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UNIVERSITY OF TECHNOLOGY, SYDNEY

Abstract

Faculty of Science

School of Physics and Advanced Materials

Doctor of Philosophy

Localised Probing of Precursor Coefficients Using Electron Beam Induced

Deposition and Etching

by Jared Craig Cullen

Electron beam induced etching (EBIE) and deposition (EBID) are direct-write deposition

techniques in which an electron beam is used for chemical precursor dissociation. Both

techniques are capable of nanometer-scale resolution, but applications have been limited

by poor understanding of the underlying reaction mechanisms and rate parameters. Here,

a hybrid Continuum-Monte Carlo model has been designed and implemented, enabling

modelling of the temporal and spatial evolution of nanostructures fabricated by EBID and

EBIE. This hybrid model is used to perform Arrhenius analysis of the deposition rates of

nanostructures grown by EBID and EBIE, from which both precursor desorption and dif-

fusion rate parameters can be obtained. These parameters are of fundamental interest in

physical chemistry and surface science fields but also are key to optimisation of chemical

vapour deposition (CVD), EBID, EBIE, and related surface processing and nanofabri-

cation techniques. Methods used to determine the activation energy and pre-factors for

desorption and diffusion are described in detail. The limitations of these methods, growth

conditions needed to minimise errors, and applications to the chemistry, physics and nan-

otechnology communities are also discussed.
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total simulation duration of 1.0× 10−7 seconds. . . . . . . . . . . . . . . . . 29

3.5 Example of particle diffusion, where a single spike of concentration spreads
over time due to diffusion. Each curve is 10% into the total duration of
the simulation except the first curve, which is the starting condition. This
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green region defines the parameter space where the dimensionless diffusion
coefficient is below 0.5 and the red above 0.5. . . . . . . . . . . . . . . . . . 31

3.8 The initial precursor concentration as a function of time, (A) The concen-
tration from two separate simulations where one is EBID and the other
EBIE, (B) The precursor concentration over time from a EBIED simulation. 32

3.9 (Figure Replicated from Lobo, et al. [69]) (a) Growth rate plotted as a
function of radius (r) from the beam axis, calculated using currents of 0.4,
0.5, 0.52, 0.53, 0.55, 0.6, 0.7, 0.8 and 1 nA. Also shown is the total electron
flux profile from figure 1(d). (b) Surface plots of the 0.4, 0.5 and 0.6 nA
deposition rate profiles (linear scale) (Pd = 10−2 Pa). . . . . . . . . . . . . . 33

3.10 Comparison between the continuum component of the hybrid model used
here and the continuum model published previously by Lobo et al. [69]. The
EBID rates were calculated at a distance of ∼ 1.5 Å from of the electron
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