduct the same business. Thus after finding an

appropriate service from the UDDI registry, customers must study and analyse the

WSDL description, which is issued by this publisher. They must also understand the

program interface and data structure, then program an appropriate module to invoke this

Service and treat the response. When switching to the partner’s Web Services,

programmers eventually will have to develop new modules to bind to the new service

interface. Because two individual Web Services are in different data structures and

operation interfaces even though they realise the same business logic, all of this

hampers the adoption of Web Services and flexibility of e-business applications.

Though some new tools can be used to generate the output invocation code from the

WSDL document these tools’ ability is still limited because they do not understand the

interface and parameters precisely without human intervention.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

67

Furthermore, there is much data to be exchanged between e-business partners. These

data such as price, order, specifications, etc., are complex with special data structures

that differ among enterprises. Therefore, partners have to provide many Web Services to

exchange these data in XML format via the SOAP message. However, as long as every

enterprise uses a different data structure to describe its data, for example adopted

different XSD (XML schema definition), for the order document, customers have to

program a special module according to special XSD to treat business data exactly.

Consequently these different data structures form a bottleneck in the composition of

Web Services.

To maximise the reusability of Web Services, we look at the design context for

composition. Currently, BPEL is the worldwide standard for business process

composition. Static Web Service compositions described by Zein (2006) are the most

commonly used, and these compositions are represented by known path and data

structures while dynamic composition forms the basis for discovery and flexibility in

Web Service invocations. Other approaches such as Gardner (2003) specify business

processes and describe the behaviour of the interacting processes using an activity

graph. However, it is unclear how multiple scenarios in each process will be specified.

Conversely, Woodman (2004) suggests building requirements in a process algebra using

Pi Calculus to represent the concurrent and alternative paths possible in a composite

Web Service process.

Another composition method proposed by Brogi (2004) is to map all actions and data

parameters between services in choreography. This approach is used for checking

consistency and preventing deadlocks occurring. When employing formal methods for

compositions, while it is true that we can validate the correctness, it is impractical, time-

consuming and unsuitable from the business perspective. They cannot be applied to a

large-scale enterprise system. Case Base Reasoning proposed by Limthanmaphon

(2003) is designed to satisfy the client’s requirements. However, developers need to

identify all the possible cases to meet a number of constraints. For instance, if the

composition is involved with a large number of services, this will become very

complex. A simpler method approach by Skogen (2004) is to use UML as a tool to

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

68

model the composition interaction and translate this into a Web Service interface.

Consequently, many translation steps are required until the final composition is

achieved.

Interface formalism proposed by Dirk (2005) on the other hand, focuses on checking

compatibility and substitutability of any given service using the formal algorithm. This

interface checking method can reduce the burden on system integration validation and

testing. Khalaf (2006) proposed a “Template-specialization-implementation”

composition approach based on RosettaNet PIPs. This method can be generalised to a

similar environment with multi-party processes, and compatibility can be checked using

the formal method.

If the composition of Web Services only includes the applications within an enterprise

or only covers a limited number of partners, problems regarding composition mentioned

previously may not appear to be as important. However, using the example of a

dynamic supply chain in e-business, a loose coupling is necessary because this kind of

supply chain decomposes or merges frequently. If every change in the supply chain

gives rise to a modification or update the cost of the change is too expensive. Therefore,

the e-business’s information platform is inefficient. To compose Web Services quickly

and cost-effectively, B2B collaboration is a solution based on the standard service

interface. A common business data structure is therefore required.

There are many methodologies for Web Service, interface and composition design. Out

of all the design approaches discussed so far, there seems to be no methodology that

determines the right level of granularity a service interface should reveal. This is an

important factor because an interface with the right granularity will increase the

reusability and extendibility of the Web Services.

In this thesis, we will address the Web Service interface design problem by redefining

the standard business document based on the minimalist service interface. We will

propose a methodology that defines a service interface, which will provide guiding

principles that help identify a consistent set of service interfaces. These in turn can be

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

69

used to compose a complex enterprise service maximising reuse scenarios, avoid

duplication, and make extendibility and flexibility in a service possible. The outcome is

that such a composition of Web Services can be optimised. We realised that if we

design our Web Service interface so that it is reusable and optimal in the first place,

then the composition of a Web Service will be easier to integrate and more practical for

e-business applications. We will discuss the issues and limitations of the current

methodologies in more detail in Chapter 4.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

70

CHAPTER 4

PROPOSED METHODOLOGY

The proposed design methodology is based on the single stateless transaction

mechanism and focuses on the individual message design. For multiple messages

correlation design between document exchanges such as using BPEL composition will

be included as part of the future work described in Section 7.3. We will describe the

concept of the minimalist approach to service interface design and transforming the

business document based on the minimalism concept (Section 4.1). A methodology will

be proposed followed by illustrating the case study using the proposed design method

(Section 4.2). At the end of the chapter (Section 4.3), we will discuss the advantages

and trade-offs of the proposed method compared to the traditional approach.

4.1 Objective

Traditional Web Service designs such as transforming existing applications and

exposing the method based on the Web Service interface does not provide an ideal way

for Web Services reuse and extension (Feuerlicht, 2006). The proposed design

methodology focuses on reusability, extensibility, flexibility and addresses efficiency

concerning a set of Web Service interfaces. It does this by exposing the operation

interfaces that are based on business documents rather than business events. For

instance, if one is treating each business document as a business document object, then

every document can be deleted, updated and contain the response outcome. This can

minimise the number of interfaces, thus leading to easier maintenance (only one single

document is required to handle all related business processes). Now we can externalise a

smaller number of interfaces while providing similar or more aspects of the original

functionality. We addressed the issue of reusability based on generic operation, other

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

71

elements and multi-grained operation (both fine-grained and coarse-grained in the

message). Extensibility is addressed by the notion of the Command pattern interface,

which makes it possible to add or remove commands dynamically. The interface is

more flexible due to one or more commands being put into the message. Finally,

efficiency is addressed by minimalism, which only exposes or sends the required data.

4.1.1 MINIMALIST INTERFACE DESIGN

Minimalism has been defined as reducing the concept or idea to its simplest form.

According to McManus (2005), minimalism helps to reduce the concern for the

redundant message and focuses on what is important. The idea behind the minimal

interface is to design an API that allows the client to do everything they need to do, but

to reduce the capabilities to the smallest reasonable set of methods. Therefore, instead

of exposing several business processes for executing a business document, the

developer can reveal the business document as an interface. It will provide the business

actions through the document itself, thus reducing the number of interfaces required in

the business process while increasing the document’s control flexibility and

extendibility. A Web Service with a large number of operations will not likely be used

effectively. By keeping a small and focused set of methods, this will make it easier for

clients to find out what the document is and what it can do.

4.1.2 METHODOLOGY

The UBL business documents have been designed to an industry specific standard; there

is no requirement to redefine these UBL elements. The existing elements and their

structure can be used to redefine the business documents with the proposed design

method. The objective is to increase reusability, flexibility and minimise the number of

interfaces by assigning “Processing Instruction” into the available elements within the

business document. This is covered in the following three-step design discussed below.

Step 1: Identifying Action Type

In order to reduce the number of interfaces, this method will put the processing

instruction into the document and present it as an element. For every industry standard

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

72

business document, it is necessary to first identify the actions supported for each

document as well as elements in it. Business actions are verbs that are associated with

the business event, and can be a simple “CRUD” action, i.e. Create, Retrieve, Update

and Delete, or “Transfer”, “Response”, “Activate” and “Synchronise”. There is no

restriction on the number of actions a document can use. Then for every element in the

business document, the developer will identify the “Action” type against each element,

i.e. this will determine which element will support the action. Furthermore, the

developer can define multiple actions as part of an element.

Step 2: Identifying Web Service operations within a Web Service interface

Step 1 will produce a matrix of “Actions” against “Elements” within a business

document, which means the document can now support multiple business events.

Therefore, instead of exposing several operations to individual events, the developer

only exposes one operation to the “Invoke” call, and one operation to the “Response”

call. When using a generic verb, i.e. “Process” or “Response”, this is followed by the

document name as an operation name to cover all the identified business events relating

to that document.

Step 3: Defining the XSD Schema

Since there are multiple action types in one document, the “Choice” structure schema

can be used to integrate all action-specific elements. The root element, however, only

supports one action at a time (i.e. depending on which “Action” is being undertaken)

and the developer only uses one specific element from the “Choice”. Then for every sub

element that supports the action, the developer will add an attribute “Action” as a

processing instruction. Depending on the sub element, there could be more than one

action that is supported in the same message.

4.1.3 CASE STUDY

Since this thesis focuses on Web Service interface-based application, the case study will

use “Fulfilment” business documents from UBL to demonstrate current design

limitations. UBL is the product of an international effort to define a royalty-free library

of standard electronic XML business documents. This standard was developed based on

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

73

Document Engineering (Glusko, 2005) and uses Core Component to generate data

elements. Currently, UBL version 2 is the latest version of this product.

Figure 4.1 Traditional UBL Ordering Service Interface

This scenario (Figure 4.1) indicates that a Buyer Party can place an “Order” document

and wait for a response from the Seller Party, which can be “Accept” or “Reject”. Then

the Buyer Party can change the “Order” and wait for a response from the Seller Party

again.

There are five different messages corresponding to five different operation interfaces to

fulfil an “Order” Business Process.

Listing 4.1 Traditional UBL OrderRequest Schema

<xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ID" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerCustomerParty" type="CustomerParty" />
 <xs:element name="OrderDetail" type="OrderLine" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

74

Listing 4.2 Traditional UBL OrderChange Schema

Listing 4.3 Traditional UBL OrderCancel Schema

Listing 4.4 Traditional UBL OrderResponseSimple Schema

<xs:element name="OrderChange">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="OrderReference" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
 <xs:element name="SequenceNumberID" type="xs:string" />
 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerCustomerParty" type="CustomerParty" />
 <xs:element name="OrderDetail" type="OrderLine" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name="OrderCancel">
 <xs:complexType>
 <xs:sequence>

<xs:element name="ID" type="xs:string" />
 <xs:element name="OrderReference" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
 <xs:element name=" CancellationNote" type="xs:string" />
 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerCustomerParty" type="CustomerParty" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name="OrderResponseSimple">
 <xs:complexType>
 <xs:sequence>

<xs:element name="ID" type="xs:string" />
 <xs:element name="OrderReference" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
<xs:element name="AcceptedIndicator" type="xs:string" />

 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerCustomerParty" type="CustomerParty" />
 </xs:sequence>

</xs:complexType>
 </xs:element>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

75

Listing 4.5 Traditional UBL OrderResponse Schema

Because of the nature of business documents, every business process will contain a

corresponding document. For instance, if the client needs to change an Order item

inside an order, ultimately, the client will need to send an updated version of the

OrderChange.XML document, which contains everything including the original Order

document with the change. This approach is ineffective because the transmitted

document is large, complex, and redundant in that it contains many optional and

repeated elements. Developing these Web Services is time-consuming and the standards

organisation must make considerable effort to define the standard business document.

This approach is inefficient and hard to maintain. Furthermore, if the business document

is upgraded to a new version, all the related Web Services eventually will have to be re-

developed. Consequently, composition between services will become a difficult task.

4.2 Design with proposed solution

Step 1: Identifying Action Type

In this case using UBL, the Order document support actions are as follows: New,

Change, Cancel and Response. To make things simple the case study only considers the

core elements in the document, i.e. those that are not optional.

<xs:element name="OrderResponse">
 <xs:complexType>
 <xs:sequence>

<xs:element name="ID" type="xs:string" />
 <xs:element name="OrderReference" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerCustomerParty" type="CustomerParty" />
 <xs:element name="OrderDetail" type="OrderLine" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

76

Table 4.1 Example core element schemas from UBL

Table 4.2 Action Type for Order document with required elements

From Table 4.2, the developer can create a “New” order using all required elements;

this business document also supports “Update”, “Delete” and “Response” Order through

selected elements. In particular, only the sub element “OrderLine” supports the

“Update” and “Delete” actions. This means a client can perform “Update” and “Delete”

on any specific “OrderLine”. The element “AcceptedIndicator” is supported only in the

action marked “Response”.

Step 2: Identifying Web Service operations within a Web Service interface

Now that the method treating all actions support are in one business document, i.e.

“Order.XML”, the developer has to define the operations based on “Request and

Response” structure, where “Create”, “Change”, and “Cancel” Order are defined as

“ProcessOrder”. This only exposes one operation instead of three separate ones. The

second operation is “ResponseOrder”.

Order.xsd OrderChange.xs
d

OrderCancel.xsd OrderResponse-
Simple.xsd

OrderResponse.xs
d

Sequence-
NumberID

ID ID ID

ID Order-Reference Order-Reference Order-Reference Order-Reference

IssueDate IssueDate IssueDate IssueDate IssueDate

BuyerCustomer
-Party

BuyerCustomer-
Party

BuyerCustomer-
Party

BuyerCustomer-
Party

BuyerCustomer-
Party

SellerSupplier-
Party

SellerSupplier-
Party

SellerSupplier-
Party

SellerSupplier-
Party

SellerSupplierParty

OrderLine OrderLine CancellationNote
Accepted-
Indicator

OrderLine

 Action Type
Element New Update Delete Response
*Order (root) X X X X
ID X
IssueDate X
BuyerCustomerParty X
SellerSupplierParty X
OrderLine X X X
AcceptedIndicator X

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

77

Table 4.3 Summary of the PurchaseOrder Web Service interface

Step 3: Defining the XSD Schema

The developer used “Choice” structure schema to integrate all action-specific elements,

which only support one action at a time, i.e. depending on which “Action”, use only one

specific element from the “Choice”. In the case of the Cancel Order, the client only

needs “ID” and “Action” elements. Now the method can incorporate all three of the

schemas into one schema. The operation invoked will depend on the action type (New,

Update, Delete and Response). Since all elements are designed for a specific task,

clients only send the necessary data between the Services.

Listing 4.6 Proposed Order.xsd Schema

Listing 4.6 is the top level of the order schema, and this approach relies on the common

interface (i.e. ProcessOrder ()) to process multiple business events that correspond to a

business document. Details of the sub elements are reviewed in Figure 4.2. The

proposed Order schema now contains: new order, change order, cancel order and

response order elements. Therefore, the client only needs to send the required elements

Web Service Interface

Business Function

Web Service
Operation

Business
Document

PurchaseOrder.wsdl

CreateOrder()

ProcessOrder()
Order.XML

ChangeOrder()

CancelOrder()

ResponseOrder() ResponseOrder()

<xs:element name="Order">
<xs:complexType>
 <xs:choice>
 <xs:element minOccurs="0" name="NewOrder" type="NewOrderType" />
 <xs:element minOccurs="0" name="ChangeOrder" type="ChangeOrderType" />
 <xs:element minOccurs="0" name="ResponseOrder" type="ResponseOrderType" />
 </xs:choice>

<xs:attribute name="ID" type=" xs:string " use="required" />
 <xs:attribute name="Action" type="ActionType" use="required" />
</xs:complexType>
</xs:element>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

78

for a business event. Messages are processed corresponding to the “Action” element,

which will increase flexibility and reduce redundancy.

Figure 4.2 Proposed Order.xsd Schema

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

79

Sending a new Order business document (Listing 4.7) is the same as the traditional UBL

Order document except it now includes the element “Action”.

Listing 4.7 Generated new order “Order.XML” with proposed method

<order ID="0001" Action="New">
<NewOrder>
 <IssueDate>2008-12-01</IssueDate>
 <BuyerCustomerParty>
 <Name>Name1</Name>
 <Address>Address1</Address>
 <Contact>Contact1</Contact>
 </BuyerCustomerParty>
 <SellerSupplierParty>
 <Name>Name2</Name>
 <Address>Address2</Address>

<Contact>Contact2</Contact>
 </SellerSupplierParty>
 <OrderLine Action="New">
 <OrderLineNumber>01</OrderLineNumber>
 <Item>
 <ItemID>001</ItemID>
 <Description>Book</Description>
 <Price>99.99</Price>
 </Item>
 <Quantity>1</Quantity>
 </OrderLine>
</NewOrder>

</order>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

80

To send an “OrderChange.XML” to execute the change and cancel an OrderLine from

an Order at the same time, this XML will become Listing 4.8 which is shown below:

Listing 4.8 Generated Order.XML support multiple actions

The message is now more flexible to work with and consequently; there is minimal

requirement for resubmitting the XML data. To send an order change (Listing 4.9) to

change an OrderLine from the above Order, note that now it is necessary only to send

the updated information instead of the complete XML document again

Listing 4.9 Generated update order “Order.XML” with proposed method

<order ID="0001" Action="Update">
<ChangeOrder>

 <OrderLine Action="Update">
 <OrderLineNumber>01</OrderLineNumber>
 <Item>
 <ItemID>002</ItemID>
 <Description>Pen</Description>
 <Price>9.99</Price>
 </Item>
 <Quantity>1</Quantity>
 </OrderLine>
<OrderLine Action="Cancel">
 <OrderLineNumber>02</OrderLineNumber>
 <Item>
 <ItemID>001</ItemID>
 <Description>Book</Description>
 <Price>99.99</Price>
 </Item>
 <Quantity>1</Quantity>
 </OrderLine>

</ChangeOrder>
</order>

<order ID="0001" Action="Update">
<ChangeOrder>

 <OrderLine Action="Update">
 <OrderLineNumber>01</OrderLineNumber>
 <Item>

<ItemID>002</ItemID>
 <Description>Pen</Description>
 <Price>9.99</Price>
 </Item>
 <Quantity>1</Quantity>
 </OrderLine>

</ChangeOrder>
</order>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

81

To cancel an Order the document only requires an identifier and an action (Listing

4.10).

Listing 4.10 Generated cancel order “Order.XML” with proposed method

Similar to Cancel Order, Response Order document (Listing 4.11) is very simple in that

it only requires an element ResponseOrder.

Listing 4.11 Generated response order “Order.XML” with proposed method

Interaction result:

Figure 4.3 Proposed Service Interface

<order ID="0001" Action="Cancel">
</order>

<order ID="0001" Action="Response">
<ResponseOrder>

<AcceptedIndicator>true</AcceptedIndicator>
</ResponseOrder>

</order>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

82

The proposed service interface (Figure 4.3) combines the three business functions into

one Web Service operation and an OrderResponse operation. Both operations process

the Order.XML. Therefore, according to the “Action” element, the system will

determine which business functions are to be processed.

4.3 Advantages and Disadvantages

There are some advantages and disadvantages of using this approach, which are

identified and discussed below (see examples and discussions in Chapter 6 (Section 6.2

and Section 6.3) for further details).

4.3.1 ADVANTAGES

Reusability

Reusability has been considered and addressed in the proposed methodology. First, the

operation interface can be reused in many different contexts since it is designed based

on a generic interface and adopting Core Component elements. Second, the proposed

multi-grained operation is more reusable because it can now process the fine-grained

(changeOrderLine – greater chance for reuse) and coarse-grained messages

(changeOrder – reuse of changeOrderLine).

Minimalistic Design

The minimalist approach helps reduce the number of interfaces and elements to their

simplest form. Minimising the amount of redundant data sent in the document achieves

better throughput. Furthermore, the minimalist approach helps simplify the interaction

result and minimises the impact due to the interface change that occurs.

Extensibility

Based on the Command pattern interface design, extensibility can be achieved by

adding new actions in the business document. The operation interface is unchanged

while adding or removing functionality. In contrast to the traditional approach, adding

another function means creating a new operation in the new business document.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

83

Flexibility

Flexibility is achieved by allowing multiple actions inside a business document. For

instance, “update” and “cancel” actions can be put in the same changeOrder document

to “update” and “cancel” any orderLine. This feature further enhances the efficiency of

the sending document.

Maintainability

E-business application design with minimalist features will result in a smaller number

of interfaces and fewer business documents, thus making them more manageable.

4.3.2 DISADVANTAGES

Longer Time to Implement

Developers need to understand the structure of the schema as well as the interface

before they can adapt their program to the interface since it contains the element

“Action” besides business content. Hence, this approach can take longer for the

developer to create as an e-business application.

Re-develop Existing Application

Traditional e-business applications are exposed interfaces using business events.

Existing architecture might not accept this proposed design message format. This

scenario may require the developer to re-develop existing codes to process these

documents.

Increase Complexity

This design approach reduces the number of interfaces by focusing on message design.

The output messages will carry both business contents and processing instructions.

Hence the complexity of the document will increase due to multiple actions within a

document. Furthermore, there may be the possibility of sending incorrect actions for

processing.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

84

4.4 Discussion

The proposed service interface in Figure 4.3 follows the service-orientation design

principles. These principles are discussed further in Section 6.3. The operation

“ProcessOrder” is more reusable since it is handling multiple actions within a document

compared to traditional operations: “OrderRequest”, “ChangeOrder” and “CancelOrder”

where each operation represents a business event. It was also designed with abstraction

in mind since the operation interface is now more generic and can handle multiple

actions within a document.

It can be reused for invoking multiple actions as well as other service calls in relation to

an “order” business entity. Users can place a new order, change the order or cancel the

order using the same “ProcessOrder” operation. The proposed interface can process

fine-grained (i.e. single item) or coarse-grained (i.e. multiple items); this can maximise

the reusability of the operation and make it ready for composition. Following the

minimalist design approach can reduce the number of interfaces and elements to their

simplest form. Reducing the number of interfaces not only helps simplify the

interaction, but also keeps the interface stable if any change occurs due to the generic

service operation. Thus the developer only needs to focus on the required schema design

based on the provided business document and to adapt their program to the service

interface.

The redefined business document also takes interoperability into account. The existing

elements and the UBL structure can be used to redefine the business document with the

proposed design method. The method relies on the UBL core components with the

addition of an “action” attribute in order to simplify the service interaction. This re-

engineered business document can be communicated with the existing service by

employing a process-switching layer.

The minimalist service operations encapsulate process action and data from a single

business entity (i.e. Order) to ensure the interface’s stability. Exchanging of these

business documents relies on the process-switching operation. This can imply control

coupling between the service calls. Even though control coupling has a higher coupling

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

85

level than data coupling and stamp coupling since it contains a control parameter, it is

still considered to be normal coupling and is therefore acceptable (Vinoski, 2005). This

will also have a minimal impact on reusability since all service operations are stateless,

and the messages’ sequences are governed by the document identifier. The proposed

operation can handle both “update” and “cancel” of its elements. It conforms to the

atomic operation design, where the user can perform single or multiple actions

depending on usage.

Business suitability is also considered in this methodology. With extensibility, new

actions can be added to the business document while keeping the interface unchanged.

Changes are only made through the selected element of a document. This is comparable

to existing business document designs where updating documents requires a major

revision since changed elements in a document might affect several other documents.

Secondly, flexibility is achieved; different actions can be incorporated into a single

message, greatly enhancing the efficiency of the message. Thirdly and finally, the issue

of maintenance is addressed. There are many business documents as well as the

interface in any domain-specific e-business applications; hence managing them

becomes difficult. This approach helps to reduce the number of documents and

interfaces, making the interface easier to manage.

Web Service interface is similar to the procedural method where the API is externalised

for invocation. Therefore, existing principles applied to API design can be utilised as a

reference for Web Service interface design. The most common principle is concerned

with interdependence, such as coupling and cohesion. Coupling is concerned with the

level of dependence between two modules, while cohesion is concerned with the

relationship between internal modules. The principle suggests that reducing coupling

while increasing cohesion can help software achieve higher reusability. In this research,

we only consider normal coupling since this is acceptable for software design (Vinoski,

2005). Normal coupling consists of three types. The first form is data coupling where

individual data elements are passed, which is similar to RPC. The second form is stamp

coupling where the data structure is passed, therefore value, format and organisation

must be matched, and this type is similar to Document Style. The third form is control

coupling where one component passes parameters to control the activity of another

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

86

component, which is similar to the proposed method. Control coupling has a higher

coupling level than data coupling and stamp coupling since it contains a control

parameter. However, it is still considered to be acceptable coupling (Vinoski, 2005).

This thesis employs minimalism to help reduce the number of interfaces and to use

fewer business documents to arrive at the Web Service interface design. There are some

disadvantages in employing this method approach, in that developers need to

understand the schemas as well as the interfaces before integrating them with their web

application. It is also possible that developers need to re-develop existing applications to

accept the messages. However, the ability to process multiple actions and reduce

redundancy is more efficient for communicating between services, especially in

domain-specific e-business applications where documents are large and complex.

Furthermore, the composition of Web Services is now simplified since fewer interfaces

are needed to start with. Another notable feature is extensibility where changing the

business document now will not affect the composition pattern because the client is still

using the same interface. By treating the document as an object, the developer can

provide it with more functionality while minimising the interface by putting “Processing

Instruction” into the business document. Lastly, the developer only maintains a smaller

number of business documents for multiple business processes.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

87

CHAPTER 5

IMPLEMENTATION

The previous chapter described and illustrated the proposed Web Service interface

design methodology using a simple case study involving the UBL Ordering fulfilment

specification document. In this chapter, we will illustrate the implementation of the

proposed design methodology through a larger case study (Section 5.1), i.e. designing a

Web Service interface for a purchase order business process from the UBL business

document specification. We first describe and outline the specification requirements for

the case study. In Section 5.2 we will outline the implementation details; the prototype

application is designed using a three-tier architecture with the bottom tier being the

database server using MySQL, while mid-tier is the business logic written in Java which

handles all the purchase ordering processes. The top tier is the GUI (Graphic User

Interface), which accepts and displays the messages.

5.1 Implementing Case Study

Ordering is a process that creates a contract business document between the Seller Party

and Buyer Party, which is summarised in Table 5.1. Document types in these processes

are Order, Order Response, Order Response Simple, Order Change and Order

Cancellation.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

88

Table 5.1 Summary of the Ordering business process

Buyer’s Business Process Seller’s Business Process UBL Document

Place Order Receive Order Order

Receive Response Reject Order Order Response Simple

Order Response

Receive Response Add Detail Order Response

Receive Response Accept Order Order Response Simple

Order Response

Change Order Change Order Order Change

Cancel Order Cancel Order Order Cancellation

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

89

Figure 5.1 Fulfilment Case Study (Source: UBL)

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

90

5.1.1 INDIVIDUAL BUSINESS PROCESS AND REQUIREMENT

From the Fulfilment’s UML diagram (Figure 5.1) above, we will describe several basic

scenarios and requirements of order fulfilment.

Ordering Process:

The Order may specify allowance and charge instructions that identify the type of

charge and who pays which charges. The Order may be placed on an account or

credit/debit card account. The Order allows for an overall currency defining a default

for all pricing and also a specific currency to be used for invoicing. Within an Order,

additional currencies may be specified both for individual item pricing and for any

allowances or charges. Refer to Appendix 14 for complete UBL PurchaseOrder xml

message.

-Trade discount may be specified at the Order level. The Buyer may not know

the trade discount, in which case it is not specified.

 -The Order may provide multiple Order Lines.

 -The Order may specify delivery terms, while the Order Line may provide

instructions for delivery.

 -The Buyer may indicate potential alternatives that are acceptable.

Listing 5.1 Place Order (Order.xsd)

 <xs:element name="Order">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ID" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerSupplierParty" type="SupplierParty" />
 <xs:element name="OrderDetail" type="OrderLine" />

</xs:sequence>
 </xs:complexType>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

91

Listing 5.2 Order example

The Order Response Simple is the means by which the Seller confirms receipt of the

Order from the Buyer, indicating either commitment to fulfil the Order without

changing or rejecting the Order. Refer to Appendix 15 for the complete UBL

OrderReponse xml message

Listing 5.3 Reject Order (Order Response Simple.xsd) and Accept Order (Order Response Simple.xsd)

Listing 5.4 Reject OrderResponseSimple example

<xs:element name="OrderResponseSimple">
 <xs:complexType>
 <xs:sequence>

<xs:element name="ID" type="xs:string" />
 <xs:element name="OrderReference" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
<xs:element name="AcceptedIndicator" type="xs:string" />

 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerSupplierParty" type="SupplierParty" />
 </xs:sequence>
 </xs:complexType>

<OrderResponseSimple >
<cbc:ID>65830</cbc:ID>
<cbc:IssueDate>2011-04-02</cbc:IssueDate>
<cbc:AcceptedIndicator>false</cbc:AcceptedIndicator>
<cbc:RejectionNote>Out of Stock</cbc:RejectionNote>
+ <cac:OrderReference />
+ <cac:Signature />
+ <cac:SellerSupplierParty />
+ <cac:BuyerCustomerParty />
+ <cac:AccountingSupplierParty />
+ <cac:AccountingCustomerParty />
</OrderResponseSimple>

<Order >
<cbc:ID>65830</cbc:ID>
<cbc:IssueDate>2011-11-01</cbc:IssueDate>
+ <cac:BuyerCustomerParty />
+ <cac:SellerSupplierParty />
+ <cac:OrderLine />
</Order>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

92

The Order Response proposes to replace the original Order. It reflects the entire new

state of an order transaction. It is also the means by which the Seller confirms or

supplies Order-related details to the Buyer who was not available to, or specified by the

Buyer at the time of ordering.

Listing 5.5 Reject Order (Order Response.xsd) and Add Detail (Order Response.xsd) and Accept Order

(Order Response.xsd) - with modified detail

Listing 5.6 Reject OrderResponse example

The Buyer may change an established Order in two ways, subject to the legal contract or

trading partner agreement: first, by sending an Order Change; or second, by sending an

Order Cancellation followed by a new, complete replacement Order.

An Order Change reflects the entire current state of an order transaction. Buyers may

initiate a change to a previously accepted order for various reasons, such as changing

ordered items, quantity, delivery date and ship-to address. Suppliers may accept or

reject the Order Change using either Order Response or Order Response Simple. Refer

to Appendix 16 for complete UBL OrderChange xml message.

<xs:element name="OrderResponse">
 <xs:complexType>
 <xs:sequence>

<xs:element name="ID" type="xs:string" />
 <xs:element name="OrderReference" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerSupplierParty" type="SupplierParty" />
 <xs:element name="OrderDetail" type="OrderLine" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

<OrderResponse >
<cbc:ID>65830</cbc:ID>
<cbc:IssueDate>2011-04-01</cbc:IssueDate>
+ <cac:OrderReference />
+ <cac:SellerSupplierParty />
+ <cac:BuyerCustomerParty />
+ <cac:OrderLine />
</OrderResponse>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

93

Listing 5.7 Change Order (OrderChange.xsd)

Listing 5.8 OrderChange example

At any point in the process a Buyer may cancel an established order transaction using

the Order Cancellation document. Refer to Appendix 17 for the complete UBL

OrderCancellation xml message

Listing 5.9 Cancel Order (OrderCancellation.xsd)

Listing 5.10 OrderCancellation example

<xs:element name="OrderChange">
 <xs:complexType>
 <xs:sequence>

<xs:element name="OrderReference" type="xs:string" />
<xs:element name="IssueDate" type="xs:date" />

 <xs:element name="SequenceNumberID" type="xs:string" />
 <xs:element name="BuyerCustomerParty" type="CustomerParty" />
 <xs:element name="SellerCustomerParty" type="SupplierParty" />
 <xs:element name="OrderDetail" type="OrderLine" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<xs:element name="OrderCancel">
 <xs:complexType>
 <xs:sequence>

<xs:element name="ID" type="xs:string" />
 <xs:element name="OrderReference" type="xs:string" />

<xs:element name="IssueDate" type="xs:date" />
 <xs:element name=" CancellationNote" type="xs:string" />
 <xs:element name="BuyerCustomerParty" type="CustomerParty" />

<xs:element name="SellerSupplierParty" type="SupplierParty" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

<OrderChange>
<cbc:ID>65830</cbc:ID>
<cbc:IssueDate>2011-04-10</cbc:IssueDate>
<cbc:SequenceNumberID>01</cbc:SequenceNumberID>
+ <cac:OrderReference />
+ <cac:BuyerCustomerParty />
+ <cac:SellerSupplierParty />
+ <cac:OrderLine />
</OrderChange>

<OrderCancel>
<cbc:ID>65830</cbc:ID>
<cbc:IssueDate>2011-04-01</cbc:IssueDate>
<cbc:CancellationNote>Out of Stock</cbc:CancellationNote>
+ <cac:OrderReference />
+ <cac:BuyerCustomerParty />
+ <cac:SellerSupplierParty />
</OrderCancel>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

94

5.1.2 PROPOSED ORDERING PROCESS

Figure 5.2 Proposed Ordering use case diagram

Figure 5.3 Sequence diagram of proposed use case

Web Service Interface

ProcessOrder(Order.xml)

ResponseOrder(Order.xml)

NewOrder

ChangeOrder

CancelOrder

Top Package::Buyer

OrderAction

Top Package::Seller

CancelOrder NewOrder ChangeOrder

DespatchOrder

ReceiveResponse

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

95

5.2 Implementation Detail

5.2.1 SYSTEM ARCHITECTURE

The application prototype is developed based on three-tier architecture (Figure 5.4) for

scalability. The bottom tier is the database server, which stores all the required data for

the order processing (refer to Section 5.2.2). The middle tier is the application server,

which processes the request and produces the response Web Service message. This tier

contained all the business logic on how to process an order, whether to accept or reject

an order and is also responsible for error handling (refer to Section 5.2.3). The top tier is

the graphic user interface; this tier is responsible for the interaction between the user

and application, accepting the user input SOAP message and displaying the server

response message (refer to Section 5.2.4).

Figure 5.4 Prototype System Architecture

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

96

5.2.2 DATABASE SYSTEM

MySQL Server 5.0 is utilised as our main database server. Database tables and elements

are created based on the process Order Fulfilment from UBL. The script used to create

the tables is documented in Appendix 1. The following entity relationship diagram

(Figure 5.5) outlines the entities’ details and their relationship.

Figure 5.5 Database Table Diagram

5.2.3 APPLICATION SERVER SYSTEM

We use Netbean 6.8 to develop the prototype application and Glassfish server to run our

Java Enterprise Edition and Web Service application. The following is the class diagram

of the case study (Figure 5.6), while the data structure and class diagram will be the

same for UBL and the proposed process. Since we are only working on the remote

interface, our system has been design based on transactional interaction; each remote

call will be a transaction. Any unsuccessful calls will be terminated and rolled back. See

Appendix 2 for more information about the individual method call.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

97

Figure 5.6 Overall Class Diagram of the Case Study

5.2.4 APPLICATION PROTOTYPE

Figures 5.7 - 5.10 represent the demo prototype of the Web Service invoking an

interface. The left panel represents the service request from the user in the XML format

(i.e. Order Business Document). The right hand side presents the service response from

the application server. When the user clicks “Send”, the prototype application will

accept the request from the user and invoke the Web Service, and then display the

response on the right hand side.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

98

Figure 5.7 Interface of the test new order

Figure 5.8 Interface of the test cancel order

Figure 5.7 shows a new order being created and accepted by the system and Figure 5.8

shows an order being cancelled.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

99

Figure 5.9 Exception error input from the user

Figure 5.9 illustrates an exception thrown by the Web Service Response

Figure 5.10 Interface of the test update order

Figure 5.10 depicts a successful update of an order.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

100

CHAPTER 6

EVALUATION

In Chapter 5 we described and outlined the implementation of the proposed Web

Service interface design methodology. We illustrated a simple case study based on the

UBL Ordering fulfilment specification document. In this chapter, we evaluate the

proposed methodology using the results of the implementation compared to the UBL

examples listed in Chapter 5. The evaluation criteria are based on the Service-Oriented

design principles written by Thomas Erl and another relevant study by Legner (2007) as

shown in Section 6.1. Specifically, the focus is on the following principles - reusability,

abstraction, and business suitability. We first describe and outline the service-oriented

design principles for the evaluation. In Section 6.2, a quantitative approach evaluation is

presented to compare the results from the minimalist design approach with the standard

UBL approach. In Section 6.3, a qualitative approach evaluation will be conducted to

verify that the proposed document design conforms to the principles of the Service-

Oriented Design (as stated in Section 6.1).

6.1 Service-Oriented Design Principles

The focus of the proposed methodology is on the design of service interfaces based on

minimalism while adopting the design principles derived from studies on Web Services.

In order to create a well-designed interface, a set of design principles must be taken into

account. According to Legner (2007) and Erl (2008), these service design principles are

described in more detail below.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

101

Standardised Service Contract: The service interface defines its purpose and

capability; therefore, a standard and compliant service contract is important to the

external party. A standardised service contract includes identifying the service’s name,

endpoint description and its elements in the document schema (these rely on the context

neutral Core Component Specification). Web Services depend on open and industry

standards for interoperability. Thus, organisations must design their services so that they

conform to industry technical and business standards such as the promotion of the

domain-specific business document. This principle will support the interoperability of

services, resulting in a better client-driven service.

Loose Coupling Principle: This principle refers to the relationship or dependency

between two services. It is recommended that the coupling level should remain low in

order to promote the independence and evolution of a service’s logic and

implementation. The result should be a more reusable and easy-to-integrate interface. It

follows the traditional software component design approach, such as maximising

functional cohesion and minimising coupling in order to reduce the services’

dependence on each other.

Abstraction: Web Service interface should be designed with abstraction from service

implementation detail. Service interface specification should be uniform and

comprehensively defined, so that it produces a stable and managed service contract. The

abstraction principle indicates that the details of software artefacts, which are not

required, should be hidden or removed. Therefore, all the information necessary to

invoke the service is contained in the service contract and provided by the schema. The

abstraction principle enables replaceability and enhances scalability.

Reusability: The reusability principle states that the service interface should serve as an

enterprise resource, which is agnostic to the functional context. The logic of a service

should be highly generic in order to reuse and apply it in various contexts. The service

logic can be repeated and reused in multiple scenarios.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

102

Autonomy: The autonomy principle states that the services resulting output can only be

determined by the input of the same service contract. The service contract should

produce the output regardless of any external influence such as system performance,

system platform and integration application. Service autonomy improves the reliability

of the service contract.

Statelessness Principle: The statelessness principle states that the services should avoid

or minimise the management of state information to minimise unnecessary resource

consumption. Stateful service can consume more resources, increase complexity and

reduce reusability due to the requirements of state information. The statelessness

principle can improve service scalability.

Discoverability Principle: This principle states that we should annotate services with

metadata in service descriptions so that service discovery can be more effectively.

Composability Principle: The composability principle identifies services as effective

composition participants, regardless of their size and/or complexity. Each service

should be treated and designed as a composable entity. A complex business process can

compose using different services, avoiding the need to redevelop an existing service,

and thus reduce costs and time.

Business suitability: Granularity that balances the number of operations a Web Service

should be well chosen. The developer should determine a more complete requirement

and consider the potential evolution of a service, which can evolve to respond to the

new requirements in a controlled manner.

In particular, the proposed methodology for the web service design concentrates on the

key principles of reusability, business suitability, and abstraction to differentiate itself

from other methodologies, such as from UBL. These principles will be evaluated in-

depth in section 6.3, along with other benefits such as extensibility, flexibility,

maintainability. The other principles mentioned such as Standardised Service Contract,

Loose Coupling Principle, Autonomy, Statelessness, and Discoverability are common

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

103

industry practice, thus do not require further evaluation and they are out of scope of the

thesis objectives.

6.2 Quantitative Evaluation

The quantitative evaluation section will carry out some experiments to analyse, evaluate

and compare the results from the proposed Web Services design against the UBL

approach. Multiple purchase order scenarios for different number of items will be

invoked using both Web Services approach. We then compare and analyse the results

based on the message sizes and the response time.

We will set up a standard machine with Intel Core Duo 2.4 GHz processor, 4 GB of

RAM and running Windows 7. The application is hosted on the Sun Glass Fish

Application server, MySQL 5 Database server and Netbean 6.8 as the development and

testing environment. We have implemented both service invoking methods on the same

machine with the same application server. Results will simply compare the two

approaches for evaluation purposes only. The outcomes will not indicate the real life

performance of the application, as this depends on server hardware, Internet bandwidth

and location of invocation. In order to invoke the Web Service, we have created a

separate Client project (Figure 6.1) to measure the performance. The client is using the

proxy generated from the published Web Service WSDL for invocation.

Figure 6.1 Client project for evaluation

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

104

Figure 6.2 Client testing procedure

We will set up several test cases for PurchaseOrder, ChangeOrder and CancelOrder. A

purchase order (see Listing 5.2 for the purchase order message) may contain 1 item, 3

items or 10 items. We will measure the elapsed time and the SOAP message size for

evaluation.

Initiate test case

Start system Timer

Invoke Web Service

Stop system Timer

ystem

Web S

ystem

UBL approach

Proposed approach P

U

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

105

Figure 6.3 Comparison of response time (ms) between proposed method vs. UBl approach for New

PurchaseOrder

Figure 6.4 Comparison of response time (ms) between proposed method vs. UBl approach for Cancel

PurchaseOrder

In Figures 6.3 and 6.4 the results indicate that there is not much difference in response

time between these two approaches for a new and cancel order. This is because they

both require the same information for processing. The proposed method does require

extra time (1 ms) in the action switch-processing layer. Overall the difference between

the two approaches for new and cancel order is negligible (refer to Listing 5.10 for the

orderCancellation message).

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

106

Figure 6.5 Comparison of response time (ms) between proposed method vs. UBl approach for Change

PurchaseOrder with 10 items

For changing the PurchaseOrder refer to Listing 5.8 for the orderChange message. In

Figures 6.5 and 6.6 we use a PurchaseOrder with 10 items, then subsequently changing

this to 1 item, 5 items or 10 items. The results indicate there is not any difference in

response time or SOAP size using the UBL approach for changing 1 item or 10 items in

a PurchaseOrder. This is because changing a UBL PurchaseOrder requires a resubmitted

new version of the PurchaseOrder. Eventually the change in PurchaseOrder will be

processed again. However, for the proposed method we are only required to submit the

change in the PurchaseOrder, which greatly increases the response time and reduces the

SOAP message size of the Web Services for processing the same information. In this

example the response time and SOAP size is reduced by up to 70%.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

107

Figure 6.6 Comparison of SOAP message size (Kb) between proposed method vs. UBl approach for

Change PurchaseOrder with 10 items

6.3 Qualitative Evaluation

The qualitative evaluation presented below will assess the proposed document design to

verify if the proposed design conforms to the principles of the Service-Oriented Design

including: reusability principle, business suitability, abstraction principle, extensibility,

flexibility and maintainability. Each principle will be evaluated and compared using

both the proposed document designs and the reference UBL documents.

6.3.1 REUSABILITY PRINCIPLE

This principle helps avoid duplication of the code by making the business process

similar. It also helps achieve business agility by replacing a new business process from

existing services to meet changing marketplace needs (Dan, 2008). By reusing an

existing service, developers are able to reduce development time as well as to reduce

costs, and improve the reliability of the service since reused business processes are well

tested. Feuerlicht (2006) defines service reuse as the ability to participate in multiple

service assemblies. Hence any Web Service interface must be designed so that it can

compose or be composed by other services. The author also recommends using fine-

grained and a unified message over coarse-grained message for greater reusability. Erl

(2007) defines reusability service as something that should contain and express agnostic

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

108

logic, which enables service logic to be repeatedly leveraged over time. The logic

encapsulated by the service is associated with a context that is sufficiently agnostic to

any one-usage scenario. The author proposes that the logic encapsulated by the service

is a sufficiently generic and extensible contract. In fact, the service contract is flexible

enough to process a range of input and output messages. The service logic can be

accessed concurrently to facilitate simultaneous access by multiple clients. Glusko

(2005) proposed building the business document based on Core Component Type in

order to increase reusability. Based on Document engineering, the business document

must be generic and context-free so that it can be implemented in multiple scenarios.

Test Case Case Study Description

Standard, Generic and

Context-Free

Core component Type Based on UBL, can be used in more

than one scenario and is being adopted by the majority of the

industry partners.

Composable Compose PurchaseOrder with DeliveryProcess.

Reusability Fine-grained OrderLine can be reused for other purposes.

Table 6.1 Evaluation test case for reusability principle

The proposed operation “ProcessOrder” (Table 6.2) is designed to be reusable due to a

number of factors. First, the service operation is designed to be generic, abstract and

context-free. The service can be reused in any other business scenarios other than

“purchasing” such as in a ticketing order service. Second, all elements in the proposed

operation are based on the standard Core Component Type which are readily available

and can be processed by the majority of partners. Third, the proposed service is more

reusable by adopting the multi-grained approach, i.e. the message can be either fine-

grained or coarse-grained. Since it is handling multiple actions within a document

compared to traditional operations: “OrderRequest”, “ChangeOrder” and “CancelOrder”

where each operation represents a business event. This abstract interface will be reused

for invoking multiple actions as well as other service calls in relation to an “Order”

business document. Users can place a new order, a change order or cancel the order

using the same “ProcessOrder” operation. Now a developer only needs to focus on the

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

109

required message/schema design based on the provided business document and adapt

their program to the service interface.

Business Process Traditional UBL operation Proposed Operation

Send New Order PurchaseOrder(OrderRequest.xml)

ProcessOrder(Order.xml) Send Update Order ChangeOrder(OrderChange.xml)

Send Cancel Order CancelOrder(OrderCancel.xml)

Send Response Order ResponseOrder(OrderResponse.xml) ResponseOrder(Order.xml)

Table 6.2 Proposed minimalist operation

Test Case: There is only one interface ProcessOrder(order.xml) (Figure 6.7) between

the systems, so a client can specify the “action” as new, cancel or update an order. The

client can also specify which elements will be included as shown below. Element

“Orderline” can be added/removed dynamically upon use.

Figure 6.7 Web Service interface with processing of new order

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

110

6.3.2 BUSINESS SUITABILITY

This balances the number of operations a service should have. Steps involved are

defining the input/output parameters, and grouping them to form an operation. Fine-

grained service typically corresponds to elementary business function and implements

highly reusable business logic (Bieberstein, 2005). Coarse-grained services typically

correspond to individual business functions and carry their associated documents.

However, it should be noted that choosing the correct level of granularity is based on an

individual service requirement rather than a certain level of granularity to facilitate

reuse. For instance, in a purchase order scenario, a fine-grained approach is to expose

the operation down to individual create “order line”. A coarse-grained approach is to

expose the operation at a higher-level such as a request “PurchaseOrder”. The fine-

grained approach can vastly facilitate reusability. However, this is impractical and

inappropriate due to multiple invocations required to complete a purchase order. On the

other hand, to update an “order line”, the fine-grained approach is more efficient than

the coarse-grained one due to updating the online line item. Therefore, we allow multi-

grained operation service. By following the minimalist approach, we only send the

necessary data in the operation. Granularity will vary when different operations are

employed.

Test Case Case Study Description

Test Multi-Grained Service,

Different messages utilised

different levels of

granularity.

-ProcessOrder(newOrder.xml) Coarse Grained

-ProcessOrder(cancelOrder.xml) Fine Grained

-ProcessOrder(ChangeOrder.xml) Multi Grained

- Send single or more items.

Table 6.3 Evaluation test case for well chosen granularity

Test Case: We can specify changing or removing any specific “orderline” (Figure 6.8)

with the corresponding action in an order.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

111

Figure 6.8 Web Service interface with processing change order

6.3.3 ABSTRACTION PRINCIPLE

The abstraction principle indicates that the details of software artefacts, which are not

required, should be hidden or removed (Erl, 2007). Therefore, all the information

necessary to invoke the service is contained in the service contract and provided by the

schema. The abstraction principle enables replaceability and enhances scalability. Since

the WSDL document provides a comprehensive and uniformly defined service

specification, it also designs with abstraction since the operation interface can handle

multiple actions within a document. It will be reused for invoking multiple actions as

well as other service calls in relation to an “order” business document. The interface

creates more stability due to the generic service operation, so the developer only needs

to focus on the required schema design based on the provided business document and

adapt their program to the service interface.

Following the minimalist approach to reduce the number of interfaces and elements to

their simplest form (Figure 6.10), reducing the number of interfaces not only helps

simplify the interaction outcome, but also keeps the interface stable if any change

occurs. This can further reduce the document’s size since only it is only sending the

required data. Interaction becomes simpler because there are only two operations - back

and forward.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

112

Figure 6.9 Minimalist interface approaches

Test Case Case Study Description

Verify that the proposed

interface is abstraction

-ProcessOrder(order.xml) can process new, cancel, update

order

Table 6.4 Evaluation test case for abstraction principle

Test Case: With a minimalist interface we are only required to specify the XML document

to be processed in the interface. Any system can produce and consume the XML document.

Buyer Seller

ProcessOrder(Order.xml)

ResponseOrder(Order.xml)

RequestOrder
(OrderRequest.xml)

CancelOrder
(OrderCancel.xml)

ChangeOrder
(OrderChange.xml)

ProcessOrder
(Order.xml)

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

113

Figure 6.10 Web Service interface with processing order.xml

6.3.4 EXTENSIBILITY

Extensibility can be achieved by adding new functionality to the existing interface. With

the proposed interface, new functions or logics (i.e. new actions) can be added to the

business document while keeping the interface unchanged. Changes are only made

through the selected elements of a document. Hence, this approach is fully compatible

with new and existing interface.

In contrast to the current design of the business document, any changes to the document

will require a new version as any elements changes may affect several others. Adding

new functionality means introducing new operations to the interface and will require a

new set of business document. This is an important feature because e-business is

constantly evolving. Below is a demonstration of adding a new action to the Order

document while using the existing interface (Table 6.6).

Test Case Case Study Description

Add/delete new action to the

existing interface without

affecting existing operation

-Modify ProcessOrder(order.xml)

-Add Retrieve Action

-Add Retrieve Customer from order Action

-Delete Update Action.

Table 6.5 Evaluation test case for extensibility

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

114

 New Action

Element Retrieve OnHold Resume Partial Combine Split Transfer

*Order (root) X X X X X X X

ID X X X X X X X

IssueDate

BuyerCustomer-

Party

SellerSupplier-

Party

OrderLine

Accepted-

Indicator

Table 6.6 New Actions for Order document with required elements

Listing 6.1 New extension action “Retrieve”

An order can be retrieved using the new action “Retrieve” to obtain the latest updated

purchase order. This can be used to verify that a purchase order request is being

processed correctly.

Some other potential actions can be added to the schema to extend the procurement

functionality such as: “OnHold” and “Resume”.

Listing 6.2 New extension action “OnHold”

Listing 6.3 New extension action “Resume”

<order ID="0001" Action="Retrieve">
</order>

<order ID="0001" Action="OnHold">
</order>

<order ID="0001" Action="Resume">
</order>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

115

A service provider can provide a function of delaying of an order by specifying in the

requesting message with the action “OnHold”. This will put the order on hold for a

period of time then the action “Resume” will continue to process the purchase order

following a later request.

Listing 6.4 New extension action “Partial”

An action of “Partial” indicates that the order can be fulfilled partially and can be

delivered separately. This is particularly useful when some items are in back order, and

as a result the current stocks can be dispatched quickly.

Listing 6.5 New extension action “Combine”

An action of “Combine” indicates that multiple orders can be combined and dispatched

together.

Listing 6.6 New extension action “Split”

An action of “Split” indicates that the order should split out to separate orders and can

be delivered separately; this is particularly useful when some items are dispatched from

multiple locations.

Listing 6.7 New extension action “Transfer”

<order ID="0001" Action="Partial">
</order>

<order ID="0001" Action="Combine">
</order>
<order ID="0002" Action="Combine">
</order>

<order ID="0001" Action="Split">
</order>

<orderLine ID="0002" Action="Transfer">
</orderLine>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

116

An action of “Transfer” indicates that the items are located in a different warehouse and

required a transfer for completion.

6.3.5 FLEXIBILITY

A “changePurchaseOrderRequest” in the conventional UBL approach will require

sending an updated purchase order (i.e. a new version of the purchase order). The

service provider will need to identify the changes (i.e. the differences between the

updated order and the previous purchase order request) then processes the items

accordingly. The task is even more complicated if the purchase order is currently in the

process of being handled because the provider will need to reconcile the original request

with the changePurchaseOrder to identify the discrepancies and fulfil the changes

necessary.

In contrast to the proposed minimalist approach, the update request will only contain the

items that need to be changed by using the indicated actions on the purchase order

items. Furthermore, multiple actions can be incorporated into a single request message

hence the service provider will only require to process the discrepancies. An operation

can process multiple actions corresponding to a business document, i.e. ability to

perform “cancel” and “change” any “OrderLine” within an “order” in just one message.

This feature not only can reduce the size of the message, but also indicates clearly what

changes need to be processed. The service provider can process the message quickly

and effectively.

The following sample demonstrating the action “Update” and “Cancel” can be

performed by a specific OrderLine within an Order. This is unlike the traditional UBL

approach of change Order where a new version of ChangeOrder needs to be sent or

Cancel existing Order and then resend a complete new Order.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

117

Test Case Case Study Description

cancel and/or update any

orderline

-Test ProcessOrder(order.xml) OrderLine

- cancel and update any orderline

- cancel or update any orderline

Table 6.7 Evaluation test case for flexibility

Listing 6.8 Multiple actions in a message

6.3.6 MAINTAINABILITY

There are many business documents as well as interfaces in any domain-specific e-

business applications; hence managing and frequently updating them can become

difficult. This approach can help reduce the number of documents and interfaces for

easy management, i.e. developers need only manage one document instead various

business process documents.

<order ID="0001" Action="Update">
<ChangeOrder>
 <OrderLine Action="Update">
 <OrderLineNumber>01</OrderLineNumber>
 <Item>
 <ItemID>002</ItemID>
 <Description>Pen</Description>
 <Price>9.99</Price>
 </Item>
 <Quantity>1</Quantity>
 </OrderLine>
<OrderLine Action="Cancel">
 <OrderLineNumber>02</OrderLineNumber>
 <Item>
 <ItemID>001</ItemID>
 <Description>Book</Description>
 <Price>99.99</Price>

</Item>
 <Quantity>1</Quantity>
 </OrderLine>
</ChangeOrder>
</order>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

118

In the conventional UBL approach, each operation will have a request and a

corresponding response message. For instance, a typical purchase order scenario will

have four operations and five business documents to maintain. In contrast the proposed

approach will require only two operations and a single business document (Table 6.8).

Business

Process

Traditional UBL operation Proposed Operation

New Order PurchaseOrder(OrderRequest.xml)

ProcessOrder(Order.xml) Update Order ChangeOrder(OrderChange.xml)

Cancel Order CancelOrder(OrderCancel.xml)

Response Order
ResponseOrder(OrderResponse.xml)

ResponseOrder(OrderResponseSimple.xml)
ResponseOrder(Order.xml)

Table 6.8 Traditional UBL operation and Proposed operation

Table 6.9 Evaluation test case for maintainability

Test Case Case Study Description

Fewer documents to

maintain.

-Compare with UBL’s operation and XSD schemas.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

119

6.3.7 COMPARISON OF THE OUTCOMES

Table 6.10 Comparison between UBL services and proposed services

6.4 Discussion

The method exposes a minimalist API and then encapsulates it to add the relevant

functionality. This way the developer can easily separate the derived behaviour (based

on the business document related functionality, i.e. new PurchaseOrder,

UpdatePurchaseOrder, or CancelPurchaseOrder) from the implementation-specific

(minimalist) behaviour (based on the business document, i.e. purchaseOrder).

Implementing a new minimalist version of an interface will give all clients access to the

derived behaviour interface to the back-end. The proposed method can be applicable to

any case study that has multiple business events for a business document. This unified

message pattern contains the attribute “Action”, which defines “What to do” with its

Feature UBL Services Proposed Services

Minimise

payload size

Resend the update order Resend the update item

Granularity Coarse-Grained - Send complete

order document

Multi-Grained - Send single or

more item

Reusability Reuse based on defined coarse-

grained operation

Higher reuse due to multi-

grained operation

Extensibility Create new operation and new

document

Add new action and element to

the existing interface

Flexibility Specific business process

operation

Allow single or multiple

relevant actions in an operation

Maintainability A set of operations and

corresponding business

documents

Single interface per business

document

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

120

element. This not only provides a clear instruction to a specific element but also allows

multiple actions to be incorporated.

Based on the Service Principle outlined in Section 6.1, we have addressed and evaluated

every feature. Firstly, reusability is addressed based on the generic operation and

elements as well as multi-grained operation (both fine-grained and coarse-grained

messages). It is reusable due to the fine-grained logic operation being repeatedly reused

in a different business process. Secondly, extensibility is addressed by the notion of the

Command pattern interface, which makes it possible to add or remove a command

dynamically without changing the existing interface. The interface is also more flexible

due to one or more commands being put into the message, which lets the operation be

invoked in runtime. Abstraction principle is achieved by exposure through a minimal

interface. Finally, the message size is reduced since it only exposes or sends the

required data. This also reduces maintenance due to fewer interfaces and document

schemas.

Although there are some disadvantages in employing this method, developers can learn

to understand the schemas as well as the interfaces before integrating elements into their

web application. Developers need to re-develop existing applications to ensure

messages are compatible to the new interfaces. However, the ability to process multiple

actions and reduce redundancy provides a better way for communicating between

multiple services, especially in domain-specific e-business applications where

documents are large and complex. Furthermore, the composition of Web Services is

now simplified since fewer interfaces are needed to start with. Another important

feature is extensibility, where changing the business document will no longer affect the

composition pattern because the client is more stable. More importantly, the developer

maintains a reduced number of business documents for multiple corresponding business

processes.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

121

CHAPTER 7

CONCLUSION

7.1 Research Summary

The proposed Web Service interface design addresses the problem of reusability and

extensibility by adopting the Command pattern and generic minimalist approach to

designing the messages (see Chapter 4). The proposed method reduces the large

volumes and size of global trade domain service messages being exchanged. This was

analysed and evaluated in Chapter 6. In the traditional UBL approach, updating an order

requires sending a new version of the document. This is explained by the traditional e-

business practice of exchanging the complete document (i.e. the document becomes a

form or a contractual agreement).

If we only change an order item, do we really need to send an entire document to the

business partner? If the majority of the information was previously sent and is

redundant, we argue that sending the required and necessary information is enough to

justify the service invocation call. From there we have arrived at the concept of the

minimalist interface design where anything that is not important will become optional

or redundant. The document itself will become part of the processing interface where

instructions are stored in the document. We contend that any Web Service interface that

has multiple operations to process a related business document should be abstract (i.e.

become a generic operation). Here this operation will process the document according

to the instruction given to the element.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

122

The main goal of this thesis is to develop a Web Service interface design method for e-

business application such that its interface is reusable, flexible and extensible. We begin

by investigating the existing e-business document standards, and Web Service interface

and composition designs. These standard documents all promote interoperability by

adopting the Core Component-based elements. Some business documents, such as UBL

and xCBL do adopt the Code Values or Action Types to a modification request message

to indicate to the receiver how to process these intermittent elements. These are some

examples of the Command pattern where instructions are passed as parameters for

processing. However, use of these Command patterns is limited to the "modify request"

rather than throughout the messages. Furthermore, these approaches still require

multiple documents/schema for order, cancelOrder, changeOrder and responseOrder.

The change code lists in xCBL are long and complicated, and to change the date of an

order delivery, we need to send the code "ChangeOfDates". To update an order in UBL

and GS1, an updated revised order will need to be sent to overwrite the existing order.

By analysing these business documents, we learn the flexibility and extendibility of

these approaches. Flexibility is due to the use of multiple actions/commands, which can

be sent and processed. Extendibility is due to the new actions, which can be added and

removed. Developers only need to do minimal or no changes to their invocation calls to

adapt to the new updated services.

We realise that by placing the processing instruction in the service elements, every

object can be implemented with different actions. If we treat the document as an object

and this document contains a collection of business objects (i.e. purchaseOrder as a

business document), then changing an order item means sending an updated line item

accordingly. We allow the exposed operations through the business document rather

than as a separate business event. Therefore, instead of advertising a Web Service

interface with these operations on the document, this Web Service interface can now

have any operations functioning through the schema action elements. Studies and

reviews of currently available methodologies for Web Service interface design revealed

that limited attention has been paid to the design. Most players in the industry tend to

adopt coarse-grained business processes to minimise Web Service invocation, whilst

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

123

others choose fine-grained business processes to maximise reusability. This is due to the

convention of interoperability and interchanging between business partners as

mentioned before.

These business processes and documents will be standardised and governed by a

domain-specific organisation such as UBL, OTA and UN/EDIFACT. However, these

approaches are complex and inefficient due to the large number of business processes

and documents required. These business documents and Web Service interfaces also

require a considerable amount of time and effort to standardise. Reusability is based on

coarse-grained operation with business documents, which is hardly scalable due to its

limitation. Extensibility is achieved by releasing a newer version of the standardised

business document. Flexibility and efficiency are negligible and are not addressed in

the current methodology. Therefore, a well-designed Web Service interface is a key

requirement for ensuring a high level of interoperability and effectiveness in complex e-

business applications.

Our proposed method addresses the limitations based on combining the command

interface style and the flexible Generic Web Service interface to form a unified

minimalist interface. The redefined business document takes interoperability into

account by adopting the existing elements as well as the structure from UBL's Core

Components. We are only introducing the "action" attribute to the appropriate elements.

This will have minimal impact on reusability since all service operations are stateless

and the sequences of the messages are governed by the unique identifier. Thus,

communicating with existing services can be done by employing a process-switching

layer.

The minimalist design approach can reduce the number of interfaces to their simplest

form, thus further simplifying the interaction outcome. It is more stable due to the

similarity to the REST style interface where processing instructions are defined in the

message (i.e. ProcessOrder can handle purchaseOrder, cancelOrder and updateOrder).

This enables a single operation to contain multiple business events, which can replace

three or more operations where each operation represents a single business event. Hence

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

124

the operations do not have to change often when updates are required. It is more flexible

due to the Generic Web Service where operations are defined in the message, relaxing

the need for traditional operational methods.

This approach can transform a traditional business document interface into a more

reusable, flexible, extensible and efficient interface. In particular, it is most effective for

those interfaces that have multiple business events for a business document. We

introduce a process-switching layer in the operation and XML schema in order to define

the “what to do” actions. Simplifying and abstracting away unnecessary elements and

operations is a minimalist strategy that unifies the interface.

7.2 Research Contributions

Our approach has confirmed the Web Service design principles as outlined in Section

6.1. We have also designed and implemented a prototype in order to evaluate the

effectiveness of the proposed methodology. According to the thesis objectives as

defined in Chapter 1 (Section 1.10), the major contributions of this research are

summarised below:

• We have verified and satisfied Goal 1, showing that this approach is reusable

due to its generic multi-grained operation. Fine-grained operation can be reused

in coarse-grained messages while both fine-grained and coarse-grained messages

can be composed in different Web Services to form more complex e-business

applications. The interface can be reused for invoking multiple actions as well as

other service calls to a "PurchaseOrder" business entity.

• One or more “change” actions in a multiple fine-grained order line item can be

composed to a coarse-grained update "PurchaseOrder" document, or multiple

fine-grained "New" order line items. This can be composed as a coarse-grained

“New” "PurchaseOrder" document. Cancellation of an order is achieved by

sending a fine-grained action "Cancel" to "PurchaseOrder" document. This

addresses the requirements for Goal 2.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

125

• Extensibility is also verified in this approach since new functions can be added

or removed without affecting the existing interface; new actions can be defined

or removed in the schema. New actions and required elements can be put into

the messages and these allow the operation to be invoked at runtime. This is an

important feature since Web Services are designed to be composed; if changing

the interface might mean breaking up the composition, then it is not a feasible

approach.

• This approach is verified by comparing it to the flexible requirements as defined

in Goal 3. Since we are only exposing or sending the required data, fewer

interfaces can mean less maintenance. This will also lead to a reduction in

interaction calls since multiple fine-grained actions can be invoked on the

service. The ability to process multiple actions and reduce redundancy provides

a better and more efficient approach in communicating between e-business

applications where documents are large and complex.

• We have also addressed Goal 4 by designing, implementing a prototype and

evaluating the proposed method, which does indeed follow the design principles

and is superior to existing design methods. In particular, some cases might

provide up to 70% less processing time and payload size for the same output

result.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

126

7.3 Future Work

Based on the findings in this study and in particular the limitations observed in Chapter

6, future research work should address the following issues with consideration of the

dynamic and evolving nature of the e-business industry.

Firstly, we are required to study composition in relation to the proposed methodology.

Since the proposed interfaces design method differs from the traditional approach,

current composition methodology might not be applicable to this approach or may not

produce a satisfactory result. New composition methodologies can make use of the

command pattern interface and take advantage of the flexibility feature.

Secondly, we can apply this approach to other additional vertical domains such as OTA

travel booking, in order to verify cross-domain application. For instance, we can verify

that a flight booking service can be composed of a duty-free purchase order service for

additional purchasing.

Thirdly and finally, although our application can process UBL documents, we need to

study the impact of processing the transformed UBL document such as those existing

applications that are still composed using the traditional UBL approach. Since it is

possible that developers may require modifying the existing interface to communicate

with the proposed interface, it is necessary to investigate a more feasible method during

the transition.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

127

REFERENCES

Arenas, M. 2006, ‘Normalization Theory for XML’, Sigmod Record, vol. 35, no. 4,
pp. 57-64.

Arsanjani, A. et al. 2008, ‘SOMA: A method for developing service-oriented
solutions’, IBM Systems Journal, vol.47, no. 3, pp. 377–396.

Artus, D. 2006, ‘SOA realization: Service design principles – Service design to
enable IT flexibility/’, viewed 13/08/2010,
<http://www.ibm.com/developerworks/webservices/library/ws-soa-design/>.

Baghdadi, Y. 2004, ‘A business model for B2B integration through Web Services’,
Proceedings of the IEEE International Conference on E-Commerce Technology, pp.
187-194.

Baghdadi, Y. 2005, ‘A Business model for deploying Web Services: A data centric
approach based on factual dependencies’, Inf. Syst. E-Business Management, vol. 3,
no. 2, pp. 151-173.

Barros, A., Dumas, M., and Oaks, P. 2005, ‘A critical overview of the Web Services
choreography description language’, BPTrends Newsletter, 3, pp. 1-24.

Bean, J. 2009, SOA and Web Services Interface Design, principles, techniques and
standards, The Morgan Kaufmann/OMG Press.

Beyer, D. Chakrabarti, A and Henzinger, T. 2005, ‘Web Service Interfaces’. In
Proceedings of the 14th International World Wide Web Conference (WWW 2005).
ACM. New York, pp. 148 -159.

Berardi, D., Calvanese, D.,De Giacomo, G., Lenzerini, M,. and Mecella, M. 2003,
‘Automatic composition of e-services that export their behaviour’. Proceedings of 1st
International Conference on Service-Oriented Computing (ICSOC), LNCS. Trento,
Italy, pp. 43-58.

Bloomberg, J. 2006, ‘Should All Services be reusable?’, viewed 2/5/2011,
<http://www.zapthink.com/report.html?id=ZAPFLASH-2006531>.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

128

Brogi, A., C. Canal et al. 2004, ‘Formalizing Web Services Choreographies’, 1st
International Workshop on Web Services and Formal Methods (WS-FM 2004), Pisa,
Italy, pp. 73-94.

Business Object Document Architecture, OAGIS Release 9.2, viewed 3/4/2007,
<http://orgis.org>.

Casati, F., Castano, S., Fugini, M.G., Mirbel-Sanchez, I., Pernici, B. 2000, ‘Using
Patterns to design rules in workflows’, IEEE Transactions on Software Engineering,
vol. 26, no. 8, pp. 760-784.

Christian, H. 2005, ‘UMM - Consistent B2B Analysis & Design on Top of ebXML
and Web Services’, Proceedings of the IEEE International Conference on e-
Technology, e-Commerce and e-Service 2005 (EEE-05), IEEE Computer Society,
Hong Kong (China). pp. 34-42.

Curbera, F., Goland, Y. et al. 2002, ‘Business Process Execution Language for Web
Services, Version 1.0’, viewed 3/5/2007, <http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf >.

Curbera F., Nagy, W. and Weerawaran, S. 2001, ‘Web Services, Why and How’.
Workshop on Object Oriented Web Services OOPSLA Tampa, Florida, USA.

Dan, A., Johnson, D. and Carrato, T. 2008, ‘SOA Service Reuse by Design’,
Proceedings of the 2nd International Workshop on Systems Development in SOA
Environments, Leipzig, Germany, pp. 25-28.

Dirk, B, A. C. and Henzinger, T. A. 2005, ‘Web Service Interfaces’, WWW '05
Proceedings of the 14th international conference on World Wide Web. ACM, New
York, pp. 148-159.

ebXML Core Components specification, 2010, viewed 11/05/2011,
<http://www.unece.org/cefact/ebxml/CCTS_V2-01_Final.pdf>.

Erl, T. 2007, ‘The principles of Service-Oriented: Principle interrelationships and
service layers’, viewed 03/04/2008, <http://searchsoa.techtarget.com/tip/The-
principles-of-service-orientation-part-6-of-6-Principle-interrelationships-and-service-
layers>.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

129

Erl, T. 2008, SOA Principles of Service Design, Prentice Hall/PearsonPTR,
Hardcover, available at <http://www.soaprinciples.com/p6.asp>.

Feuerlicht, G., Lozina, J. 2007, ‘Understanding Service Reusability’. In 15th
International Conference Systems Integration 2007. VSE Prague, Prague, pp. 144-
150.

Feuerlicht, G. and Meesathit, S. 2004, 'Design Method for Interoperable Web
Services', International Conference on Service-Oriented Computing, New York,
USA, November 2004. In Proceedings of the 2nd International Conference on
Service-Oriented Computing, ed. Aiello, M et al. ACM, New York, pp. 299-307.

Feuerlicht, G. and Meesathit, S. 2004, 'Design Framework for domain-specific
service interface', Workshop on Web Services: Modeling, Architecture and
Infrastructure, Porto, Portugal, August 2004. In Proceedings of the 2nd International
Workshop on Web Services: Modeling, Architecture and Infrastructure WSMAI
2004, ed. Bevinakoppa, S. and Hu, J. INSTICC Press, Porto, Portugal, pp. 109-115.

Fielding, R.T. 2000, ‘Architectural styles and the design of network-based software
architectures’, Doctoral Dissertation, University of California, Irvine.

Fu, X., T. Bultan, et al. 2004, ‘WSAT: A tool for Formal Analysis of Web Services’,
16th International Conference on Computer Aided Verification (CAV), Boston, MA.,
pp. 510-514.

Gardner, T. 2003, ‘UML Modelling of Automated Business Process with Mapping to
BPEL4WS’, European Workshop on Object Orientation and Web Services,
Darmstadt, Germany.

Gemma, E., ‘Design Patterns: Elements of Reusable Object Oriented Software’
viewed 01/05/2011,
<http://www.vico.org/pages/PatronsDisseny/Pattern%20Command/>.

Glushko, J. and McGrath, T. 2005, ‘Document Engineering: analyzing and designing
the semantics of Business Service Networks’, Proceedings of the IEEE EEE05
International Workshop on Business Services Networks, vol. 87. IEEE Press,
Piscataway, New Jersey, pp. 2-2

Glushko, J. and McGrath, T. 2005, ‘Document Engineering: Analyzing and
Designing Documents for Business Informatics and Web Services’, Journal of
Documentation, vol. 63, no. 2. pp. 288-290.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

130

Gordijn, J., Akkermans, J.M., and van Vliet, J.C. 2000, ‘Business modelling is not
process modelling’. In Mayr, H.C., Liddle, S.W., and Thalheim, B. (eds.), ER
Workshops 2000. LNCS, vol. 1921. Springer, Heidelberg, pp. 40-51.

Gottschalk, K., Graham S., Kreger, H. and Snell, J. 2002, ‘Introduction to Web
Services Architecture’, IBM Systems Journal, vol. 41, no. 2. pp. 170-177.

Hanson, J. 2003, ‘Coarse-grained interfaces enable service composition in SOA’,
viewed 01/10/2010, <http://builder.com.com/5100-6386-5064520.html>.

Henkel, M and Jelena, Z. 2005, ‘Approaches to Service Interface Design’,
Proceedings of the Web Service Interoperability Workshop, First International
Conference on Interoperability of Enterprise Software and Applications.

Henkel, M., Johannesson, P., Perjons, E., and Zdravkovic, J. 2007, ‘Value and Goal
Driven Design of E-Services’. In Proceedings of the IEEE International Conference
on E-Business Engineering (Icebe 2007). IEEE Computer Society, Washington, pp.
295-303.

Hinkelman, S, Buddenbaum, D and Zhang, L. 2006, ‘Emerging patterns in the use of
XML for information modelling in vertical industries’, IBM System Journal, vol. 45,
no. 2, pp. 373-388.

Hiroshi, M. 2002, ‘New trends in e-business: from B2B to Web Services’, New
Generation Computing, vol. 20, no. 1, pp.125-139.

Hong, S. and Feurerlicht, G. 2008, ‘Web Service Interface Design for e-Business
Application: A Minimalistic Design Approach’, Proceeding NWESP '08 Proceedings
of the 2008 4th International Conference on Next Generation Web Services
Practices, Seoul, South Korea, pp. 143-150.

Hogg, K., Chilcott, P., Nolan, M. and Srinivasan, B. 2004, ‘An Evaluation of Web
Services in the design of a B2B Application’, ACSC ’04: Proceedings of the 27th
Australasian Conference on Computer Science – 2004, vol. 26, Australian
Computing Society. Darlinghurst, Australia, pp. 331-340.

Huang, Y. and Chung, Y. 2003, ‘A Web Services-Based Framework for Business
Integration Solutions’, Journal of Electronic Commerce Research and Application,
vol. 2, no. 1, pp. 15-26.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

131

Hui, M. T., Wan M.N. and Wan, K. 2006, ‘A Comparative Study of Interface Design
Approaches for Service-Oriented Software’, APSEC, 13th Asia Pacific Software
Engineering Conference (APSEC'06). Kanpur, India, pp. 147-156.

Jakub, R. 2006, ‘Performance Implications of Design Pattern Usage in Distributed
Applications Case Studies in J2EE and .NET’. Proceedings of the ISSTA 2006
workshop on Role of Software Architecture for Testing and Analysis. ACM, 2006,
pp. 1-11.

Jason, B. 2006, ‘Should All Services be reusable’, viewed 12/06/2006,
<http://www.zapthink.com/report.html?id=ZAPFLASH-2006531>.

Java Blueprint 2004, ‘Designing Web Service with J2EE – Managing complex Web
Service interactions’, viewed 11/05/2008,

<http://java.sun.com/blueprints/guidelines/designing_webservices/html/architecture6
.html>.

Jeff, H. 2006, ‘Coarse-grained interfaces enable service composition in SOA’,
viewed 11/07/2008, <http://builder.com.com/5100-6386-5064520.html>.

Jianwen, S. 2005, ‘Web Service Interactions: Analysis and Design’, The Fifth
International Conference on Computer and Information Technology. IEEE,
Shanghai, pp. 21-23.

Juric, M.B. 2006, ‘BPEL: Service composition for SOA’, viewed 15/05/2010,
<http://www.javaworld.com/javaworld/jw-07-2006/jw-0710-bpel.html?lsrc=jwrss>.

Kabak, Y. and Dogac, A. 2010, ‘A survey and analysis of electronic business
document standards’, ACM Computing Surveys, vol. 42, no. 3, article 11.

Kaminski, P. Litoiu, M. and Müller, H. 2006, ‘A design technique for evolving Web
Services’. In Proceedings of the 2006 Conference of the Center for Advanced Studies
on Collaborative Research (CASCON '06), ed. Hakan Erdogmus, Eleni Stroulia, and
Darlene Stewart. IBM Corp., Riverton, New Jersey, article 23.

Khalaf, R. 2006, ‘From RosettaNet PIPs to BPEL processes: A three level approach
for business protocols’, Data & Knowledge Engineering, vol. 61, no. 1, pp. 23-28.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

132

Lau, D. and Mylopoulos, J. 2004, ‘Designing Web Services with Tropos’.
Proceedings of the IEEE International Conference on Web Services (ICWS’04). pp.
306.

Legner, C. 2007, ‘Design Principles for B2B Services – An Evaluation of two
alternative service design’, In Proceeding of Services Computing, SCC. IEEE
International Conference. IEEE, Salt Lake City, pp. 372-379.

Lemanhieu, Wilfried, et al. 2003, ‘An Event Based Approach to Web Service
Design and Interaction’, Web Technologies and Applications, Lecture Notes in
Computer Science, vol. 2642, pp. 333-340.

Leymann, F. and Roller, D. 2002, ‘Business process in a Web Service world - A
quick overview of BPEL4WS’, viewed 02/03/2008, <http://www-
128.ibm.com/developerworks/library/ws-bpelwp/>.

Limthanmaphon. B. and Zhang, Y. 2003, ‘Web Service Composition with case
based reasoning’. In Proceedings of the Fourteen Australian Database Conference
(ADC2003), vol. 17. Australian Computer Society, Darlinghurst, Australia, pp. 201-
208.

Li, L. and Wu, C. 2005, ‘Two-way Web Service: From Interface Design to interface
Verification’. Proceedings of the 2005 IEEE International Conference on Web
Services, IEEE, pp. 525-532.

Martin, H. and Jelena Z. 2005, ‘Approach to Service Interface Design’. In
Proceedings of the Web Service Interoperability Workshop, First International
Conference on Interoperability of Enterprise Software and Applications (INTEROP-
ESA'2005), Hermes Science Publisher, Geneva, Switzerland, February 22 - 25,
Hermes Science Publisher.

McCarthy, J. 2002, ‘Reap the benefits of Document Style Web Services – Web
Services are not exclusively designed for handling remote procedure calls’, IBM
Developer Works, SOA and Web Services.

McManus, E. 2011, ‘Java API Design Guidelines’, viewed 15/07/2011,
<http://www.artima.com/weblogs/viewpost.jsp?thread=142428>.

Medicke, J. 2011, ‘Future-Proofing Solution with Coarse-Grained Service-Oriented
Architecture’, viewed 15/09/2011, <http://soa.sys-con.com/read/39848.htm>.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

133

Meesathit, S. 2005, ‘Web Services design in context of domain specific e-business’,
PhD thesis, University of Technology, Sydney.

Mecella, M. and Pernici, B. 2000, ‘Designing Components for e-Services’,
Proceedings of the VLDB Workshop on Technologies for e-Services (VLDB-
TES2000), Cairo, Egypt. pp. 177-187.

Melaika, S, Nelin, C, Qu, R, and WolfSon, D. 2002, ‘DB2 Web Services’ IBM
Systems Journal, vol. 41, no. 2, pp. 666-685.

Milanovic, N. and Malek, M. 2004, ‘Current solutions for Web Service
composition’, Internet Computing, IEEE , vol. 8, no. 6, pp. 51-59.

Millard, D.E., Howard, Y., Abbas, N., Davis, H.C., Gilbert, L., Wills, G.B., and
Walters, R.J. 2009, ‘Pragmatic Web Service design: An agile approach with the
service responsibility and interaction design method’, Computer Science - Research
and Development, vol. 24, no. 4, pp. 173-184.

Morgan, G. 2011, ‘Design for Flexibility’, viewed 01/10/2011,
<http://blogs.msdn.com/gabriel_morgan/archive/2006/10/03/Design-for-
Flexibility.aspx>.

Nayak, N., Linehan, M. et al. 2007, ‘Core business architecture for a service-
oriented enterprise’, IBM Systems Journal, vol. 46, no. 4, pp. 723–742.

OASIS, ‘Web Services Atomic Transaction (WS-AtomicTransaction)’ Version 1.1,
viewed 1/03/2014, <http://docs.oasis-open.org/ws-tx/wstx-wsat-1.1-spec-errata-
os/wstx-wsat-1.1-spec-errata-os.html>.

Open Application Group, viewed 10/04/2010, <http://openapplications.org>.

Open Travel Alliance, viewed 11/05/2011, <http://opentravel.org>.

Patterson, L, 2006, Advanced ActionScript 3 with Design Patterns, Pearson
Education,.

Papazoglou, M. and Georgakopoulos, D. 2003, ‘Service-Oriented Computing’.
ACM Press, vol. 46, no. 10, pp. 99-101.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

134

Papazoglou, M. and Yang, J. 2002, ‘Design Methodology for Web Services and
Business Processes’. In TES ’02: Proceedings of the Third International Workshop
on Technologies for E-Services. Springer-Verlag, London, pp. 54-64.

Provost, W. 2002, ‘Normalizing XML, Part 1’, viewed 1/10/2011,
<http://www.xml.com/pub/a/2002/11/13/normalizing.html>.

Radeka, K. 2003, ‘Designing a Web Services Project for Maximum Value: The 90
Day Challenge’, OOPSLA 2002 Practitioners Reports. ACM, New York, p.1.

Rodriguez, A. 2008, ‘RESTful Web Services: The basics’, IBM developerWorks,
viewed 15/03/2014,
<https://www.ibm.com/developerworks/webservices/library/ws-restful/>.

Ronald, S. 2011, ‘Solving the Service Granularity Challenge’, viewed 1/10/2011,
<http://searchwebservices.techtarget.com/tip/1,289483,sid26_gci1172330,00.html>.

Ruiz, M. and Pelechano, V. 2006, ‘Designing Web Services for Supporting User
Tasks: A Model Driven Approach Advances in Conceptual Modeling’, Advances in
Conceptual Modeling - Theory and Practice, vol. 4231, pp. 193-202.

Ruiz, M. and Pelechano, V. 2007, ‘Model Driven Design of Web Service
Operations using Web Engineering Practices’. Emerging Web Services Technology,
ed. Calisti, M, Walliser, M. et al. Whitestein Series in Software Agent Technologies
and Autonomic Computing, Springer, pp. 83–100.

Stanley, Y. and Li, H. 2001, ‘Business Object Modeling, validation and Mediation
for Integrating Heterogeneous Application Systems’, Journal of System Integration,
vol. 10, pp. 307-328.

Schmit, B.A. and Dustdar, S. 2005, ‘Towards Transactional Web Services’. 1st
IEEE International Workshop on Service-oriented Solutions for Cooperative
Organizations (SoS4CO '05), co-located with the 7th International IEEE Conference
on E-Commerce Technology (CEC 2005), Munich, Germany. pp. 12-20.

Stevens, M. 2002, ‘Multi-Grained Services’, viewed 01/10/2011,
<http://www.developer.com/services/article.php/1142661>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

135

Steve, V. 2005, ‘Old Measures for New Services’, IEEE Internet Computing, vol. 9,
no. 6, pp. 72-74.

Skogan, D. 2004, ‘Web Service Composition in UML’. In Proceedings of the 8th
IEEE International Enterprise Distributed Object Computing Conference (EDOC
2004). pp. 47-57.

The Organization for the Advancement of Structured Information Standards
(OASIS) Universal Business Language, viewed 10/06/2010, <https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=ubl>.

The United Nations Centre for Trade Facilitation and Electronic Business, viewed
10/03/2011, <http://www.unece.org/cefact/>.

UN/EDIFACT is the international EDI standard maintained by the United Nations
Centre for Trade Facilitation and Electronic Business, viewed 10/03/2011,
<http://www.unece.org/cefact>.

WSDL and UDDI, 2005 viewed 10/03/2014,
<http://www.w3schools.com/webservices/ws_wsdl_uddi.asp>.

Vadym, J. 2009, ‘Generic Web Services - Extensible Functionality with Stable
Interface’. In Proceedings of the 2009 IEEE International Conference on Web
Services. IEEE, Los Angeles, pp. 1032-1034.

Vadym, J. 2009, ‘Ensuring Service Backwards Compatibility with Generic Web
Services’. In Proceedings of the 2009 ICSE Workshop on Principles of Engineering
Service-Oriented Systems. IEEE Computer Society, Washington, D.C., pp. 95-98.

Van der, W. 2003, ‘Don’t go with the flow: Web Services composition standards
exposed’ IEEE Intelligent Systems, vol. 18, no. 1, pp. 72-76.

Vinoski, S. 2002, ‘Putting the “Web” into Web Services: Web Service interaction
models, Part 2’. IEEE Internet Computing, vol. 6, no. 4, pp. 90-92.

Wang, H, Huang, Z, Qu, Y. and Xie, J. 2004, ‘Web Services: Problems and future
directions’, Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 1, no. 3, pp. 309-320.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

136

Weigand, H., Johannesson P., Andersson B., and Bergholtz, M. 2009, ‘Value-Based
Service Modeling and Design: Toward a Unified View of Services’. In Proceedings
of the 21st International Conference on Advanced Information Systems
Engineering (CAiSE '09), ed. Pascal Eck, Jaap Gordijn, and Roel Wieringa.
Springer-Verlag, Berlin, Heidelberg, pp. 410-424.

Weigand, H. et al. 2007, ‘Strategic Analysis Using Value Modeling’–The c3-Value
Approach. In: HICSS 2007, p. 175.

Woodman, S., D. Palmer et al. 2004, ‘Notations for the Specification and
Verification of Composite Web Services’. 8th IEEE International Enterprise
Distributed Object Computing (EDOC) Conference, Monterey, California, pp. 35-
46.

Zein, O.K. and Kermarrec, Y. 2006, ‘Static/Semi-Dynamic and Dynamic
Composition of Services in Distributed Systems’, Telecommunications, 2006.
AICT-ICIW '06. International Conference on Internet and Web Applications and
Services, IEEE, p. 144.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

137

APPENDICES

Appendix 1: Script to generate Database Table for case study

/*

The following scripts are used to generate the required database tables in order to run

the purchase order prototype application. There are four main tables: orders, orderLine,

customer and product.

*/

CREATE TABLE orders(

 ord_id int(10),

 ord_status varchar(7),

 ord_date varchar(7),

 ord_total int(10),

 cus_id int(10),

 PRIMARY KEY (ord_id),

 CONSTRAINT customer FOREIGN KEY (cus_id) REFERENCES customer (cus_id)

);

CREATE TABLE orderLine(

 orl_id int(10),

 orl_quantity int(10),

 pro_id int(10),

 ord_id int(10),

 PRIMARY KEY (ord_id,orl_id),

 CONSTRAINT oders FOREIGN KEY (ord_id) REFERENCES orders (ord_id),

 CONSTRAINT product FOREIGN KEY (pro_id) REFERENCES product (pro_id)

);

CREATE TABLE customer(

 cus_id int(10),

 cus_name varchar(20),

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

138

 cus_address varchar(30),

 cus_contact int(10),

 PRIMARY KEY (cus_id)

);

CREATE TABLE product (

 pro_id int(10),

 pro_description varchar(25),

 pro_price int(10),

 PRIMARY KEY (pro_id)

);

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

139

Appendix 2: Available Web Method as Web Service
/*

The following scripts are the available Web Service operations that are accessible via

Web Service WSDL, however, not all the method will be used. processOrderXML is

the main operation use for the prototype.

*/

@WebService(name = "MyWebService")
public interface MyWebService extends Remote {
 @WebMethod
 public void newOrder(Orders orders);
 @WebMethod
 public List<Customer> queryCustomerFindAll();
 @WebMethod
 public List<Orderline> queryOrderlineFindAll();
 @WebMethod
 public List<Orderline> queryOrderlineFindOrderlineById(int ord_id);
 @WebMethod
 public List<Orders> queryOrdersFindAll();
 @WebMethod
 public Orders queryOrdersFindOrdersById(int ord_id);
 @WebMethod
 public List<Product> queryProductFindAll();
 @WebMethod
 Product queryProductFindProductById(int pro_id) throws RemoteException;
 @WebMethod
 public void processOrderXML(String address);
 @WebMethod
 public void processOrder(Orders orders, String action);
 @WebMethod
 public void processOrderLine(Orderline orderline, String action);
 @WebMethod
 public void changeOrders(Orders orders);
 @WebMethod
 public void changeOrderLine(Orderline orderline);
}

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

140

Appendix 3: Persistence Unit for the Prototype Application

/*

The following is the persistence configuration in order to setup the required data

connection between the application and the database. This configuration define the

mapping between the entity object and the database table.

*/

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="OrderEntityPU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>Order.Entity.Customer</class>
 <class>Order.Entity.Order</class>
 <class>Order.Entity.OrderLine</class>
 <class>Order.Entity.Product</class>
 <properties>
 <property name="javax.persistence.jdbc.url"
value="jdbc:mysql://localhost:3306/Orders"/>
 <property name="javax.persistence.jdbc.driver" value="com.mysql.jdbc.Driver"/>
 <property name="javax.persistence.jdbc.user" value="root"/>
 <property name="javax.persistence.jdbc.password" value="root"/>
 </properties>
 </persistence-unit>
</persistence>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

141

Appendix 4: Business Entities of the Prototype application

/*

The following is the Order object business entity class

*/

Order Entity:

package Order.Entity;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.persistence.CascadeType;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.persistence.OneToMany;
import javax.persistence.Table;
import javax.persistence.Transient;

/**
*This Order class is the representation of an order object and define the mapping in the
*database table “orders”
 */
@Entity
@Table(name = "orders")
public class Order implements Serializable {
 private Integer id;
 private String createDate;
 private String status;
 private Integer total;
 private List<OrderLine> orderlines;
 private Customer customer;
 private String action;

/*
 * The default constructor of an Order object business entity
 */
 public Order() {
 }

/*

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

142

 * The Order object business entity constructor with creation_date, customer, status,
total and action
 */
 public Order(String create_date, Customer customer,
 String status, Integer total,String action) {
 this.customer = customer;
 this.createDate = create_date;
 this.customer = customer;
 this.status = status;
 this.total = total;
 this.action = action;
 }

 /**
 * Gets the value of the action of an order.
 */
 @Transient
 public String getAction() {
 return action;
 }

 /**
 * Set the value of the action of an order.
 */
 public void setAction(String action) {
 this.action = action;
 }

 /**
 * Gets the value of the createDate of an order.
 */
 @Column(name="create_date")
 public String getCreateDate() {
 return createDate;
 }

 /**
 * Set the value of the createDate of an order.
 */
 public void setCreateDate(String create_date) {
 this.createDate = create_date;
 }

 /**
 * Gets the value of the id of an order.
 */
 @Id
 @Column(name = "id")

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

143

 public Integer getId() {
 return id;
 }

 /**
 * Set the value of the id of an order.
 */
 public void setId(Integer id) {
 this.id = id;
 }

 /**
 * Gets the value of the status of an order.
 */
 @Column(name = "status")
 public String getStatus() {
 return status;
 }

 /**
 * Set the value of the status of an order.
 */
 public void setStatus(String status) {
 this.status = status;
 }

 /**
 * Gets the value of the total of an order.
 */
 @Column(name="total")
 public Integer getTotal() {
 return total;
 }

 /**
 * Set the value of the total of an order.
 */
 public void setTotal(Integer ord_total) {
 this.total = ord_total;
 }

 /**
 * Gets the list of orderLine of an order. Return empty list if not exist
 */
 @OneToMany(mappedBy = "order", cascade = {CascadeType.PERSIST,
CascadeType.REMOVE, CascadeType.MERGE}, fetch = FetchType.EAGER)
 public List<OrderLine> getOrderlines() {
 if(orderlines == null)

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

144

 {
 orderlines = new ArrayList<OrderLine>();
 }
 return orderlines;
 }

 /**
 * Set the list of orderLine of an order.
 */
 public void setOrderlines(List<OrderLine> orderlines) {
 this.orderlines = orderlines;
 }

 /**
 * Add an orderLine to an order.
 */
 public OrderLine addOrderline(OrderLine orderline) {
 getOrderlines().add(orderline);
 return orderline;
 }

 /**
 * Remove an orderLine from an order.
 */
 public OrderLine removeOrderline(OrderLine orderline) {
 getOrderlines().remove(orderline);
 orderline.setOrder(null);
 return orderline;
 }

 /**
 * Gets the customer of an order.
 */
 @ManyToOne(fetch = FetchType.EAGER)
 @JoinColumn(name = "customer_id", insertable = true, updatable = true)
 public Customer getCustomer() {
 return customer;
 }

 /**
 * Set the customer of an order.
 */
 public void setCustomer(Customer customer) {
 this.customer = customer;
 }

 /**
 * Gets the hashcode of an order.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

145

 */
 @Override
 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() : 0);
 return hash;
 }

 /**
 * Return true if an object is the same order.
 */
 @Override
 public boolean equals(Object object) {
 if (!(object instanceof Order)) {
 return false;
 }
 Order other = (Order) object;
 if ((this.id == null && other.id != null) || (this.id != null &&
!this.id.equals(other.id))) {
 return false;
 }
 return true;
 }

 /**
 * Return a String representation of an order object.
 */
 @Override
 public String toString() {
 return "Order.Entity.Order[id=" + id + "]";
 }
}

/*

The following is the customer object business entity class

*/

Customer Entity:

package Order.Entity;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.persistence.Column;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

146

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.OneToMany;
import javax.persistence.Table;
import javax.xml.bind.annotation.XmlTransient;

/**
*This Customer class is the representation of a customer object and define the mapping
* in the database table “customers”
 */
@Entity
@NamedQueries({
 @NamedQuery(name = "Customer.findAll", query = "select o from Customer o"),
 @NamedQuery(name = "Customer.findCustomerById", query = "select o from
Customer o where o.id = :id")
})
@Table(name = "customers")
public class Customer implements Serializable {

 @Id
 @Column(name = "id", nullable = false)
 private Integer id;
 @Column(name = "name")
 private String name;
 @Column(name = "address")
 private String address;
 @Column(name = "contact")
 private Integer contact;
 @OneToMany(mappedBy = "customer")
 private List<Order> orders;

 /**
 * Gets the value of the id of a customer.
 */
 public Integer getId() {
 return id;
 }

 /**
 * Set the value of the id of a customer.
 */
 public void setId(Integer cus_id) {
 this.id = cus_id;
 }

 /**

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

147

 * Gets the value of name of a customer.
 */
 public String getName() {
 return name;
 }

 /**
 * Set the value of the name of a customer.
 */
 public void setName(String cus_name) {
 this.name = cus_name;
 }

 /**
 * Gets the value of the address of a customer.
 */
 public String getAddress() {
 return address;
 }

 /**
 * Set the value of the address of a customer.
 */
 public void setAddress(String cus_address) {
 this.address = cus_address;
 }

 /**
 * Gets the value of the contact of a customer.
 */
 public Integer getContact() {
 return contact;
 }

 /**
 * Set the value of the contact of a customer.
 */
 public void setContact(Integer cus_contact) {
 this.contact = cus_contact;
 }

 /**
 * Gets the list of order of a customer. Return empty list if not exist
 */
 @XmlTransient
 public List<Order> getOrders() {
 if(orders == null)
 {

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

148

 orders = new ArrayList<Order>();
 }
 return orders;
 }

 /**
 * Set the list of orders to a customer.
 */
 public void setOrders(List<Order> ordersList) {
 this.orders = ordersList;
 }

 /**
 * Add an order to a customer.
 */
 public Order addOrder(Order order) {
 getOrders().add(order);
 order.setCustomer(this);
 return order;
 }

 /**
 * Remove an order from a customer.
 */
 public Order removeOrder(Order order) {
 getOrders().remove(order);
 order.setCustomer(null);
 return order;
 }

 /**
 * Gets the hashcode of a customer.
 */
 @Override
 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() : 0);
 return hash;
 }

 /**
 * Return true if an object is the same customer.
 */
 @Override
 public boolean equals(Object object) {
 // TODO: Warning - this method won't work in the case the id fields are not set
 if (!(object instanceof Customer)) {
 return false;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

149

 }
 Customer other = (Customer) object;
 if ((this.getId() == null && other.getId() != null)
 || (this.getId() != null && !this.getId().equals(other.getId()))) {
 return false;
 }
 return true;
 }

 /**
 * Return a String representation of a customer object.
 */
 @Override
 public String toString() {
 return "Edu.Order.Customer[id=" + this.getId() + "]";
 }
}

/*

The following is the OrderLine object business entity class

*/

OrderLine Entity:

/*
 * The following is the OrderLine object business entity class
 */
package Order.Entity;

import java.io.Serializable;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.persistence.Transient;
import javax.xml.bind.annotation.XmlTransient;

/**

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

150

*This OrderLine class is the representation of an orderline object and define the
*mapping in the database table “orderlines”
 */
@Entity
@NamedQueries({
 @NamedQuery(name = "Orderline.findAll", query = "select o from OrderLine o"),
 @NamedQuery(name = "Orderline.findOrderlineById", query = "select o from
OrderLine o where o.id = :id")
})
@Table(name = "orderlines")
public class OrderLine implements Serializable {

 @Column(name = "ID")
 private Integer id;
 @Column(name = "quantity")
 private Integer quantity;
 @ManyToOne(fetch = FetchType.EAGER)
 @JoinColumn(name = "product_id")
 private Product product;
 @ManyToOne
 @JoinColumn(name = "order_id", insertable = true, updatable = true)
 private Order order;
 @Transient
 private String action;

 /*
 * The default constructor of an OrderLine object business entity
 */
 public OrderLine() {
 }

 * The OrderLine object business entity constructor with id, quantity, product, order
and action
 */
 public OrderLine(Integer id, Integer quantity,
 Product product, Order order, String action) {
 this.order = order;
 this.id = id;
 this.quantity = quantity;
 this.product = product;
 this.action = action;
 }

 /**
 * Gets the value of the action of an orderLine.
 */
 public String getAction() {
 return action;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

151

 }

 /**
 * Set the value of the action of an orderLine.
 */
 @Transient
 public void setAction(String action) {
 this.action = action;
 }

 /**
 * Gets the value of the orderId of an orderLine.
 */
 public Integer getOrder_Id() {
 return order.getId();
 }

 /**
 * Gets the value of the id of an orderLine.
 */
 @Id
 public Integer getId() {
 return id;
 }

 /**
 * Set the value of the id of an orderLine.
 */
 public void setId(Integer id) {
 this.id = id;
 }

 /**
 * Gets the value of the quantity of an orderLine.
 */
 public Integer getQuantity() {
 return quantity;
 }

 /**
 * Set the value of the quantity of an orderLine.
 */
 public void setQuantity(Integer quantity) {
 this.quantity = quantity;
 }

 /**
 * Gets the Product of an orderLine.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

152

 */
 public Product getProduct() {
 return product;
 }

 /**
 * Set the Product of an orderLine.
 */
 public void setProduct(Product product) {
 this.product = product;
 }

 /**
 * Gets the Order of an orderLine.
 */
 @XmlTransient
 public Order getOrder() {
 return order;
 }

 /**
 * Set the Order of an orderLine.
 */
 public void setOrder(Order order) {
 this.order = order;
 if (order != null) {
 this.id = order.getId();
 }
 }

 /**
 * Gets the hashcode of an orderLine.
 */
 @Override
 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() : 0);
 return hash;
 }

 /**
 * Return true if an object is the same orderLine.
 */
 @Override
 public boolean equals(Object object) {
 if (!(object instanceof OrderLine)) {
 return false;
 }

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

153

 OrderLine other = (OrderLine) object;
 if ((this.id == null && other.id != null) || (this.id != null &&
!this.id.equals(other.id))) {
 return false;
 }
 return true;
 }

 /**
 * Return a String representation of an orderLine object.
 */
 @Override
 public String toString() {
 return "Order.Entity.OrderLine[id=" + id + "]";
 }
}

/*

The following is the Product object business entity class

*/

Product Entity:

package Order.Entity;

import java.io.Serializable;
import java.util.List;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.OneToMany;
import javax.persistence.Table;
import javax.xml.bind.annotation.XmlTransient;

/**
*This Product class is the representation of a product object and define the mapping in
*the database table “products”
 */
@Entity
@NamedQueries({
 @NamedQuery(name = "Product.findAll", query = "select o from Product o"),
 @NamedQuery(name = "Product.findProductById", query = "select o from Product
o where o.id = :id")

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

154

})
@Table(name = "products")
public class Product implements Serializable {
 @Column(name="description")
 private String description;
 @Id
 @Column(name="id")
 private Integer id;
 @Column(name="price")
 private Integer price;
 @OneToMany(mappedBy = "product")
 private List<OrderLine> orderlines;

 /*
 * The default constructor of an Product object business entity
 */
 public Product() {
 }

 /* The Product object business entity constructor with descrition, id and price
 */
 public Product(String description, Integer id, Integer price) {
 this.description = description;
 this.id = id;
 this.price = price;
 }

 /**
 * Gets the value of the description of a product.
 */
 public String getDescription() {
 return description;
 }

 /**
 * Set the value of the description of a product.
 */
 public void setDescription(String description) {
 this.description = description;
 }

 /**
 * Gets the value of the id of a product.
 */
 public Integer getId() {
 return id;
 }

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

155

 /**
 * Set the value of the id of a product.
 */
 public void setId(Integer id) {
 this.id = id;
 }

 /**
 * Gets the value of the price of a product.
 */
 public Integer getPrice() {
 return price;
 }

 /**
 * Set the value of the price of a product.
 */
 public void setPrice(Integer price) {
 this.price = price;
 }

 /**
 * Gets the list of orderLine of a product.
 */
 @XmlTransient
 public List<OrderLine> getOrderlines() {
 return orderlines;
 }

 /**
 * Set the list of orderLine of a product.
 */
 public void setOrderlines(List<OrderLine> orderlineList) {
 this.orderlines = orderlineList;
 }

 /**
 * Add an orderLine to an orderLine of a product.
 */
 public OrderLine addOrderline(OrderLine orderline) {
 getOrderlines().add(orderline);
 orderline.setProduct(this);
 return orderline;
 }

 /**
 * Remove an orderLine to an orderLine of a product.
 */

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

156

 public OrderLine removeOrderline(OrderLine orderline) {
 getOrderlines().remove(orderline);
 orderline.setProduct(null);
 return orderline;
 }

 /**
 * Gets the hashcode of a product.
 */
 @Override
 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() : 0);
 return hash;
 }

 /**
 * Return true if an object is the same product.
 */
 @Override
 public boolean equals(Object object) {
 if (!(object instanceof Product)) {
 return false;
 }
 Product other = (Product) object;
 if ((this.id == null && other.id != null) || (this.id != null &&
!this.id.equals(other.id))) {
 return false;
 }
 return true;
 }

 /**
 * Return a String representation of a product object.
 */
 @Override
 public String toString() {
 return "Order.Entity.Product[id=" + id + "]";
 }

}

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

157

Appendix 5: Data Access Object of the Prototype application

/*

The following is the Data Access object class, the interface to access the object

*/

Interface of the DAO :

package Order.DAO;

public interface IRepository<T> {
 public T merge(T entity);
 public T persist(T entity);
 public void remove(T entity);
 public T FindById(Integer id);
}

/*

The following is the Data Access object class, the interface to access the Order object

*/

Order DAO:

package Order.DAO;

import Order.Entity.Order;
import javax.persistence.EntityManager;
import javax.persistence.Query;

public class OrderDAO implements IRepository<Order> {

 /**
 * Constructor for OrderDAO.
 */
 public OrderDAO(EntityManager em) {
 this.em = em;
 }

 /**
 * Update an Order object.
 */
 public Order merge(Order order) {
 return em.merge(order);
 }

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

158

 /**
 * Persist an Order object.
 */
 public Order persist(Order order) {
 em.persist(order);
 return order;
 }

 /**
 * Remove an Order object.
 */
 public void remove(Order order) {
 order = em.merge(order);
 em.remove(order);
 }

 /**
 * Find Order object by Id.
 */
 public Order FindById(Integer id) {
 Query query = em.createQuery("select m from Order m where m.id = " + id);
 return (Order) query.getSingleResult();
 }
 private EntityManager em;
}

/*

The following is the Data Access object class, the interface to access the Product object

*/

Product DAO:

package Order.DAO;

import Order.Entity.Product;
import javax.persistence.EntityManager;
import javax.persistence.Query;

public class ProductDAO implements IRepository<Product> {

 /**
 * Constructor for ProductDAO.
 */
 public ProductDAO(EntityManager em) {
 this.em = em;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

159

 }

 public Product merge(Product entity) {
 return em.merge(entity);
 }

 /**
 * Update a Product object.
 */
 public Product persist(Product entity) {
 em.persist(entity);
 return entity;
 }

 /**
 * Remove a Product object.
 */
 public void remove(Product entity) {
 entity = em.merge(entity);
 em.remove(entity);
 }

 /**
 * Find a Product object by Id.
 */
 public Product FindById(Integer id) {
 Query query = em.createQuery("select m from Product m where m.id = " + id);
 return (Product) query.getSingleResult();
 }
 private EntityManager em;
}

/*

The following is the Data Access object class, the interface to access the Customer

object

*/

Customer DAO:

package Order.DAO;

import Order.Entity.Customer;
import javax.persistence.EntityManager;
import javax.persistence.Query;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

160

public class CustomerDAO implements IRepository<Customer> {

 /**
 * Constructor for CustomerDAO.
 */
 public CustomerDAO(EntityManager em) {
 this.em = em;
 }

 /**
 * Update a Customer object.
 */
 public Customer merge(Customer entity) {
 return em.merge(entity);
 }

 /**
 * Persist a Customer object.
 */
 public Customer persist(Customer entity) {
 em.persist(entity);
 return entity;
 }

 /**
 * Remove a Customer object.
 */
 public void remove(Customer entity) {
 entity = em.merge(entity);
 em.remove(entity);
 }
 private EntityManager em;

 /**
 * Find a Customer object by Id.
 */
 public Customer FindById(Integer id) {
 Query query = em.createQuery("select m from Customer m where m.id = " + id);
 return (Customer)query.getSingleResult();
 }
}

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

161

Appendix 6: Business Value Object of the Prototype application

/*

The following is the changeOrderType XML value object, it is a XML format of the

changeOrder object

*/

ChangeOrderType Value Object

package Order.Serializer;

import java.util.ArrayList;
import java.util.List;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

/**
 * <p>Java class for ChangeOrderType complex type.
 *
 * <p>The following schema fragment specifies the expected content contained within
this class.
 *
 * <pre>
 * <complexType name="ChangeOrderType">
 * <complexContent>
 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 * <sequence>
 * <element name="OrderLine" type="{}OrderLineType"
maxOccurs="unbounded"/>
 * </sequence>
 * </restriction>
 * </complexContent>
 * </complexType>
 * </pre>
 *
 */
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "ChangeOrderType", propOrder = { "orderLine" })
public class ChangeOrderType {

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

162

 @XmlElement(name = "OrderLine", required = true)
 protected List<OrderLineType> orderLine;

 /**
 * Gets the value of the orderLine property.
 *
 * <p>
 * This accessor method returns a reference to the live list,
 * not a snapshot. Therefore any modification you make to the
 * returned list will be present inside the JAXB object.
 * This is why there is not a <CODE>set</CODE> method for the orderLine
property.
 *
 * <p>
 * For example, to add a new item, do as follows:
 * <pre>
 * getOrderLine().add(newItem);
 * </pre>
 *
 *
 * <p>
 * Objects of the following type(s) are allowed in the list
 * {@link OrderLineType }
 *
 *
 */
 public List<OrderLineType> getOrderLine() {
 if (orderLine == null) {
 orderLine = new ArrayList<OrderLineType>();
 }
 return this.orderLine;
 }

}

/*

The following is the customerPartyType XML value object, it is a XML format of the

customerParty object

*/

CustomerPartyType Value Object:

package Order.Serializer;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

163

import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

/**
 * <p>Java class for CustomerPartyType complex type.
 *
 * <p>The following schema fragment specifies the expected content contained within
this class.
 *
 * <pre>
 * <complexType name="CustomerPartyType">
 * <complexContent>
 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 * <sequence>
 * <element name="ID" type="{http://www.w3.org/2001/XMLSchema}int"/>
 * <element name="Name"
type="{http://www.w3.org/2001/XMLSchema}string"/>
 * <element name="Address"
type="{http://www.w3.org/2001/XMLSchema}string"/>
 * <element name="Contact"
type="{http://www.w3.org/2001/XMLSchema}string"/>
 * </sequence>
 * </restriction>
 * </complexContent>
 * </complexType>
 * </pre>
 *
 *
 */
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "CustomerPartyType",
 propOrder = { "id", "name", "address", "contact" })
public class CustomerPartyType {

 @XmlElement(name = "ID")
 protected int id;
 @XmlElement(name = "Name", required = true)
 protected String name;
 @XmlElement(name = "Address", required = true)
 protected String address;
 @XmlElement(name = "Contact", required = true)
 protected String contact;

 /**
 * Gets the value of the id property.
 *
 */

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

164

 public int getID() {
 return id;
 }

 /**
 * Sets the value of the id property.
 *
 */
 public void setID(int value) {
 this.id = value;
 }

 /**
 * Gets the value of the name property.
 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getName() {
 return name;
 }

 /**
 * Sets the value of the name property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setName(String value) {
 this.name = value;
 }

 /**
 * Gets the value of the address property.
 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getAddress() {
 return address;
 }

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

165

 /**
 * Sets the value of the address property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setAddress(String value) {
 this.address = value;
 }

 /**
 * Gets the value of the contact property.
 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getContact() {
 return contact;
 }

 /**
 * Sets the value of the contact property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setContact(String value) {
 this.contact = value;
 }
}

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

166

/*

The following is the itemType XML value object, it is a XML format of the itemType

object

*/

ItemType Value Object:

package Order.Serializer;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

/**
 * <p>Java class for ItemType complex type.
 *
 * <p>The following schema fragment specifies the expected content contained within
this class.
 *
 * <pre>
 * <complexType name="ItemType">
 * <complexContent>
 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 * <sequence>
 * <element name="ProductId"
type="{http://www.w3.org/2001/XMLSchema}int"/>
 * <element name="ProductName"
type="{http://www.w3.org/2001/XMLSchema}string"/>
 * <element name="Price"
type="{http://www.w3.org/2001/XMLSchema}string"/>
 * </sequence>
 * </restriction>
 * </complexContent>
 * </complexType>
 * </pre>
 *
 *
 */
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "ItemType",
 propOrder = { "productId", "productName", "price" })
public class ItemType {

 @XmlElement(name = "ProductId")

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

167

 protected int productId;
 @XmlElement(name = "ProductName", required = true)
 protected String productName;
 @XmlElement(name = "Price", required = true)
 protected String price;

 /**
 * Gets the value of the productId property.
 *
 */
 public int getProductId() {
 return productId;
 }

 /**
 * Sets the value of the productId property.
 *
 */
 public void setProductId(int value) {
 this.productId = value;
 }

 /**
 * Gets the value of the productName property.
 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getProductName() {
 return productName;
 }

 /**
 * Sets the value of the productName property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setProductName(String value) {
 this.productName = value;
 }

 /**
 * Gets the value of the price property.

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

168

 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getPrice() {
 return price;
 }

 /**
 * Sets the value of the price property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setPrice(String value) {
 this.price = value;
 }

}

/*

The following is the newOrderType XML value object, it is a XML format of the

newOrder object

*/

NewOrderType Value Object:

package Order.Serializer;

import java.util.ArrayList;
import java.util.List;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

/**

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

169

 * <p>Java class for NewOrderType complex type.
 *
 * <p>The following schema fragment specifies the expected content contained within
this class.
 *
 * <pre>
 * <complexType name="NewOrderType">
 * <complexContent>
 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 * <sequence>
 * <element name="IssueDate"
type="{http://www.w3.org/2001/XMLSchema}string"/>
 * <element name="CustomerParty" type="{}CustomerPartyType"/>
 * <element name="Total"
type="{http://www.w3.org/2001/XMLSchema}string"/>
 * <element name="Status"
type="{http://www.w3.org/2001/XMLSchema}string"/>
 * <element name="OrderLine" type="{}OrderLineType"
maxOccurs="unbounded"/>
 * </sequence>
 * </restriction>
 * </complexContent>
 * </complexType>
 * </pre>
 *
 *
 */
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "NewOrderType",
 propOrder = { "issueDate", "customerParty", "total", "status",
 "orderLine" })
public class NewOrderType {

 @XmlElement(name = "IssueDate", required = true)
 protected String issueDate;
 @XmlElement(name = "CustomerParty", required = true)
 protected CustomerPartyType customerParty;
 @XmlElement(name = "Total", required = true)
 protected String total;
 @XmlElement(name = "Status", required = true)
 protected String status;
 @XmlElement(name = "OrderLine", required = true)
 protected List<OrderLineType> orderLine;

 /**
 * Gets the value of the issueDate property.
 *
 * @return

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

170

 * possible object is
 * {@link String }
 *
 */
 public String getIssueDate() {
 return issueDate;
 }

 /**
 * Sets the value of the issueDate property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setIssueDate(String value) {
 this.issueDate = value;
 }

 /**
 * Gets the value of the customerParty property.
 *
 * @return
 * possible object is
 * {@link CustomerPartyType }
 *
 */
 public CustomerPartyType getCustomerParty() {
 return customerParty;
 }

 /**
 * Sets the value of the customerParty property.
 *
 * @param value
 * allowed object is
 * {@link CustomerPartyType }
 *
 */
 public void setCustomerParty(CustomerPartyType value) {
 this.customerParty = value;
 }

 /**
 * Gets the value of the total property.
 *
 * @return

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

171

 * possible object is
 * {@link String }
 *
 */
 public String getTotal() {
 return total;
 }

 /**
 * Sets the value of the total property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setTotal(String value) {
 this.total = value;
 }

 /**
 * Gets the value of the status property.
 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getStatus() {
 return status;
 }

 /**
 * Sets the value of the status property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setStatus(String value) {
 this.status = value;
 }

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

172

 /**
 * Gets the value of the orderLine property.
 *
 * <p>
 * This accessor method returns a reference to the live list,
 * not a snapshot. Therefore any modification you make to the
 * returned list will be present inside the JAXB object.
 * This is why there is not a <CODE>set</CODE> method for the orderLine
property.
 *
 * <p>
 * For example, to add a new item, do as follows:
 * <pre>
 * getOrderLine().add(newItem);
 * </pre>
 *
 *
 * <p>
 * Objects of the following type(s) are allowed in the list
 * {@link OrderLineType }
 *
 *
 */
 public List<OrderLineType> getOrderLine() {
 if (orderLine == null) {
 orderLine = new ArrayList<OrderLineType>();
 }
 return this.orderLine;
 }

}

/*

The following is the XML object factory, it is use for create, modify the XML value

object

*/

Object Factory:

package Order.Serializer;

import javax.xml.bind.annotation.XmlRegistry;

/**

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

173

 * This object contains factory methods for each
 * Java content interface and Java element interface
 * generated in the orderxml package.
 * <p>An ObjectFactory allows you to programatically
 * construct new instances of the Java representation
 * for XML content. The Java representation of XML
 * content can consist of schema derived interfaces
 * and classes representing the binding of schema
 * type definitions, element declarations and model
 * groups. Factory methods for each of these are
 * provided in this class.
 *
 */
@XmlRegistry
public class ObjectFactory {

 /**
 * Create a new ObjectFactory that can be used to create new instances of schema
derived classes for package: orderxml
 *
 */
 public ObjectFactory() {
 }

 /**
 * Create an instance of {@link ChangeOrderType }
 *
 */
 public ChangeOrderType createChangeOrderType() {
 return new ChangeOrderType();
 }

 /**
 * Create an instance of {@link CustomerPartyType }
 *
 */
 public CustomerPartyType createCustomerPartyType() {
 return new CustomerPartyType();
 }

 /**
 * Create an instance of {@link ItemType }
 *
 */
 public ItemType createItemType() {
 return new ItemType();
 }

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

174

 /**
 * Create an instance of {@link OrderLineType }
 *
 */
 public OrderLineType createOrderLineType() {
 return new OrderLineType();
 }

 /**
 * Create an instance of {@link Order }
 *
 */
 public OrderType createOrder() {
 return new OrderType();
 }

 /**
 * Create an instance of {@link ResponseOrderType }
 *
 */
 public ResponseOrderType createResponseOrderType() {
 return new ResponseOrderType();
 }

 /**
 * Create an instance of {@link NewOrderType }
 *
 */
 public NewOrderType createNewOrderType() {
 return new NewOrderType();
 }

}

/*

The following is the orderLineType XML value object, it is a XML format of the

orderlineType object

*/

OrderLineType Value Object:

package Order.Serializer;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

175

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;

/**
 * <p>Java class for OrderLineType complex type.
 *
 * <p>The following schema fragment specifies the expected content contained within
this class.
 *
 * <pre>
 * <complexType name="OrderLineType">
 * <complexContent>
 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 * <sequence>
 * <element name="OrderLineNumber"
type="{http://www.w3.org/2001/XMLSchema}int"/>
 * <element name="Item" type="{}ItemType"/>
 * <element name="Quantity"
type="{http://www.w3.org/2001/XMLSchema}int"/>
 * </sequence>
 * <attribute ref="{}Action use="required""/>
 * </restriction>
 * </complexContent>
 * </complexType>
 * </pre>
 *
 *
 */
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "OrderLineType",
 propOrder = { "orderLineNumber", "item", "quantity" })
public class OrderLineType {
 @XmlElement(name = "OrderLineNumber")
 protected int orderLineNumber;
 @XmlElement(name = "Item", required = true)
 protected ItemType item;
 @XmlElement(name = "Quantity")
 protected int quantity;
 @XmlAttribute(name = "Action", required = true)
 protected String action;

 /**
 * Gets the value of the orderLineNumber property.
 *

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

176

 */
 public int getOrderLineNumber() {
 return orderLineNumber;
 }

 /**
 * Sets the value of the orderLineNumber property.
 *
 */
 public void setOrderLineNumber(int value) {
 this.orderLineNumber = value;
 }

 /**
 * Gets the value of the item property.
 *
 * @return
 * possible object is
 * {@link ItemType }
 *
 */
 public ItemType getItem() {
 return item;
 }

 /**
 * Sets the value of the item property.
 *
 * @param value
 * allowed object is
 * {@link ItemType }
 *
 */
 public void setItem(ItemType value) {
 this.item = value;
 }

 /**
 * Gets the value of the quantity property.
 *
 */
 public int getQuantity() {
 return quantity;
 }

 /**
 * Sets the value of the quantity property.
 *

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

177

 */
 public void setQuantity(int value) {
 this.quantity = value;
 }

 /**
 * Gets the value of the action property.
 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getAction() {
 return action;
 }

 /**
 * Sets the value of the action property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setAction(String value) {
 this.action = value;
 }

}

/*

The following is the orderType XML value object, it is a XML format of the order

object

*/

OrderType Value Object:

package Order.Serializer;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlElement;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

178

import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

/**
 * <p>Java class for anonymous complex type.
 *
 * <p>The following schema fragment specifies the expected content contained within
this class.
 *
 * <pre>
 * <complexType>
 * <complexContent>
 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 * <choice>
 * <element name="NewOrder" type="{}NewOrderType" minOccurs="0"/>
 * <element name="ChangeOrder" type="{}ChangeOrderType"
minOccurs="0"/>
 * <element name="ResponseOrder" type="{}ResponseOrderType"
minOccurs="0"/>
 * </choice>
 * <attribute name="ID" use="required"
type="{http://www.w3.org/2001/XMLSchema}int" />
 * <attribute ref="{}Action use="required""/>
 * </restriction>
 * </complexContent>
 * </complexType>
 * </pre>
 *
 *
 */
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "", propOrder = { "newOrder", "changeOrder", "responseOrder" })
@XmlRootElement(name = "Order")
public class OrderType {

 @XmlElement(name = "NewOrder")
 protected NewOrderType newOrder;
 @XmlElement(name = "ChangeOrder")
 protected ChangeOrderType changeOrder;
 @XmlElement(name = "ResponseOrder")
 protected ResponseOrderType responseOrder;
 @XmlAttribute(name = "ID", required = true)
 protected int id;
 @XmlAttribute(name = "Action", required = true)
 protected String action;

 /**

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

179

 * Gets the value of the newOrder property.
 *
 * @return
 * possible object is
 * {@link NewOrderType }
 *
 */
 public NewOrderType getNewOrder() {
 return newOrder;
 }

 /**
 * Sets the value of the newOrder property.
 *
 * @param value
 * allowed object is
 * {@link NewOrderType }
 *
 */
 public void setNewOrder(NewOrderType value) {
 this.newOrder = value;
 }

 /**
 * Gets the value of the changeOrder property.
 *
 * @return
 * possible object is
 * {@link ChangeOrderType }
 *
 */
 public ChangeOrderType getChangeOrder() {
 return changeOrder;
 }

 /**
 * Sets the value of the changeOrder property.
 *
 * @param value
 * allowed object is
 * {@link ChangeOrderType }
 *
 */
 public void setChangeOrder(ChangeOrderType value) {
 this.changeOrder = value;
 }

 /**

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

180

 * Gets the value of the responseOrder property.
 *
 * @return
 * possible object is
 * {@link ResponseOrderType }
 *
 */
 public ResponseOrderType getResponseOrder() {
 return responseOrder;
 }

 /**
 * Sets the value of the responseOrder property.
 *
 * @param value
 * allowed object is
 * {@link ResponseOrderType }
 *
 */
 public void setResponseOrder(ResponseOrderType value) {
 this.responseOrder = value;
 }

 /**
 * Gets the value of the id property.
 *
 */
 public int getID() {
 return id;
 }

 /**
 * Sets the value of the id property.
 *
 */
 public void setID(int value) {
 this.id = value;
 }

 /**
 * Gets the value of the action property.
 *
 * @return
 * possible object is
 * {@link String }
 *
 */
 public String getAction() {

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

181

 return action;
 }

 /**
 * Sets the value of the action property.
 *
 * @param value
 * allowed object is
 * {@link String }
 *
 */
 public void setAction(String value) {
 this.action = value;
 }

}

/*

The following is the responseType XML value object, it is a XML format of the

response object

*/

ResponseType Value Object:

package Order.Serializer;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlType;
import javax.xml.bind.annotation.XmlRootElement;

/**
 * <p>Java class for ResponseOrderType complex type.
 *
 * <p>The following schema fragment specifies the expected content contained within
this class.
 *
 * <pre>
 * <complexType name="ResponseOrderType">
 * <complexContent>
 * <restriction base="{http://www.w3.org/2001/XMLSchema}anyType">
 * <sequence>
 * <element name="AcceptedIndicator"
type="{http://www.w3.org/2001/XMLSchema}boolean" minOccurs="0"/>
 * </sequence>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

182

 * </restriction>
 * </complexContent>
 * </complexType>
 * </pre>
 *
 *
 */
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "ResponseOrderType", propOrder = { "acceptedIndicator" })
@XmlRootElement(name = "ResponseOrder")
public class ResponseOrderType {

 @XmlElement(name = "AcceptedIndicator")
 protected Boolean acceptedIndicator;

 /**
 * Gets the value of the acceptedIndicator property.
 *
 * @return
 * possible object is
 * {@link Boolean }
 *
 */
 public Boolean isAcceptedIndicator() {
 return acceptedIndicator;
 }

 /**
 * Sets the value of the acceptedIndicator property.
 *
 * @param value
 * allowed object is
 * {@link Boolean }
 *
 */
 public void setAcceptedIndicator(Boolean value) {
 this.acceptedIndicator = value;
 }

}

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

183

Appendix 7: Purchase Order Schema of the Prototype application

/*

The following is the purchase order XML schema that define the business document

*/

<?xml version="1.0" encoding="iso-8859-1"?>
<!--Created with Liquid XML Studio - FREE Community Edition 7.0.5.906
(http://www.liquid-technologies.com)-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:attribute name="Action">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="new" />
 <xs:enumeration value="change" />
 <xs:enumeration value="cancel" />
 <xs:enumeration value="retrieve" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:complexType name="CustomerPartyType">
 <xs:sequence>
 <xs:element name="ID" type="xs:int" />
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Address" type="xs:string" />
 <xs:element name="Contact" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ItemType">
 <xs:sequence>
 <xs:element name="ProductId" type="xs:int" />
 <xs:element name="ProductName" type="xs:string" />
 <xs:element name="Price" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="NewOrderType">
 <xs:sequence>
 <xs:element name="IssueDate" type="xs:string" />
 <xs:element name="CustomerParty" type="CustomerPartyType" />
 <xs:element name="Total" type="xs:string" />
 <xs:element name="Status" type="xs:string" />
 <xs:element maxOccurs="unbounded" name="OrderLine" type="OrderLineType"
/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ChangeOrderType">
 <xs:sequence>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

184

 <xs:element minOccurs="1" maxOccurs="unbounded" name="OrderLine"
type="OrderLineType" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="OrderLineType">
 <xs:sequence>
 <xs:element name="OrderLineNumber" type="xs:int" />
 <xs:element name="Item" type="ItemType" />
 <xs:element name="Quantity" type="xs:int" />
 </xs:sequence>
 <xs:attribute ref="Action" use="required" />
 </xs:complexType>
 <xs:complexType name="ResponseOrderType">
 <xs:sequence>
 <xs:element minOccurs="0" name="AcceptedIndicator" type="xs:boolean" />
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Order">
 <xs:complexType>
 <xs:choice>
 <xs:element minOccurs="0" name="NewOrder" type="NewOrderType" />
 <xs:element minOccurs="0" name="ChangeOrder" type="ChangeOrderType" />
 <xs:element minOccurs="0" name="ResponseOrder" type="ResponseOrderType"
/>
 </xs:choice>
 <xs:attribute name="ID" type="xs:int" use="required" />
 <xs:attribute ref="Action" use="required" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

185

Appendix 8: Object Serializer of the Prototype application

/*

The following is the serialiser class to convert the entity object to and from the XML

value object

*/

package Order.Serializer;

import Order.DAO.CustomerDAO;
import Order.DAO.OrderDAO;
import Order.DAO.ProductDAO;
import Order.Entity.Customer;
import Order.Entity.Order;
import Order.Entity.OrderLine;
import Order.Entity.Product;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;
import javax.swing.plaf.basic.BasicSliderUI.ActionScroller;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;

public class OrderSerializer {

 private static final String PERSISTENCE_UNIT_NAME = "OrderEntityPU";
 private EntityManagerFactory factory;
 private EntityManager em;
 private CustomerDAO customerDAO;
 private OrderDAO orderDAO;
 private ProductDAO productDAO;

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

186

 /**
 * Constructor for the OrderSerializer for accessing the DAO.
 */
 public OrderSerializer() {
 factory =
Persistence.createEntityManagerFactory(PERSISTENCE_UNIT_NAME);
 em = factory.createEntityManager();
 customerDAO = new CustomerDAO(em);
 orderDAO = new OrderDAO(em);
 productDAO = new ProductDAO(em);
 }
 static JAXBContext context = null;

 /**
 * Export the Order object to XML document
 */
 public void exportToXML(Order order, String address) {
 File file = new File(address);
 OutputStream stream = null;
 try {
 stream = new FileOutputStream(file);
 this.createXMLDocument(order, stream);
 } catch (FileNotFoundException ex) {
 Logger.getLogger(OrderSerializer.class.getName()).log(Level.SEVERE, null,
ex);
 } finally {
 try {
 stream.close();
 } catch (IOException ex) {
 Logger.getLogger(OrderSerializer.class.getName()).log(Level.WARNING,
null, ex);
 }
 }
 }

 /**
 * Transfrom the Order object from entity to value object
 */
public void createXMLDocument(Order order, OutputStream stream) {
 try {
 context = JAXBContext.newInstance("Order.Serializer");
 Marshaller marshaller = context.createMarshaller();
 em.getTransaction().begin();

 OrderType purchaseOrder = new OrderType();
 purchaseOrder.setAction(order.getAction());
 purchaseOrder.setID(order.getId());

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

187

 //Create new order from action “new”
 if (order.getAction().contains("new")) {
 NewOrderType newOrderType = new NewOrderType();
 newOrderType.setIssueDate(order.getCreateDate());
 newOrderType.setStatus(order.getStatus());
 newOrderType.setTotal(order.getTotal().toString());

 CustomerPartyType customerPartyType = new CustomerPartyType();

 Customer customer = order.getCustomer();
 if (customer != null) {
 customerPartyType.setID(customer.getId());
 customerPartyType.setName(customer.getName());
 customerPartyType.setAddress(customer.getAddress());
 customerPartyType.setContact(customer.getContact().toString());
 }
 newOrderType.setCustomerParty(customerPartyType);

 for (OrderLine orderline : (List<OrderLine>) order.getOrderlines()) {
 OrderLineType orderlineType = new OrderLineType();
 orderlineType.setOrderLineNumber(orderline.getId());
 orderlineType.setQuantity(orderline.getQuantity());

 ItemType itemType = new ItemType();

 Product product = new Product();
 product = productDAO.FindById(orderline.getProduct().getId());
 itemType.setProductId(product.getId());
 itemType.setProductName(product.getDescription());
 itemType.setPrice(product.getPrice().toString());
 orderlineType.setItem(itemType);

 newOrderType.getOrderLine().add(orderlineType);
 }
 purchaseOrder.setNewOrder(newOrderType);
 }

 //Create change order from action “change”
 else if (order.getAction().contains("change")) {
 ChangeOrderType changeOrderType = new ChangeOrderType();
 for (OrderLine orderline : (List<OrderLine>) order.getOrderlines()) {
 OrderLineType orderlineType = new OrderLineType();
 orderlineType.setAction(orderline.getAction());
 orderlineType.setOrderLineNumber(orderline.getId());
 orderlineType.setQuantity(orderline.getQuantity());
 ItemType itemType = new ItemType();

 Product product = new Product();

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

188

 product = productDAO.FindById(orderline.getProduct().getId());
 itemType.setProductId(product.getId());
 itemType.setProductName(product.getDescription());
 itemType.setPrice(product.getPrice().toString());
 orderlineType.setItem(itemType);

 changeOrderType.getOrderLine().add(orderlineType);
 }
 purchaseOrder.setChangeOrder(changeOrderType);
 }
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
Boolean.TRUE);
 marshaller.marshal(purchaseOrder, stream);

 // Commit the transaction, which will cause the entity to
 // be stored in the database
 em.getTransaction().commit();
 } catch (JAXBException e) {
 Logger.getLogger(OrderSerializer.class.getName()).log(Level.SEVERE, null,
e);
 System.out.println(e.toString());
 em.getTransaction().rollback();
 } catch (Exception e) {
 em.getTransaction().rollback();
 } finally {
 // It is always good practice to close the EntityManager so that
 // resources are conserved.
 em.close();
 }
 }

 /**
 * Process the incoming XML and return the response message
 */
 public String update(String request) throws Exception{
 ResponseOrderType response = new ResponseOrderType();

 InputStream stream = new ByteArrayInputStream(request.getBytes());
 OutputStream oStream = new ByteArrayOutputStream();

 //perform the logic
 Order order = this.importXML(stream);

 if(order != null)
 {
 response.setAcceptedIndicator(true);
 }
 else

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

189

 {
 response.setAcceptedIndicator(false);
 }

 //perform the XML display
 try {
 context = JAXBContext.newInstance("Order.Serializer");
 Marshaller marshaller = context.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
Boolean.TRUE);
 marshaller.marshal(response, oStream);
 } catch (JAXBException ex) {
 Logger.getLogger(OrderSerializer.class.getName()).log(Level.SEVERE, null,
ex);
 }
 return oStream.toString();

 }

 /**
 * Process the incoming XML message and return the Order object
 */
 public Order importXML(String address) throws Exception {
 File xmlDocument = new File(address);
 Order order = null;
 FileInputStream fileInputStream = null;
 try {
 fileInputStream = new FileInputStream(xmlDocument);
 order = importXML(fileInputStream);
 } catch (FileNotFoundException ex) {
 Logger.getLogger(OrderSerializer.class.getName()).log(Level.SEVERE, null,
ex);
 } finally {
 try {
 if (fileInputStream != null) {
 fileInputStream.close();
 }
 } catch (IOException ex) {
 Logger.getLogger(OrderSerializer.class.getName()).log(Level.SEVERE, null,
ex);
 }
 }
 return order;
 }

 /**
 * Process the XML message and create the order from the action
 */

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

190

 public Order importXML(InputStream stream) throws Exception{
 Order order = new Order();
 em.getTransaction().begin();

 context = JAXBContext.newInstance("Order.Serializer");

 Unmarshaller unmarshaller = context.createUnmarshaller();
 OrderType orderType = (OrderType) unmarshaller.unmarshal(stream);

 //create a new order from action “new”
 if(orderType.getAction().contains("new"))
 {
 NewOrderType newOrderType = orderType.getNewOrder();
 order.setAction(orderType.getAction());
 order.setId(orderType.getID());
 order.setCreateDate(newOrderType.getIssueDate());
 Customer customer =
customerDAO.FindById(newOrderType.getCustomerParty().getID());
 order.setCustomer(customer);
 order.setTotal(Integer.parseInt(newOrderType.getTotal()));
 order.setStatus(newOrderType.getStatus());

 //create new orderlines from the request message
 for (OrderLineType orderLineType : newOrderType.getOrderLine()) {
 OrderLine orderline = new OrderLine();
 orderline.setOrder(order);
 orderline.setId(orderLineType.getOrderLineNumber());
 orderline.setQuantity(orderLineType.getQuantity());
 Product product =
productDAO.FindById(orderLineType.getItem().getProductId());
 orderline.setProduct(product);
 order.addOrderline(orderline);
 }
 orderDAO.persist(order);
 }

 //change an order from action “change”
 else if (orderType.getAction().contains("change")) {
 ChangeOrderType changeOrderType = orderType.getChangeOrder();

 //update every orderlines from the request message
 for (OrderLineType orderLineType : changeOrderType.getOrderLine()) {
 OrderLine orderline = new OrderLine();
 orderline.setOrder(order);
 orderline.setId(orderLineType.getOrderLineNumber());
 orderline.setQuantity(orderLineType.getQuantity());
 Product product =
productDAO.FindById(orderLineType.getItem().getProductId());

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

191

 orderline.setProduct(product);

 order.addOrderline(orderline);
 }
 orderDAO.merge(order);
 }

 //cancel an order from action “cancel”

else if (orderType.getAction().contains("cancel")) {
 order = orderDAO.FindById(orderType.getID());
 orderDAO.remove(order);
 }

 //retrieve an order from action “retrieve”

else if (orderType.getAction().contains("retrieve")) {
 orderDAO.FindById(order.getId());
 }

 // Commit the transaction, which will cause the entity to
 // be stored in the database
 em.getTransaction().commit();
return order;
 }
}

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

192

Appendix 9: Prototype application Web Services

/*

The following is the Web Service class that define the processOrder WSDL interface

*/

package Order.Service;

import Order.Entity.Customer;
import Order.Serializer.OrderSerializer;
import javax.jws.WebService;
import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;

/**
 * This class expose the operation processOrder as a web service operation
 */
@WebService()
@Stateless()
public class OrderWebService {

 @WebMethod(operationName = "ProcessOrder")
 public String ProcessOrder(@WebParam(name = "request") String request) throws
Exception{
 String response = null;
 OrderSerializer serializer = new OrderSerializer();
 response = serializer.update(request);
 return response;
 }
}

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

193

Appendix 10: Prototype application Web Service Interface

/*

The following is process order WSDL interface document

*/

<?xml version="1.0" encoding="UTF-8"?>
<!-- Published by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI
2.2-hudson-752-. -->
<!-- Generated by JAX-WS RI at http://jax-ws.dev.java.net. RI's version is JAX-WS RI
2.2-hudson-752-. -->
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://Service.Order/"
xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:wsp1_2="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://Service.Order/" name="OrderWebServiceService">
 <wsp:Policy xmlns:wsat="http://schemas.xmlsoap.org/ws/2004/10/wsat"
wsu:Id="OrderWebServicePortBinding_findbyid_WSAT_Policy">
 <wsat:ATAlwaysCapability />
 <wsat:ATAssertion xmlns:ns1="http://schemas.xmlsoap.org/ws/2002/12/policy"
wsp:Optional="true" ns1:Optional="true" />
 </wsp:Policy>
 <types>
 <xsd:schema>
 <xsd:import namespace="http://Service.Order/"
schemaLocation="http://localhost:36772/OrderWebServiceService/OrderWebService?x
sd=1" />
 </xsd:schema>
 </types>
 <message name="findbyid">
 <part name="parameters" element="tns:findbyid" />
 </message>
 <message name="findbyidResponse">
 <part name="parameters" element="tns:findbyidResponse" />
 </message>
 <portType name="OrderWebService">
 <operation name="findbyid">
 <input wsam:Action="http://Service.Order/OrderWebService/findbyidRequest"
message="tns:findbyid" />
 <output wsam:Action="http://Service.Order/OrderWebService/findbyidResponse"
message="tns:findbyidResponse" />
 </operation>
 </portType>
 <binding name="OrderWebServicePortBinding" type="tns:OrderWebService">

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

194

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"
/>
 <operation name="findbyid">
 <wsp:PolicyReference
URI="#OrderWebServicePortBinding_findbyid_WSAT_Policy" />
 <soap:operation soapAction="" />
 <input>
 <wsp:PolicyReference
URI="#OrderWebServicePortBinding_findbyid_WSAT_Policy" />
 <soap:body use="literal" />
 </input>
 <output>
 <wsp:PolicyReference
URI="#OrderWebServicePortBinding_findbyid_WSAT_Policy" />
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
 <service name="OrderWebServiceService">
 <port name="OrderWebServicePort" binding="tns:OrderWebServicePortBinding">
 <soap:address
location="http://localhost:36772/OrderWebServiceService/OrderWebService" />
 </port>
 </service>
</definitions>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

195

Appendix 11: Client’s GUI of the Prototype application

/*

The following is the client use for invoking the process order Web Service, take the

XML request input and display the response output.

*/

package orderdesktop;

import Order.Entity.Customer;
import Order.Service.OrderWebService;
import java.awt.Color;
import java.io.StringWriter;
import org.jdesktop.application.Action;
import org.jdesktop.application.SingleFrameApplication;
import org.jdesktop.application.FrameView;
import javax.swing.JDialog;
import javax.swing.JFrame;
import javax.swing.UIManager;

/**
 * The application's main frame.
 */
public class OrderDesktopView extends FrameView {

 /**
 * Constructor for OrderDesktopView.
 */
 public OrderDesktopView(SingleFrameApplication app) {
 super(app);

 initComponents();
 }

 @Action
 public void showAboutBox() {
 if (aboutBox == null) {
 JFrame mainFrame = OrderDesktopApp.getApplication().getMainFrame();
 aboutBox = new OrderDesktopAboutBox(mainFrame);
 aboutBox.setLocationRelativeTo(mainFrame);
 }
 OrderDesktopApp.getApplication().show(aboutBox);
 }

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

196

 /** This method is called from within the constructor to
 * initialize the form.
 */
 @SuppressWarnings("unchecked")
 private void initComponents() {

 mainPanel = new javax.swing.JPanel();
 jSplitPane1 = new javax.swing.JSplitPane();
 jSplitPane2 = new javax.swing.JSplitPane();
 jScrollPane1 = new javax.swing.JScrollPane();
 jTextArea1 = new javax.swing.JTextArea();
 jLabel1 = new javax.swing.JLabel();
 jSplitPane3 = new javax.swing.JSplitPane();
 jScrollPane2 = new javax.swing.JScrollPane();
 jTextArea2 = new javax.swing.JTextArea();
 jLabel2 = new javax.swing.JLabel();
 menuBar = new javax.swing.JMenuBar();
 javax.swing.JMenu fileMenu = new javax.swing.JMenu();
 javax.swing.JMenuItem exitMenuItem = new javax.swing.JMenuItem();
 javax.swing.JMenu helpMenu = new javax.swing.JMenu();
 javax.swing.JMenuItem aboutMenuItem = new javax.swing.JMenuItem();
 statusPanel = new javax.swing.JPanel();
 javax.swing.JSeparator statusPanelSeparator = new javax.swing.JSeparator();
 jButton1 = new javax.swing.JButton();
 jProgressBar1 = new javax.swing.JProgressBar();

 mainPanel.setName("mainPanel"); // NOI18N

 jSplitPane1.setDividerLocation(320);
 jSplitPane1.setContinuousLayout(true);
 jSplitPane1.setName("jSplitPane1"); // NOI18N

 jSplitPane2.setOrientation(javax.swing.JSplitPane.VERTICAL_SPLIT);
 jSplitPane2.setName("jSplitPane2"); // NOI18N

 jScrollPane1.setName("jScrollPane1"); // NOI18N

 jTextArea1.setColumns(20);
 jTextArea1.setLineWrap(true);
 jTextArea1.setRows(5);
 jTextArea1.setName("jTextArea1"); // NOI18N
 jScrollPane1.setViewportView(jTextArea1);

 jSplitPane2.setRightComponent(jScrollPane1);

 jLabel1.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
 jLabel1.setLabelFor(jScrollPane1);

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

197

 org.jdesktop.application.ResourceMap resourceMap =
org.jdesktop.application.Application.getInstance(orderdesktop.OrderDesktopApp.class).
getContext().getResourceMap(OrderDesktopView.class);
 jLabel1.setText(resourceMap.getString("jLabel1.text")); // NOI18N
 jLabel1.setName("jLabel1"); // NOI18N
 jSplitPane2.setLeftComponent(jLabel1);

 jSplitPane1.setTopComponent(jSplitPane2);

 jSplitPane3.setOrientation(javax.swing.JSplitPane.VERTICAL_SPLIT);
 jSplitPane3.setName("jSplitPane3"); // NOI18N

 jScrollPane2.setName("jScrollPane2"); // NOI18N

 jTextArea2.setColumns(20);
 jTextArea2.setLineWrap(true);
 jTextArea2.setRows(5);
 jTextArea2.setName("jTextArea2"); // NOI18N
 jScrollPane2.setViewportView(jTextArea2);

 jSplitPane3.setRightComponent(jScrollPane2);

 jLabel2.setHorizontalAlignment(javax.swing.SwingConstants.CENTER);
 jLabel2.setLabelFor(jScrollPane2);
 jLabel2.setText(resourceMap.getString("jLabel2.text")); // NOI18N
 jLabel2.setName("jLabel2"); // NOI18N
 jSplitPane3.setLeftComponent(jLabel2);

 jSplitPane1.setRightComponent(jSplitPane3);

 javax.swing.GroupLayout mainPanelLayout = new
javax.swing.GroupLayout(mainPanel);
 mainPanel.setLayout(mainPanelLayout);
 mainPanelLayout.setHorizontalGroup(

mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING
)
 .addComponent(jSplitPane1, javax.swing.GroupLayout.DEFAULT_SIZE, 671,
Short.MAX_VALUE)
);
 mainPanelLayout.setVerticalGroup(

mainPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING
)
 .addComponent(jSplitPane1, javax.swing.GroupLayout.DEFAULT_SIZE, 446,
Short.MAX_VALUE)
);

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

198

 menuBar.setName("menuBar"); // NOI18N

 fileMenu.setText(resourceMap.getString("fileMenu.text")); // NOI18N
 fileMenu.setName("fileMenu"); // NOI18N

 javax.swing.ActionMap actionMap =
org.jdesktop.application.Application.getInstance(orderdesktop.OrderDesktopApp.class).
getContext().getActionMap(OrderDesktopView.class, this);
 exitMenuItem.setAction(actionMap.get("quit")); // NOI18N
 exitMenuItem.setName("exitMenuItem"); // NOI18N
 fileMenu.add(exitMenuItem);

 menuBar.add(fileMenu);

 helpMenu.setText(resourceMap.getString("helpMenu.text")); // NOI18N
 helpMenu.setName("helpMenu"); // NOI18N

 aboutMenuItem.setAction(actionMap.get("showAboutBox")); // NOI18N
 aboutMenuItem.setName("aboutMenuItem"); // NOI18N
 helpMenu.add(aboutMenuItem);

 menuBar.add(helpMenu);

 statusPanel.setName("statusPanel"); // NOI18N

 statusPanelSeparator.setName("statusPanelSeparator"); // NOI18N

 jButton1.setText(resourceMap.getString("jButton1.text")); // NOI18N
 jButton1.setName("jButton1"); // NOI18N
 jButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed(evt);
 }
 });

 jProgressBar1.setName("jProgressBar1"); // NOI18N
 jProgressBar1.setStringPainted(true);

 javax.swing.GroupLayout statusPanelLayout = new
javax.swing.GroupLayout(statusPanel);
 statusPanel.setLayout(statusPanelLayout);
 statusPanelLayout.setHorizontalGroup(

statusPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADIN
G)
 .addComponent(statusPanelSeparator,
javax.swing.GroupLayout.DEFAULT_SIZE, 671, Short.MAX_VALUE)

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

199

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,
statusPanelLayout.createSequentialGroup()
 .addGap(43, 43, 43)
 .addComponent(jProgressBar1, javax.swing.GroupLayout.DEFAULT_SIZE,
384, Short.MAX_VALUE)
 .addGap(157, 157, 157)
 .addComponent(jButton1)
 .addGap(30, 30, 30))
);
 statusPanelLayout.setVerticalGroup(

statusPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADIN
G)
 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,
statusPanelLayout.createSequentialGroup()
 .addContainerGap()
 .addComponent(statusPanelSeparator,
javax.swing.GroupLayout.DEFAULT_SIZE, 2, Short.MAX_VALUE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)

.addGroup(statusPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignmen
t.LEADING)
 .addComponent(jButton1)
 .addGroup(statusPanelLayout.createSequentialGroup()
 .addComponent(jProgressBar1,
javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .addGap(6, 6, 6)))
 .addGap(11, 11, 11))
);

 setComponent(mainPanel);
 setMenuBar(menuBar);
 setStatusBar(statusPanel);
 }// </editor-fold>

 /**
 * Button action for invoking the process order.
 */
 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 String response = null;
 try{
 jProgressBar1.setValue(0);
 OrderWebService service = new OrderWebService();
 response = service.ProcessOrder(jTextArea1.getText());

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

200

 jProgressBar1.setForeground(Color.blue);
 jProgressBar1.setValue(100);
 jProgressBar1.setString("Completed");
 }
 catch(Exception e){
 response = e.toString();
 jProgressBar1.setValue(100);
 jProgressBar1.setForeground(Color.red);
 jProgressBar1.setString("Failed");
 }
 jTextArea2.setText(response);
 }

 private javax.swing.JButton jButton1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JProgressBar jProgressBar1;
 private javax.swing.JScrollPane jScrollPane1;
 private javax.swing.JScrollPane jScrollPane2;
 private javax.swing.JSplitPane jSplitPane1;
 private javax.swing.JSplitPane jSplitPane2;
 private javax.swing.JSplitPane jSplitPane3;
 private javax.swing.JTextArea jTextArea1;
 private javax.swing.JTextArea jTextArea2;
 private javax.swing.JPanel mainPanel;
 private javax.swing.JMenuBar menuBar;
 private javax.swing.JPanel statusPanel;

 private JDialog aboutBox;
}

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

201

Appendix 12: Overview of the Project Prototype application

/*

The following is project layout of the prototype in Netbean

*/

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

202

Appendix 13: Web Service interface showing available ports and operations
/*

The following is the available operations with their input and output

*/

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

203

Appendix 14: Sample UBL 2.0 Purchase Order example (Source: OAGIS)

<Order
xmlns:qdt="urn:oasis:names:specification:ubl:schema:xsd:QualifiedDatat
ypes-2"
xmlns:ccts="urn:oasis:names:specification:ubl:schema:xsd:CoreComponent
Parameters-
2"xmlns:cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicC
omponents-2"
xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregat
eComponents-
2"xmlns:udt="urn:un:unece:uncefact:data:draft:UnqualifiedDataTypesSche
maModule:2" xmlns="urn:oasis:names:specification:ubl:schema:xsd:Order-
2">
 <cbc:UBLVersionID>2.0</cbc:UBLVersionID>
 <cbc:CustomizationID>
urn:oasis:names:specification:ubl:xpath:Order-2.0:sbs-1.0-draft
</cbc:CustomizationID>
 <cbc:ProfileID>
bpid:urn:oasis:names:draft:bpss:ubl-2-sbs-order-with-simple-response-
draft
</cbc:ProfileID>
 <cbc:ID>AEG012345</cbc:ID>
 <cbc:SalesOrderID>CON0095678</cbc:SalesOrderID>
 <cbc:CopyIndicator>false</cbc:CopyIndicator>
 <cbc:UUID>6E09886B-DC6E-439F-82D1-7CCAC7F4E3B1</cbc:UUID>
 <cbc:IssueDate>2005-06-20</cbc:IssueDate>
 <cbc:Note>sample</cbc:Note>
 <cac:BuyerCustomerParty>

<cbc:CustomerAssignedAccountID>XFB01</cbc:CustomerAssignedAccountID>

<cbc:SupplierAssignedAccountID>GT00978567</cbc:SupplierAssignedAccount
ID>
 <cac:Party>
 <cac:PartyName>
 <cbc:Name>IYT Corporation</cbc:Name>
 </cac:PartyName>
 <cac:PostalAddress>
 <cbc:StreetName>Avon Way</cbc:StreetName>
 <cbc:BuildingName>Thereabouts</cbc:BuildingName>
 <cbc:BuildingNumber>56A</cbc:BuildingNumber>
 <cbc:CityName>Bridgtow</cbc:CityName>
 <cbc:PostalZone>ZZ99 1ZZ</cbc:PostalZone>
 <cbc:CountrySubentity>Avon</cbc:CountrySubentity>
 <cac:AddressLine>
 <cbc:Line>3rd Floor, Room 5</cbc:Line>
 </cac:AddressLine>
 <cac:Country>
 <cbc:IdentificationCode>GB</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>
 <cac:PartyTaxScheme>
 <cbc:RegistrationName>Bridgtow District
Council</cbc:RegistrationName>
 <cbc:CompanyID>12356478</cbc:CompanyID>
 <cbc:ExemptionReason>Local Authority</cbc:ExemptionReason>
 <cac:TaxScheme>
 <cbc:ID>UK VAT</cbc:ID>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

204

 <cbc:TaxTypeCode>VAT</cbc:TaxTypeCode>
 </cac:TaxScheme>
 </cac:PartyTaxScheme>
 <cac:Contact>
 <cbc:Name>Mr Fred Churchill</cbc:Name>
 <cbc:Telephone>0127 2653214</cbc:Telephone>
 <cbc:Telefax>0127 2653215</cbc:Telefax>

<cbc:ElectronicMail>fred@iytcorporation.gov.uk</cbc:ElectronicMail>
 </cac:Contact>
 </cac:Party>
 </cac:BuyerCustomerParty>
 <cac:SellerSupplierParty>

<cbc:CustomerAssignedAccountID>CO001</cbc:CustomerAssignedAccountID>
 <cac:Party>
 <cac:PartyName>
 <cbc:Name>Consortial</cbc:Name>
 </cac:PartyName>
 <cac:PostalAddress>
 <cbc:StreetName>Busy Street</cbc:StreetName>
 <cbc:BuildingName>Thereabouts</cbc:BuildingName>
 <cbc:BuildingNumber>56A</cbc:BuildingNumber>
 <cbc:CityName>Farthing</cbc:CityName>
 <cbc:PostalZone>AA99 1BB</cbc:PostalZone>
 <cbc:CountrySubentity>Heremouthshire</cbc:CountrySubentity>
 <cac:AddressLine>
 <cbc:Line>The Roundabout</cbc:Line>
 </cac:AddressLine>
 <cac:Country>
 <cbc:IdentificationCode>GB</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>
 <cac:PartyTaxScheme>
 <cbc:RegistrationName>Farthing Purchasing
Consortia</cbc:RegistrationName>
 <cbc:CompanyID>175 269 2355</cbc:CompanyID>
 <cbc:ExemptionReason>N/A</cbc:ExemptionReason>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>
 <cbc:TaxTypeCode>VAT</cbc:TaxTypeCode>
 </cac:TaxScheme>
 </cac:PartyTaxScheme>
 <cac:Contact>
 <cbc:Name>Mrs Bouquet</cbc:Name>
 <cbc:Telephone>0158 1233714</cbc:Telephone>
 <cbc:Telefax>0158 1233856</cbc:Telefax>

<cbc:ElectronicMail>bouquet@fpconsortial.co.uk</cbc:ElectronicMail>
 </cac:Contact>
 </cac:Party>
 </cac:SellerSupplierParty>
 <cac:OriginatorCustomerParty>
 <cac:Party>
 <cac:PartyName>
 <cbc:Name>The Terminus</cbc:Name>
 </cac:PartyName>
 <cac:PostalAddress>
 <cbc:StreetName>Avon Way</cbc:StreetName>
 <cbc:BuildingName>Thereabouts</cbc:BuildingName>
 <cbc:BuildingNumber>56A</cbc:BuildingNumber>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

205

 <cbc:CityName>Bridgtow</cbc:CityName>
 <cbc:PostalZone>ZZ99 1ZZ</cbc:PostalZone>
 <cbc:CountrySubentity>Avon</cbc:CountrySubentity>
 <cac:AddressLine>
 <cbc:Line>3rd Floor, Room 5</cbc:Line>
 </cac:AddressLine>
 <cac:Country>
 <cbc:IdentificationCode>GB</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>
 <cac:PartyTaxScheme>
 <cbc:RegistrationName>Bridgtow District
Council</cbc:RegistrationName>
 <cbc:CompanyID>12356478</cbc:CompanyID>
 <cbc:ExemptionReason>Local Authority</cbc:ExemptionReason>
 <cac:TaxScheme>
 <cbc:ID>UK VAT</cbc:ID>
 <cbc:TaxTypeCode>VAT</cbc:TaxTypeCode>
 </cac:TaxScheme>
 </cac:PartyTaxScheme>
 <cac:Contact>
 <cbc:Name>S Massiah</cbc:Name>
 <cbc:Telephone>0127 98876545</cbc:Telephone>
 <cbc:Telefax>0127 98876546</cbc:Telefax>
 <cbc:ElectronicMail>smassiah@the-
email.co.uk</cbc:ElectronicMail>
 </cac:Contact>
 </cac:Party>
 </cac:OriginatorCustomerParty>
 <cac:Delivery>
 <cac:DeliveryAddress>
 <cbc:StreetName>Avon Way</cbc:StreetName>
 <cbc:BuildingName>Thereabouts</cbc:BuildingName>
 <cbc:BuildingNumber>56A</cbc:BuildingNumber>
 <cbc:CityName>Bridgtow</cbc:CityName>
 <cbc:PostalZone>ZZ99 1ZZ</cbc:PostalZone>
 <cbc:CountrySubentity>Avon</cbc:CountrySubentity>
 <cac:AddressLine>
 <cbc:Line>3rd Floor, Room 5</cbc:Line>
 </cac:AddressLine>
 <cac:Country>
 <cbc:IdentificationCode>GB</cbc:IdentificationCode>
 </cac:Country>
 </cac:DeliveryAddress>
 <cac:RequestedDeliveryPeriod>
 <cbc:StartDate>2005-06-29</cbc:StartDate>
 <cbc:StartTime>09:30:47.0Z</cbc:StartTime>
 <cbc:EndDate>2005-06-29</cbc:EndDate>
 <cbc:EndTime>09:30:47.0Z</cbc:EndTime>
 </cac:RequestedDeliveryPeriod>
 </cac:Delivery>
 <cac:DeliveryTerms>
 <cbc:SpecialTerms>1% deduction for late delivery as per
contract</cbc:SpecialTerms>
 </cac:DeliveryTerms>
 <cac:TransactionConditions>
 <cbc:Description>
order response required; payment is by BACS or by cheque
</cbc:Description>
 </cac:TransactionConditions>
 <cac:AnticipatedMonetaryTotal>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

206

 <cbc:LineExtensionAmount
currencyID="GBP">100.00</cbc:LineExtensionAmount>
 <cbc:PayableAmount currencyID="GBP">100.00</cbc:PayableAmount>
 </cac:AnticipatedMonetaryTotal>
 <cac:OrderLine>
 <cbc:Note>this is an illustrative order line</cbc:Note>
 <cac:LineItem>
 <cbc:ID>1</cbc:ID>
 <cbc:SalesOrderID>A</cbc:SalesOrderID>
 <cbc:LineStatusCode>NoStatus</cbc:LineStatusCode>
 <cbc:Quantity unitCode="KG">100</cbc:Quantity>
 <cbc:LineExtensionAmount
currencyID="GBP">100.00</cbc:LineExtensionAmount>
 <cbc:TotalTaxAmount currencyID="GBP">17.50</cbc:TotalTaxAmount>
 <cac:Price>
 <cbc:PriceAmount currencyID="GBP">100.00</cbc:PriceAmount>
 <cbc:BaseQuantity unitCode="KG">1</cbc:BaseQuantity>
 </cac:Price>
 <cac:Item>
 <cbc:Description>Acme beeswax</cbc:Description>
 <cbc:Name>beeswax</cbc:Name>
 <cac:BuyersItemIdentification>
 <cbc:ID>6578489</cbc:ID>
 </cac:BuyersItemIdentification>
 <cac:SellersItemIdentification>
 <cbc:ID>17589683</cbc:ID>
 </cac:SellersItemIdentification>
 </cac:Item>
 </cac:LineItem>
 </cac:OrderLine>
</Order>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

207

Appendix 15: Sample UBL 2.0 Purchase Order Response example (Source: OAGIS)

<OrderResponseSimple
xmlns="urn:oasis:names:specification:ubl:schema:xsd:OrderResponseSimpl
e-
2"xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggreg
ateComponents-2"
xmlns:cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicCom
ponents-
2"xmlns:ccts="urn:oasis:names:specification:ubl:schema:xsd:CoreCompone
ntParameters-2"
xmlns:qdt="urn:oasis:names:specification:ubl:schema:xsd:QualifiedDatat
ypes-
2"xmlns:udt="urn:un:unece:uncefact:data:draft:UnqualifiedDataTypesSche
maModule:2">
 <cbc:UBLVersionID>2.0</cbc:UBLVersionID>
 <cbc:CustomizationID>
urn:oasis:names:specification:ubl:xpath:OrderResponseSimple-2.0:sbs-
1.0-draft
</cbc:CustomizationID>
 <cbc:ProfileID>
bpid:urn:oasis:names:draft:bpss:ubl-2-sbs-order-with-simple-response-
draft
</cbc:ProfileID>
 <cbc:ID>66890-9-09</cbc:ID>
 <cbc:CopyIndicator>false</cbc:CopyIndicator>
 <cbc:UUID>569ED478-0EBE-4817-A234-DFB9ACA81218</cbc:UUID>
 <cbc:IssueDate>2005-06-20</cbc:IssueDate>
 <cbc:Note>sample</cbc:Note>
 <cbc:AcceptedIndicator>true</cbc:AcceptedIndicator>
 <cac:OrderReference>
 <cbc:ID>AEG012345</cbc:ID>
 <cbc:SalesOrderID>CON0095678</cbc:SalesOrderID>
 <cbc:UUID>6E09886B-DC6E-439F-82D1-7CCAC7F4E3B1</cbc:UUID>
 <cbc:IssueDate>2005-06-20</cbc:IssueDate>
 </cac:OrderReference>
 <cac:SellerSupplierParty>

<cbc:CustomerAssignedAccountID>CO001</cbc:CustomerAssignedAccountID>
 <cac:Party>
 <cac:PartyName>
 <cbc:Name>Consortial</cbc:Name>
 </cac:PartyName>
 <cac:PostalAddress>
 <cbc:StreetName>Busy Street</cbc:StreetName>
 <cbc:BuildingName>Thereabouts</cbc:BuildingName>
 <cbc:BuildingNumber>56A</cbc:BuildingNumber>
 <cbc:CityName>Farthing</cbc:CityName>
 <cbc:PostalZone>AA99 1BB</cbc:PostalZone>
 <cbc:CountrySubentity>Heremouthshire</cbc:CountrySubentity>
 <cac:AddressLine>
 <cbc:Line>The Roundabout</cbc:Line>
 </cac:AddressLine>
 <cac:Country>
 <cbc:IdentificationCode>GB</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>
 <cac:PartyTaxScheme>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

208

 <cbc:RegistrationName>Farthing Purchasing
Consortia</cbc:RegistrationName>
 <cbc:CompanyID>175 269 2355</cbc:CompanyID>
 <cbc:ExemptionReason>N/A</cbc:ExemptionReason>
 <cac:TaxScheme>
 <cbc:ID>VAT</cbc:ID>
 <cbc:TaxTypeCode>VAT</cbc:TaxTypeCode>
 </cac:TaxScheme>
 </cac:PartyTaxScheme>
 <cac:Contact>
 <cbc:Name>Mrs Bouquet</cbc:Name>
 <cbc:Telephone>0158 1233714</cbc:Telephone>
 <cbc:Telefax>0158 1233856</cbc:Telefax>

<cbc:ElectronicMail>bouquet@fpconsortial.co.uk</cbc:ElectronicMail>
 </cac:Contact>
 </cac:Party>
 </cac:SellerSupplierParty>
 <cac:BuyerCustomerParty>

<cbc:CustomerAssignedAccountID>XFB01</cbc:CustomerAssignedAccountID>

<cbc:SupplierAssignedAccountID>GT00978567</cbc:SupplierAssignedAccount
ID>
 <cac:Party>
 <cac:PartyName>
 <cbc:Name>IYT Corporation</cbc:Name>
 </cac:PartyName>
 <cac:PostalAddress>
 <cbc:StreetName>Avon Way</cbc:StreetName>
 <cbc:BuildingName>Thereabouts</cbc:BuildingName>
 <cbc:BuildingNumber>56A</cbc:BuildingNumber>
 <cbc:CityName>Bridgtow</cbc:CityName>
 <cbc:PostalZone>ZZ99 1ZZ</cbc:PostalZone>
 <cbc:CountrySubentity>Avon</cbc:CountrySubentity>
 <cac:AddressLine>
 <cbc:Line>3rd Floor, Room 5</cbc:Line>
 </cac:AddressLine>
 <cac:Country>
 <cbc:IdentificationCode>GB</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>
 <cac:PartyTaxScheme>
 <cbc:RegistrationName>Bridgtow District
Council</cbc:RegistrationName>
 <cbc:CompanyID>12356478</cbc:CompanyID>
 <cbc:ExemptionReason>Local Authority</cbc:ExemptionReason>
 <cac:TaxScheme>
 <cbc:ID>UK VAT</cbc:ID>
 <cbc:TaxTypeCode>VAT</cbc:TaxTypeCode>
 </cac:TaxScheme>
 </cac:PartyTaxScheme>
 <cac:Contact>
 <cbc:Name>Mr Fred Churchill</cbc:Name>
 <cbc:Telephone>0127 2653214</cbc:Telephone>
 <cbc:Telefax>0127 2653215</cbc:Telefax>

<cbc:ElectronicMail>fred@iytcorporation.gov.uk</cbc:ElectronicMail>
 </cac:Contact>
 </cac:Party>
 </cac:BuyerCustomerParty>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

209

 <cac:OriginatorCustomerParty>
 <cac:Party>
 <cac:PartyName>
 <cbc:Name>The Terminus</cbc:Name>
 </cac:PartyName>
 <cac:PostalAddress>
 <cbc:StreetName>Avon Way</cbc:StreetName>
 <cbc:BuildingName>Thereabouts</cbc:BuildingName>
 <cbc:BuildingNumber>56A</cbc:BuildingNumber>
 <cbc:CityName>Bridgtow</cbc:CityName>
 <cbc:PostalZone>ZZ99 1ZZ</cbc:PostalZone>
 <cbc:CountrySubentity>Avon</cbc:CountrySubentity>
 <cac:AddressLine>
 <cbc:Line>3rd Floor, Room 5</cbc:Line>
 </cac:AddressLine>
 <cac:Country>
 <cbc:IdentificationCode>GB</cbc:IdentificationCode>
 </cac:Country>
 </cac:PostalAddress>
 <cac:PartyTaxScheme>
 <cbc:RegistrationName>Bridgtow District
Council</cbc:RegistrationName>
 <cbc:CompanyID>12356478</cbc:CompanyID>
 <cbc:ExemptionReason>Local Authority</cbc:ExemptionReason>
 <cac:TaxScheme>
 <cbc:ID>UK VAT</cbc:ID>
 <cbc:TaxTypeCode>VAT</cbc:TaxTypeCode>
 </cac:TaxScheme>
 </cac:PartyTaxScheme>
 <cac:Contact>
 <cbc:Name>S Massiah</cbc:Name>
 <cbc:Telephone>0127 98876545</cbc:Telephone>
 <cbc:Telefax>0127 98876546</cbc:Telefax>
 <cbc:ElectronicMail>smassiah@the-
email.co.uk</cbc:ElectronicMail>
 </cac:Contact>
 </cac:Party>
 </cac:OriginatorCustomerParty>
</OrderResponseSimple>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

210

Appendix 16: Sample UBL 2.0 Change Purchase Order Response example (Source:

OAGIS)

<OrderChange>
 <ext:UBLExtensions>
 <ext:UBLExtension>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>

<ext:ExtensionAgencyID>normalizedString</ext:ExtensionAgencyID>
 <ext:ExtensionAgencyName>string</ext:ExtensionAgencyName>

<ext:ExtensionVersionID>normalizedString</ext:ExtensionVersionID>

<ext:ExtensionAgencyURI>normalizedString</ext:ExtensionAgencyURI>
 <ext:ExtensionURI>normalizedString</ext:ExtensionURI>

<ext:ExtensionReasonCode>normalizedString</ext:ExtensionReasonCode>
 <ext:ExtensionReason>string</ext:ExtensionReason>
 <ext:ExtensionContent>
 <!--any element-->
 </ext:ExtensionContent>
 </ext:UBLExtension>
 </ext:UBLExtensions>
 <cbc:UBLVersionID>normalizedString</cbc:UBLVersionID>
 <cbc:CustomizationID>normalizedString</cbc:CustomizationID>
 <cbc:ProfileID>normalizedString</cbc:ProfileID>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:SalesOrderID>normalizedString</cbc:SalesOrderID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:IssueTime>12:00:00</cbc:IssueTime>
 <cbc:SequenceNumberID>normalizedString</cbc:SequenceNumberID>
 <cbc:Note>string</cbc:Note>

<cbc:RequestedInvoiceCurrencyCode>normalizedString</cbc:RequestedIn
voiceCurrencyCode>

<cbc:DocumentCurrencyCode>normalizedString</cbc:DocumentCurrencyCod
e>

<cbc:PricingCurrencyCode>normalizedString</cbc:PricingCurrencyCode>
 <cbc:TaxCurrencyCode>normalizedString</cbc:TaxCurrencyCode>
 <cbc:CustomerReference>string</cbc:CustomerReference>
 <cbc:AccountingCostCode>normalizedString</cbc:AccountingCostCode>
 <cbc:AccountingCost>string</cbc:AccountingCost>
 <cbc:LineCountNumeric>1.0</cbc:LineCountNumeric>
 <cac:ValidityPeriod>
 <cbc:StartDate>2000-01-01</cbc:StartDate>
 <cbc:StartTime>12:00:00</cbc:StartTime>
 <cbc:EndDate>2000-01-01</cbc:EndDate>
 <cbc:EndTime>12:00:00</cbc:EndTime>
 <cbc:DurationMeasure unitCode="04">1.0</cbc:DurationMeasure>
 <cbc:DescriptionCode>normalizedString</cbc:DescriptionCode>
 <cbc:Description>string</cbc:Description>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

211

 </cac:ValidityPeriod>
 <cac:OrderReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:SalesOrderID>normalizedString</cbc:SalesOrderID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:IssueTime>12:00:00</cbc:IssueTime>
 <cbc:CustomerReference>string</cbc:CustomerReference>
 <cac:DocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>... </cac:Attachment>
 </cac:DocumentReference>
 </cac:OrderReference>
 <cac:QuotationDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>
 <cbc:EmbeddedDocumentBinaryObject
mimeCode="application/CSTAdata+xml">GpM7</cbc:EmbeddedDocumentBinar
yObject>
 <cac:ExternalReference>... </cac:ExternalReference>
 </cac:Attachment>
 </cac:QuotationDocumentReference>
 <cac:OriginatorDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>
 <cbc:EmbeddedDocumentBinaryObject
mimeCode="application/CSTAdata+xml">GpM7</cbc:EmbeddedDocumentBinar
yObject>
 <cac:ExternalReference>... </cac:ExternalReference>
 </cac:Attachment>
 </cac:OriginatorDocumentReference>
 <cac:AdditionalDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

212

 <cac:Attachment>
 <cbc:EmbeddedDocumentBinaryObject
mimeCode="application/CSTAdata+xml">GpM7</cbc:EmbeddedDocumentBinar
yObject>
 <cac:ExternalReference>... </cac:ExternalReference>
 </cac:Attachment>
 </cac:AdditionalDocumentReference>
 <cac:Contract>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:IssueTime>12:00:00</cbc:IssueTime>
 <cbc:ContractTypeCode>normalizedString</cbc:ContractTypeCode>
 <cbc:ContractType>string</cbc:ContractType>
 <cac:ValidityPeriod>
 <cbc:StartDate>2000-01-01</cbc:StartDate>
 <cbc:StartTime>12:00:00</cbc:StartTime>
 <cbc:EndDate>2000-01-01</cbc:EndDate>
 <cbc:EndTime>12:00:00</cbc:EndTime>
 <cbc:DurationMeasure unitCode="04">1.0</cbc:DurationMeasure>
 <cbc:DescriptionCode>normalizedString</cbc:DescriptionCode>
 <cbc:Description>string</cbc:Description>
 </cac:ValidityPeriod>
 <cac:ContractDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>... </cac:Attachment>
 </cac:ContractDocumentReference>
 </cac:Contract>
 <cac:Signature>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Note>string</cbc:Note>
 <cbc:ValidationDate>2000-01-01</cbc:ValidationDate>
 <cbc:ValidationTime>12:00:00</cbc:ValidationTime>
 <cbc:ValidatorID>normalizedString</cbc:ValidatorID>
 <cbc:CanonicalizationMethod>string</cbc:CanonicalizationMethod>
 <cbc:SignatureMethod>string</cbc:SignatureMethod>
 <cac:SignatoryParty>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

213

 </cac:SignatoryParty>
 <cac:DigitalSignatureAttachment>
 <cbc:EmbeddedDocumentBinaryObject
mimeCode="application/CSTAdata+xml">GpM7</cbc:EmbeddedDocumentBinar
yObject>
 <cac:ExternalReference>... </cac:ExternalReference>
 </cac:DigitalSignatureAttachment>
 <cac:OriginalDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>... </cac:Attachment>
 </cac:OriginalDocumentReference>
 </cac:Signature>
 <cac:BuyerCustomerParty>

<cbc:CustomerAssignedAccountID>normalizedString</cbc:CustomerAssign
edAccountID>

<cbc:SupplierAssignedAccountID>normalizedString</cbc:SupplierAssign
edAccountID>

<cbc:AdditionalAccountID>normalizedString</cbc:AdditionalAccountID>
 <cac:Party>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:Party>
 <cac:DeliveryContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:DeliveryContact>
 <cac:AccountingContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

214

 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:AccountingContact>
 <cac:BuyerContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:BuyerContact>
 </cac:BuyerCustomerParty>
 <cac:SellerSupplierParty>

<cbc:CustomerAssignedAccountID>normalizedString</cbc:CustomerAssign
edAccountID>

<cbc:AdditionalAccountID>normalizedString</cbc:AdditionalAccountID>
 <cbc:DataSendingCapability>string</cbc:DataSendingCapability>
 <cac:Party>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:Party>
 <cac:DespatchContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:DespatchContact>
 <cac:AccountingContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

215

 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:AccountingContact>
 <cac:SellerContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:SellerContact>
 </cac:SellerSupplierParty>
 <cac:OriginatorCustomerParty>

<cbc:CustomerAssignedAccountID>normalizedString</cbc:CustomerAssign
edAccountID>

<cbc:SupplierAssignedAccountID>normalizedString</cbc:SupplierAssign
edAccountID>

<cbc:AdditionalAccountID>normalizedString</cbc:AdditionalAccountID>
 <cac:Party>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:Party>
 <cac:DeliveryContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:DeliveryContact>
 <cac:AccountingContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

216

 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:AccountingContact>
 <cac:BuyerContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:BuyerContact>
 </cac:OriginatorCustomerParty>
 <cac:FreightForwarderParty>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>
 <cbc:ID>normalizedString</cbc:ID>
 </cac:PartyIdentification>
 <cac:PartyName>
 <cbc:Name>string</cbc:Name>
 </cac:PartyName>
 <cac:Language>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:LocaleCode>normalizedString</cbc:LocaleCode>
 </cac:Language>
 <cac:PostalAddress>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:AddressTypeCode>normalizedString</cbc:AddressTypeCode>

<cbc:AddressFormatCode>normalizedString</cbc:AddressFormatCode>
 <cbc:Postbox>string</cbc:Postbox>
 <cbc:Floor>string</cbc:Floor>
 <cbc:Room>string</cbc:Room>
 <cbc:StreetName>string</cbc:StreetName>
 <cbc:AdditionalStreetName>string</cbc:AdditionalStreetName>
 <cbc:BlockName>string</cbc:BlockName>
 <cbc:BuildingName>string</cbc:BuildingName>
 <cbc:BuildingNumber>string</cbc:BuildingNumber>
 <cbc:InhouseMail>string</cbc:InhouseMail>
 <cbc:Department>string</cbc:Department>
 <cbc:MarkAttention>string</cbc:MarkAttention>
 <cbc:MarkCare>string</cbc:MarkCare>
 <cbc:PlotIdentification>string</cbc:PlotIdentification>
 <cbc:CitySubdivisionName>string</cbc:CitySubdivisionName>
 <cbc:CityName>string</cbc:CityName>
 <cbc:PostalZone>string</cbc:PostalZone>
 <cbc:CountrySubentity>string</cbc:CountrySubentity>

<cbc:CountrySubentityCode>normalizedString</cbc:CountrySubentityCod
e>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

217

 <cbc:Region>string</cbc:Region>
 <cbc:District>string</cbc:District>
 <cbc:TimezoneOffset>string</cbc:TimezoneOffset>
 <cac:AddressLine>... </cac:AddressLine>
 <cac:Country>... </cac:Country>
 <cac:LocationCoordinate>...
</cac:LocationCoordinate>
 </cac:PostalAddress>
 <cac:PhysicalLocation>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Description>string</cbc:Description>
 <cbc:Conditions>string</cbc:Conditions>
 <cbc:CountrySubentity>string</cbc:CountrySubentity>

<cbc:CountrySubentityCode>normalizedString</cbc:CountrySubentityCod
e>
 <cac:ValidityPeriod>... </cac:ValidityPeriod>
 <cac:Address>... </cac:Address>
 </cac:PhysicalLocation>
 <cac:PartyTaxScheme>
 <cbc:RegistrationName>string</cbc:RegistrationName>
 <cbc:CompanyID>normalizedString</cbc:CompanyID>
 <cbc:TaxLevelCode>normalizedString</cbc:TaxLevelCode>

<cbc:ExemptionReasonCode>normalizedString</cbc:ExemptionReasonCode>
 <cbc:ExemptionReason>string</cbc:ExemptionReason>
 <cac:RegistrationAddress>...
</cac:RegistrationAddress>
 <cac:TaxScheme>... </cac:TaxScheme>
 </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>
 <cbc:RegistrationName>string</cbc:RegistrationName>
 <cbc:CompanyID>normalizedString</cbc:CompanyID>
 <cac:RegistrationAddress>...
</cac:RegistrationAddress>
 <cac:CorporateRegistrationScheme>...
</cac:CorporateRegistrationScheme>
 </cac:PartyLegalEntity>
 <cac:Contact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:Contact>
 <cac:Person>
 <cbc:FirstName>string</cbc:FirstName>
 <cbc:FamilyName>string</cbc:FamilyName>
 <cbc:Title>string</cbc:Title>
 <cbc:MiddleName>string</cbc:MiddleName>
 <cbc:NameSuffix>string</cbc:NameSuffix>
 <cbc:JobTitle>string</cbc:JobTitle>

<cbc:OrganizationDepartment>string</cbc:OrganizationDepartment>
 </cac:Person>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

218

 <cac:AgentParty>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>...
</cac:AgentParty></cac:AgentParty>
 </cac:FreightForwarderParty>
 <cac:AccountingCustomerParty>

<cbc:CustomerAssignedAccountID>normalizedString</cbc:CustomerAssign
edAccountID>

<cbc:SupplierAssignedAccountID>normalizedString</cbc:SupplierAssign
edAccountID>

<cbc:AdditionalAccountID>normalizedString</cbc:AdditionalAccountID>
 <cac:Party>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>

<cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:Party>
 <cac:DeliveryContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:DeliveryContact>
 <cac:AccountingContact>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

219

 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:AccountingContact>
 <cac:BuyerContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:BuyerContact>
 </cac:AccountingCustomerParty>
 <cac:AccountingSupplierParty>

<cbc:CustomerAssignedAccountID>normalizedString</cbc:CustomerAssign
edAccountID>

<cbc:AdditionalAccountID>normalizedString</cbc:AdditionalAccountID>
 <cbc:DataSendingCapability>string</cbc:DataSendingCapability>
 <cac:Party>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>

<cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:Party>
 <cac:DespatchContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:DespatchContact>
 <cac:AccountingContact>
 <cbc:ID>normalizedString</cbc:ID>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

220

 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:AccountingContact>
 <cac:SellerContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:SellerContact>
 </cac:AccountingSupplierParty>
 <cac:Delivery>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Quantity>1.0</cbc:Quantity>
 <cbc:MinimumQuantity>1.0</cbc:MinimumQuantity>
 <cbc:MaximumQuantity>1.0</cbc:MaximumQuantity>
 <cbc:ActualDeliveryDate>2000-01-01</cbc:ActualDeliveryDate>
 <cbc:ActualDeliveryTime>12:00:00</cbc:ActualDeliveryTime>
 <cbc:LatestDeliveryDate>2000-01-01</cbc:LatestDeliveryDate>
 <cbc:LatestDeliveryTime>12:00:00</cbc:LatestDeliveryTime>
 <cbc:TrackingID>normalizedString</cbc:TrackingID>
 <cac:DeliveryAddress>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:AddressTypeCode>normalizedString</cbc:AddressTypeCode>

<cbc:AddressFormatCode>normalizedString</cbc:AddressFormatCode>
 <cbc:Postbox>string</cbc:Postbox>
 <cbc:Floor>string</cbc:Floor>
 <cbc:Room>string</cbc:Room>
 <cbc:StreetName>string</cbc:StreetName>
 <cbc:AdditionalStreetName>string</cbc:AdditionalStreetName>
 <cbc:BlockName>string</cbc:BlockName>
 <cbc:BuildingName>string</cbc:BuildingName>
 <cbc:BuildingNumber>string</cbc:BuildingNumber>
 <cbc:InhouseMail>string</cbc:InhouseMail>
 <cbc:Department>string</cbc:Department>
 <cbc:MarkAttention>string</cbc:MarkAttention>
 <cbc:MarkCare>string</cbc:MarkCare>
 <cbc:PlotIdentification>string</cbc:PlotIdentification>
 <cbc:CitySubdivisionName>string</cbc:CitySubdivisionName>
 <cbc:CityName>string</cbc:CityName>
 <cbc:PostalZone>string</cbc:PostalZone>
 <cbc:CountrySubentity>string</cbc:CountrySubentity>

<cbc:CountrySubentityCode>normalizedString</cbc:CountrySubentityCod
e>
 <cbc:Region>string</cbc:Region>
 <cbc:District>string</cbc:District>
 <cbc:TimezoneOffset>string</cbc:TimezoneOffset>
 <cac:AddressLine>... </cac:AddressLine>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

221

 <cac:Country>... </cac:Country>
 <cac:LocationCoordinate>...
</cac:LocationCoordinate>
 </cac:DeliveryAddress>
 <cac:DeliveryLocation>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Description>string</cbc:Description>
 <cbc:Conditions>string</cbc:Conditions>
 <cbc:CountrySubentity>string</cbc:CountrySubentity>

<cbc:CountrySubentityCode>normalizedString</cbc:CountrySubentityCod
e>
 <cac:ValidityPeriod>... </cac:ValidityPeriod>
 <cac:Address>... </cac:Address>
 </cac:DeliveryLocation>
 <cac:RequestedDeliveryPeriod>
 <cbc:StartDate>2000-01-01</cbc:StartDate>
 <cbc:StartTime>12:00:00</cbc:StartTime>
 <cbc:EndDate>2000-01-01</cbc:EndDate>
 <cbc:EndTime>12:00:00</cbc:EndTime>
 <cbc:DurationMeasure
unitCode="04">1.0</cbc:DurationMeasure>
 <cbc:DescriptionCode>normalizedString</cbc:DescriptionCode>
 <cbc:Description>string</cbc:Description>
 </cac:RequestedDeliveryPeriod>
 <cac:PromisedDeliveryPeriod>
 <cbc:StartDate>2000-01-01</cbc:StartDate>
 <cbc:StartTime>12:00:00</cbc:StartTime>
 <cbc:EndDate>2000-01-01</cbc:EndDate>
 <cbc:EndTime>12:00:00</cbc:EndTime>
 <cbc:DurationMeasure
unitCode="04">1.0</cbc:DurationMeasure>
 <cbc:DescriptionCode>normalizedString</cbc:DescriptionCode>
 <cbc:Description>string</cbc:Description>
 </cac:PromisedDeliveryPeriod>
 <cac:EstimatedDeliveryPeriod>
 <cbc:StartDate>2000-01-01</cbc:StartDate>
 <cbc:StartTime>12:00:00</cbc:StartTime>
 <cbc:EndDate>2000-01-01</cbc:EndDate>
 <cbc:EndTime>12:00:00</cbc:EndTime>
 <cbc:DurationMeasure
unitCode="04">1.0</cbc:DurationMeasure>
 <cbc:DescriptionCode>normalizedString</cbc:DescriptionCode>
 <cbc:Description>string</cbc:Description>
 </cac:EstimatedDeliveryPeriod>
 <cac:DeliveryParty>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>

<cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

222

 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:DeliveryParty>
 <cac:Despatch>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:RequestedDespatchDate>2000-01-
01</cbc:RequestedDespatchDate>

<cbc:RequestedDespatchTime>12:00:00</cbc:RequestedDespatchTime>
 <cbc:EstimatedDespatchDate>2000-01-
01</cbc:EstimatedDespatchDate>

<cbc:EstimatedDespatchTime>12:00:00</cbc:EstimatedDespatchTime>
 <cbc:ActualDespatchDate>2000-01-01</cbc:ActualDespatchDate>
 <cbc:ActualDespatchTime>12:00:00</cbc:ActualDespatchTime>
 <cac:DespatchAddress>... </cac:DespatchAddress>
 <cac:DespatchParty>... </cac:DespatchParty>
 <cac:Contact>... </cac:Contact>
 </cac:Despatch>
 </cac:Delivery>
 <cac:DeliveryTerms>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:SpecialTerms>string</cbc:SpecialTerms>

<cbc:LossRiskResponsibilityCode>normalizedString</cbc:LossRiskRespo
nsibilityCode>
 <cbc:LossRisk>string</cbc:LossRisk>
 <cac:DeliveryLocation>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Description>string</cbc:Description>
 <cbc:Conditions>string</cbc:Conditions>
 <cbc:CountrySubentity>string</cbc:CountrySubentity>

<cbc:CountrySubentityCode>normalizedString</cbc:CountrySubentityCod
e>
 <cac:ValidityPeriod>... </cac:ValidityPeriod>
 <cac:Address>... </cac:Address>
 </cac:DeliveryLocation>
 <cac:AllowanceCharge>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:ChargeIndicator>true</cbc:ChargeIndicator>

<cbc:AllowanceChargeReasonCode>normalizedString</cbc:AllowanceCharg
eReasonCode>

<cbc:AllowanceChargeReason>string</cbc:AllowanceChargeReason>

<cbc:MultiplierFactorNumeric>1.0</cbc:MultiplierFactorNumeric>
 <cbc:PrepaidIndicator>true</cbc:PrepaidIndicator>
 <cbc:SequenceNumeric>1.0</cbc:SequenceNumeric>
 <cbc:Amount currencyID="AED">1.0</cbc:Amount>
 <cbc:BaseAmount currencyID="AED">1.0</cbc:BaseAmount>

<cbc:AccountingCostCode>normalizedString</cbc:AccountingCostCode>
 <cbc:AccountingCost>string</cbc:AccountingCost>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

223

 <cac:TaxCategory>... </cac:TaxCategory>
 <cac:TaxTotal>... </cac:TaxTotal>
 <cac:PaymentMeans>... </cac:PaymentMeans>
 </cac:AllowanceCharge>
 </cac:DeliveryTerms>
 <cac:PaymentMeans>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:PaymentMeansCode>normalizedString</cbc:PaymentMeansCode>
 <cbc:PaymentDueDate>2000-01-01</cbc:PaymentDueDate>

<cbc:PaymentChannelCode>normalizedString</cbc:PaymentChannelCode>
 <cbc:InstructionID>normalizedString</cbc:InstructionID>
 <cbc:InstructionNote>string</cbc:InstructionNote>
 <cbc:PaymentID>normalizedString</cbc:PaymentID>
 <cac:CardAccount>

<cbc:PrimaryAccountNumberID>normalizedString</cbc:PrimaryAccountNum
berID>
 <cbc:NetworkID>normalizedString</cbc:NetworkID>
 <cbc:CardTypeCode>normalizedString</cbc:CardTypeCode>
 <cbc:ValidityStartDate>2000-01-01</cbc:ValidityStartDate>
 <cbc:ExpiryDate>2000-01-01</cbc:ExpiryDate>
 <cbc:IssuerID>normalizedString</cbc:IssuerID>
 <cbc:IssueNumberID>normalizedString</cbc:IssueNumberID>
 <cbc:CV2ID>normalizedString</cbc:CV2ID>
 <cbc:CardChipCode>normalizedString</cbc:CardChipCode>

<cbc:ChipApplicationID>normalizedString</cbc:ChipApplicationID>
 <cbc:HolderName>string</cbc:HolderName>
 </cac:CardAccount>
 <cac:PayerFinancialAccount>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:AccountTypeCode>normalizedString</cbc:AccountTypeCode>
 <cbc:CurrencyCode>normalizedString</cbc:CurrencyCode>
 <cbc:PaymentNote>string</cbc:PaymentNote>
 <cac:FinancialInstitutionBranch>...
</cac:FinancialInstitutionBranch>
 <cac:Country>... </cac:Country>
 </cac:PayerFinancialAccount>
 <cac:PayeeFinancialAccount>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:AccountTypeCode>normalizedString</cbc:AccountTypeCode>
 <cbc:CurrencyCode>normalizedString</cbc:CurrencyCode>
 <cbc:PaymentNote>string</cbc:PaymentNote>
 <cac:FinancialInstitutionBranch>...
</cac:FinancialInstitutionBranch>
 <cac:Country>... </cac:Country>
 </cac:PayeeFinancialAccount>
 <cac:CreditAccount>
 <cbc:AccountID>normalizedString</cbc:AccountID>
 </cac:CreditAccount>
 </cac:PaymentMeans>
 <cac:TransactionConditions>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:ActionCode>normalizedString</cbc:ActionCode>
 <cbc:Description>string</cbc:Description>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

224

 <cac:DocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>

<cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>... </cac:Attachment>
 </cac:DocumentReference>
 </cac:TransactionConditions>
 <cac:AllowanceCharge>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:ChargeIndicator>true</cbc:ChargeIndicator>

<cbc:AllowanceChargeReasonCode>normalizedString</cbc:AllowanceCharg
eReasonCode>
 <cbc:AllowanceChargeReason>string</cbc:AllowanceChargeReason>

<cbc:MultiplierFactorNumeric>1.0</cbc:MultiplierFactorNumeric>
 <cbc:PrepaidIndicator>true</cbc:PrepaidIndicator>
 <cbc:SequenceNumeric>1.0</cbc:SequenceNumeric>
 <cbc:Amount currencyID="AED">1.0</cbc:Amount>
 <cbc:BaseAmount currencyID="AED">1.0</cbc:BaseAmount>

<cbc:AccountingCostCode>normalizedString</cbc:AccountingCostCode>
 <cbc:AccountingCost>string</cbc:AccountingCost>
 <cac:TaxCategory>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Percent>1.0</cbc:Percent>
 <cbc:BaseUnitMeasure
unitCode="04">1.0</cbc:BaseUnitMeasure>
 <cbc:PerUnitAmount currencyID="AED">1.0</cbc:PerUnitAmount>

<cbc:TaxExemptionReasonCode>normalizedString</cbc:TaxExemptionReaso
nCode>
 <cbc:TaxExemptionReason>string</cbc:TaxExemptionReason>
 <cbc:TierRange>string</cbc:TierRange>
 <cbc:TierRatePercent>1.0</cbc:TierRatePercent>
 <cac:TaxScheme>... </cac:TaxScheme>
 </cac:TaxCategory>
 <cac:TaxTotal>
 <cbc:TaxAmount currencyID="AED">1.0</cbc:TaxAmount>
 <cbc:RoundingAmount
currencyID="AED">1.0</cbc:RoundingAmount>
 <cbc:TaxEvidenceIndicator>true</cbc:TaxEvidenceIndicator>
 <cac:TaxSubtotal>... </cac:TaxSubtotal>
 </cac:TaxTotal>
 <cac:PaymentMeans>
 <cbc:ID>normalizedString</cbc:ID>

<cbc:PaymentMeansCode>normalizedString</cbc:PaymentMeansCode>
 <cbc:PaymentDueDate>2000-01-01</cbc:PaymentDueDate>

<cbc:PaymentChannelCode>normalizedString</cbc:PaymentChannelCode>
 <cbc:InstructionID>normalizedString</cbc:InstructionID>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

225

 <cbc:InstructionNote>string</cbc:InstructionNote>
 <cbc:PaymentID>normalizedString</cbc:PaymentID>
 <cac:CardAccount>... </cac:CardAccount>
 <cac:PayerFinancialAccount>...
</cac:PayerFinancialAccount>
 <cac:PayeeFinancialAccount>...
</cac:PayeeFinancialAccount>
 <cac:CreditAccount>... </cac:CreditAccount>
 </cac:PaymentMeans>
 </cac:AllowanceCharge>
 <cac:DestinationCountry>

<cbc:IdentificationCode>normalizedString</cbc:IdentificationCode>
 <cbc:Name>string</cbc:Name>
 </cac:DestinationCountry>
 <cac:TaxTotal>
 <cbc:TaxAmount currencyID="AED">1.0</cbc:TaxAmount>
 <cbc:RoundingAmount currencyID="AED">1.0</cbc:RoundingAmount>
 <cbc:TaxEvidenceIndicator>true</cbc:TaxEvidenceIndicator>
 <cac:TaxSubtotal>
 <cbc:TaxableAmount currencyID="AED">1.0</cbc:TaxableAmount>
 <cbc:TaxAmount currencyID="AED">1.0</cbc:TaxAmount>

<cbc:CalculationSequenceNumeric>1.0</cbc:CalculationSequenceNumeric
>
 <cbc:TransactionCurrencyTaxAmount
currencyID="AED">1.0</cbc:TransactionCurrencyTaxAmount>
 <cbc:Percent>1.0</cbc:Percent>
 <cbc:BaseUnitMeasure
unitCode="04">1.0</cbc:BaseUnitMeasure>
 <cbc:PerUnitAmount currencyID="AED">1.0</cbc:PerUnitAmount>
 <cbc:TierRange>string</cbc:TierRange>
 <cbc:TierRatePercent>1.0</cbc:TierRatePercent>
 <cac:TaxCategory>... </cac:TaxCategory>
 </cac:TaxSubtotal>
 </cac:TaxTotal>
 <cac:AnticipatedMonetaryTotal>
 <cbc:LineExtensionAmount
currencyID="AED">1.0</cbc:LineExtensionAmount>
 <cbc:TaxExclusiveAmount
currencyID="AED">1.0</cbc:TaxExclusiveAmount>
 <cbc:TaxInclusiveAmount
currencyID="AED">1.0</cbc:TaxInclusiveAmount>
 <cbc:AllowanceTotalAmount
currencyID="AED">1.0</cbc:AllowanceTotalAmount>
 <cbc:ChargeTotalAmount
currencyID="AED">1.0</cbc:ChargeTotalAmount>
 <cbc:PrepaidAmount currencyID="AED">1.0</cbc:PrepaidAmount>
 <cbc:PayableRoundingAmount
currencyID="AED">1.0</cbc:PayableRoundingAmount>
 <cbc:PayableAmount currencyID="AED">1.0</cbc:PayableAmount>
 </cac:AnticipatedMonetaryTotal>
 <cac:OrderLine>

<cbc:SubstitutionStatusCode>normalizedString</cbc:SubstitutionStatu
sCode>
 <cbc:Note>string</cbc:Note>
 <cac:LineItem>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

226

 <cbc:ID>normalizedString</cbc:ID>
 <cbc:SalesOrderID>normalizedString</cbc:SalesOrderID>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:Note>string</cbc:Note>
 <cbc:LineStatusCode>normalizedString</cbc:LineStatusCode>
 <cbc:Quantity>1.0</cbc:Quantity>
 <cbc:LineExtensionAmount
currencyID="AED">1.0</cbc:LineExtensionAmount>
 <cbc:TotalTaxAmount
currencyID="AED">1.0</cbc:TotalTaxAmount>
 <cbc:MinimumQuantity>1.0</cbc:MinimumQuantity>
 <cbc:MaximumQuantity>1.0</cbc:MaximumQuantity>

<cbc:MinimumBackorderQuantity>1.0</cbc:MinimumBackorderQuantity>

<cbc:MaximumBackorderQuantity>1.0</cbc:MaximumBackorderQuantity>

<cbc:InspectionMethodCode>normalizedString</cbc:InspectionMethodCod
e>

<cbc:PartialDeliveryIndicator>true</cbc:PartialDeliveryIndicator>

<cbc:BackOrderAllowedIndicator>true</cbc:BackOrderAllowedIndicator>

<cbc:AccountingCostCode>normalizedString</cbc:AccountingCostCode>
 <cbc:AccountingCost>string</cbc:AccountingCost>
 <cac:Delivery>... </cac:Delivery>
 <cac:DeliveryTerms>... </cac:DeliveryTerms>
 <cac:OriginatorParty>... </cac:OriginatorParty>
 <cac:OrderedShipment>... </cac:OrderedShipment>
 <cac:PricingReference>... </cac:PricingReference>
 <cac:AllowanceCharge>... </cac:AllowanceCharge>
 <cac:Price>... </cac:Price>
 <cac:Item>... </cac:Item>
 </cac:LineItem>
 <cac:SellerProposedSubstituteLineItem>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:SalesOrderID>normalizedString</cbc:SalesOrderID>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:Note>string</cbc:Note>
 <cbc:LineStatusCode>normalizedString</cbc:LineStatusCode>
 <cbc:Quantity>1.0</cbc:Quantity>
 <cbc:LineExtensionAmount
currencyID="AED">1.0</cbc:LineExtensionAmount>
 <cbc:TotalTaxAmount
currencyID="AED">1.0</cbc:TotalTaxAmount>
 <cbc:MinimumQuantity>1.0</cbc:MinimumQuantity>
 <cbc:MaximumQuantity>1.0</cbc:MaximumQuantity>

<cbc:MinimumBackorderQuantity>1.0</cbc:MinimumBackorderQuantity>

<cbc:MaximumBackorderQuantity>1.0</cbc:MaximumBackorderQuantity>

<cbc:InspectionMethodCode>normalizedString</cbc:InspectionMethodCod
e>

<cbc:PartialDeliveryIndicator>true</cbc:PartialDeliveryIndicator>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

227

<cbc:BackOrderAllowedIndicator>true</cbc:BackOrderAllowedIndicator>

<cbc:AccountingCostCode>normalizedString</cbc:AccountingCostCode>
 <cbc:AccountingCost>string</cbc:AccountingCost>
 <cac:Delivery>... </cac:Delivery>
 <cac:DeliveryTerms>... </cac:DeliveryTerms>
 <cac:OriginatorParty>... </cac:OriginatorParty>
 <cac:OrderedShipment>... </cac:OrderedShipment>
 <cac:PricingReference>... </cac:PricingReference>
 <cac:AllowanceCharge>... </cac:AllowanceCharge>
 <cac:Price>... </cac:Price>
 <cac:Item>... </cac:Item>
 </cac:SellerProposedSubstituteLineItem>
 <cac:SellerSubstitutedLineItem>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:SalesOrderID>normalizedString</cbc:SalesOrderID>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:Note>string</cbc:Note>
 <cbc:LineStatusCode>normalizedString</cbc:LineStatusCode>
 <cbc:Quantity>1.0</cbc:Quantity>
 <cbc:LineExtensionAmount
currencyID="AED">1.0</cbc:LineExtensionAmount>
 <cbc:TotalTaxAmount
currencyID="AED">1.0</cbc:TotalTaxAmount>
 <cbc:MinimumQuantity>1.0</cbc:MinimumQuantity>
 <cbc:MaximumQuantity>1.0</cbc:MaximumQuantity>

<cbc:MinimumBackorderQuantity>1.0</cbc:MinimumBackorderQuantity>

<cbc:MaximumBackorderQuantity>1.0</cbc:MaximumBackorderQuantity>

<cbc:InspectionMethodCode>normalizedString</cbc:InspectionMethodCod
e>

<cbc:PartialDeliveryIndicator>true</cbc:PartialDeliveryIndicator>

<cbc:BackOrderAllowedIndicator>true</cbc:BackOrderAllowedIndicator>

<cbc:AccountingCostCode>normalizedString</cbc:AccountingCostCode>
 <cbc:AccountingCost>string</cbc:AccountingCost>
 <cac:Delivery>... </cac:Delivery>
 <cac:DeliveryTerms>... </cac:DeliveryTerms>
 <cac:OriginatorParty>... </cac:OriginatorParty>
 <cac:OrderedShipment>... </cac:OrderedShipment>
 <cac:PricingReference>... </cac:PricingReference>
 <cac:AllowanceCharge>... </cac:AllowanceCharge>
 <cac:Price>... </cac:Price>
 <cac:Item>... </cac:Item>
 </cac:SellerSubstitutedLineItem>
 <cac:BuyerProposedSubstituteLineItem>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:SalesOrderID>normalizedString</cbc:SalesOrderID>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:Note>string</cbc:Note>
 <cbc:LineStatusCode>normalizedString</cbc:LineStatusCode>
 <cbc:Quantity>1.0</cbc:Quantity>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

228

 <cbc:LineExtensionAmount
currencyID="AED">1.0</cbc:LineExtensionAmount>
 <cbc:TotalTaxAmount
currencyID="AED">1.0</cbc:TotalTaxAmount>
 <cbc:MinimumQuantity>1.0</cbc:MinimumQuantity>
 <cbc:MaximumQuantity>1.0</cbc:MaximumQuantity>

<cbc:MinimumBackorderQuantity>1.0</cbc:MinimumBackorderQuantity>

<cbc:MaximumBackorderQuantity>1.0</cbc:MaximumBackorderQuantity>

<cbc:InspectionMethodCode>normalizedString</cbc:InspectionMethodCod
e>

<cbc:PartialDeliveryIndicator>true</cbc:PartialDeliveryIndicator>

<cbc:BackOrderAllowedIndicator>true</cbc:BackOrderAllowedIndicator>

<cbc:AccountingCostCode>normalizedString</cbc:AccountingCostCode>
 <cbc:AccountingCost>string</cbc:AccountingCost>
 <cac:Delivery>... </cac:Delivery>
 <cac:DeliveryTerms>... </cac:DeliveryTerms>
 <cac:OriginatorParty>... </cac:OriginatorParty>
 <cac:OrderedShipment>... </cac:OrderedShipment>
 <cac:PricingReference>... </cac:PricingReference>
 <cac:AllowanceCharge>... </cac:AllowanceCharge>
 <cac:Price>... </cac:Price>
 <cac:Item>... </cac:Item>
 </cac:BuyerProposedSubstituteLineItem>
 <cac:CatalogueLineReference>
 <cbc:LineID>normalizedString</cbc:LineID>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:LineStatusCode>normalizedString</cbc:LineStatusCode>
 <cac:DocumentReference>...
</cac:DocumentReference>
 </cac:CatalogueLineReference>
 <cac:QuotationLineReference>
 <cbc:LineID>normalizedString</cbc:LineID>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:LineStatusCode>normalizedString</cbc:LineStatusCode>
 <cac:DocumentReference>...
</cac:DocumentReference>
 </cac:QuotationLineReference>
 <cac:DocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>

<cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>... </cac:Attachment>
 </cac:DocumentReference>
 </cac:OrderLine>
 </OrderChange>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

229

Appendix 17: Sample UBL 2.0 Purchase Order Cancellation example (Source: OAGIS)

<OrderCancellation>
 <ext:UBLExtensions>
 <ext:UBLExtension>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>

<ext:ExtensionAgencyID>normalizedString</ext:ExtensionAgencyID>
 <ext:ExtensionAgencyName>string</ext:ExtensionAgencyName>

<ext:ExtensionVersionID>normalizedString</ext:ExtensionVersionID>

<ext:ExtensionAgencyURI>normalizedString</ext:ExtensionAgencyURI>
 <ext:ExtensionURI>normalizedString</ext:ExtensionURI>

<ext:ExtensionReasonCode>normalizedString</ext:ExtensionReasonCode>
 <ext:ExtensionReason>string</ext:ExtensionReason>
 <ext:ExtensionContent>
 <!--any element-->
 </ext:ExtensionContent>
 </ext:UBLExtension>
 </ext:UBLExtensions>
 <cbc:UBLVersionID>normalizedString</cbc:UBLVersionID>
 <cbc:CustomizationID>normalizedString</cbc:CustomizationID>
 <cbc:ProfileID>normalizedString</cbc:ProfileID>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:IssueTime>12:00:00</cbc:IssueTime>
 <cbc:Note>string</cbc:Note>
 <cbc:CancellationNote>string</cbc:CancellationNote>
 <cac:OrderReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:SalesOrderID>normalizedString</cbc:SalesOrderID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:IssueTime>12:00:00</cbc:IssueTime>
 <cbc:CustomerReference>string</cbc:CustomerReference>
 <cac:DocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>... </cac:Attachment>
 </cac:DocumentReference>
 </cac:OrderReference>
 <cac:OriginatorDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

230

 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>
 <cbc:EmbeddedDocumentBinaryObject
mimeCode="application/CSTAdata+xml">GpM7</cbc:EmbeddedDocumentBinar
yObject>
 <cac:ExternalReference>... </cac:ExternalReference>
 </cac:Attachment>
 </cac:OriginatorDocumentReference>
 <cac:AdditionalDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>
 <cbc:EmbeddedDocumentBinaryObject
mimeCode="application/CSTAdata+xml">GpM7</cbc:EmbeddedDocumentBinar
yObject>
 <cac:ExternalReference>... </cac:ExternalReference>
 </cac:Attachment>
 </cac:AdditionalDocumentReference>
 <cac:Contract>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:IssueTime>12:00:00</cbc:IssueTime>
 <cbc:ContractTypeCode>normalizedString</cbc:ContractTypeCode>
 <cbc:ContractType>string</cbc:ContractType>
 <cac:ValidityPeriod>
 <cbc:StartDate>2000-01-01</cbc:StartDate>
 <cbc:StartTime>12:00:00</cbc:StartTime>
 <cbc:EndDate>2000-01-01</cbc:EndDate>
 <cbc:EndTime>12:00:00</cbc:EndTime>
 <cbc:DurationMeasure unitCode="04">1.0</cbc:DurationMeasure>
 <cbc:DescriptionCode>normalizedString</cbc:DescriptionCode>
 <cbc:Description>string</cbc:Description>
 </cac:ValidityPeriod>
 <cac:ContractDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>... </cac:Attachment>
 </cac:ContractDocumentReference>
 </cac:Contract>
 <cac:Signature>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Note>string</cbc:Note>
 <cbc:ValidationDate>2000-01-01</cbc:ValidationDate>
 <cbc:ValidationTime>12:00:00</cbc:ValidationTime>
 <cbc:ValidatorID>normalizedString</cbc:ValidatorID>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

231

 <cbc:CanonicalizationMethod>string</cbc:CanonicalizationMethod>
 <cbc:SignatureMethod>string</cbc:SignatureMethod>
 <cac:SignatoryParty>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:SignatoryParty>
 <cac:DigitalSignatureAttachment>
 <cbc:EmbeddedDocumentBinaryObject
mimeCode="application/CSTAdata+xml">GpM7</cbc:EmbeddedDocumentBinar
yObject>
 <cac:ExternalReference>... </cac:ExternalReference>
 </cac:DigitalSignatureAttachment>
 <cac:OriginalDocumentReference>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:CopyIndicator>true</cbc:CopyIndicator>
 <cbc:UUID>normalizedString</cbc:UUID>
 <cbc:IssueDate>2000-01-01</cbc:IssueDate>
 <cbc:DocumentTypeCode>normalizedString</cbc:DocumentTypeCode>
 <cbc:DocumentType>string</cbc:DocumentType>
 <cbc:XPath>string</cbc:XPath>
 <cac:Attachment>... </cac:Attachment>
 </cac:OriginalDocumentReference>
 </cac:Signature>
 <cac:BuyerCustomerParty>

<cbc:CustomerAssignedAccountID>normalizedString</cbc:CustomerAssign
edAccountID>

<cbc:SupplierAssignedAccountID>normalizedString</cbc:SupplierAssign
edAccountID>

<cbc:AdditionalAccountID>normalizedString</cbc:AdditionalAccountID>
 <cac:Party>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

232

 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>
 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:Party>
 <cac:DeliveryContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:DeliveryContact>
 <cac:AccountingContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:AccountingContact>
 <cac:BuyerContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:BuyerContact>
 </cac:BuyerCustomerParty>
 <cac:SellerSupplierParty>

<cbc:CustomerAssignedAccountID>normalizedString</cbc:CustomerAssign
edAccountID>

<cbc:AdditionalAccountID>normalizedString</cbc:AdditionalAccountID>
 <cbc:DataSendingCapability>string</cbc:DataSendingCapability>
 <cac:Party>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

233

 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:Party>
 <cac:DespatchContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:DespatchContact>
 <cac:AccountingContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:AccountingContact>
 <cac:SellerContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:SellerContact>
 </cac:SellerSupplierParty>
 <cac:OriginatorCustomerParty>

<cbc:CustomerAssignedAccountID>normalizedString</cbc:CustomerAssign
edAccountID>

<cbc:SupplierAssignedAccountID>normalizedString</cbc:SupplierAssign
edAccountID>

<cbc:AdditionalAccountID>normalizedString</cbc:AdditionalAccountID>
 <cac:Party>
 <cbc:MarkCareIndicator>true</cbc:MarkCareIndicator>
 <cbc:MarkAttentionIndicator>true</cbc:MarkAttentionIndicator>
 <cbc:WebsiteURI>normalizedString</cbc:WebsiteURI>
 <cbc:LogoReferenceID>normalizedString</cbc:LogoReferenceID>
 <cbc:EndpointID>normalizedString</cbc:EndpointID>
 <cac:PartyIdentification>...
</cac:PartyIdentification>
 <cac:PartyName>... </cac:PartyName>
 <cac:Language>... </cac:Language>
 <cac:PostalAddress>... </cac:PostalAddress>
 <cac:PhysicalLocation>... </cac:PhysicalLocation>
 <cac:PartyTaxScheme>... </cac:PartyTaxScheme>
 <cac:PartyLegalEntity>... </cac:PartyLegalEntity>

Web Service interfaces design for e-business applications

©2015 SIA MINH HONG – PhD Thesis, Faculty of Engineering and Information Technology
University of Technology, Sydney.

234

 <cac:Contact>... </cac:Contact>
 <cac:Person>... </cac:Person>
 <cac:AgentParty>... </cac:AgentParty>
 </cac:Party>
 <cac:DeliveryContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:DeliveryContact>
 <cac:AccountingContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:AccountingContact>
 <cac:BuyerContact>
 <cbc:ID>normalizedString</cbc:ID>
 <cbc:Name>string</cbc:Name>
 <cbc:Telephone>string</cbc:Telephone>
 <cbc:Telefax>string</cbc:Telefax>
 <cbc:ElectronicMail>string</cbc:ElectronicMail>
 <cbc:Note>string</cbc:Note>
 <cac:OtherCommunication>...
</cac:OtherCommunication>
 </cac:BuyerContact>
 </cac:OriginatorCustomerParty>
</OrderCancellation>

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Table of Content
	List of Acronyms & Abbreviations
	Abstract
	Chapter 1 Introduction
	1.1 Background
	1.2 Web Services for e-business
	1.3 Web Service Interfaces
	1.4 Web Service Interface Design Issues
	1.5 Granularity Consideration
	1.6 Requirements for Web Service interface design
	1.7 Problem Identification and Definition
	1.8 Thesis Objective
	1.9 Summary of Contributions
	1.10 Research Methodology
	1.11 Structure of the Thesis

	Chapter 2 E-Business Document Standards
	2.1 Web Service Invocation Methods
	2.2 Web Service with Business Document
	2.3 Normalisation of XML Messages / Business Document
	2.4 Business documents and their design pattern
	2.4.1 Business Object Document (BOD) BY OAGIS
	2.4.2 Universal Business Language (UBL) BY OASIS
	2.4.3 Open Travel Alliance (OTA) Business document
	2.4.4 XML Common Business Language (xCBL)
	2.4.5 GS1 Messages by global language of business

	2.5 Command Pattern Interface
	2.6 Discussion

	Chapter 3 Review of existing Web Service Interface Design, Business Document Design and
Web Service Composition Design Methodologies
	3.1 Existing Web Service interface design methodologies
	3.1.1 Web Service design based on Elementary Business Function
	3.1.2 Web Service design based on Requirement Analysis
	3.1.3 Web Service Design based on Transactional Service
	3.1.4 Web Service design based on Shareable Components
	3.1.5 Web Service design based on Data Centric Approach with Factual Dependency
	3.1.6 Generic Web Service Interface design methodology
	3.1.7 REST style Web Service design methodology
	3.1.8 Value-Based Service Modeling and Design
	3.1.9 Model Driven Design of Web Service Operations using Web Engineering
Practice
	3.1.10 Pragmatic Web Service design approach
	3.1.11 Evolving Web Service interface design

	3.2 Business Document Design
	3.2.1 Web Service design based on Document Engineering
	3.2.2 Web Service design based on UN/CEFACT's Modelling Methodology (UMM)

	3.3 Existing Web Service Composition design methodology
	3.3.1 Web Service composition
	3.3.2 Composition design based on UML
	3.3.3 Composition Design based on Formal Language
	3.3.4 Composition Design based on Case-Based Reasoning
	3.3.5 Composition Design based on RosettaNet PIPs

	3.4 Discussion

	Chapter 4 Proposed Methodology
	4.1 Objective
	4.1.1 Minimalist Interface Design
	4.1.2 Methodology
	4.1.3 Case study

	4.2 Design with proposed solution
	4.3 Advantages and Disadvantages
	4.3.1 Advantages
	4.3.2 Disadvantages

	4.4 Discussion

	Chapter 5 Implementation
	5.1 Implementing Case Study
	5.1.1 Individual Business Process and Requirement
	5.1.2 Proposed Ordering Process

	5.2 Implementation Detail
	5.2.1 System Architecture
	5.2.2 Database System
	5.2.3 Application server system
	5.2.4 Application Prototype

	Chapter 6 Evaluation
	6.1 Service-Oriented Design Principles
	6.2 Quantitative Evaluation
	6.3 Qualitative Evaluation
	6.3.1 Reusability Principle
	6.3.2 Business Suitability
	6.3.3 Abstraction Principle
	6.3.4 Extensibility
	6.3.5 Flexibility
	6.3.6 Maintainability
	6.3.7 Comparison of the outcomes

	6.4 Discussion

	Chapter 7 Conclusion
	7.1 Research Summary
	7.2 Research Contributions
	7.3 Future Work

	References
	Appendices
	Appendix 1: Script to generate Database Table for case study
	Appendix 2: Available Web Method as Web Service
	Appendix 3: Persistence Unit for the Prototype Application
	Appendix 4: Business Entities of the Prototype application
	Appendix 5: Data Access Object of the Prototype application
	Appendix 6: Business Value Object of the Prototype application
	Appendix 7: Purchase Order Schema of the Prototype application
	Appendix 8: Object Serializer of the Prototype application
	Appendix 9: Prototype application Web Services
	Appendix 10: Prototype application Web Service Interface
	Appendix 11: Client’s GUI of the Prototype application
	Appendix 12: Overview of the Project Prototype application
	Appendix 13: Web Service interface showing available ports and operations
	Appendix 14: Sample UBL 2.0 Purchase Order example (Source: OAGIS)
	Appendix 15: Sample UBL 2.0 Purchase Order Response example (Source: OAGIS)
	Appendix 16: Sample UBL 2.0 Change Purchase Order Response example (Source: OAGIS)
	Appendix 17: Sample UBL 2.0 Purchase Order Cancellation example (Source: OAGIS)

