University of Technology, Sydney Faculty of Engineering and Information Technology

The Effect of Connection Flexibility on the Seismic Performance of Industrial Racking Systems

by

Ahmad Firouzianhaji

PhD Thesis

January 2016

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Date: 11 Jun 2015

Acknowledgment

I wish to express my deepest gratitude to my supervisors, Dr. Ali Saleh and Prof. Bijan Samali for their continuous support throughout my Ph.D study and research, for their patience, motivation, enthusiasm, and immense knowledge. There was absolutely no way I could have completed my PhD without your guidance and support from day one.

I am also grateful to my colleagues in the Engineering Department of DEXION Australia Pty Ltd., specially Mr. Peter Geoghegan and Mr. Lawrence Mok for sharing their expertise, immense knowledge and valuable guidance and encouragement extended to me.

Also, I would like to appreciate contribution of DEXION Australia Pty Ltd., in providing partial financial support on this project and providing their previous experimental test results.

I take this opportunity to express gratitude to all of the Department faculty members for their help and support.

I would like to offer my special thanks to my wife for being so supportive and my only family member in Australia.

Last but not the least, my Mom and Dad for their continues support and prayers. Also to my younger brother who has always given me positive energy to continue, not give up.

Table of Contents:

1. Chapter 1: Int	troduction, Literature review and research significance	1
1.1 Background	d	1
1.2 Literature H	Review	6
1.2.1	Racking Design Codes and Specifications	7
1.2.2	Behaviour of Beam to Upright Connections	8
1.2.3	Base Plate Connections	. 12
1.2.4	Stability analysis of the rack structures in their down aisle direction.	. 14
1.2.5	Upright frame analysis	. 19
1.3 Objective a	nd Scope	. 21
1.4 Methodolog	gy	. 23
1.4.1	Structural testing and Numerical investigations	. 23
1.5 Outline		. 25
1.6 Publication	S	. 27
1.6.1	Technical papers	. 27
2. Chapter 2: M	odelling of beam to upright connections	. 29
2.1 Introduction	n	. 29
2.2 Monotonic	behaviour of beam to upright connections	. 32
2.2.1	Experimental investigations	. 32
2.2.1.1	Test Observations	. 35
2.2.1.2	Beam-End Connector (BEC) test results	. 36
2.2.1.3	Parametric analysis	. 39
2.2.1	1.3.1 Beam depth	. 39
2.2.1	1.3.2 Upright thickness	. 41
2.2.1	1.3.3 Ultimate and Yield Rotation ($\theta u \& \theta y$)	. 43
2.2.2	Numerical Analysis of beam end connectors	. 44

2.2.2.	1 Comparison of experimental and FEA results	49
2.2.3	Analytical model	52
2.2.3.	1 Bi-Linear Moment Rotation curves	57
2.3 Behaviour	of beam to upright connections under cyclic loads	58
2.3.1	Experimental investigations	61
2.3.1.	1 Presentation of test data	63
2.3.1.	2 Test observations	64
2.3.2	Finite Element Analyses	67
2.3.3	Simplified Hysteresis models	68
2.3.3.	1 Overview of different Hysteresis Models	68
2.3	.3.1.1 Cyclic Kinematic Model	69
2.3	.3.1.2 Peak Oriented Model (Takeda Model)	70
2.3	.3.1.3 Cyclic Pivot Model	71
2.3.3.	2 Beam to upright boltless connection modelling	72
2.3	.3.2.1 Proposed Method to Derive Equivalent Cyclic Backbone	74
2.3	.3.2.2 Connection cyclic test simulation	76
2.4 Conclusio	ns	85
3. Chapter 3: A	nalysis of Base Plate Connections	87
3.1 Introduction	on and literature review	87
3.2 Geometry	, Anchoring configuration and behaviour of base plate connections	s in
down aisle	e direction	90
3.3 Experimen	ntal Study	91
3.3.1	Test Results and Discussion	95
3.4 Stability a	nalyses of upright base plates	100
3.5 FE Model	ling and discussion of results	102
3.5.1	FE Modelling	102
3.5.2	FE Results and Discussion	104

3.6 Theoretical Analysis	110				
3.6.1 Calculating the Base Plate Connection's stiffness	115				
3.7 Base Plate Connections under Horizontal Cyclic Forces	116				
3.7.1 Hysteretic Modelling of Base Plate Connections	119				
3.8 Behaviour of Base Plate Connections in Cross Aisle direction	123				
3.9 Conclusions	126				
4. Chapter 4: Modelling of bracing connections in Cross Aisle Frames	128				
4.1 Introduction and literature review					
4.2 Experimental Investigations	131				
4.3 Numerical Investigation and comparison with experimental results	133				
4.4 Theoretical Analysis	138				
4.4.1 Stiffness calculation	138				
4.4.1.1 Stiffness calculation	142				
4.5 Conclusions	143				
5. Chapter 5 : Shake Table Tests (Experimental Study)	145				
5.1 Introduction and background	145				
5.1.1 Christchurch earthquake collapse observations	145				
5.1.2 Theortical Background	151				
5.2 Experimental Investigation	156				
5.2.1 Stage one of the Experimental Study	162				
5.2.2 Stage two of the Experimental Study	165				
5.2.2.1 Test 1: 1940 El-Centro Earthquake, Non-Scaled in time domain	168				
5.2.2.2 Test 2:1940 El Centro Earthquake, Scaled down in time domain	by				
factor of two	176				
5.2.2.3 Damping of the System	192				
5.3 Conclusions	196				
6. Chapter 6: Finite Element Simulations	197				

6.1 Introduction and Literature Review	97
6.1.1.1 Equivalent Static Lateral Force Method1	99
6.1.2 Modal Analysis	00
6.1.3 Non-Linear Time History Dynamic Analysis (NLTH)	01
6.1.4 Non-Linear Static Pushover (NLPO)	03
6.1.5 Incremental Dynamic Analysis (IDA)	05
6.1.6 Preliminary Investigations	.06
6.1.6.1 Frame Capacity	08
6.1.6.2 Hysteresis Behaviour and Energy absorption	10
6.1.6.3 Second order (P-Delta) effects	12
6.1.6.4 Incremental Dynamic Analyses	13
6.1.6.4.1 1940 El Centro Earthquake (Far Field Earthquake)2	15
6.1.6.4.2 1994 Northridge Earthquake (Near Field Earthquake)2	19
6.1.6.4.3 Discussion of analyses results	22
6.1.6.5 Non-Linear Static Push-Over Analysis	23
6.2 Shake Table Test Simulation	29
6.2.1 Discussion of results	34
6.3 Conclusions	.37
7. Chapter 7: Full Frame Cyclic Tests (Push - Pull)	39
7.1 Introduction and Literature Review	39
7.2 Experimental Study / Test Setup	43
7.2.1 Structural response and behaviour	.49
7.2.2 Ductility Evaluation	51
7.2.3 Cyclic test vs Shake table test results	54
7.3 Displacement based method seismic analysis and design by using Capacity Curv	e255
7.3.1 Stability Analysis	55
7.3.1.1 Stability of the frames under seismic actions	59

7.3.2Step by step displacement based method	260					
7.3.3 Example of displacement based design method (Using Non-Linear						
Static Analysis)	264					
7.4 Conclusions	269					
8. Chapter 8: Conclusions and Recommendations for further studies						
8.1 Summary and Conclusion	271					
8.2 Recommendations for future research	278					
Appendices	280					
Appendix A: Experimental beam to upright Connection bending test results	280					
Appendix B: Theoretical analysis of beam to upright connections	297					
B.1 Example of using mathematical equations of ultimate and yield						
moment 297						
Appendix C: Response of different connection models	300					
Appendix D: Proposing the appropriate response modification factor (R factor)	305					
D.1 NLTH and ESLF comparison	305					
D.1.1 Results	306					
References:	309					

Table of Figures:

Figure 1.1. A typical low rise rack structure
Figure 1.2. Spine bracing and Plan bracing
Figure 1.3. Regular selective rack system (Dexion design manual)
Figure 1.4. Double deep selective rack system
Figure 1.5. Drive in rack system (Gilbert 2010)
Figure 1.6. Cantilever rack system
Figure 1.7. Base plate assembly (DEXION Installation Manual, DEXION AUSTRALIA Pty Ltd.)
Figure 1.8. 2D analytical model of a down aisle frame (Davies 1992) 15
Figure 1.9. Analytical model of a down aisle frame proposed by Stark and Tilburgs (1979)
Figure 1.10. Analytical model of a down aisle frame proposed by Davies (Davies, 1992)
Figure 1.11. Analytical model of a down aisle frame proposed by Godley et al. (2000)
Figure 2.1. Typical beam to upright connections using boltless beam end connectors(DEXION Pty Ltd.)
Figure 2.2: AS4084:2012 Figure 7.2.2.2, explaining method to determine the rotational stiffness of beam to upright connections (AS 4087, 2012, p. 70)
Figure 2.3 a and b: Moment-Rotation curve and experimental test set up
Figure 2.4. Test rig of beam end connector bending test with a specimen during testing

Figure 2.5: Typical failure modes observed in beam end connector and upright 36
Figure 2.6: Typical failure modes in different beam end connectors. Top left: tearing at hook near top of connector. Bottom left: bending of connector hooks cutting into upright slots. Right: Bending of connector plate
Figure 2.7: Typical moment rotation curve of the beam end connector test
Figure 2.8: Normalized moment – rotation monotonic curves of 19 different beam to upright connection configurations
Figure 2.9: (a) Effect of beam depth on the non-dimensional ultimate moment; (b) Effect of beam depth on the ultimate moment
Figure 2.10: The effect of beam depth on non-dimensional initial stiffness
Figure 2.11: Different non-dimensional moment rotation curves for two different upright thicknesses
Figure 2.12: The slope discontinuity in the moment rotation curve due to contact of connector face to upright flange
Figure 2.13: Amount of Ultimate rotations of the connections
Figure 2.14: Amount of Yield rotations of the connections
Figure 2.15 Typical Finite Element Model
Figure 2.16 Typical three-linear stress strain diagram
Figure 2.17: Deformed connection with Von- Mises stress contours
Figure 2.18 Connector plate hooks and contact areas
Figure 2.19: Typical plastic deformation of connection after test
Figure 2.20: Test results against results of FE models with shell/Solid elements 50
Figure 2.21: Box 80-40 FE Vs. Experiment

Figure 2.22: Box 140-50 FE Vs. Experiment
Figure 2.23: Box 105-50 FE Vs. Experiment
Figure 2.24: Hook failure; Test observation and FE Von-Mises stress contour 54
Figure 2.25: Geometrical dimensions
Figure 2.26: Analytical model of the connection using Component Method
Figure 2.27: Yielding of the metal near the hole leads to this failure mode
Figure 2.28: Geometric dimensions
Figure 2.29: Simplified Bi-Linear Moment Rotation curve
Figure 2.30. Plastic hinge in the Upright
Figure 2.31. Test rig of beam end connector cyclic bending test with a specimen 62
Figure 2.32. Displacement time history at load point of cyclic cantilever
Figure 2.33. Hysteresis curve
Figure 2.34. Typical Moment-Rotation curve of mean of the 3rd cycle peaks obtained in both directions
Figure 2.35. Typical failure mode in the connections with thinner material which
causes slippage and rigid motion in the connection
Figure 2.36. Typical failure mode in the connections with thicker material
Figure 2.37. Hysteresis curve for thinner upright (1.6 mm)
Figure 2.38. Hysteresis curve for thicker upright (2.5 mm)
Figure 2.39.Hysteresis curve for ticker upright (2.5 mm) (Experimental results vs. FE
resuit)
Figure 2.40: Backbone curve (Ibarra, Medina & Krawinkler, 2005, p. 1492)69

Figure 2.41. Kinematic Hysteretic Model (Medina & Krawinkler, 2003, p. 26) 70
Figure 2.42: Takeda Hysteretic Model (Medina & Krawinkler 2003, p. 26)70
Figure 2.43: Takeda Model from SAP2000 User Manual(Computers and Structures Inc., 2009, p. 261)
Figure 2.44: Pivot Model from SAP2000 User Manual. (Computers and Structures Inc., 2009, p. 262)
Figure 2.45: Beam-Upright Connection Hysteresis Feature
Figure 2.46: Proposed Equivalent Cyclic Backbone from Static Monotonic Test (Reyes, 2013, p. 59)
Figure 2.47: Initial and Secant stiffness76
Figure 2.48: SAP2000 Beam-Upright Connection Cyclic Test Simulation (Reyes, 2013, p. 55)
Figure 2.49: Pivot Model
Figure 2.50: Slippage and Pinching effect can be modeled by defining appropriate 'β' value
Figure 2.51: Hysteresis features of the beam – upright connection
Figure 2.52: Two extreme cases of the unloading path for different values of (α) 79
Figure 2.53: An example of Pivot Model (The parallel unloading paths is because the ' η ' is assumed to be zero)
Figure 2.54. Beam – Upright connection back bones
Figure 2.55 Experimental and Numerical Cyclic Test Comparison using EqCyc-KIN Link
Figure 2.56. Experimental and Numerical Cyclic Test Comparison using EqCyc- TAK Link

Figure 2.57. Experimental and Numerical Cyclic Test Comparison using EqCyc-PIV
Link
Figure 2.58. Experimental and Numerical Cyclic Test Comparison using LabCyc-
PIV Link
Figure 2.59. Connection Energy Dissipation Comparison
Figure 2.60: Comparison of hysteresis loops of different connections
Figure 3.1: The proposed method of deriving a Bi-Linear moment rotation curve
from experimental result (AS 4084 2012 p 70) 88
nom experimental result (745 4004, 2012, p. 70)
Figure 3.2: The proposed method of deriving a Bi-Linear moment rotation curve
from experimental result (AS 4084, 2012, p. 70)
Figure 3.3: Typical base plate connection
Figure 3.4: Different base plate connections (red dots indicate the position of anchor
bolts)
Figure 3.5. Base plate connection test concept with two specimens tested
simultaneously as proposed in BS EN 15512:2009
Figure 3.6: Base Plate Test forces and displacements
Figure 3.7: Test Setup
Figure 3.8: Base Plate Test arrangement
Figure 3.9. Test results for base plate type 1 Figure 3.10. Test results for base plate
type 2 96
Figure 3.11: Test results for base plate type 3
Figure 3.12: Total Moment (Mb) -Moment due to lateral force only
(M1).Connection type 2al force only (M1).Connection type 1

Figure	3.13:	Total	Moment	(Mb)	-Moment	due	to	lateral	force	only
(M1).Co	onnectio	on type 2	2							97
Figure	3.14:	Total	Moment	(Mb)	-Moment	due	to	lateral	force	only
(M1).Co	onnectio	on type	3							98
Figure 3	8.15: Ul	timate r	otations for	r base p	late type 1					98
Figure 3	8.16: Ul	timate r	otations for	r base p	late type 2					99
Figure 3	8.17: Ul	timate r	otations for	r base p	late type 3					99
Figure 3	3.18: Sir	mplified	l model of	the base	e plate conne	ection.				101
Figure 3	8.19: M	1-Mb di	agram (bas	se plate	Туре 1)					102
Figure 3	3.20: Str	ress-stra	in law used	d in FE	model					104
Figure 3	3.21: Nu	imerical	l model							105
Figure	3.22: O	Compar	ison of b	ase pla	te types 1	and	2, ı	under di	fferent	axial
compres	ssion fo	rces								106
Figure 3	8.23: FE	E simula	tion results							107
Figure 3	8.24: FE	Esimula	tion results	agains	t Experimen	tal res	ults.			108
Figure 3	8.25: Ini	tial Stif	fness – Ax	ial Forc	e relations					109
Figure 3	8.26: FE	and Ex	perimental	results	of connection	on typ	es 1,	2 and 4		109
Figure 3	8.27: FE	e results	of connect	ion type	es 3, 5 and 6					110
Figure 3	8.28: Ini	tial Stif	fness – Ax	ial Forc	e relation					110
Figure	3.29: F	ailure n	nechanism	for the	upright bas	e plat	es (C	Godley, 2	2007, p.	438)
										111
Figure	3.30: D	eforme	d shaped v	with ve	rtical displa	cemer	nt co	ontour fo	or conne	ection
type 1										112

Figure 3.31: Failure mechanism with vertical displacement contour for connection
type 2
Figure 3.32: Failure mechanism with vertical displacement contour for connection
type 3
Figure 3.33. Failure mechanism with vertical displacement contour for connection
type 4
Figure 3.34: Failure mechanism with vertical displacement contour for connection
type 5
Figure 3.35: Failure mechanism with vertical displacement contour for connection
type 6
Figure 3.36. Yield line mechanism for the base plate type 4
Figure 3.37: Base Plate Type 4, M_b versus M_1
Figure 3.38: Cyclic curves of base plate type 3
Figure 3.39: Cvclic load protocol
С
Figure 3.40: Cyclic and monotonic curves of base plates
Figure 3.41: Different stiffness related to each cycle
Figure 3.42: Divot Model from SAD2000 User Manual
1 Igure 5.42. I fvot woder from SAI 2000 Oser Walluar.
Figure 3.43: Multi Linear backbone definition in SAP 2000 122
Figure 3.44: Comparison of FE cyclic results (ABAQUS) and pivot cyclic model
(SAP 2000)
F: 2.45 D 1.4 1.1 1.1
Figure 3.45: Base plate model in cross aisle direction
Figure 3.46: FE Base plate model under uplift
Figure 3.47: Cyclic load protocol

Figure 3.48: Uplift-Displacement hysteresis Curves	126
Figure 4.1. Upright frame test set up for measuring the shear stiffness of an upri frame (EN 15512, 2009, p. 112)	ight 129
Figure 4.2. Upright frame test set up for measuring the combined shear and bend stiffness of an upright frame (AS 4084, 2012, p. 91)	ling 129
Figure 4.3 Shear frame displacement under transversal loads (Gilbert, 2010, p. 8	32) 131
Figure 4.4. Test rig	132
Figure 4.5. Schematic test setup	132
Figure 4.6. Experimental Force – Displacement curves	133
Figure 4.7. Failure modes (Tearing of the bracing member and bolt bending)	133
Figure 4.8. FE Model details	135
Figure 4.9. FE results vs. Experiment	135
Figure 4.10. FE analysis result with von-mises stress contour	136
Figure 4.11. Different brace member arrangements in the open upright section	137
Figure 4.12. Bolts in different bracing arrangements at failure with von-mises str contour.	ress 137
Figure 4.13. Back to back brace stiffness vs. front to front brace stiffness	138
Figure 4.14. Theoretical model of the joint	139
Figure 4.15. Joint stiffness component along brace	140
Figure 4.16. Equivalent models of a bolted brace member	141
Figure 4.17. Numerical, analytical and experimental results of upright frame analy	ysis
]	142

Figure 4.18. Base plate model in cross aisle direction
Figure 5.1: Down aisle mechanism
Figure 5.2: Down aisle mechanism
Figure 5.3. Connector bending during the 2011 magnitude-6.3 Christchurch Earthquake (Bruneau et al. (2011))
Figure 5.4. Down aisle mechanism-connection failure during the 2010 magnitude-8.8 Chile Earthquake (adopted from: www.FEMA.gov)
Figure 5.5: Down aisle mechanism- weld failure during the 2010 magnitude-8.8 Chile Earthquake (adopted from: www.FEMA.gov)
Figure 5.6: Down aisle mechanism-impacting the structural components
Figure 5.7: Cross aisle frame mechanism - upright splice failure
Figure 5.8: Base plate deterioration in cross aisle direction
Figure 5.9: Base plate deterioration in down aisle direction
Figure 5.10: Progressive collapse of the entire system
Figure 5.11: Frame instability because of twisting of the upright close to bracing junction
Figure 5.12. Entire rack instability due to distortional buckling of an upright at the bottom level
Figure 5.13. A MDOF Model representing a three-storey frame
Figure 5.14. Evaluating damping from frequency-response curve (Chopra, 1995, p. 79)
Figure 5.15. Test set up, Schematic views and dimensions of Down Aisle frame (on the left) and
Figure 5.16. Location of position sensors (LVDT's)

Figure 5.17. Location of accelerometers
Figure 5.18. a) Accelerometer attached to the block b) Accelerometer attached to the frame
Figure 5.19. a) LVDT attached to the frame b) LVDT attached to the block
Figure 5.20. Concrete blocks were tightened to the timber pallets
Figure 5.21. Concrete blocks chained to the timber pallet
Figure 5.22. Comparison of experimental and numerical results for acceleration at the top storey level (20% 1940 El Centro record)
Figure 5.23. Comparison of experimental and numerical results for displacement at the top storey level (20% 1940 El-Centro record)
Figure 5.24. Comparison of experimental and numerical results for displacement at the top storey level (10% 1940 El Centro record)
Figure 5.25. FFT of sine sweep test of the specimen before being exposed to any seismic actions
Figure 5.26. First and second modes of vibration observed in sine sweep test 165
Figure 5.27. Pallet Sliding test set up
Figure 5.28. Rack frame and support structures (a. Test rig, b. Schematic plan view)
Figure 5.29. Structural response under 20% 1940 El-Centro earthquake record / Non-Scaled in time domain
Figure 5.30. Structural response under 40% 1940 El-Centro earthquake record / Non-Scaled in time domain
Figure 5.31. Structural response under 60% 1940 El-Centro earthquake record / Non-Scaled in time domain

Figure 5.32. Structural response under 70% 1940 El-Centro earthquake record / Non-
Scaled in time domain
Figure 5.33. Structural response under 80% 1940 El-Centro earthquake record / Non-
Scaled in time domain
Figure 5.34. Lateral displacement of the rack
Figure 5.35. Structural response under 40% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2
Figure 5.36. Structural response under 40% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2 (After running higher intensities) 179
Figure 5.37. Structural response under 60% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2
Figure 5.38. Structural response under 80% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2
Figure 5.39. Structural response under 100% 1940 El Centro earthquake record /
Scaled down in time domain by a factor of 2
Figure 5.40. Structural response under 100% 1940 El-Centro earthquake record /
Scaled down in time domain by factor of 2 (After running higher intensities) 183
Figure 5.41. Structural response under 120% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2
Figure 5.42 Structural response under 140% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2
Scaled down in time domain by a factor of 2
Figure 5.43. Structural response under 160% 1940 El Centro earthquake record /
Scaled down in time domain by a factor of 2
Figure 5.44. Structural response under 160% 1940 El Centro earth quakerecord /
Scaled down in time domain by a factor of 2 (After running higher intensities) 187

xviii

Figure 5.45. Structural response under 180% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2
Figure 5.46. Structural response under 200% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2 [*]
Figure 5.47. Structural response under 200% 1940 El-Centro earthquake record /
Scaled down in time domain by a factor of 2
Figure 5.48. Lateral displacements of the rack
Figure 5.49. Sine Sweep test results of the Non-Scaled test in time domain
Figure 5.50. Sine Sweep test results of the Scaled test in time domain
Figure 6.1. Representing deflections as sum of modal components. (Clough and
Penzien, 1993, p. 220)
Figure 6.2. Motion based on linearly varying acceleration (Clough and Penzien,
1993, p. 121)
Figure 6.3. Numerical NLPO analysis using linear and uniform 'fixed' load patterns.
Figure 6.4. Static Push Over curve; actual and elastoplastic idealization (Chopra,
1995, p. 246)
Figure 6.5. Finite Element model of entire rack frame. (Reyes 2013, p. 66) 207
Figure 6.6. Deflection Response of KIN & SDOF Equivalent to 95% El Centro.
Instability and collapses occurs at ~40s. (Reyes 2013)
Figure 6.7. Kinematic link response to 95% El Centro (Reyes 2013) 211
Figure 6.8. El-Centro 1940 Accelerogram. Unfactored Max PGA = 0.35g 213

Figure 6.10. Schematic of IDA Analysis Process and Outputs. Note the figure shows
three scaled El-Centro 1940 records, leading to three points on the IDA curve.
(Reves 2013 n 93) 215
(Reyes, 2013, p. 73)
Figure 6.11. Total amount of strain energy in the connections when subjected to 30%
and 40% El Contro (1040) controlución a control control de la control de
and 40% EI-Centro (1940) eartinquake
Figure 6.12 Total amount of strain energy in the connections when subjected to
1200/ ELC the stand energy in the connections when subjected to
120% El-Centro earthquake
Eigune (12 Moment notation holesview of the compositions at different levels 210
Figure 6.13. Moment rotation benaviour of the connections at different levels 218
Figure 6.14 Inter storey drift of the system at different load intensities (soft storey
Figure 0.14. Inter-storey unit of the system at unrefert load intensities (soft storey
mechanism is obvious)
Eigene (15 Total amount of static managering the compactions when subjected to 500/
Figure 6.15. Total amount of strain energy in the connections when subjected to 50%
1994 Northridge earthquake
Figure 6.16. Moment rotation behaviour of the connections at different levels 221
Figure 6.17 BGA vs. Max interstoray drift ratio IDA surves for 3 different
Figure 0.17. FOA vs. Wax inter-storey unit failo IDA curves for 5 different
earthquakes
Figure 6.18. Dynamic Pushover style IDA results in the format of base shear
coefficient vs. drift for 3 different earthquakes
Figure 6.19. Numerical NLPO analysis using linear and uniform load patterns 224
Figure 6.20. Comparison of static and 'dynamic pushover' curves with respect to top
storey drift
Figure 6.21. Triangular Load Pattern Pushover Curve with respect to top storey drift.
Figure 6.22. Rectangular Load Pattern Pushover Curve with respect to top storey
drift

Figure 6.23. Triangular Load Pattern Pushover Curve with respect to max inter- storev drift.
Figure 6.24. Rectangular Load Pattern Pushover Curve with respect to max inter- storey drift
Figure 6.25. FE model, Elevation and Side views
Figure 6.26. Experimental and Numerical Cyclic Test Comparison using LabCyc- PIV Link
Figure 6.27. (a) and (b): Numerical analysis results vs Experimental test results (60% 1940 El Centro Earthquake – Not Scaled in time domain)
Figure 6.28. (a), (b) and (c): Numerical analysis results against Experimental test results (70% 1940 El Centro Earthquake – Not Scaled in time domain)
Figure 6.29. (a), (b) and (c): Numerical analysis results vs Experimental test results (80% 1940 El Centro Earthquake – Not Scaled in time domain)
Figure 6.30. Moment – Rotation hysteresis curves of the beam to upright connections at first and second beam levels (60% 1940 El Centro Earthquake record)
Figure 6.31. Moment – Rotation hysteresis curves of the beam to upright connections at first and second beam levels (70% 1940 El Centro Earthquake record)
Figure 6.32. Moment – Rotation hysteresis curves of the beam to upright connections at first and second beam levels (80% 1940 El Centro Earthquake record)
Figure 6.33. Moment – Rotation hysteresis curves of the beam to upright connections at first and second beam levels (100% 1940 El Centro Earthquake record)
Figure 7.1: Push-Over test set up in both directions (Rosin et al., 2009, p. 59) 240
Figure 7.2: Schematic view of the shake table test set up (Rosin et al., 2009, p. 60)

Figure 7.3: Failure of the frame as result of push over test (Rosin et al. 2009, p. 63)
Figure 7.4: Hysteresis response of the frame in both directions of (a) down aisle, and
(b) cross aisle (Rosin et al., 2009, p. 63 & 67)
Figure 7.5: Overall drift of the system in cross aisle direction (Rosin et al., 2009, p.
Figure 7.6: Heavy steel plates were locked to the structures laboratory floor by using welded shear connectors
Figure 7.7: Steel plates were used to sandwich the upright
Figure 7.8: Schematic set up 3-D view (concrete blocks on the timber pallets are not shown in this figure)
Figure 7.9: Double hinged connection between spreader beam to the sandwich plates
Figure 7.10: Imposed displacement history
Figure 7.11: Frame at ultimate drift
Figure 7.12: Summary of the instrumentation applied to the specimen (concrete
blocks on the timber pallets are not shown in this figure)
Figure 7.13: Connection zone after the test
Figure 7.14: Hysteresis response of the frame
Figure 7.15: Strength deterioration and stiffness degradation after a few cycles of loading
Figure 7.16: Experimental envelop curve vs the Bi-Linear and Linear push curves252
Figure 7.17: Deformed shape of the FE Model (Rendered view)
Figure 7.18: Finite Element analysis result vs. Experimental cyclic envelop curve 253

Figure 7.19: Static cyclic test vs Dynamic shake table test results
Figure 7.20: IDA curve and the Cyclic curve with the amplitude close to the maximum seismic displacement
Figure 7.21. Braced and un-braced frames
Figure 7.22. Equilibrium states of a system with Bi-Linear connection characteristic
Figure 7.23. Typical Beam-Upright Connection Non-Linear Features (Reyes, 2013, p. 53)
Figure 7.24: Assumed failure mode under seismic actions
Figure 7.25: Displacement response spectrum
Figure 7.26: Multi degree of freedom model vs Single degree of freedom model 262
Figure 7.27: The inelastic top level displacement, $\Delta pTop$, the horizontal projection of the linear push curve from the corresponding elastic top level displacement, $\Delta eTop$
Figure 7.28: Capacity curve and the linear push curve
Figure 7.29: Reading the elastic top level displacement from displacement response spectrum
Figure 7.30: Reading $\Delta pTop$
Figure 7.31: Displacement loading for structural analysis
Figure 7.32: Deformed shape of the system after analysis
Figure A.1. Moment rotation curves for C-BT-B-80x40x1.5-90G beam end connectors
Figure A.2. Moment rotation curves for C-BT-B-80x40x1.5-90H beam end connectors

Figure connect	A.3.	Moment	rotation	curves	for	C-BT-B-80	x40x1.5-100R	beam	end 285
Figure connect	A.4. tors	Moment	rotation	curves	for	C-BT-B-8	5x50x1.5-90G	beam	end 286
Figure connect	A.5. tors	Moment	rotation	curves	for	C-BT-B-8:	5x50x1.5-90H	beam	end 286
Figure connect	A.6. tors	Moment	rotation	curves	for	C-BT-B-85	x50x1.5-100R	beam	end 287
Figure connect	A.7. tors	Moment	rotation	curves	for	C-BT-B-90	0x40x1.5-90G	beam	end 287
Figure connect	A.8. tors	Moment	rotation	curves	for	C-BT-B-90	0x40x1.5-90H	beam	end 288
Figure connect	A.9. tors	Moment	rotation	curves	for	C-BT-B-90	x40x1.5-100R	beam	end 288
Figure connect	A.10. tors	Moment	rotation	curves	for	C-BT-B-10	0x40x1.5-90G	beam	end 289
Figure connect	A.11. tors	Moment	rotation	curves	for	C-BT-B-10	0x40x1.5-90H	beam	end 289
Figure connect	A.12. tors	Moment	rotation	curves	for	C-BT-B-100)x40x1.5-100R	beam	end 290
Figure connect	A.13. tors	Moment	rotation	curves	for	C-BT-B-10	95x50x1.5-90G	beam	end 290
Figure connect	A.14. tors	Moment	rotation	curves	for	C-BT-B-10	5x50x1.5-90H	beam	end 291
Figure connect	A.15. tors	Moment	rotation	curves	for	C-BT-B-105	5x50x1.5-100R	beam	end 291

connectors	beam end
Figure A.17. Moment rotation curves for C-BT-B-130x40x1.5-90H connectors	beam end
Figure A.18. Moment rotation curves for C-BT-B-130x40x1.5-100R connectors	beam end
Figure A.19. Moment rotation curves for C-BT-B-140x50x1.6-90G connectors	beam end
Figure A.20. Moment rotation curves for C-BT-B-140x50x1.6-90H connectors	beam end
Figure A.21. Moment rotation curves for C-BT-B-140x50x1.6-100R connectors	beam end
Figure B1. Analytical result vs. Test result	298
Figure B.2. Analytical result vs. Test result	
Figure B.3. Analytical result vs. Test result	
Figure B.3. Analytical result vs. Test result Figure C.1. Response of KIN-MON to 60% 1940 El-Centro earthquake	299
Figure B.3. Analytical result vs. Test result.Figure C.1. Response of KIN-MON to 60% 1940 El-Centro earthquake.Figure C.2. First Storey KIN-MON Link response to 60% 1940earthquake. Upper storey links remain linear.	299 300 El-Centro 300
 Figure B.3. Analytical result vs. Test result. Figure C.1. Response of KIN-MON to 60% 1940 El-Centro earthquake. Figure C.2. First Storey KIN-MON Link response to 60% 1940 earthquake. Upper storey links remain linear. Figure C.3. Deflection Response of KIN-EQV to 60% 1940 earthquake. 	299 300 El-Centro 300 El-Centro 301
 Figure B.3. Analytical result vs. Test result. Figure C.1. Response of KIN-MON to 60% 1940 El-Centro earthquake. Figure C.2. First Storey KIN-MON Link response to 60% 1940 earthquake. Upper storey links remain linear. Figure C.3. Deflection Response of KIN-EQV to 60% 1940 earthquake. Figure C.4. First Storey KIN-EQV Link response to 1940 60% El-Centro euclided to the storey links remain linear. 	299

Figure C.6. First Storey TAK-EQV Link response to 60% 1940 El-Centro. Upper

storey links remain linear
Figure C.7. Deflection Response of PIV-EQV to 60% 1940 El-Centro
earthquake
Figure C.8. First Storey PIV-EQV Link response to 60% 1940 El-Centro earthquake.
Upper storey links remain linear
Figure C.9. Deflection Response of PIV-CYC to 60% 1940 El-Centro earthquake
Figure C.10. First Storey PIV-CYC Link response to 60% 1940 El-Centro earthquake
Figure C.11. Second Storey PIV-CYC Link response to 60% 1940 El-Centro. Third
and fourth storey links also remain linear
Figure C.12. Energy Dissipated by PIV-EQV when Subjected to 60% 1940 El-Centro
earthquake

List of Tables:

Table 2-1: Material properties
Table 2-2: Finite Element models 48
Table 2-3. Beam End Connector Cyclic Bending Test 67
Table 2-4 Backbone-Hysteresis Models for Beam-Upright Connections
Table 2-5. Calibrated Pivot Model Parameters for 'Type A' Beam-UprightConnections
Table 3-1. Material Properties 104
Table 4-1. SAP and ABAQUS models vs test results
Table 4-2. Numerical, Analytical and Experimental results 143
Table 5-1. Section profiles 160
Table 5-2. Summary of the experimental tests
Table 5-3. Peak responses of structure under seismic actions 175
Table 5-4. Peak responses of structure under time scaled seismic actions
Table 5-5. Dynamic features of the system under 1940 El-Centro test record/Non scaled in time domain
Table 5-6. Dynamic features of the system under 1940 El-Centro test record/Scaled in time domain 195
Table 6-1. Summary of El Centro scaling at collapse when using different connection models. 209
Table 6-2. Response of Rack Modelled with Different Connection models to 60% El-
Centro (1940) ground motion

Table 6-3. R Factor Calculation via PGA Ratio with respect to 'first significant yield
point' selection
Table 6-4. R factor calculation from triangular load pushover with respect to top
storey drift.
<i>220</i>
Table 6-5. R factor calculation from rectangular load pushover with respect to top
storey drift
Table 6-6. R factor calculation from triangular load pushover with respect to max
inter-storey drift
Table (7.D. faster calculation from materials land makers with more at the more
Table 6-7 K factor calculation from rectangular load pushover with respect to max
inter-storey drift
Table 6-8. Recommended Seismic Design Factors for ESLF design of unbraced
down-aisle steel nallet racks
down ubie steel punct lucks
Table 6-9. Calibrated Pivot Model Parameters for 'Type A' Beam-Upright
Connections
Table 7-1. Seismic Analysis Assumptions
Table 7-2 Comparison of different analysis methods 268
Table 7-2. Comparison of unrefert analysis methods
Table A-1. Beam End Connector Test Results 280
Table A-2. Yield and Ultimate rotations of the connections 295
Table B-1 Geometrical characteristics of the connections 297
Table B-1. Geometrical characteristics of the connections
Table D-1. 100% 1940 El-Centro NLTH vs. ESLF comparison for different R factors.
Rectangular load pattern
Table D-2. 100% 1940 El-Centro NLTH vs. ESLF comparison for different R factors.
Triangular load pattern
Table D-3. 50% 1940 EI-Centro NLTH vs. ESLF comparison for different R factors.
Triangular load pattern

Table D-4. 50% 1940 El-Centro I	NLTH vs. ESLF	comparison fo	or different R	factors.
Rectangular load pattern				307

NOTATION

The following symbols are used through the thesis unless notified otherwise:

Abrace	Cross section area of bracing members
$A^*_{bracing\ member}$	Modified cross section area of the bracing member
$A_{bracing\ member}$	Cross section area of the bracing member
A_d	Cross sectional area of the bracing members
С	Damping matrix, or;
	Number of storey levels
D	Upright width, or;
	Nominal diameter of bolt
D_{EqCyc}	First yield rotation on the moment-rotation backbone
Ε	Elasticity modulus
F_{I}	Vertical force applied by Jack 1
F_2	Horizontal force at pin above upright
	The calculated frequencies at a response amplitude of
fa, fb	$^{\cdot 1}/\sqrt{2}$ of the peak response amplitude
$f_b(\theta)$	Moment rotation function of base plate connections
$f_c(\theta)$	Moment rotation function of beam to upright
£	Exercise frequency at resonance and
Jn £	Forcing frequency at resonance and
Jo	Unright hash interaction
F_{ult}	Upright – nook interaction
$J_{\mathcal{Y}}$	The force at which the structure starts to yield (yield
	strength)
Н	Beam spacing , or;
_	Storey height
Ι	Second moment of inertia of the upright member about
	an axis perpendicular to the upright frame
I _b	Second moment of area of the beam, or;
	Moment of inertia of bolt section

Κ	Stiffness matrix, or;
	Stiffness of a SDOF system
k	A factor depending on the position of the loads
$k_{1YEqCyc}$ Initial	Stiffness of the equivalent moment rotation backbone
Kavg	Average stiffness of the moment rotation curve
$K_{bearing}$	Bearing stiffness
K _{bolt}	Stiffness of the bolts in the bracing connection
K_i	Initial Stiffness
Kjoint	Stiffness of the bracing connection in vertical direction
	The joint stiffness in the direction of the bracing
K' joint	member
K _{member}	Stiffness of the bracing member
K^{*}_{member}	Equivalent stiffness of the bracing members
K_s	Initial secant stiffness
K _{shear}	Stiffness of the shear frame excluding base plates
$K_{shear total}$	Stiffness of the shear frame including base plates
	Stiffness of the base plate connection under uplift
Kuplift	forces
L	Vertical distance from the load point to the connector's
	free edge, or;
	Distance between pin above upright and bottom of the
	base plate, or;
	The total height of the upright frame
L_b	Distance between upright flanges, or;
	Length of the beam
	Total mass of a SDOF system, or;
	Moment in the beam to upright connection
\overline{m}	Non-dimensional moment
\overline{m}_u	Non-dimensional ultimate moment
M	Mass matrix, or;
	Moment in the beam to upright connections
M_{IY}	First yield point on the moment-rotation backbone
M_b	Base plate moment

M_{BU}	Ultimate moment of the beam end connector
M_{CU}	Ultimate moment of the beam
M_i	The effective or modal mass for mode i
m_j	Lumped mass at degree of freedom j
M _{max}	Maximum allowable moment of the base plate
M_p	Plastic moment of the base plate
$M_{p,b}$	Plastic moment of the beam
Mult	Base plate moment, including second order effects
M_u	Ultimate moment
M _{max-ups}	Maximum moment in first storey uprights
M_y	Yield moment
N^*	Design value of the vertical action on the frame
Ν	Number of beams at every levels
N_b	Number of base plate connections
N _{brace}	Number of bracing members in tension
N _{brc}	Number of bracing members in the upright frame
N_c	Number of beam to upright connection
Ncr	Elastic critical load
Р	Pallet load distributed at every beam
<i>p</i> _{cr}	Maximum allowable load at every beam level
P_E	External work in the down aisle direction
R	Seismic Reduction Factor
$\mathbf{S}_{j,ini}$	The initial stiffness of the connection
S_p	Factor for redundancy of structure
S_{ti}	Transverse shear stiffness of an upright frame
Т	Fundamental period of structure
t _b	Brace member thickness
t_c	Connector's thickness
t_u	Upright member thickness
U	Total displacement response of a MDOF structure, or;
	Internal work in the down aisle frame
U_E	External energy in the base plate assembly
U_I	Internal energy in the base plate assembly

	Ultimate deformation of the system in the push over
u_m	curve
u_o	First yield displacement
ü _g	Ground acceleration
	The displacement at which the structure starts to yield
u_y	(yield displacement)
$V_{base\ shar}$	Seismic base shear in the structure
	Elastic base shear at the maximum monitored
Ve	displacement of the top beam level
	Inelastic base shear at the maximum monitored
V _{max}	displacement of the top beam level
W	The total potential energy of the system
$Y_n(t)$	Time varying displacement function
α	Parameters for developing hysteresis curves, or;
	Imperfection (out of plumb), or;
	Seismic intensity factor, or;
	The angle between the frame bracing member and the
	direction perpendicular to the upright
β	Reduction factor for the cross section area of the bracing
	members, or;
	Parameters for developing hysteresis curves
δ_l to δ_4	Displacements at positions 1 to 4, respectively
δ_{ci}	Maximum allowable rotation of the connection
δ_{Fail}	Final point on the moment-rotation backbone
δ_L	Horizontal deflection at the bottom of the storey
δ_U	Horizontal deflection at the top of the storey
Δ_e	Equivalent elastic response displacement
$\Delta_{e,top}$	Top storey elastic displacement
$\Delta_{p,top}$	Inelastic top level displacement
Δ_s	Stability displacement limit
ζ	Damping ratio
η	Parameters for developing hysteresis curves

xxxiii

θ	Drift of the down aisle frame excluding imperfection
θ_{l} .	Maximum first storey inter-storey drift ratio,
$ heta_b$	Relative rotation of base plate connection
$ heta_{b,p}$	The value of θ_b at failure.
$ heta_D$	The minimum required rotation of the connector to allow a
	Plastic mechanism to occur
$\theta_{top \ storey}$	Maximum top storey drift ration
θ_u	Ultimate rotation of the beam to upright connections
$ heta_{ult}$	Ultimate rotation of the base plate connectionn
θ_y	Yield rotation
λ	The factor to convert the multi degree of freedom model to the
	equivalent single degree of freedom model
μ	Ductility of structure
σ	Normal stress
σ_{ult}	Maximum stress at upright-hook interaction
τ	Shear stress
Φ	Dynamic Mode shape matrix, or;
	Frame imperfection
Ø	Non-dimensional rotation
Ø _b	The angle between horizontal and diagonal braces
$arPsi_b$	The angle between horizontal and diagonal braces
$arPsi_{i,j}$	Relative deformed shape displacement for mode i at degree of
	freedom j
Φ_{max}	Largest value of the sway index
Φ_n	Time-independent vector of the system's n th mode shape and
Φ μ , R $_{\mu}$, q	Ductility of structure
γ	The angle between brace member and the horizontal direction
φ	Sway rotation equal to 0.02 Rad, or;
	Total drift of the down aisle frame including imperfection
Ω	Over Strength Factor

xxxiv

Abstract

Industrial racking systems are load bearing structures for the warehouse storage of goods. They are normally fabricated and assembled from cold-formed perforated open thin-walled vertical members and can be 4 meters to 40 meters high. To resist lateral actions such as seismic loads, racking structures rely typically on flexible boltless beam to upright connections along the storage aisles and braced frames in the transverse cross-aisle direction. Compared to their self weight, industrial racks carry very heavy pallet loads as opposed to other conventional structures. High slenderness ratio, heavy pallet loads, connection flexibility and low degree of redundancy make rack structures very different from conventional steel structures. Therefore, in the racking industry special analysis and design codes are adopted which require specific experimental tests to determine the performance of the key structural components. However the current standards do not give sufficient guidance for seismic design. This PhD research investigates both numerically and experimentally the effect of different connections on the performance of industrial racking systems. The research focus is on three critical connections: (a) Beamupright connection; (b) Floor connection (Base-plate connection); and (c) Bolted brace connection. Courtesy of Dexion Australia, part of the research was based on test results conducted on their racking components. More than 70 beam to upright connection tests including monotonic and cyclic tests, 15 base plate tests under combined axial and bending loads and 4 full cross aisle shear frame tests were studied. FE models were then developed and verified against the test results. Further FE analyses revealed the behaviour of the aforementioned local connections under monotonic and cyclic actions and as a result simple theoretical models were proposed. After deep investigations on the performance of different connections of a typical rack structure, more than 20 full scaled shake table tests were conducted to reveal the dynamic features of a rack structure and one full scaled static cyclic push over test was performed to evaluate the system deterioration under cyclic actions. Both dynamic and static full scaled tests were accurately modeled using the proposed beam to upright connection model. A new performance based seismic analysis approach was proposed at the end of the thesis which showed much more accurate results compared to the seismic analysis approach in the current racking codes and specifications.