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Abstract

Multi-instance learning (MIL) is a special learning task where labels

are only available for a bag of instances. Although MIL has been used

for many applications, existing MIL algorithms cannot handle com-

plex data objects, and all require that instances inside each bag are

represented as feature vectors (e.g. being represented in an instance-

feature format). In reality, many real-world objects are inherently

complicated, and an object can be represented as multiple instances

with dependency structures (i.e. graphs). Such dependency allows

relationships between objects to play important roles, which, unfor-

tunately, remain unaddressed in traditional instance-feature repre-

sentations. Motivated by the challenges, this thesis formulates a new

multi-graph learning paradigm for representing and classifying com-

plicated objects. With the proposed multi-graph representation, the

thesis systematically addresses several key learning tasks, including

Multi-Graph Learning: A graph bag contains one or multiple

graphs, and each bag is labeled as either positive or negative. The aim

of multi-graph learning is to build a learning model from a number of

labeled training bags to predict previously unseen bags with maximum

accuracy. To solve the problem, we propose two types of approaches:

1) Multi-Graph Feature based Learning (gMGFL) algorithm that ex-

plores and selects an optimal set of subgraphs as features to transfer

each bag into a single instance for further learning; and 2) Boosting

based Multi-Graph Classification framework (bMGC), which employs

dynamic weight adjustment, at both graph- and bag-levels, to select

one subgraph in each iteration to form a set of weak graph classifiers.

Multi-Instance Multi-Graph learning: A bag contains a num-

ber of instances and graphs in pairs, and the learning objective is



to derive classification models from labeled bags, containing both in-

stances and graphs, to predict previously unseen bags with maximum

accuracy. In the thesis, we propose a Dual Embedding Multi-Instance

Multi-Graph Learning (DE-MIMG) algorithm, which employs a dual

embedding learning approach to (1) embed instance distributions into

the informative subgraphs discovery process, and (2) embed discov-

ered subgraphs into the instance feature selection process.

Positive and Unlabeled Multi-Graph Learning: The training

set only contains positive and unlabeled bags, where labels are only

available for bags but not for individual graphs inside the bag. This

problem setting raises significant challenges because bag-of-graph set-

ting does not have features available to directly represent graph data,

and no negative bags exits for deriving discriminative classification

models. To solve the challenge, we propose a puMGL learning frame-

work which relies on two iteratively combined processes: (1) deriving

features to represent graphs for learning; and (2) deriving discrimina-

tive models with only positive and unlabeled graph bags.

Multi-Graph-View Learning: A multi-graph-view model utilizes

graphs constructed from multiple graph-views to represent an object.

In our research, we formulate a new multi-graph-view learning task for

graph classification, where each object to be classified is represented

graphs under multi-graph-view. To solve the problem, we propose a

Cross Graph-View Subgraph Feature based Learning (gCGVFL) algo-

rithm that explores an optimal set of subgraph features cross multiple

graph-views. In addition, a bag based multi-graph model is further

used to relax the labeling by only requiring one label for each graph

bag, which corresponds to one object. For learning classification mod-

els, we propose a multi-graph-view bag learning algorithm (MGVBL),

to explore subgraphs from multiple graph-views for learning.

Experiments on real-world data validate and demonstrate the perfor-

mance of proposed methods for classifying complicated objects using

multi-graph learning.
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