
University of Technology, Sydney

Doctoral Thesis

Localised Probing of Precursor
Coefficients Using Electron Beam
Induced Deposition and Etching

Author:

Jared Craig Cullen

Supervisor:

A Prof. Mike Ford, Prof. Milos

Toth, & Dr. Charlene Lobo

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

Materials and Technology for Energy Efficiency

School of Physics and Advanced Materials

January 2016



Declaration of Authorship

I, Jared Craig Cullen, declare that this thesis titled, Localised Probing of Precursor

Coefficients Using Electron Beam Induced Deposition and Etching, and the work presented

in it is my own.

• I certify that the work in this thesis has not previously been submitted for a de-

gree nor has it been submitted as part of requirements for a degree except as fully

acknowledged within the text.

• I also certify that the thesis has been written by me. Any help that I have received

in my research work and the preparation of the thesis itself has been acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

Signed:

Date:

ii



UNIVERSITY OF TECHNOLOGY, SYDNEY

Abstract

Faculty of Science

School of Physics and Advanced Materials

Doctor of Philosophy

Localised Probing of Precursor Coefficients Using Electron Beam Induced

Deposition and Etching

by Jared Craig Cullen

Electron beam induced etching (EBIE) and deposition (EBID) are direct-write deposition

techniques in which an electron beam is used for chemical precursor dissociation. Both

techniques are capable of nanometer-scale resolution, but applications have been limited

by poor understanding of the underlying reaction mechanisms and rate parameters. Here,

a hybrid Continuum-Monte Carlo model has been designed and implemented, enabling

modelling of the temporal and spatial evolution of nanostructures fabricated by EBID and

EBIE. This hybrid model is used to perform Arrhenius analysis of the deposition rates of

nanostructures grown by EBID and EBIE, from which both precursor desorption and dif-

fusion rate parameters can be obtained. These parameters are of fundamental interest in

physical chemistry and surface science fields but also are key to optimisation of chemical

vapour deposition (CVD), EBID, EBIE, and related surface processing and nanofabri-

cation techniques. Methods used to determine the activation energy and pre-factors for

desorption and diffusion are described in detail. The limitations of these methods, growth

conditions needed to minimise errors, and applications to the chemistry, physics and nan-

otechnology communities are also discussed.

iii



Acknowledgements

My PhD has been an eventful ride full of ups and downs, but throughout it all a number

of people have helped me persevere and I would like to take the time now to thank them.

My supervisors, A Prof. Michael J. Ford, Prof. Milos Toth, and Dr. Charlene Lobo,

thank you all for the support you gave me across the many years, it has been invaluable.

Whether it be coming up with solutions to software bugs or bouncing around ideas for

papers I could always count on all of you. Also, a special thank you to Mr. Alan Bahm

for introducing me to a number of new programming concepts and just always being an

email away when I needed help.

My uni mates, Mark Lockrey, Chris Elbadawi, Kit Fair, James Bishop, thanks guys for

helping me in the lab and the many problems I had...talking it out really helps; I’ll really

miss the dumpling lunches.

My university, University of Technology, Sydney, thank you to everyone who has taught

me across the many the years and for giving me a place to study in several courses for the

9+ years that I’ve been there.

My family, Mum, Dad, and my brother, thank you for always being there when I needed

to talk about something and giving me advice or even reminding me to call when I haven’t

in a while...I hope I’ve made you proud.

My partner, Juainni, thank you most of all for sticking by me all these years, especially

when it seemed to go on and on. You have no idea how much that means to me.

To the many people that I’ve most likely forgotten, thank you too.

-Jared

iv



Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables xiii

1 Introduction 1

1.1 Project Objectives and Approach . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 4

2.1 Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Desorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Surface Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Electron Induced Dissociation . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Experimental Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The Effect of Various Experimental Parameters . . . . . . . . . . . . 9

2.2.2 Resolution of EBID structures . . . . . . . . . . . . . . . . . . . . . 11

2.3 Modelling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Continuum Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Monte Carlo Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Hybrid Continuum-Monte Carlo Model 22

3.1 Continuum Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Discretization of Time and Space . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Electron Trajectory Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Single Scattering Model . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Parametric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



Contents vi

3.2.3 Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.3.1 Backscattered & Forward Scattered Electrons . . . . . . . 40

3.2.3.2 Secondary Electrons . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Surface Evolution & Electron Beam Projection . . . . . . . . . . . . 46

3.3.2 Surface Diffusion Modelling . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2.1 Free Form Movement . . . . . . . . . . . . . . . . . . . . . 50

3.3.2.2 Area Remapping . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Hybrid Model Simulator Details 55

4.1 User Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Tutorial: How to run the EBIED simulator . . . . . . . . . . . . . . . . . . 58

4.2.1 Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Ubuntu - Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Summary of Parameters within the EBIED Simulator Input File . . . . . . 61

4.3.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Electron Beam Parameters . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.3 Material Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.4 Precursor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.5 Module Toggles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.6 Miscellaneous Parameters . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Summary of Outputs from the EBIED Simulator . . . . . . . . . . . . . . . 69

4.5 Summary of Warning and Error Messages within the EBIED Simulator . . 70

5 Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Arrhenius analysis of deposition rates . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Athermal adsorption flux condition . . . . . . . . . . . . . . . . . . . 81

5.2.2 Reaction-rate limited growth condition . . . . . . . . . . . . . . . . . 82

5.2.3 Negligible diffusion condition . . . . . . . . . . . . . . . . . . . . . . 84

5.2.4 Steady state growth condition . . . . . . . . . . . . . . . . . . . . . . 85

5.3 General implications for the determination of adsorbate properties . . . . . 86

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Roles of Desorption and Diffusion in EBID . . . . . . . . . . . . . . . . . . 90

6.3 Adsorbate Transport Through Diffusion . . . . . . . . . . . . . . . . . . . . 91

6.4 Extraction of Diffusion Energies and Pre-Exponential Factors . . . . . . . . 94

6.5 Pre-requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.1 Condition 1 - Steady State Growth . . . . . . . . . . . . . . . . . . . 99



Contents vii

6.5.2 Condition 2 - Significant adsorbate concentration gradient . . . . . . 99

6.5.3 Condition 3 - Diffusion-dominated replenishment . . . . . . . . . . . 100

6.5.4 Condition 4 - Efficient adsorbate consumption . . . . . . . . . . . . 101

6.6 Limitations of the Arrhenius analysis method . . . . . . . . . . . . . . . . . 103

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion 106

A Diffusion Test Code 107

B Hybrid Continuum-Monte Carlo Simulator Code 112

B.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.2 Variable Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.3 Function Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.4 Simulator Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.5 EBID/EBIE & EBIED Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.6 Electron Flux Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.7 Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.8 Monte Carlo Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.9 Monte Carlo Electron Trajectories . . . . . . . . . . . . . . . . . . . . . . . 162

B.10 Monte Carlo Surface Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

B.11 Read Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.12 Read Previous Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.13 Output Current Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . 195

B.14 Create Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.15 Crank-Nicholson Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.16 Surface Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

B.17 Print to Logfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

C Model Derivations 208

C.1 EBID/EBIE - Uniform Grid Spacing Derivation . . . . . . . . . . . . . . . . 208

C.1.1 Von Neumann Stability . . . . . . . . . . . . . . . . . . . . . . . . . 211

C.2 EBID/EBIE - Non-Uniform Grid Spacing Derivation . . . . . . . . . . . . . 216

C.3 EBIED - Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

C.3.1 Deposit Precursor Gas Concentration . . . . . . . . . . . . . . . . . 219

C.3.2 Etchant Precursor Gas Concentration . . . . . . . . . . . . . . . . . 221

C.3.3 Deposited Molecule Concentration . . . . . . . . . . . . . . . . . . . 223

Bibliography 224



List of Figures

2.1 (Figure Replicated from Hoffmann, et al.[13]) The key concepts of EBIED
technique: adsorption, desorption, surface diffusion, and electron beam in-
duced dissociation of precursor molecules. The particular precursor deter-
mines whether the resultant dissociation product causes deposition or etching. 4

2.2 (Figure Replicated from Li, et al.[16]) Schematic diagram of the potential
energy as a function of the distance from the surface. . . . . . . . . . . . . . 5

2.3 The electron cross section of gaseous H2O at various electron energies [24]. 8

2.4 (Figure Replicated from Schoenaker et al.[50]) (a) Dependence of the etching
depth on the etching time for several beam currents. (b) Etching rate and
yield for different beam currents. The experiment was performed by using
a beam energy of 2 kV. The rate and yield calculations do not take into
account the peripheral etching. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 (Figure Replicated from Choi et al.[62]) (a) Deposition of tungsten pillar
under different biased conditions. (b) Scattering of electron (SE, BSE, and
PE) on the tungsten pillar under different biases. . . . . . . . . . . . . . . . 12

2.6 (Figure Replicated from Lobo, et al. [69]) (a) Growth rate plotted as a
function of radius (r) from the beam axis, calculated using currents of 0.4,
0.5, 0.52, 0.53, 0.55, 0.6, 0.7, 0.8 and 1 nA. Also shown is the total electron
flux profile from figure 1(d). (b) Surface plots of the 0.4, 0.5 and 0.6 nA
deposition rate profiles (linear scale) (Pd = 10−2 Pa). . . . . . . . . . . . . . 15

2.7 (Figure Replicated from Bishop et al.[63]) Steady state adsorbate dissocia-
tion rates calculated using Eqs. (4)-(6) as a function of substrate tempera-
ture, and the corresponding deposition rates measured using tetraethoxysi-
lane precursor (◦). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 (Figure Replicated from Silvis-Cividjian et al.[76]) A typical curve showing
the evolution of the cone diameter. . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 (Figure Replicated from Smith et al.[74]) Normalized comparison of the
MTL pillar shape, RRL pillar shape, and Gaussian beam profiles. These
profiles were taken from the 1 keV MTL and RRL pillars at the same height
(12.5 nm). 100 000 random Gaussian samples of a 3 nm diameter beam
superimposed on the substrate surface to show the beam profile. . . . . . . 19

2.10 (Figure Replicated from Smith et al.[75]) Cross sections through the top 50
nm of the pillars at varying diffusion coefficients. Top row, left to right:
1.0× 10−8, 1.0× 10−9, and 1.0× 10−10 cm2s−1. Bottom row, left to right:
1.0× 10−11, and 0.0 cm2s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

viii



List of Figures ix

3.1 (Figure Replicated from Utke, et al. [4]) AFM image and line scans of FEB
deposits from Cu(hfac)2 precursor. Exposure times are indicated. Indented
apex shapes are due to depletion. Dashed lines represent gaussian fits of
each deposit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 (Figure Adapted from Smith, et al. [74] with a CASINO Monte Carlo sim-
ulation of electron trajectories overlayed.) 2D time-resolved cross-sectional
profiles and deposition events (based on electron type) from the gas dynam-
ics simulations. (a) Initial monolayer (ML) present (run 6). (b) Surface
diffusion (run 7). (c) Surface diffusion + boundary source (run 8). The
normalized sample size is 100 000 electrons. . . . . . . . . . . . . . . . . . . 25

3.3 Representation of three finite difference methods used to solve differential
equations in time (n) and space (x): (A) Crank-Nicholson, implicit method.
(B) Backward Euler, implicit method. (C) Forward Euler, explicit method. 28

3.4 Example of particle diffusion, where a single spike of concentration spreads
over time due to diffusion. Each curve is 10% into the total duration of
the simulation except the first curve, which is the starting condition. This
example has D = 1.0× 108 Å/s, Δx = 1.0 Å, and Δt = 1.0× 10−8 s with a
total simulation duration of 1.0× 10−7 seconds. . . . . . . . . . . . . . . . . 29

3.5 Example of particle diffusion, where a single spike of concentration spreads
over time due to diffusion. Each curve is 10% into the total duration of
the simulation except the first curve, which is the starting condition. This
example has D = 1.0× 108 Å/s, Δx = 1.0 Å, and Δt = 5.0× 10−9 s with a
total simulation duration of 1.0× 10−7 seconds. . . . . . . . . . . . . . . . . 30

3.6 Example of particle diffusion, where a single spike of concentration spreads
over time due to diffusion. Each curve is 10% into the total duration of
the simulation except the first curve, which is the starting condition. This
example has D = 1.0× 108 Å/s, Δx = 1.0 Å, and Δt = 1.0× 10−9 s with a
total simulation duration of 1.0× 10−7 seconds. . . . . . . . . . . . . . . . . 31

3.7 The dimensionless diffusion coefficient, D′, as a function of spatial step,
Δx, and time step, Δt, for a diffusion coefficient of 1.0 × 108 Å/s. The
green region defines the parameter space where the dimensionless diffusion
coefficient is below 0.5 and the red above 0.5. . . . . . . . . . . . . . . . . . 31

3.8 The initial precursor concentration as a function of time, (A) The concen-
tration from two separate simulations where one is EBID and the other
EBIE, (B) The precursor concentration over time from a EBIED simulation. 32

3.9 (Figure Replicated from Lobo, et al. [69]) (a) Growth rate plotted as a
function of radius (r) from the beam axis, calculated using currents of 0.4,
0.5, 0.52, 0.53, 0.55, 0.6, 0.7, 0.8 and 1 nA. Also shown is the total electron
flux profile from figure 1(d). (b) Surface plots of the 0.4, 0.5 and 0.6 nA
deposition rate profiles (linear scale) (Pd = 10−2 Pa). . . . . . . . . . . . . . 33

3.10 Comparison between the continuum component of the hybrid model used
here and the continuum model published previously by Lobo et al. [69]. The
EBID rates were calculated at a distance of ∼ 1.5 Å from of the electron
beam axis as a function of electron beam current. Both models show the
same decrease in growth rate with increasing current, caused by adsorbate
depletion near the beam axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 34



List of Figures x

3.11 (Replicated from David Joy, 1995[88]) The scattering path of an electron
with the corresponding step length and angle components. . . . . . . . . . . 38

3.12 The original Parametric Model, where all secondary electrons generated are
emitted through the closest surface bin. . . . . . . . . . . . . . . . . . . . . 41

3.13 The first modification to the Parametric Model, where all the secondary
electrons generated are distributed evenly over the closest surface bins. . . . 42

3.14 The second modification to the Parametric Model, where all the secondary
electrons generated are distribution evenly over the closest surface bins,
however the number in each bin is modified by its solid angle to the primary
electron trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.15 Comparison between the Monte Carlo component of the hybrid model used
here and the Monte Carlo model CASINO [80]. The dependence of the
backscattered electron coefficient on electron beam energy calculated the
hybrid model is in excellent agreement with that calculated by CASINO. . 44

3.16 Comparison between the secondary electron yield on a silver surface as a
function of electron beam energy taken from literature data and the hybrid
continuum-Monte Carlo model. . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.17 The secondary electron yield on a silver surface as a function of electron
beam tilt. The two distinct trends are consistent with known behaviour of
the depth and size of the electron beam interaction volume with beam tilt. 45

3.18 Two EBID simulations were performed for a maximum duration of 13.7
seconds, each plot is shown at different stages within the entire simulation
beginning at 25% through to 100% of the maximum duration. (A) Grown
without surface evolution the deposit growth direction is upwards over all
space; this is confirmed in (B) where the deposit structures have been nor-
malised. (C) Grown with surface evolution the deposit growth is in the
surface normal direction; again confirmed in (D). . . . . . . . . . . . . . . . 47

3.19 The electron flux profile (primary electrons only) from an EBID simulation
with electron beam projection switched on/off. The simulation maximum
duration was 13.7 seconds, and each plot is shown at different stages within
the entire simulation beginning at 25% through to 100% of the maximum
duration. We observe as the simulation progress the electron flux profile
changes in shape to reflect the evolving surface, which would be similar to
that shown in Figure 3.18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.20 The translation between the physical surface A) and the computational
surface B). The physical surface is two dimensional in r & z and the com-
putational surface is one dimensional in r, where both surfaces are radially
symmetric. The path length between the points along the physical surface
is, s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.21 (Figure adapted from Sobey [94]) Non-Uniform Grid Spacing Schematic. . . 51

3.22 Realistic Non-Uniform Grid Spacing Example, Schematic. . . . . . . . . . . 51

3.23 The first two steps of the area remapping process required to ensure correct
diffusion behaviour for an evolving surface. (1) calculate the initial surface
area between each point along the flat substrate; (2) calculate the surface
area between each point along the now evolving nano-structure surface. An
example of the calculated area between two points is highlighted in grey. . . 52



List of Figures xi

3.24 A conical frustum is defined as a cone with the tip removed, where R1 is
the base radii, R2, is the top radii, h is the height and s is the slant height[95]. 53

3.25 A comparison of the time-evolution of the actual volume of a deposit simu-
lated by the hybrid model, and the volume expected from the total number
of molecules dissociated by electrons. The two volumes are in excellent
agreement, with only minor differences of <1% observed in the residuals. . 54

4.1 EBIED Simulator Flowchart describing the general flow and order of modules. 56

4.2 Example input text file for the EBIED Simulator. . . . . . . . . . . . . . . . 57

4.3 Example output text file for the EBIED Simulator. . . . . . . . . . . . . . . 59

5.1 A series of deposits shown as a function of time and temperature, with an
insert depicting the typical progression of a deposit’s FWHM with time.
The point where the FWHM no longer increases with time is considered
steady state growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Plots of ln(∂h/∂t) versus 1/T simulated using electron beam currents in
the range of 0.01 pA – 1 nA in the absence of diffusion. Also shown are
the corresponding straight line fits used to obtain the activation energies
plotted in Figure 5.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Precursor coverage (Θ) plotted as a function of pressure (P ) and substrate
temperature (T ) in the limit of zero electron flux (f → 0). The purple region
indicates the range of P and T over which the effect of Θ on Arrhenius
analysis of EBID rates is negligible. . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Activation energy obtained by Arrhenius analysis of the EBID rate (∂h/∂t)
simulated at a number of temperature windows between 250 K and 450 K.
The adsorption energy (Ea) of 666 meV is shown as a dashed line. The top
axis shows the precursor coverage (Θ) corresponding to each temperature
shown on the bottom axis. The activation energy diverges from Ea as
Θ → 1. [Each datapoint was calculated from EBID rates simulated over a
temperature window ΔT in the range of 20 to 50 K.] . . . . . . . . . . . . . 83

5.5 Prefactors corresponding to the activation energies shown in Figure 5.4.
The desorption attempt frequency (k0) of 10

13 Hz is shown as a dashed
line. The top axis shows the precursor coverage (Θ) corresponding to each
temperature shown on the bottom axis. The prefactor diverges from k0 as
Θ→ 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Dependence of activation energy on beam current simulated in the absence
of diffusion (Da = 0) and in the presence of diffusion (Da = D0e

−Ed/(kBT ),
where Ed is the diffusion energy). Also shown is a plot of adsorbate deple-
tion (Θr→0/Θr→∞) simulated at the beam axis (r → 0) in the absence of
diffusion. The activation energy diverges from the adsorption energy (Ea)
of 666 meV as the extent of depletion approaches 1. The precursor pressure
was 0.01 Pa and the temperature was varied from 400 to 450 K. . . . . . . 85



List of Figures xii

6.1 Effects of diffusion on the shapes of deposits grown by EBID. (a) A series
of deposits simulated as a function of temperature. At low temperatures,
the deposit geometry is unaffected by diffusion, but at elevated tempera-
tures each deposit contains a characteristic ‘ring’ generated by adsorbates
supplied through surface diffusion. (b) Steady state vertical growth rates
(R) calculated as a function of distance (r) from the electron beam axis
at a number of temperatures (Tn). All simulations were performed using a
Gaussian electron beam under conditions of high adsorbate depletion near
the beam axis. The normalized electron flux profile fN (r) is shown as a
dashed curve in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 (a) Steady state plots of the driving force of diffusion (c) versus distance
(r) from the electron beam axis at a number of temperatures (Tn). Each
c(r) profile contains two distinct regions corresponding to the source and
sink of adsorbates that diffuse along the surface and are consumed in EBID.
The sink and source are separated by ro, shown as a dashed line at 125 nm.
(b) Corresponding adsorbate coverage profiles (Θ(r)), and the normalized
electron flux profile ((fN (r), dashed grey curve). . . . . . . . . . . . . . . . 93

6.3 (a) The fluence (C) found by integrating c(r) over the sink (0 ≤ r ≤ ro)
shown in Figure 6.2(a), plotted for a number of temperatures Tn. (b,c)
Corresponding plots of RV D and RV D/C versus Tn. The Arrhenius analysis
method yields good approximations to ED and Do at temperatures between
∼ 220 K and ∼ 275 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Arrhenius plots used to generate the data in Figure 6.5(a) at temperatures
(Tn) of 150, 200, 250 and 300 K. . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 (a) Activation energy (red) and pre-exponential factor (blue) obtained by
Arrhenius analysis of RV D/C at a number of temperatures Tn. The quanti-
ties are approximately equal to ED and Do (shown as dashed lines) over the
temperature window 220 � Tn � 275 K. (b) Diffusion coefficient (D) versus
temperature (dashed black curve), and diffusion coefficients (red diamonds)
calculated using the activation energies and pre-exponential factors in (a). . 97

6.6 The fluence C plotted as a function of electron beam current. . . . . . . . . 100

6.7 Maximum flux of diffusing adsorbates (max[D∇2Na(r)]) plotted at a num-
ber of temperatures Tn. The adsorption flux (sF ) is shown as a dashed
horizontal line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 Activation energy (red) and pre-exponential factor (blue) obtained by Ar-
rhenius analysis of RV D/C at a number of temperatures Tn. The volume
RV D(Tn) was estimated by subtracting (a) R(r, Tmin = 120 K) and (a)
R(r, Tmin = 150 K) from each R(r, Tn) profile, and integrating the resulting
curves over r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



List of Tables

3.1 Realistic Non-Uniform Grid Spacing Example. The fifth point was assumed
to be repeated in order to calculate the required data. . . . . . . . . . . . . 51

xiii





Chapter 1

Introduction

Electron Beam Induced Etching and Deposition (EBIED) enables high resolution, direct

write etching and deposition though chemical reactions driven by electron-dissociated pre-

cursor molecules. The EBIED technique is becoming an increasingly popular direct write

method for the deposition or removal of material. The material specificity and high reso-

lution of the EBIED technique is owed to the multitude of combinations available between

substrate and gaseous precursor molecules with the electron beam.

1.1 Project Objectives and Approach

The main objective of this research is to develop a new simulation method, extending

those in the literature to provide greater understanding of the EBIED process and further

insights into experimental observations. The simulation method developed in this research

builds upon two of the most common modelling methods in the literature, Continuum[1–5]

and Monte Carlo[6–9] models, discussed in greater detail in Chapter 2, where by combining

these two models their respective pitfalls are overcome. This combination of modelling

methods is coined the ’hybrid model’. It will later be shown to provide a fast and accurate

method for the simulation of EBIED structures.

To provide greater understanding of the EBIED process and further insights into exper-

imental observations the hybrid model is applied to the determination of the precursor

1



Chapter 1. Introduction 2

parameters for the two processes, desorption and diffusion. The methods and in-depth

investigation discussed in this thesis advance the EBIED field by identifying the dominant

conditions needed to probe these precursor parameters and also further our understanding

of their role.

1.2 Thesis Outline

In Chapter 2, the background of the EBIED technique is discussed with detailed informa-

tion of the key processes, and highlights some of the current questions in the literature.

Also, discussed is the background to both Continuum and Monte Carlo models highlighting

respective advantages and disadvantages.

In Chapter 3, details of the current hybrid model are discussed including the various

additions and its concepts, the discussion identifies the need for this hybrid approach.

Also included is verification of each component against expected results or if available

those from literature.

In Chapter 4, details of how the EBIED simulator works are described, with information

on its operation, data flow, and explanations of its inputs, and outputs.

In Chapter 5, a method to calculate the desorption energy and attempt frequency of a

precursor molecule is detailed, particularly highlighting a set of conditions needed to ensure

desorption is the dominant process under investigation.

In Chapter 6, similar to Chapter 5 a method to calculate the diffusion energy and attempt

frequency of a precursor molecule is detailed, again highlighting a set of conditions needed

to ensure diffusion is the dominant process under investigation. Also detailed is how the

precursor concentration gradient effects diffusion and this is very important in the analysis

of diffusion.

In Chapter 7, the project is concluded with final remarks.



Chapter 1. Introduction 3

1.3 Published Work

The research presented in Chapter 5 of the same title has been published in the Journal

of Physical Chemistry C on the 18/06/2015.

• J Cullen, A Bahm, C J Lobo, M J Ford, and M Toth. Localized Probing of Gas

Molecule Adsorption Energies and Desorption Attempt Frequencies. J. Phys. Chem.

C, 119(28):15948–15953, 2015

The research presented in Chapter 6 of the same title has been accepted by ACS Applied

Materials & Interfaces on the 4/09/2015.

• Jared Cullen, Charlene J. Lobo, Michael J. Ford, and Milos Toth. Electron-Beam-

Induced Deposition as a Technique for Analysis of Precursor Molecule Diffusion

Barriers and Prefactors. ACS Appl. Mater. Interfaces, September 2015

The Monte Carlo module in the hybrid model contributed to the work by Steven Randolph,

et al. published in Applied Physics Letters on the 21/11/2011.

• Steven Randolph, Milos Toth, Jared Cullen, Clive Chandler, and Charlene Lobo.

Kinetics of Gas Mediated Electron Beam Induced Etching. Appl. Phys. Lett., 99

(21):213103, 2011



Chapter 2

Literature Review

Electron Beam Induced Etching and Deposition enables high resolution, direct write

deposition/etching though chemical reactions driven by electron- dissociated precursor

molecules. This technique can be broken up into four key processes: adsorption, des-

orption, surface diffusion and electron induced dissociation of precursor molecules, and

these are depicted in Figure 2.1. These four processes lead to a wide variety of outcomes

when the combination of electron-gas and electron-solid interactions change as the de-

posit evolves over time. The physical processes, experimental applications, and common

modelling methods of EBIED are discussed in the subsequent sections.

Figure 2.1: (Figure Replicated from Hoffmann, et al.[13]) The key concepts of EBIED
technique: adsorption, desorption, surface diffusion, and electron beam induced dissoci-
ation of precursor molecules. The particular precursor determines whether the resultant

dissociation product causes deposition or etching.

4



Chapter 2. Literature Review 5

Figure 2.2: (Figure Replicated from Li, et al.[16]) Schematic diagram of the potential
energy as a function of the distance from the surface.

2.1 Physical Processes

2.1.1 Adsorption

When a gaseous precursor molecule impacts the surface it will be either be reflected and

returned to the gas phase or trapped in a physisorption well[14] (van der Waals forces)

depending on its kinetic energy. The adsorbed molecule, is free to diffuse on the surface

and after a certain amount of time and given enough thermal energy it can escape this

physisorption well and return to the gas phase. Nevertheless, if there is sufficient ther-

mal energy the molecule can thermally decompose, resulting in the chemisorption of the

molecule onto the surface that has a relatively deep energy well. Chemisorption[14] is

typically an undesirable process as deposition/etching occurs wherever the molecule sticks

to the surface and is not localised to the electron beam interaction area. In one case,

however, chemisorption has been shown to increase growth rates and deposit purity with-

out the de-localised growth[15]. The relative depth of a physisorption and chemisorption

energy well is shown in Figure 2.2, where the large energy difference is demonstrated.

As molecules adsorb to the surface the maximum concentration at different partial pres-

sures is the result of the adsorption isotherm. Two common isotherms are Langmuir[17]



Chapter 2. Literature Review 6

and Brunauer-Emmett-Teller[18] (BET), each one describes the rate of increase and max-

imum concentration with gas pressure. The Langmuir isotherm assumes surface coverage

of adsorbed precursors is limited to one mono-layer on a homogeneous surface. The BET

isotherm allows for the surface coverage to increase beyond a single mono-layer by forming

a number of stacked molecular layers, where each subsequent layer is able to stick to the

layer beneath it, thus creating a multi-layered system.

Each isotherm is relevant in different experimental systems, however, the work contained

in this thesis assumes the Langmuir isotherm. Multi-layer adsorption is only expected if

the substrate surface is much cooler than the precursor gas[19–21]. The functional form

defining the Langmuir isotherm is shown in Equation 2.1, where s is the sticking coefficient,

F is the precursor flux, and Θ is the surface coverage.

sF [1−Θ] (2.1)

The precursor flux is defined as,

F =
P√

2πmgkBTg

, (2.2)

where P is gas pressure, mg is the gas molecule mass, kB is Boltzmann’s constant and Tg

is gas temperature.

2.1.2 Desorption

When a molecule is adsorbed to the surface given enough time and thermal energy, the

molecule can escape the physisorption energy well and return to the gas phase. This process

is quantified in Equation 2.3[22], where τ is the mean residence time on the surface with

Edes is the adsorption energy, τo is the attempt frequency for desorption, kB is Boltzmann

constant, and T is the temperature.

τ = τoe
−Edes/kBT (2.3)



Chapter 2. Literature Review 7

2.1.3 Surface Diffusion

Surface diffusion is where an adsorbed molecule has sufficient energy to jump into an

adjacent unoccupied surface site, but this energy must be less than the desorption energy

barrier, otherwise desorption would occur. The diffusion equation (Equation 2.4) describes

the distance per unit time the molecule can diffuse along the surface, with the Laplacian

term defining the coordinate system.

∂Na

∂t
= D∇2Na (2.4)

The precursor specific diffusion term, D, is similar to the desorption term, however, the

scaling with temperature is the inverse, see Equation 2.5[23] where Ediff is the diffusion

energy barrier, and Do is the diffusion attempt frequency.

D = Doe
−Ediff/kBT (2.5)

2.1.4 Electron Induced Dissociation

When an electron interacts with a precursor molecule, whether it be in the gas phase or

adsorbed to the surface, it can break a bond typically resulting in the formation of both

volatile and non-volatile products. In EBID these non-volatile products form the deposit

structure and the volatile products are removed via gas extraction systems. In EBIE,

however, the products formed can react with the surface, resulting in volatile products

that are then removed from the system.

The probability of an electron interacting with a precursor molecule is dependent on the

electron cross section, and it is a function of the electron energy. Due to the large variation

of electron energies between primary, backscattered, secondary electrons and the number

of possible reaction pathways the electron cross section is expressed as a net value. This

large variation is demonstrated in Figure 2.3 where the electron cross section of water over

a number of reaction pathways and energies is shown. In Figure 2.3 a number of reaction

products are reported each with its own energy dependent cross section grouped into

either dissociative attachment or dissociative ionisation; many other reaction pathways do



Chapter 2. Literature Review 8

Figure 2.3: The electron cross section of gaseous H2O at various electron energies [24].

exist[25] but these are not discussed here. Dissociative attachment is the process where a

low energy electron interacts with a neutral molecule combing to form an excited anion,

and subsequently dissociates into neutral and anionic fragments[26], AB + e− → AB− →
A− + B. Dissociative ionisation occurs when a high energy electron impacts an electron

of a neutral molecule knocking it out of its orbital state. This dissociates the molecule

into neutral and cationic fragments[27], AB+ e− → AB+ → A+B++2e−. At this point

whether each reaction product contributes to deposition; etching; or is non-reactive and

extracted from the system is dependent on the molecule formed.

2.2 Experimental Applications

The experimental origin of EBID can be traced back to the early electron microscopy

literature on carbon contamination[28–30] where hydrocarbons adsorbed to the sample

surface would decompose under the incoming electron flux. Methods were devised to

combat this carbon contamination, but it can be produced intentionally by focusing the

electron beam on a single spot for an extended period of time. From an unwanted side



Chapter 2. Literature Review 9

effect, EBID has evolved during the past 30 years into a powerful direct write technique

with one of the first applications by Broers et al. in 1976[31].

In the more recent past, EBID has been used to grow a variety of nanostructures includ-

ing, nanodots and nanowires[32–37], structure patterning[38], dielectric nanoparticles[39],

electrical contacts[40], and plasmonic nanostructures[41]. The EBID technique has been

advanced by particular research groups, who have focused on the improvement of structure

resolution, and also identifying the links between the various experimental parameters.

Extensive literature reviews by Randolph et al.[42], van Dorp et al.[43], and Utke et

al.[19] are worthwhile research documents detailing a number of topics which include: the

physical processes that occur in EBID/EBIE, effects of various experimental conditions

and applications, and also a discussion on the precursor molecules used in EBID/EBIE.

Utke et al.[44] have also written and edited work from a number of researchers into a

comprehensive book on EBID/EBIE that begins with the history of the technique through

to its applications.

2.2.1 The Effect of Various Experimental Parameters

In an experimental system there are many parameters which can be varied, each effecting

the size, shape, and growth rate of a deposit/etch pit. These parameters include, electron

accelerating voltage (electron energy), electron beam current, temperature, precursor gas

pressure, dwell time (growth time), and substrate temperature. The number of combina-

tions between all these parameters makes any prediction quite difficult. Certain trends do

appear when one parameter is controlled in isolation. Identification of these trends can be

found in EBIED literature[45–52].

Rack et al.[45] in 2003 used EBIE to deduce the link between electron accelerating voltage

and the etch rate and the geometry of lattice damage, where the researchers found a

linear trend between decreasing etch rate and increasing accelerating voltage. Conversely,

Wang et al.[46] showed the opposite trend where increasing accelerating voltage lead to

an increase in etch rate. From these two studies, both within the same year, it is not clear

what the relationship is, but from the author’s research, one would expect the etch rate



Chapter 2. Literature Review 10

to decrease as the electron accelerating voltage increases due to the deeper electron beam

interaction volume reducing the number of secondary electrons at the surface.

Later in 2005, Randolph et al.[47] (the same research group as Rack et al.[45]) investigated

several factors that effect the etch rate of Silicon Dioxide with Xenon Difluoride. The

researchers found that etch rate decreases with increasing electron accelerating voltage,

decreasing electron beam current, and with increasing dwell times. In this work, Randolph

et al. discussed the cause of the decreasing etch rate with increasing beam energy to be

electron stimulated desorption (ESD). ESD is the process by which adsorbed species are

removed from a surface by an electron-induced excitation process[48].

Lassiter et al.[2] also discuss the etch rate of Silicon Dioxide with Xenon Difluoride in

relation to the precursor surface diffusion rate, etch product residence time, and etch

product dissociation probability. The researchers found that the magnitude of these three

parameters does effect the etch rate but in particular to the primary etch region; at the

centre of the electron beam flux profile or at its fringe.

Roediger et al.[49] and Schoenaker et al.[50] in 2011 showed the same behaviour with

the etch rate decreasing with increasing electron accelerating voltage. The researchers

attributed the decrease to the decreasing number of secondary electrons contributing to

the etching process. Secondary electron yield is known to depend on the electron beam

accelerating voltage[53] and peaks at lower energies[53, 54] confirming their hypothesis.

In perhaps a more obvious relationship, the growth rate of nano structures has been

found to increase with increasing electron beam current by several authors[47, 49, 50].

The experimental parameters, precursor gas pressure and dwell time (growth time), show

an increasing relationship with growth (etch) rate[49, 50, 55]. These three experimental

parameters control the supply of both precursor molecules and electrons, as discussed

previously, which make up the key processes for growth in EBID/EBIE. From these key

processes researchers can conclude that should either process become deficient in its supply

it would be the rate limiting step in nano structure growth. This rate limited growth has

been presented by Schoenaker et al.[50] (replicated in Figure 2.4) where: as the electron

current increased, the etch rate has begun to saturate, showing mass transport limited (by

the arrival of precursor molecules) growth. Researchers can relate this to many standard



Chapter 2. Literature Review 11

Figure 2.4: (Figure Replicated from Schoenaker et al.[50]) (a) Dependence of the etching
depth on the etching time for several beam currents. (b) Etching rate and yield for
different beam currents. The experiment was performed by using a beam energy of 2 kV.

The rate and yield calculations do not take into account the peripheral etching.

chemical reactions where the reaction rate between two species can be limited by either

component. In this case the number of precursor molecules or electrons.

Recently, the research by Martin et al.[52] has demonstrated that by cooling the substrate

surface the etch rate of a number of precursor/substrate systems increases dramatically,

where negligible at room temperature. The increase in etch rate was attributed to the

increased residence time of the precursor molecules and also the greater number of avail-

able surface sites due to reduced surface diffusion of other molecules. The importance of

available surface sites and their effect on etch rates has also been discussed by Martin et

al.[51]. The researchers found the electron beam damage (or restructuring) which occurs

during EBIE increases the number of active sites as the etch reaction takes place thereby

increasing the etch rate.

2.2.2 Resolution of EBID structures

The resolution of EBID structures has consistently been the topic of many literature

articles that commonly report lateral widths below 100 nm[56–59] and in one case van Dorp

et al.[33] reported an averaged full width at half maximum of 1.0 nm. The key parameters

and processes that affect structure resolution are: the rate of precursor arrival[60]; the

current and acceleration voltage of the incident electrons[61]; and the influence of secondary

electrons[62].



Chapter 2. Literature Review 12

Figure 2.5: (Figure Replicated from Choi et al.[62]) (a) Deposition of tungsten pillar
under different biased conditions. (b) Scattering of electron (SE, BSE, and PE) on the

tungsten pillar under different biases.

Choi et al.[60] showed the growth of SiOx from TEOS and Tungsten from WF6 across a

range of different precursor pressures at a fixed electron beam current. The researchers

found an increasing height growth rate with pressure, and conversely, a decreasing lateral

growth rate with pressure (thereby improving resolution). This result is consistent with

the rate limiting behaviour discussed earlier; at higher gas pressures the growth regime

becomes reaction rate limited (electron limited) resulting in the majority of growth to

occur under the primary electron beam area.

Later in 2007, Choi et al.[62] investigated the role of secondary electrons during EBID

growth and its effect on resolution. As the deposit structure grows the number of secondary

electrons exiting through the side walls increases to a maximum value. It was proposed

by Choi et al. that these secondary electrons were the primary cause of lateral growth[62].

To study this effect Choi et al. used substrate biasing to deflect or attract secondary

electrons to/away from the deposit structure during growth, see Figure 2.5. Results showed

an increase in lateral width with positive bias (attraction of SEs) and no change with

negative bias (deflection of SEs); this result is expected but did not improve structure

resolution. The role of secondary electrons continues to be studied, but primarily by

computer simulation due to the extra control provided, see section 2.3.



Chapter 2. Literature Review 13

2.3 Modelling Methods

EBIED computer simulations are used as a tool to understand and characterise processes

and observations recorded in experimental systems where absolute control over conditions

are necessary. The simulation methods used in the literature to date, can be split into

two techniques, Continuum models[1–4] and Monte Carlo models[6–9]. Utke et al.[19] in

2008 wrote a detailed literature review of Continuum and Monte Carlo modelling methods

including a review of different precursor molecules, methods to control and characterise

nano-structures, and applications of EBIED. A more recent review by Toth et al.[5] has

been published which reviews in great detail Continuum modelling methods for EBIED

and Monte Carlo methods for simulation of precursor gas flux.

2.3.1 Continuum Models

Continuum models [1–4], solve differential equations that describe the rates of change of

adsorbate concentrations on the substrate surface as a function of time and space. The first

Continuum model (see Equation 2.6) was published by Robert W Christy in 1960[1] where

he described the rate of deposition of thin films grown via the electron beam irradiation of

silicone oil vapour as a function of substrate temperature, electron beam current density,

and oil vapour pressure.
dN

dt
= F − N

τ
− σfN (2.6)

In Equation 2.6, N is the number of adsorbed molecules on the surface, F is arrival rate of

molecules from the gas phase, τ is mean residence (desorption) time of adsorbed molecules,

σ is cross section for electron-molecule interactions, and f is electron flux.

Christy’s model has been expanded in recent years by a number of different authors to

include such physical processes as multiple precursors for deposition and etching within

the same system[3], surface diffusion of adsorbed species[4], precursor flow rate into high

aspect ratio etch pits[12], and activated chemisorption of adsorbates[63]. Many other

physical processes are discussed in the review by Toth et al[5]. The most common form of

the EBID Continuum model is shown in Equation 2.7, where each key process is grouped



Chapter 2. Literature Review 14

and ordered as, adsorption, desorption, electron induced dissociation, and diffusion.

∂Na

∂t
= sF [1−Θ]− Na

τ
− σfNa +D∇2Na (2.7)

This Continuum model has been used by Utke et al.[4] to demonstrate how the various

input parameters of EBID, that affect the lateral width of structures, can be simplified

to a particular growth regime: reaction-rate limited or mass-transport limited. Reaction-

rate limited growth (RRL), mentioned earlier, occurs when the EBID reaction is electron

limited and mass-transport limited growth (MTL) occurs when the reaction is precursor

limited. The relationship between lateral width and the particular growth regime is an

excellent way to combine several experimental parameters together. A more in-depth

study of each growth regime was completed by Lassiter et al.[2] for structures grown via

EBIE with an expansion to include the desorption time of the electron-precursor reaction

product. Fowlkes et al.[64] conversely used the two growth regimes RRL & MTL to isolate

specific precursor parameters and through simulation determine their value.

Methods to determine precursor parameters has been the focus of many literature articles[1,

4, 15, 20, 52, 64–67], for example, precursor adsorption energy, diffusion coefficient, and

electron dissociation cross section. The analysis undertaken by the research groups fol-

lowed the same general method of isolating each parameter against various physical quan-

tities such as temperature[15, 52, 67], and electron beam current[64, 67]. The research by

Fowlkes et al.[64] is particularly interesting as their results showed under particular condi-

tions the determined surface diffusion coefficients were substrate independent. This result

is uncharacteristic of conventional thinking (of the author) where the diffusion coefficient

is expected to be precursor-substrate dependent.

In a series of articles by Toth et al.[3, 68] and Lobo et al.[69], a Continuum model that

included two precursors was proposed where one caused deposition and the other etching

of material. The researchers found that the efficiency at which each precursor molecule

decomposed relative to the number of incoming electrons lead to either EBID or EBIE

becoming dominant. This switching behaviour between deposition and etching is shown in

Figure 2.6 replicated from Lobo et al.[69] where as the electron flux increases the transition

from deposition to etching at the electron beam axis is observed. The researchers showed



Chapter 2. Literature Review 15

Figure 2.6: (Figure Replicated from Lobo, et al. [69]) (a) Growth rate plotted as a
function of radius (r) from the beam axis, calculated using currents of 0.4, 0.5, 0.52,
0.53, 0.55, 0.6, 0.7, 0.8 and 1 nA. Also shown is the total electron flux profile from figure
1(d). (b) Surface plots of the 0.4, 0.5 and 0.6 nA deposition rate profiles (linear scale)

(Pd = 10−2 Pa).

in 2009[68] that this simultaneous deposition and etching can be used to reduce carbon

contamination.

Typically the growth rates of EBID deposits decrease with increasing temperature due

to desorption. Bishop et al.[63] however demonstrated that at elevated temperatures

chemisorption can occur resulting in an increased growth rate. The researchers referred

to this process as thermally activated chemisorption. To link this process with their

experimental results the researchers extended the standard Continuum model to include

the direct chemisorption of precursor molecule from the gas phase and the transition of

adsorbed molecules between physisorbed and chemisorbed states. The accuracy of this

extended model is demonstrated in Figure 2.7, which is replicated from Bishop et al.’s[63]

work. The work by Martin et al.[52] is another case where the researchers have extended

the standard Continuum model to include other mechanisms. In this case the researchers

included terms to account for the multiple chemical pathways and subsequent reaction

products for the etching of Silicon using Nitrogen Fluoride.

VanDorp et al.[70] demonstrated the deposition of nano structures using W(CO)6. The

researchers found the deposition rate was much lower than expected and attributed it to



Chapter 2. Literature Review 16

Figure 2.7: (Figure Replicated from Bishop et al.[63]) Steady state adsorbate dissocia-
tion rates calculated using Eqs. (4)-(6) as a function of substrate temperature, and the

corresponding deposition rates measured using tetraethoxysilane precursor (◦).

electron stimulated desorption. The researchers found this conclusion to be consistent

with previous literature[71].

These Continuum models can be used for processes of varying complexity as each model

itself is only limited by the mechanisms included. This is demonstrated in many literature

articles where the researchers have extended the standard Continuum models to include

other physical processes explaining their experimental observations[12, 51, 63, 72, 73].

Nevertheless, a key limitation of the Continuum method is that it cannot incorporate the

effects of the evolving sample surface on precursor adsorbates and the electron flux profile

responsible for EBIED.

A lack of surface evolution has a significant effect in both the MTL and RRL regimes. In

the MTL regime the growth of the surface structure is limited by the arrival of precursor

adsorbates, this typically causes structure broadening to occur due to surface diffusion.

The electron flux profile is expected to vary greatly with increasing width. The degree of

broadening can significantly affect any conclusions made about the key parameter causing

lateral growth. In the RRL regime the complex interaction between the structure and the

electron beam becomes important, and how the structure grows is now a product of this

interaction. Again how the electron flux profile changes with the growing surface becomes

very important.



Chapter 2. Literature Review 17

2.3.2 Monte Carlo Models

Monte Carlo models [6–9], involve the explicit simulation of electron interactions with

the substrate and time-evolution of the surface. The use of Monte Carlo models in the

literature has only featured in the past decade with many authors using it to complement

previous or current experimental results. The Monte Carlo models featured in the litera-

ture articles discussed below can be grouped into those with mass transport of precursor

molecules[6, 74, 75] or those without[7, 9, 76]. In a model without mass transport the

growth rate of a deposit (Equation 2.8) is only defined in the reaction-rate limited regime.

R(x) =

∫ E0

0
f(x,E)σdiss(E)NdE[76] (2.8)

where R(x) is the integral of the number of adsorbed gas molecules (N), the electron flux

profile and energy (f(x,E)), and the dissociation cross-section of the precursor molecule

(σdiss(E)).

In comparison to a model with mass transport which includes equations to define arrival

of precursor molecules from the gas phase (Equation 2.9) and surface diffusion (Equation

2.10).
Γgas

NA
=

P√
2πMRT

[75] (2.9)

where
Γgas

NA
is the precursor flux, NA is Avogadros number, M is the molecular weight of

the precursor, R is the universal gas constant, T is the temperature of the gas, and P is

the gas pressure.

jumps =

√
4Dsurfτe

Δx2
[75] (2.10)

where jumps is the number of jumps the precursor makes to nearby surface sites per

electron, Dsurf is the surface diffusion coefficient, τe is the elapsed time between electrons,

and Δx is the voxel separation distance.

Silvis-Cividjian et al.[76] in 2002 used their Monte Carlo model to study why the lateral

width of EBID structures is larger than the electron beam diameter. They found the in-

crease in lateral width was due to the high number of secondary electrons leaving through

the side walls, which is in agreement with literature discussed above[62]. Perhaps a more



Chapter 2. Literature Review 18

Figure 2.8: (Figure Replicated from Silvis-Cividjian et al.[76]) A typical curve showing
the evolution of the cone diameter.

unique result from their article was demonstrating the three growth phases every EBID

deposit goes through, see Figure 2.8. Later in 2005, Silvis-Cividjian et al.[9] reviewed

their previously published articles to provide insights into the most probable deposit lat-

eral width based on the electron beam diameter, the gasous precursor, and the substrate

material.

Conversely, in the same year Fowlkes et al.[7] made the statement that EBID growth is not

dominated by secondary electrons alone but also by primary electrons, provided growth is

in RRL regime where vertical growth is already the primary direction.

Smith et al.[6, 74, 75] developed a comprehensive EBIDMonte Carlo model, which included

the spatial and temporal coordinates of deposited atoms in addition to the type of electron

that induced its deposition. Their first article in 2007 investigated the effect of electron

beam energy, mass transport versus reaction-rate-limited growth, and the effects of surface

diffusion on the EBID process. One of the key results was in their MTL vs RRL growth

study which for the first time demonstrated just how different the lateral width is between

the two regimes, see Figure 2.9, and the contribution to growth under the MTL regime

from secondary electrons is indeed much greater at 34% compared to 22% under RRL.

These results in conjunction with those in a follow up article[6] allowed Smith et al. to

come to the conclusion that vertical growth is due to primary and SE(I) electrons, lateral



Chapter 2. Literature Review 19

Figure 2.9: (Figure Replicated from Smith et al.[74]) Normalized comparison of the
MTL pillar shape, RRL pillar shape, and Gaussian beam profiles. These profiles were
taken from the 1 keV MTL and RRL pillars at the same height (12.5 nm). 100 000 random
Gaussian samples of a 3 nm diameter beam superimposed on the substrate surface to show

the beam profile.

growth is due to SE(II) and forward scattered electrons, the width of the nano-pillar is

correlated with the size of the electron beam interaction volume and the particular growth

regime (MTL or RRL).

Their final paper[75] in the series demonstrated how the particular growth regime can

switch from RRL to MTL and visa versa through the magnitude of the precursor diffusion

coefficient. This transition was shown in Figure 2.10 where the diffusion coefficient was

slowly decreased and eventually set to zero. Further results showed the formation of ring-

like structures that occur when the diffusion coefficient is much smaller than the electron

beam current; these results correlate with those discussed earlier.

The research by Mitsuishi et al.[77] and Liu et al.[8, 78] features a dynamic Monte Carlo

model where they specifically simulate the scattering of electrons through the substrate/de-

posit material and when an electron crosses the interface to vacuum deposition occurs

based on the dissociation cross section. The work presented focused on the effect of elec-

tron beam energy and later probe size, substrate thickness, and substrate/deposit material



Chapter 2. Literature Review 20

Figure 2.10: (Figure Replicated from Smith et al.[75]) Cross sections through the top
50 nm of the pillars at varying diffusion coefficients. Top row, left to right: 1.0 × 10−8,
1.0 × 10−9, and 1.0 × 10−10 cm2s−1. Bottom row, left to right: 1.0 × 10−11, and 0.0

cm2s−1.

have on the growth of EBID deposits. Their relatively simple model (in comparison to the

one above) was able to directly show the conditions required to form very high resolution

EBID deposits.

The computation time needed to simulate the adsorbed molecule transport over the space

and time scales typically encountered in experiments is expected to be quite large. This

is the limiting factor with using Monte Carlo models for EBID as it is not possible to

extend Monte-Carlo methods to deposit sizes typically encountered in experiments. This

limitation is prominent when the electron beam interaction volume is greater than the

simulation area, and the contribution of precursor adsorbates that could have interacted

with secondary electrons no longer occurs.



Chapter 2. Literature Review 21

2.4 Summary

EBIED enables high resolution, direct write deposition though chemical reactions driven

by electron-dissociated precursor molecules. The EBIED technique originated as an un-

wanted side effect of electron beam imaging which has grown to become widely used and

researched. To date the simulation of EBIED is achieved with two key modelling methods,

Continuum and Monte Carlo models.

Continuum models solve differential equations that describe the rates of change of adsor-

bate concentrations on the substrate surface as a function of time and space. A key limi-

tation however is that they ignore the effects of the evolving sample surface on precursor

adsorbates and the electron flux profile responsible for EBID. Monte Carlo models involve

the explicit simulation of electron interactions with the substrate and time-evolution of

the surface, but has to date been limited by the computation times needed to simulate the

length and time scales typically encountered in experiments.

It is through the combination of these two modelling techniques in our hybrid model that

their respective downfalls are overcome, enabling us to investigate structures that occur

only at longer times, whilst maintaining the greater experimental accuracy provided by

the electron-substrate interactions.

From the above literature we can see that there is a large number of EBIED specific

parameters available to the user and each has a similarly diverse effect on the nano struc-

ture formed. A number of authors have characterised the relationships between these

parameters, however those who have investigated methods to determine the parameter

values themselves is small in number. It is here where the work contained within this

thesis adds to the literature with methods of how to determine the activation barrier and

pre-expontiental factors of desorption and diffusion.



Chapter 3

Hybrid Continuum-Monte Carlo

Model

The Hybrid Continuum-Monte Carlo Model calculates precursor concentrations and de-

position (or etch) rates using a continuum rate equation approach, and the time-evolution

of the electron flux profile by Monte Carlo simulations of electron-solid interactions. It-

erative application of these two methods enables efficient simulation of changes in surface

geometry with time, as well as the effects of surface evolution on the electron flux and

adsorbate concentration profiles.

The Hybrid Continuum-Monte Carlo Model development capitalised on the strong points

of each individual method in order to overcome respective pitfalls. These pitfalls were dis-

cussed previously but are highlighted with examples from the literature in the subsequent

paragraphs. A hybrid model between Continuum and Monte Carlo methods has been

previously reported by Rykaczewski et al.[79], however, it was only demonstrated at small

simulation times (2.1 sec). The simulation time of 2.1 seconds was used by Rykaczewski et

al.[79] as under the three tests cases studied, ’reaction-limited’, ’mixed (reaction-diffusion),

and ’diffusion-limited’ that was the minimum time required to reach steady state growth

with the reaction-limited case.

The Hybrid Continuum-Monte Carlo Model developed in this research has a number of

advantages over the model developed by Rykaczewski et al.[79]. That model assumes the

22



Chapter 3. Hybrid Continuum-Monte Carlo Model 23

Figure 3.1: (Figure Replicated from Utke, et al. [4]) AFM image and line scans of FEB
deposits from Cu(hfac)2 precursor. Exposure times are indicated. Indented apex shapes

are due to depletion. Dashed lines represent gaussian fits of each deposit.

arrival rate and desorption rate of adsorbed precursor molecules has already reached equi-

librium and therefore the related terms are not included. This requires the user to input

the initial concentration profile of adsorbed molecules. The robustness of that model to

handle complex surface structures observed in diffusion-limited cases[75] is not demon-

strated. This may be due to the short simulation time.

Two of the major pitfalls in recent Continuum models is the lack of electron flux and

surface evolution. Utke, et al. [4] discussed how the balance between precursor depletion

and replenishment determines the resolution inside the local electron irradiated area. With

the shape of the grown structures ranging from gaussian (under the RRL regime) to

becoming more broad as the amount of molecular replenishment increases due to diffusion

(under the MTL regime). While these observations are correct in isolation, when compared

to experimental data in Figure 3.1, the pitfalls of Continuum modelling are highlighted. In

the AFM line scan at 4s the pillar has begun to broaden at the base, this broadening will

continue as the structure grows creating a complex structure morphology that a Continuum

model cannot account for. Without the ability to account for this any conclusions drawn

about structure resolution and what affects it are questionable.

A major flaw in Monte Carlo modelling is the large computational times required, this

limitation typically results in a large restriction on the simulation area. Smith, et al. [74]

discussed the growth of high aspect ratio pillars under various conditions: varying beam



Chapter 3. Hybrid Continuum-Monte Carlo Model 24

energy; mass transport versus reaction-rate-limited growth; and the effects of surface dif-

fusion. The major flaw of Monte Carlo modelling is most prominent when the researchers

studied the effect of surface diffusion.

The research by Smith, et al. [74] showed the effect diffusion has on pillar growth quite well,

however, the simulation area is significantly smaller than the electron beam interaction

volume (simulated with CASINO [80]). The size of the electron beam interaction volume

compared to the simulation area is shown in Figure 3.2. The extent of backscatter and

secondary electrons leaving the surface is roughly three times that of the simulation area

and would result in the adsorbed precursor concentration to be much lower. This would not

significantly impact any general conclusion made. For absolute accuracy the simulation

area needs to be larger than the electron beam interaction volume and the precursor

diffusion length (in MTL regime).

By combining these two modelling methods together this author is able to simulate the

growth of nano-structures over the time and space scales of experiments and also pro-

vide insights into the physical processes that occur from initial nucleation to steady state

growth. This is achieved using a hybrid of Continuum modelling for the growth of the

nano-structures and Monte-Carlo modelling for the scattering of electrons through the

evolving structure. How each of these modelling methods is combined into a hybrid model

and development of further extensions is discussed in following sections.



Chapter 3. Hybrid Continuum-Monte Carlo Model 25

Figure 3.2: (Figure Adapted from Smith, et al. [74] with a CASINO Monte Carlo
simulation of electron trajectories overlayed.) 2D time-resolved cross-sectional profiles
and deposition events (based on electron type) from the gas dynamics simulations. (a)
Initial monolayer (ML) present (run 6). (b) Surface diffusion (run 7). (c) Surface diffusion

+ boundary source (run 8). The normalized sample size is 100 000 electrons.

3.1 Continuum Equations

The Continuum models used in this research (EBID/EBIE/EBIED) were published by

Toth et al.[3, 68] and Lobo et al.[69]. The EBID model is shown in Equation 3.1 and



Chapter 3. Hybrid Continuum-Monte Carlo Model 26

includes the four main components of the EBID process: adsorption; desorption; diffusion;

and electron induced decomposition. The EBID model assumes a cylindrical coordinate

system where the length scale is the radial distance from the electron beam axis, r. The

equation for EBIE is exactly the same with the subscripts changed. It is also similar for

the EBIED model except with greater complexity due the addition of another precursor

gas. Each of these equations are discretized using the Crank-Nicholson Finite Difference

Method [81]; the derivations can be found in Appendix C.

∂Nd(r, t)

∂t
= sdFd[1−Nd(r, t)Ad]−

Nd(r, t)

τd
+Dd

[
∂2Nd(r, t)

∂r2
+

1

r

∂Nd(r, t)

∂r

]
−σdf(r)Nd(r, t)

(3.1)

The EBID model consists of the four processes: adsorption (sdFd[1−Nd(r, t)Ad]); desorp-

tion (Nd(r,t)
τd

); electron induced dissociation (σdf(r)Nd(r, t)); and diffusion (Dd

[
∂2Nd(r,t)

∂r2
+

1
r
∂Nd(r,t)

∂r

]
), where t is time, Nd is the concentration of adsorbed precursor molecules, sd is

the sticking coefficient, Fd is the precursor flux from the gas phase, Ad is the surface area,

τd is the desorption(residence) time, Dd is the diffusion coefficent, σd is the net electron

cross section, and f(r) is the electron flux profile.

The net electron cross section used in the EBID model (including the EBIE and EBIED

models) is assumed to be energy independent. This assumption was made due to the shear

complexity of recording each individual backscattered and secondary electron’s energy

as it crossed the surface interface. This unfortunately has the implication that when

extracting precursorsolid parameters from EBID/EBIE experiments the values determined

are intermixed with the net electron cross section and therefore are energy dependent. This

is highlighted in Section 5.2.

From the standard EBID model, the adsorbed precursor concentration can be used to

calculate the growing deposit,

R = V σfNa (3.2)

where V is the volume of a single adsorbate dissociation product deposited on the surface,

and R is the vertical growth rate of the deposit.

The Crank-Nicholson Finite Difference Method is an implicit numerical method[82] that

calculates the next time step by taking the central difference in time and the second-order



Chapter 3. Hybrid Continuum-Monte Carlo Model 27

central difference in space, see Figure 3.3A. As this method requires knowledge of both

the previous and next time steps the solution to a tridiagonal matrix of linear equations is

required[83]. An explicit numerical method, however, uses the forward difference in time

and the second-order central difference in space to directly calculate the next time step[83],

see Figure 3.3C.

The major advantage of the Crank-Nicholson over other methods is that it is uncondi-

tionally stable[82]; as proven in Appendix C via a Von Neumann stability analysis[84].

Compared to an explicit numerical method that is only stable for specific combinations

of spatial and temporal steps[83]. The stability of a numerical method refers to its abil-

ity to dampen errors that occur in each iteration (stable) or allow those errors to build

(unstable)[83].

To simulate the change in precursor concentration and subsequent surface growth the au-

thor re-arranged the EBID equation using the Crank-Nicholson method into a tridiagonal

matrix of the form similar to that shown in Equation 3.3, which is then solved via the

Thomas algorithm[85]. An excellent walkthrough of this algorithm was written by W. T.

Lee[86], where he describes step by step how the algorithm solves the tridiagonal matrix.



b1 c1 0 · · · 0

a1 b2 c2 · · · 0
...

. . .
. . .

. . .
...

0 · · · ai−2 bi−1 ci−1

0 · · · 0 ai−1 bi


·
[
xn+1

]
=



e1 f1 0 · · · 0

d1 e2 f2 · · · 0
...

. . .
. . .

. . .
...

0 · · · di−2 ei−1 fi−1

0 · · · 0 di−1 ei


·
[
xn

]
(3.3)

3.1.1 Discretization of Time and Space

The spatial step used to discretize the grid representing the nano-structure surface and

the time step used to simulate how it evolves with time is quite important. Too small

wastes computational time and too large introduces inaccuracies. These in-accuracies are

discussed by Richard Ghez[87] in context of how a concentration gradient evolves with

time, where the modulus term, λ, or dimensionless diffusion coefficient, D′, is defined to



Chapter 3. Hybrid Continuum-Monte Carlo Model 28

Figure 3.3: Representation of three finite difference methods used to solve differential
equations in time (n) and space (x): (A) Crank-Nicholson, implicit method. (B) Backward

Euler, implicit method. (C) Forward Euler, explicit method.



Chapter 3. Hybrid Continuum-Monte Carlo Model 29

Figure 3.4: Example of particle diffusion, where a single spike of concentration spreads
over time due to diffusion. Each curve is 10% into the total duration of the simulation
except the first curve, which is the starting condition. This example has D = 1.0 × 108

Å/s, ∆x = 1.0 Å, and ∆t = 1.0 × 10−8 s with a total simulation duration of 1.0 × 10−7

seconds.

represent the ratio between the spatial grid step and time step (Equation 3.4). The correct

range for the dimensionless diffusion coefficient is reported to be, 0 < D′ < 1
2 [87].

D′ =
D∆t

∆x2
(3.4)

To investigate an appropriate range of spatial and temporal steps for EBID/EBIE/EBIED

simulations the diffusion of a single spike of precursor concentration is observed over time,

where all other terms are either removed or set to either zero or infinity to isolate the

diffusion process.

In the first simulation the following input parameters were used, D = 1.0 × 108 Å/s,

∆x = 1.0 Å, and ∆t = 1.0 × 10−8 s resulting in a dimensionless diffusion coefficient of

1.0 (outside the correct range). The precursor concentration is shown to evolve over time

in Figure 3.4 and a problem in how the diffusion initially spread is immediately evident.

In the first time step (red curve) the particle concentration is dipped below the adjacent

points. This is not the correct behaviour.



Chapter 3. Hybrid Continuum-Monte Carlo Model 30

Figure 3.5: Example of particle diffusion, where a single spike of concentration spreads
over time due to diffusion. Each curve is 10% into the total duration of the simulation
except the first curve, which is the starting condition. This example has D = 1.0 × 108

Å/s, ∆x = 1.0 Å, and ∆t = 5.0 × 10−9 s with a total simulation duration of 1.0 × 10−7

seconds.

Two more simulations are shown in Figures 3.5 and 3.6, where D′ has been set to 0.5 (so

called marginal stability [87]) and 0.1 respectively. The problem initially found in Figure

3.4 is no longer evident even in the marginally stable case following refinement by the

author.

Figure 3.7 depicts the combination of spatial and temporal steps needed to ensure a di-

mensionless diffusion coefficient below 0.5 (green). It is clear that very small time steps

are required to ensure nano-scale spatial steps. The author has observed, however, in the

hybrid model simulator when the time step is increased by 10% with each iteration that

as long as the initial time step is within the green region no errors occur.

3.1.2 Verification

To verify the EBID/EBIE and EBIED Continuum equations two tests are devised to eval-

uate each key process against known behaviour, and analytical equations. The first test

begins with a simulation with zero initial coverage and zero electron beam current to con-

firm that the maximum coverage is equal to that expected by Equation 3.5 for EBID/EBIE



Chapter 3. Hybrid Continuum-Monte Carlo Model 31

Figure 3.6: Example of particle diffusion, where a single spike of concentration spreads
over time due to diffusion. Each curve is 10% into the total duration of the simulation
except the first curve, which is the starting condition. This example has D = 1.0 × 108

Å/s, ∆x = 1.0 Å, and ∆t = 1.0 × 10−9 s with a total simulation duration of 1.0 × 10−7

seconds.

Figure 3.7: The dimensionless diffusion coefficient, D′, as a function of spatial step, ∆x,
and time step, ∆t, for a diffusion coefficient of 1.0 × 108 Å/s. The green region defines
the parameter space where the dimensionless diffusion coefficient is below 0.5 and the red

above 0.5.



Chapter 3. Hybrid Continuum-Monte Carlo Model 32

0.30

0.25

0.20

0.15

0.10

0.05

0.00

P
re

cu
rs

o
r 

C
o
n
ce

n
tr

at
io

n
 (

�
-2

)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Time (sec)

 EBID Initial Concentration
 EBIE Initial Concentration

(A) 0.30

0.25

0.20

0.15

0.10

0.05

0.00

P
re

cu
rs

o
r 

C
o
n
ce

n
tr

at
io

n
 (

�
-2

)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Time (sec)

 EBIED, Deposit Initial Concentration
 EBIED, Etchant Initial Concentration

(B)

Figure 3.8: The initial precursor concentration as a function of time, (A) The concen-
tration from two separate simulations where one is EBID and the other EBIE, (B) The

precursor concentration over time from a EBIED simulation.

and known behaviour for EBIED. This test was designed to verify the adsorption and des-

orption processes. Equation 3.5 calculates the precursor concentration at infinite time

(N∞) given no depletion by the electron beam.

N∞ =
sF

sFA+ 1
τ

(3.5)

The initial concentration of precursor molecules from three different simulations each fea-

turing either EBID, EBIE, or EBIED systems is shown in Figure 3.8. The initial concen-

trations in Figure 3.8A match the calculated values when using Equation 3.5 with: s = 1,

Fd = 1.10773, Fe = 1.99374, Ad = 35.7, Ae = 3.57, τ = 6057.97 (Note: the two different

surface areas and the resulting difference in concentration). The initial concentration in

Figure 3.8B cannot be compared to an analytical solution due to the competition between

surface sites of the two precursors but the values are as expected with the concentration

of the smaller etchant molecule limited by the larger deposition molecule.

The second test is based upon the results by Lobo, et al. [69] replicated in Figure 3.9 to

verify the growth of a nano structure using the EBIED model. The test case was designed

to show the same behaviour where as the electron beam current is varied and the result

of the competition between deposition and etching changes.

The results by Lobo, et al. [69] (Figure 3.9), showed that the relative strength of each

process, deposition or etching, could be controlled via the magnitude of the electron flux.



Chapter 3. Hybrid Continuum-Monte Carlo Model 33

Figure 3.9: (Figure Replicated from Lobo, et al. [69]) (a) Growth rate plotted as a
function of radius (r) from the beam axis, calculated using currents of 0.4, 0.5, 0.52,
0.53, 0.55, 0.6, 0.7, 0.8 and 1 nA. Also shown is the total electron flux profile from figure
1(d). (b) Surface plots of the 0.4, 0.5 and 0.6 nA deposition rate profiles (linear scale)

(Pd = 10−2 Pa).

At low electron flux the deposition process, being more efficient, causes deposit growth

to occur. At high electron flux, deposition molecules become depleted causing the etch

process to be dominant, etching the deposit. The Gaussian shape of the electron beam,

however, results in the growth of ring-like structures. Due to the high electron flux beam

centre and low electron flux beam tail. It is this electron flux controlled switching of each

process that will be shown to verify the EBIED model.

To compare the models, the growth rates of a series of deposits are simulated as a function

of electron beam current. Figure 3.10 shows that the vertical growth rate calculated at

r ∼ 1.5 Å decreases with increasing current. The decrease in growth rate is caused by

adsorbate depletion near the beam axis. The excellent agreement between the two models

confirms consistent implementation of all terms in our EBIED model.

3.2 Electron Trajectory Simulation

Monte Carlo methods [80, 88] are used to model the electron-solid interactions needed to

calculate the backscattered and secondary electron contributions to the total electron flux

profile f(r). The electron-solid interactions are modelled using the single scattering and



Chapter 3. Hybrid Continuum-Monte Carlo Model 34

1400

1200

1000

800

600

400

200

0

Gr
ow

th
 ra

te
 (

Å/
s)

10008006004002000
Electron beam current (pA)

 Hybrid Model
 Lobo, et al. Model

Figure 3.10: Comparison between the continuum component of the hybrid model used
here and the continuum model published previously by Lobo et al. [69]. The EBID rates
were calculated at a distance of ∼ 1.5 Å from of the electron beam axis as a function
of electron beam current. Both models show the same decrease in growth rate with

increasing current, caused by adsorbate depletion near the beam axis.

parametric models developed by David Joy[88], with extensions made to work with an

evolving surface.

The single scattering model simulates the interaction of electrons by calculating its path

taken through the material from one scattering event to another. The scattering events are

limited to elastic scattering events only, as the interaction between the electron and the

atomic nucleus causes angular deflections of 5◦to 180◦, compared to inelastic scattering

events of about 0.1◦[88]. The elastic scattering events are described using Rutherford

cross sections, and by ignoring the inelastic scattering events a continuous slowing down

approach is used whereby it is assumed that the energy lost in each scattering event is lost

evenly over the entire scattering path.

The trajectories of forward and backscattered electrons are calculated using a line-line in-

tersection method[89]. It involves calculating the intersection point of the current electron

scattering event and each point on the surface. When only one intersection point lies on



Chapter 3. Hybrid Continuum-Monte Carlo Model 35

the surface the electron is determined to have backscattered through this point and left the

solid. When two intersection points lie on the surface the electron is determined to have

forward scattered out of the surface at the first intersection point (e.g. a pillar sidewall),

and into the surface at the second intersection point (e.g. a horizontal substrate region

adjacent to the pillar).

Secondary electrons are not simulated explicitly but instead calculated using a modified

version of the parametric model designed by Joy[88]. The parametric model approxi-

mates the secondary electron yield at a single point on a flat surface and enables accurate

modelling of secondary electron generation without requiring details of its generation or

scattering cascades. In the author’s implementation, the parametric model is modified to

enable SE generation from curved surfaces. The first modification is to evenly distribute

the generated secondary electrons along the entire primary electron path between elastic

scattering events. Second, the author assumed isotropic SE generation, and calculated the

fraction that intersects each point making up the discretized surface.

The extensions made enable the Monte Carlo methods to work with the evolving sur-

face structure, particularly with the number and correct location of backscattered and

secondary electrons, and forward scattering of electrons back into the surface.

3.2.1 Single Scattering Model

The single scattering model describes the scattering events of an electron within a material.

This model was developed by David Joy where a complete write up is found in ”Monte

Carlo Modeling for Electron Microscopy and Microanalysis”[88]. A summary of the model

with the assumptions made and the key equations are reported here.

There are two major assumptions made in the Single Scattering model, only elastic scat-

tering events are considered and a continuous slowing down approach is used. Elastic

scattering events are those where the electron is attracted to the positive nucleus and,

subsequently, repulsed by the surrounding electron cloud. This concept could be described



Chapter 3. Hybrid Continuum-Monte Carlo Model 36

as a collision between billiard balls. These elastic scattering events result in angular de-

flections of 5◦to 180◦compared to inelastic scattering events of about 0.1◦. This large

difference enables us to ignore the inelastic scattering events

The continuous slowing down approach assumes that the electron is losing energy contin-

uously over its scattering path due the number of inelastic scattering events. Although

these inelastic scattering events are not continuous they can be averaged to occur over the

entire path.

The key equations in the single scattering model are used to describe the size, direction,

and subsequent energy loss of each scattering event. The size of scattering event comes

from the calculation of the electron’s mean free path. It is a function of the elastic cross

section. The elastic cross section, σE , is calculated from the total screened Rutherford

elastic cross section[90], Equation 3.6.

σE = 5.21× 10−21Z
2

E2

4π

α(1 + α)

(
E + 511

E + 1024

)2

(3.6)

Where E is the electron energy, Z is the atomic number of the material, α is an approxi-

mation for the electron not observing all of the nuclear charge[91], as defined in Equation

3.7.

α = 3.4× 10−3Z
0.67

E
(3.7)

From the elastic cross section the author calculates the mean free path, λ, of the electron

in Equation 3.8.

λ =
A

NAρσE
(3.8)

where NA is Avogadro’s number, ρ is the density of the material, and a is the atomic weight

of the material. This mean free path is an average, and therefore, the actual distance, s,

that the electron scattered is given in Equation 3.9 including a random variation, RND.

s = −λLoge(RND) (3.9)



Chapter 3. Hybrid Continuum-Monte Carlo Model 37

The angle of the scattering event, φ, is also calculated through Equation 3.10.

cosφ = 1− 2αRND

1 + α−RND
(3.10)

With this angle the azimuthal scattering angle, ψ, can be calculated which defines the

possible scattering cone of the electron.

ψ = 2πRND (3.11)

To calculate the new position of the electron from the previous position in the Cartesian

coordinate system the following series of equations are used.

xn = x+ s× ca (3.12)

yn = y + s× cb (3.13)

zn = z + s× cc (3.14)

These directional angles, ca, cb, and cc are calculated using Equations 3.15 to 3.17

ca = cx cosφ+ V 1V 3 + cyV 2V 4 (3.15)

cb = cy cosφ+ V 4(czV 1− cxV 2) (3.16)

cc = cz cosφ+ V 2V 3− cyV 1V 4 (3.17)

where,

V 1 = AN sinφ (3.18)

V 2 = ANAM sinφ (3.19)

V 3 = cosψ (3.20)

V 4 = sinψ (3.21)

AN = −cx
cz

(3.22)



Chapter 3. Hybrid Continuum-Monte Carlo Model 38

Figure 3.11: (Replicated from David Joy, 1995[88]) The scattering path of an electron
with the corresponding step length and angle components.

AM =
1√

1 +AN2
(3.23)

These equations calculate the distance and direction the electron travels in each scattering

event, the equations are represented in Figure 3.11 replicated from ”Monte Carlo Modeling

for Electron Microscopy and Microanalysis”[88].

The final equation defines the amount of energy lost by the electron over the scattering

event. To calculate this energy loss a modified Bethe equation[92] in Equation 3.24 is

used, where the rate of energy loss, dE/dS, is a function of electron energy, material



Chapter 3. Hybrid Continuum-Monte Carlo Model 39

atomic number and weight, and the mean ionisation potential[93] in Equation 3.25. The

mean ionisation potential, J , approximates the energy lost per interaction of the electron

with the material.
dE

dS
= −78500

Z

AE
loge

(
1.166(E + 0.85J)

J

)
(3.24)

J =

[
9.76Z +

58.5

Z0.19

]
× 1× 10−3 (3.25)

3.2.2 Parametric Model

The Parametric Model describes the secondary electron yield at each point along a flat

surface and was designed by David Joy[88] to accurately model the experimental behaviour

of secondary electrons without the details of its generation or scattering cascade. The

parametric model can be spilt up into two key equations, the first describes the generation

of the secondary electrons and the second its transport to the surface.

The number of secondary electrons generated from a primary electron scattering event is

directly proportional to the stopping power of the electron at that point over the scattering

length of that event. This is described in Equation 3.26, where ε is the material dependent

energy required to generate a secondary electron.

NSE = −1

ε
· dE
ds

(3.26)

The transport of these secondary electrons to the surface is assumed to follow the ”straight-

line approximation”, whereby the probability of the secondary electron escaping along a

direct path to the surface is based upon its depth and its mean free path. This is described

in Equation 3.27, where λ is the material specific mean free path of a secondary electron

and A is a constant of 0.5 since only half of the secondary electrons will move towards the

surface.

p(z) = A · exp−
z
λ (3.27)

From Equations 3.26 & 3.27, the number of secondary electrons arriving at each point

along the surface is found and as a result the desired secondary electron yield.



Chapter 3. Hybrid Continuum-Monte Carlo Model 40

3.2.3 Model Extensions

3.2.3.1 Backscattered & Forward Scattered Electrons

For a flat substrate an electron is determined to backscatter once it travels above zero.

This simple definition cannot be applied to an evolving surface. To determine whether an

electron backscatters a new method is defined that evaluates the electron scattering event

for leaving the surface or not, and whether the electron re-enters the surface, subsequently.

The first step is to check if the electron has travelled above the minimum z-axis point of

the surface. This eliminates any electron that is deep within the surface from needing to

complete the next step.

The next step is to calculate the line-line intersection between the scattering event and

each surface section. While every scattering event and surface section would intersect at

one point in infinite space, a check that the intersection point lies within the bounds of the

current section is made. From these conditions it can be determined that there are three

possible cases: no intersection; 1 intersection; and 2 intersections. In detail these are:

• No intersection, the electron is still within the surface and scattering can continue

• 1 intersection, the electron is determined to have backscattered

• 2 intersections, the electron is determined to have forward scattered and its scattering

event modified to accommodate the re-entry into the surface.

3.2.3.2 Secondary Electrons

The Parametric Model described in section 3.2.2 is designed for flat surfaces only. Where

the number of secondary electrons generated from each primary electron scattering event

is to leave through the closest surface site. In order to model the secondary electron yield

correctly two modifications are made. Conceptual diagrams of the original model and the

two modifications are shown in Figures 3.12, 3.13 and 3.14 respectively.



Chapter 3. Hybrid Continuum-Monte Carlo Model 41

Figure 3.12: The original Parametric Model, where all secondary electrons generated
are emitted through the closest surface bin.

The first modification involves changing the secondary electron generation at the end point

of the primary scattering event to evenly over the entire scattering path. This modification

more realistically simulates what happens experimentally. The primary electrons scatter

elastically and in-elastically generating secondary electrons. The even distribution of the

secondary electrons is achieved by finding the two closest points on the surface at the

start and end points of the primary electron scattering event and then dividing the total

number of secondary electrons over those points and any in-between, taking into account

the change in distance to each point along the surface.

The second modification extends the first by modifying the constant A in Equation 3.27

to match correctly the angular distribution of the secondary electrons path to the surface.

The same initial steps are taken to the first modification but the angle of the secondary

electrons to the surface normal direction of each bin is taken into account.

With these modifications the Parametric Model is able to calculate the number of sec-

ondary electrons at each surface site even with an evolving surface.



Chapter 3. Hybrid Continuum-Monte Carlo Model 42

Figure 3.13: The first modification to the Parametric Model, where all the secondary
electrons generated are distributed evenly over the closest surface bins.

Figure 3.14: The second modification to the Parametric Model, where all the secondary
electrons generated are distribution evenly over the closest surface bins, however the

number in each bin is modified by its solid angle to the primary electron trajectory.



Chapter 3. Hybrid Continuum-Monte Carlo Model 43

3.2.4 Verification

To verify the Electron Trajectory Simulator a series of test cases were devised and com-

pared with either CASINO[80] or experimental data. These tests included:

• The backscattered electron coefficient, as a function of incident beam energy.

• The secondary electron yield, as a function of incident beam tilt.

• The secondary electron yield, as a function of incident beam energy.

CASINO, a well known Monte Carlo electron trajectory simulator (used to simulate elec-

tron interactions) is therefore chosen as an adequate comparison. The experimental data

for the secondary electron yield is collected from a series of sources[54]. The simulations

are conducted on a silver substrate with an electron beam tilt ranging from 0◦ to 85◦and

incident beam energy from 0.03 keV to 30.0 keV using 100 000 electrons.

The first test case compared the backscattered electron coefficient as a function of incident

beam energy. The simulation result in Figure 3.15 matched almost perfectly with the

Rutherford Cross Section result, as expected.

The second test case compared the secondary electron yield as a function of incident beam

energy. The simulation results in Figure 3.16 show a similar trend with a very low yield

at low beam energies and increasing to a peak at approximately 1 keV then decreasing.

There is a difference at the lower beam energies in comparison to the experimental data,

but it is as expected, as the Rutherford cross sections used in the model are known to not

work very well at these energies. The remaining data matches quite well, considering the

large variation in values gathered from the literature.

The final test case compared the secondary electron yield as a function of electron beam

tilt. The results in Figure 3.17 show two distinct trends with increasing tilt, at 1 keV the

yield remains largely unchanged until high tilt angles which is expected as the interaction

volume is almost completely contained within the secondary electron escape depth. At

5 keV and 10 keV the secondary electron yield increases with larger tilt angles as the



Chapter 3. Hybrid Continuum-Monte Carlo Model 44

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

Ba
ck

sc
at

te
re

d 
el

ec
tr

on
 c

oe
ffi

ci
en

t

0.01 0.1 1 10 100
Electron beam energy (keV)

 Hybrid Model
 CASINO (Rutherford)

Figure 3.15: Comparison between the Monte Carlo component of the hybrid model used
here and the Monte Carlo model CASINO [80]. The dependence of the backscattered
electron coefficient on electron beam energy calculated the hybrid model is in excellent

agreement with that calculated by CASINO.

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Se
co

nd
ar

y 
el

ec
tro

n 
yi

el
d

0.01 0.1 1 10 100
Electron beam energy (keV)

 Literature
 Hybrid Model

Figure 3.16: Comparison between the secondary electron yield on a silver surface as a
function of electron beam energy taken from literature data and the hybrid continuum-

Monte Carlo model.



Chapter 3. Hybrid Continuum-Monte Carlo Model 45

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Se
co

nd
ar

y 
el

ec
tr

on
 y

ie
ld

806040200
Electron beam tilt (º)

 1 keV
 5 keV
 10 keV

Figure 3.17: The secondary electron yield on a silver surface as a function of electron
beam tilt. The two distinct trends are consistent with known behaviour of the depth and

size of the electron beam interaction volume with beam tilt.

relatively deep interaction volume becomes more contained within the escape depth. Both

of these observations are expected from known behaviour.

From these three test cases it is determined that the Electron Trajectory Simulator is

working and has shown to replicate data gathered from a well known simulation program

and experimental data.

3.3 Model Extensions

The combination of both Continuum and Monte Carlo modeling methods do overcome

many of the respective pitfalls. Nevertheless, when compared to an experimental system

some pitfalls still exist. Thus, a number of extensions are developed to address these

remaining pitfalls.



Chapter 3. Hybrid Continuum-Monte Carlo Model 46

3.3.1 Surface Evolution & Electron Beam Projection

The first of these pitfalls is how the growing structure evolves over time. In previous

Continuum models[3, 68, 69] the growing deposit surface is evolved directly upwards/

downwards. In an experiment the surface would evolve in a surface normal direction as

molecules are deposited or removed. The surface normal direction can be calculated from

the vector joining the two points adjacent to the point to be moved. Due to statistical noise

from the Monte Carlo model, in the Hybrid Model a more complex approach is needed. The

calculation of the surface normal direction needs to be done over many points, allowing the

surface to grow much smoother and also to prevent sharp spikes or other computationally

undesirable effects occurring. The difference between evolving directly upwards and with

the surface normal direction is shown in Figure 3.18.

The second pitfall involves how the primary electron beam interact with the evolving sur-

face. For a flat surface all electrons impacting a specific point interact with the surface, but

in the case of a vertical wall those same electrons would pass by instead. The surface area

seen by the electron beam at these sharp wall-like regions becomes significantly reduced

compared to the flat surface. Therefore the amount of primary electron flux is modified

to reflect the surface area at each point. This is coined the electron beam projection

onto the surface. It is important to note that the backscattered and secondary electron

flux profiles are not modified in this manner as they are calculated explicitly by the Monte

Carlo algorithm. An example of how electron beam projection effects the primary electron

flux profile is shown in Figure 3.19. We observe as the simulation progresses the electron

flux profile changes in shape to reflect the evolving surface, which would be similar to

that shown in Figure 3.18. The electron flux at approximately 700 nm remains unchanged

throughout the simulation due to that area remaining relatively flat.

3.3.2 Surface Diffusion Modelling

As the surface evolves over time, the physical process of surface diffusion becomes in-

creasingly more difficult to solve. For a flat surface, the process of surface diffusion is well

defined in the radial coordinate system, with the laplacian operator as defined in Equation



Chapter 3. Hybrid Continuum-Monte Carlo Model 47

600

500

400

300

200

100

0

Su
rf

ac
e 

H
ei

gh
t,

 z
 (

Å
)

150010005000
Distance from eBeam Axis, r (Å)

 25%
 50%
 75%
 100%

(A)

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 S
ur

fa
ce

 H
ei

gh
t,

 z
 (

a.
u.

)

150010005000
Distance from eBeam Axis, r (Å)

 25%
 50%
 75%
 100%

(B)

600

500

400

300

200

100

0

Su
rf

ac
e 

H
ei

gh
t,

 z
 (

Å
)

150010005000
Distance from eBeam Axis, r (Å)

 25%
 50%
 75%
 100%

(C)

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 S
ur

fa
ce

 H
ei

gh
t,

 z
 (

a.
u.

)

150010005000
Distance from eBeam Axis, r (Å)

 25%
 50%
 75%
 100%

(D)

Figure 3.18: Two EBID simulations were performed for a maximum duration of 13.7
seconds, each plot is shown at different stages within the entire simulation beginning at
25% through to 100% of the maximum duration. (A) Grown without surface evolution
the deposit growth direction is upwards over all space; this is confirmed in (B) where the
deposit structures have been normalised. (C) Grown with surface evolution the deposit

growth is in the surface normal direction; again confirmed in (D).



Chapter 3. Hybrid Continuum-Monte Carlo Model 48

8000

6000

4000

2000

0

El
ec

tr
on

 F
lu

x 
Pr

of
ile

, 
f 

(e
le

ct
ro

ns
/s

ec
)

1400120010008006004002000
Distance from eBeam Axis, r (Å)

 No eProjection
 eProjection, 25%
 eProjection, 50%
 eProjection, 75%
 eProjection, 100%

Figure 3.19: The electron flux profile (primary electrons only) from an EBID simulation
with electron beam projection switched on/off. The simulation maximum duration was
13.7 seconds, and each plot is shown at different stages within the entire simulation be-
ginning at 25% through to 100% of the maximum duration. We observe as the simulation
progress the electron flux profile changes in shape to reflect the evolving surface, which

would be similar to that shown in Figure 3.18.

3.28. As the surface evolves a question arises, is this equation still valid and if not how

does one account for any deviation.

∇2
r ≡
(

1

r

∂

∂r
+

∂2

∂r2

)
(3.28)

D∇2
rNa (3.29)

Equation 3.29 defines the diffusion of molecules in the radial coordinate system by col-

lapsing these annuli into a 1D string of points where the change in area of each annuli as

it moves further away from the central axis is taken into account.

As the surface evolves a 2D string of points is formed and how these collapse down into the

form required by Equation 3.28 is unclear. Figure 3.20 depicts the translation from the

physical surface to the computational surface that needs to be understood and defined.

Two possible solutions are proposed to solve this problem: either the points are moved

normal to the surface and the spacing between them varies, so called Free Form Movement;



Chapter 3. Hybrid Continuum-Monte Carlo Model 49

Figure 3.20: The translation between the physical surface A) and the computational
surface B). The physical surface is two dimensional in r & z and the computational
surface is one dimensional in r, where both surfaces are radially symmetric. The path

length between the points along the physical surface is, s.



Chapter 3. Hybrid Continuum-Monte Carlo Model 50

resulting in a non-uniform 1D grid, or the points are moved normal to the surface but then

remapped in such a way that the area of each annulus remains equal to that of a flat surface,

a uniform 1D grid. The first solution is simpler in that each point is allowed to move,

however, the method to deal with the non-uniform grid spacings is untested (see Section

3.3.2.1). The second solution is computationally more expensive due the remapping of the

points but the method (see Section 3.3.2.2) for uniform grid spacings is well defined and

understood. Through extensive testing it is determined that area remapping provided the

most reliable method to dealing with surface diffusion on an evolving surface.

3.3.2.1 Free Form Movement

The process of solving the partial differential equations derived in Appendix C for free

form movement, involves many of the ideas presented by Sobey [94], where the transient

diffusion equation in 1D is derived for a non-uniform Cartesian grid. The key idea is that

the asymmetric grid spacing between data points can be accounted for by including an

asymmetry parameter, Ai, in the second spatial derivative of ∂2C
∂x2

, where Ai is defined as

(xi − xi−1 − ∆x)/∆x, ∆x as (xi+1 − xi−1)/2, and C is a scalar quantity representing a

molecular concentration. A schematic of this asymmetric grid is shown in Figure 3.21. As

a real world example a series of points are made at increasing distances apart from one

another as shown in Figure 3.22, and the exact distances are presented in Table 3.1. From

these points the ∆x is changing and yet the asymmetry parameter, Ai, is roughly the

same for the central three points, showing that no matter the separation between points

the possible asymmetry values will remain within an allowed range. This range is limited

to −1 < Ai < 1, it is evident when studying Equation C.44, where in order to prevent

a divide by zero this specific range must be maintained. Also, from a purely conceptual

point of view, if there is no asymmetry then Ai is equal to zero (data point 5 in Table 3.1),

and if there is complete asymmetry then Ai would be equal to ±1, this cannot happen as

the point would lie on an adjacent point.

With the concepts presented above, the partial differential equations could be solved for

any variation in data point separation.



Chapter 3. Hybrid Continuum-Monte Carlo Model 51

Figure 3.21: (Figure adapted from Sobey [94]) Non-Uniform Grid Spacing Schematic.

Figure 3.22: Realistic Non-Uniform Grid Spacing Example, Schematic.

Point, xi Position ∆xi Ai

1 1.010 0.994 0.016

2 1.988 1.547 -0.368

3 4.104 2.797 -0.243

4 7.582 4.689 -0.258

5 13.481 5.899 0.000

Table 3.1: Realistic Non-Uniform Grid Spacing Example. The fifth point was assumed
to be repeated in order to calculate the required data.

3.3.2.2 Area Remapping

The area remapping process can be divided into three steps: (1) calculate the initial surface

area between each point along the flat substrate; (2) calculate the surface area between

each point along the now evolving nano-structure surface; and (3) reposition each point

to match the initial area if required. The first two steps are depicted in Figure 3.23 with



Chapter 3. Hybrid Continuum-Monte Carlo Model 52

Figure 3.23: The first two steps of the area remapping process required to ensure correct
diffusion behaviour for an evolving surface. (1) calculate the initial surface area between
each point along the flat substrate; (2) calculate the surface area between each point along
the now evolving nano-structure surface. An example of the calculated area between two

points is highlighted in grey.

an example of the area between two points highlighted in grey. By performing these three

steps, the form of Equation 3.28 is maintained no matter the surface topography, and

therefore surface diffusion will behave correctly.

It was found that a conical frustum is able to approximate the geometry of both the initial

flat substrate and the evolving nano-structure surface, see Figure 3.24. In Figure 3.24, the

initial flat substrate can be defined with the height, h, of the conical frustum set to zero.



Chapter 3. Hybrid Continuum-Monte Carlo Model 53

Figure 3.24: A conical frustum is defined as a cone with the tip removed, where R1 is
the base radii, R2, is the top radii, h is the height and s is the slant height[95].

3.3.3 Verification

To test the time-evolution of surfaces generated by the hybrid continuum-Monte Carlo

model, the author compared the volumes of deposits calculated by integration of the

simulated surfaces (‘actual volumes’) to the corresponding total volumes of molecules

deposited by electrons (‘expected volumes’). The expected volumes are given by the

product of deposited molecule volume and the total number of molecules dissociated by

electrons which is generated automatically by the continuum component of the model.

As shown in Figure 3.25, the time-evolutions of the actual and expected volumes are in

excellent agreement. The residual error, also shown on the plot, increases with simulation

time. The error is controlled by the number of electrons simulated in each iteration of

the Monte Carlo model, and the magnitude of the time step used to propagate the hybrid

model in time.



Chapter 3. Hybrid Continuum-Monte Carlo Model 54

1.0

0.8

0.6

0.4

0.2

0.0

Residuals (%
)

0.001 0.01 0.1 1 10
Time (sec)

5.0x10-4

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Pi
lla

r v
ol

um
e 

(µ
m

3 )

 Surface Volume
 Deposited Molecule Volume
 Residuals

Figure 3.25: A comparison of the time-evolution of the actual volume of a deposit sim-
ulated by the hybrid model, and the volume expected from the total number of molecules
dissociated by electrons. The two volumes are in excellent agreement, with only minor

differences of <1% observed in the residuals.



Chapter 4

Hybrid Model Simulator Details

The hybrid model simulator implements the Continuum and Monte Carlo models with the

extra extensions discussed in Chapter 3. Each of the modelling methods and extensions

form the core modules within the simulator. All code is available in Appendix B.

The hybrid model simulator is simple in operation but does require an understanding of

its inputs and outputs. The general flow of the simulator is shown in Figure 4.1. The

input parameters are read into the simulator from disk, initial calculations are performed

to setup arrays, allocate memory, etc. The main loop of the simulator begins with the

Monte Carlo electron trajectories and electron flux profile modules to update the primary

electron flux profile with the contribution of backscattered and secondary electrons for a

flat surface. The Continuum model and Surface Evolution modules are run to evolve the

surface and finally the output data is saved to disk. This main loop continues until the

maximum number of time steps has been reached.

The remaining sections in this chapter detail how to use the simulator with an explanation

of the various inputs and outputs to the simulator.

4.1 User Operation

The user operation of the EBIED Simulator is broken down into three stages, inputs,

running and outputs. The input parameters and the choice of what modules to run are all

55



Chapter 4. Hybrid Model Simulator Details 56

Figure 4.1: EBIED Simulator Flowchart describing the general flow and order of mod-
ules.



Chapter 4. Hybrid Model Simulator Details 57

Figure 4.2: Example input text file for the EBIED Simulator.

done via the one input text file, see Figure 4.2. Each of the input parameters are labelled

with a short description and, if required, physical units. Each of the module options are

also labelled for what each on/off flag does. It is noted that there is no error checking for

the input file, such that all numbers need to maintain its integer or double precision data

types and due to the multi-node nature of the code, for example, the number of electron

trajectories needs to be divisible by the number of nodes.

The EBIED Simulator has only been run on machines with OSX or Linux. There is no

foreseeable issue with running on a Windows machine. The code is run inside the terminal

and requires OpenMPI (http://www.open-mpi.org/) to be installed. A full tutorial from

initial installation to running a simulation is detailed in Section 4.2.

The first time the code is run, or if any changes are made to the simulator code, it will

need to be (re)complied, using the mpicc command. Once complied, the EBIED Simulator

is run via the mpirun command, here is also where the number of nodes are specified (e.g.

”mpirun -n 4 ./simulator.o” for four nodes). Initially the simulator will print to terminal

the input parameters read from the input text file followed by the current simulation

percentage and finally an estimated time until completion.

There are many output text files for the EBIED simulator that contain the following data:

• A log file where all text printed to the terminal window is recorded



Chapter 4. Hybrid Model Simulator Details 58

• Backscattered electron coefficient and secondary electron yield

• Locations where backscattered electron left the surface and a count

• Locations where secondary electron left the surface and a count

• Amount of electron flux at each point on the surface

• Growth rate at each point along the surface

• Deposited molecule concentration at each point on the surface

• Adsorbed precursor molecule concentration at each point on the surface, one for

etchants and one for deposition

• Z height of each point on the surface

The form of each output file is a series of data arranged in columns for easy analysis/plot-

ting, see an example in Figure 4.3.

4.2 Tutorial: How to run the EBIED simulator

To run the EBIED simulator from a clean install to viewing an output file the user needs

to follow this tutorial.

4.2.1 Mac OS X

1. Goto https://github.com/kennethreitz/osx-gcc-installer/ download and install the

correct package for your OSX version.

2. Confirm the installation is successful by running the command gcc in a Terminal

window (Applications/ Utilities) and getting the return message of no input files. A

return message of command not found means the installation is not successful.

3. Goto http://www.open-mpi.org/software/ download the latest stable release, e.g.

openmpi-1.6.5.tar.bz2.



Chapter 4. Hybrid Model Simulator Details 59

Figure 4.3: Example output text file for the EBIED Simulator.

4. Extract the file. Navigate to the extracted folder in a Terminal window with the

command cd, e.g. cd /̃Downloads/openmpi-1.6.5.

5. Enter the command ./configure

6. Once complete enter the command make all install.

7. Confirm the installation is successful by running the command mpicc and getting

the return message of no input files. A return message of command not found means

the installation is not successful.

8. Navigate to the location of the EBIED simulator, e.g. cd ∼/Downloads/EBIED.

9. Compile the EBIED simulator with the command mpicc simulator.c -o simulator.o,

assuming no error messages the compilation was successful.



Chapter 4. Hybrid Model Simulator Details 60

10. Open the input parameters text file in the inputs directory, ∼/Downloads/EBIED/

inputs and modify the input parameters required for your simulation, see section 4.3

for details about each parameter.

11. Run your simulation with the command mpirun -n X ./simulator.o, where X is the

number of physical cores of your system.

12. Your simulation will now print various outputs to the Terminal window as well as

to the log file in the outputs directory, ∼/Downloads/EBIED/outputs.

13. Once your simulation is complete you will find the output data in the outputs direc-

tory, see section 4.4 for details about each output file.

4.2.2 Ubuntu - Linux

1. Open a terminal window and enter the command mpicc, note the packages required

to install.

2. Enter the command mpirun, note the packages required to install.

3. Enter the command sudo apt-get install X, where X is all noted packages.

4. Confirm the installation is successful by running the command mpicc and getting

the return message of no input files. A return message of command not found means

the installation is not successful.

5. Navigate to the location of the EBIED simulator, e.g. cd ∼/Downloads/EBIED.

6. Compile the EBIED simulator with the command mpicc simulator.c -o simulator.o

-lm, assuming no error messages the compilation was successful.

7. Open the input parameters text file in the inputs directory, ∼/Downloads/EBIED/

inputs and modify the input parameters required for your simulation, see section 4.3

for details about each parameter.

8. Run your simulation with the command mpirun -n X ./simulator.o, where X is the

number of physical cores of your system.



Chapter 4. Hybrid Model Simulator Details 61

9. Your simulation will now print various outputs to the Terminal window as well as

to the log file in the outputs directory, ∼/Downloads/EBIED/outputs.

10. Once your simulation is complete you will find the output data in the outputs direc-

tory, see section 4.4 for details about each output file.

4.3 Summary of Parameters within the EBIED Simulator

Input File

This section describes each parameter within the input parameters.txt text file for the

EBIED simulator, with a general description of the parameter and its allowed value. Each

parameter is of the double data type unless otherwise specified as the integer data type.

The large list of input parameters is divided into the subsections, Simulation Parameters,

Electron Beam Parameters, Material Parameters, Precursor Parameters, Module Toggles,

and Miscellaneous Parameters for easy lookup.

4.3.1 Simulation Parameters

• number of electron trajectories

– The number of electrons to be simulated during each call of the Monte Carlo

module.

– Only integer values greater than 1 are accepted where the number inputted

must be divisible by the number of physical cores with no remainder.

• number of surface bins

– The number of bins that the Continuum model will use to store the surface, this

number multiplied by the ’delta r’ parameter will give the maximum length in

angstroms.

– Only integer values greater than 2 are accepted.

• number of simulation time steps



Chapter 4. Hybrid Model Simulator Details 62

– The number of time steps the simulator will iterate over.

– Only integer values greater than 999 are accepted.

• length of electron energy deposited and electron maximum z depth array

– The size of the array that stores the electron energy deposited into each Z slice

and each electron’s maximum Z depth in the simulation area both above and

below zero.

– Only odd integer values greater than 1 are accepted. It is recommended that a

very large number is used to prevent simulation errors, e.g. 1000001.

• delta r

– The size of each surface bin, in angstroms, this number multiplied by the ’num-

ber of surface bins’ parameter will give the maximum surface length.

– Only values greater than 0.0 are accepted.

• delta t

– The size of each time step, in seconds.

– Only values greater than 0.0 are accepted.

4.3.2 Electron Beam Parameters

• electron beam.cutoff energy

– The energy, in kilo-electron volts, where an electron scattering within the ma-

terial will be said to have stopped scattering.

– Only values greater than 0.0 are accepted.

• electron beam.top hat abruptness

– The abruptness of the top hat electron beam profile, see the excel file ’electron

beam shape generator.xlsx’ for the effect this parameter has on the electron

beam profile.

– Only values greater than 0.0 are accepted.



Chapter 4. Hybrid Model Simulator Details 63

• electron beam.diameter

– The diameter of the electron beam, in angstroms.

– Only values greater than 0.0 are accepted.

• electron beam.energy

– The accelerating voltage of the electron beam, in kilo electron volts.

– Only values greater than 0.0 are accepted.

• electron beam.current

– The current of the electron beam, in pico Amperes.

– Only values greater than 0.0 are accepted.

• electron beam.tilt

– The tilt angle of the electron beam, in degrees.

– Only values greater than 0.0 and less than 89.9 are accepted.

4.3.3 Material Parameters

The EBIED simulator assumes that there are two materials making up the structure being

simulated, for example the deposition of carbon on a gold substrate or the etching of a

silicon dioxide layer on pure silicon. The atomic composition of these two materials are

input by the user into the upper material and lower material parameter structures. The

Z depth where the transition between the two materials occurs is contained within the

layered material interface depth parameter, it is noted that the upper material is always

above the lower material. A single material system can be used if both the upper and

lower material parameters are the same.

Only the parameters for the upper material are listed here as they are same for the lower

material.

• layered material interface depth



Chapter 4. Hybrid Model Simulator Details 64

– The transition Z depth between the upper and lower material, in angstroms.

– Any value is accepted.

• upper material.atomic number

– The atomic number of the upper material.

– Only values greater than 0.0 are accepted.

• upper material.atomic weight

– The atomic weight of the upper material.

– Only values greater than 0.0 are accepted.

• upper material.density

– The density of the upper material, in grams/centimetre cubed.

– Only values greater than 0.0 are accepted.

• upper material.epsilon

– The effective energy required to produce a secondary electron in, kilo electron

volts.

– Only values greater than 0.0 are accepted.

• upper material.lambda

– The effective secondary electron escape depth, in angstroms.

– Only values greater than 0.0 are accepted.

• substrate temperature

– The temperature of the growing structure/substrate material, in kelvin.

– Only values greater than 0.0 are accepted.



Chapter 4. Hybrid Model Simulator Details 65

4.3.4 Precursor Parameters

The EBIED simulator accepts parameters for both a deposition and etching precursors

where each one can be turned off by simply lowering respective partial pressures to zero.

Listed here are the parameters for the deposition precursor only, the etch precursor accepts

the same type of parameters.

• gas temperature

– The temperature of the arriving precursor gas(es), in kelvin.

– Only values greater than 0.0 are accepted.

• deposit precursor.gas partial pressure

– The partial pressure of the deposition precursor gas molecules, in pascal.

– Only values greater than 0.0 are accepted, where a value of 0.0 will turn the

gas off.

• deposit precursor.reactive product molecular mass

– The molecular mass of the reactive product formed when the dissociation of the

deposition precursor occurs, in kilograms.

– Only values greater than 0.0 are accepted.

• deposit precursor.surface area

– The surface area the deposition precursor occupies when adsorbed to the sub-

strate surface, in angstroms squared.

– Only values greater than 0.0 are accepted.

• deposit precursor.desorption energy

– The size of the energy barrier required for a physisorbed deposition precursor

molecule to desorb from the substrate surface, in electron-volts.

– Only values greater than 0.0 are accepted.

• deposit precursor.desorption attempt frequency



Chapter 4. Hybrid Model Simulator Details 66

– The frequency where an adsorbed deposition precursor molecule attempts to

get over the energy barrier required for desorption to occur, in seconds.

– Only values greater than 0.0 are accepted.

• deposit precursor.diffusion energy

– The size of the energy barrier required for the diffusion of an adsorbed deposition

precursor molecule across the substrate surface, in electron-volts. Note, if the

calculated diffusion coefficient from this value is less than 1.0, diffusion for both

the deposition and etch precursor will be turned off.

– Only values greater than 0.0 are accepted.

• deposit precursor.diffusion attempt frequency

– The frequency where an adsorbed deposition precursor molecule attempts to

get over the energy barrier required for diffusion to occur, in seconds. Note, if

the calculated diffusion coefficient from this value is less than 1.0, diffusion for

both the deposition and etch precursor will be turned off.

– Only values greater than 0.0 are accepted.

• deposit precursor.sticking coefficient

– The sticking coefficient for the deposition precursor to physisorb to the substrate

surface.

– Only values greater than 0.0 are accepted.

• deposit precursor.PE electron cross section

– The electron cross section for the primary electrons incident on the growing

structure/substrate, in angstroms squared.

– Only values greater than 0.0 are accepted.

• deposit precursor.BSE electron cross section

– The electron cross section for the backscattered electrons leaving the growing

structure/substrate, in angstroms squared.



Chapter 4. Hybrid Model Simulator Details 67

– Only values greater than 0.0 are accepted.

• deposit precursor.SE electron cross section

– The electron cross section for the secondary electrons leaving the growing struc-

ture/substrate, in angstroms squared.

– Only values greater than 0.0 are accepted.

• deposit pinned reaction electron cross section

– The reaction electron cross section of pinned molecules, in angstroms squared.

– Only values greater than 0.0 are accepted.

• deposit precursor reaction electron cross section

– The reaction electron cross section of the deposition precursor molecules, in

angstroms squared.

– Only values greater than 0.0 are accepted.

4.3.5 Module Toggles

• toggle.electron trajectory simulator

– Turns the Monte Carlo module on or off.

– An integer value of 0 turns the module off and an integer value of 1 turns the

module on.

• toggle.electron trajectory tracking

– Turns the recording of every electron scattering event on or off and saves it to

disk.

– An integer value of 0 turns the tracking off and an integer value of 1 turns the

tracking on.

• toggle.electron beam projection

– Turns the electron beam projection module on or off.



Chapter 4. Hybrid Model Simulator Details 68

– An integer value of 0 turns the module off and an integer value of 1 turns the

module on.

• toggle.electron beam shape

– Switches the electron beam shape between a top hat or a gaussian profile.

– An integer value of 0 is for a gaussian profile and an integer value of 1 is for a

top hat profile.

• toggle.surface evolution

– Turns the surface evolution module on or off.

– An integer value of 0 turns the module off and an integer value of 1 turns the

module on.

• toggle.previous simulation

– Causes the EBIED simulator to load from a previous simulation file or not.

– An integer value of 0 does not load a previous simulation and an integer value

of 1 does.

• toggle.coverage

– Causes the EBIED simulator to begin the simulation with monolayer surface

coverage or no surface coverage.

– An integer value of 0 is for no surface coverage and an integer value of 1 is for

monolayer surface coverage.

4.3.6 Miscellaneous Parameters

The following section of parameters contains those needed by the various modules to

perform specific tasks during the simulation.

• number of points

– The number of points where the polynomial fit is computed for the surface

evolution.



Chapter 4. Hybrid Model Simulator Details 69

– Only odd integer values greater than 1 are accepted, note the number of points

must be greater than the order parameter.

• seed

– The seed used by the random number generator.

– Only integer values greater than 0 are accepted, a value of -1 will cause the

simulator to use a random value.

• precursor diffusion tolerance

– The tolerance percentage that the absorbed precursor concentration in the final

surface bin is allowed to change before warning the user.

– Only values greater than 0.0 are accepted.

4.4 Summary of Outputs from the EBIED Simulator

The section contains a summary of each output file for the EBIED simulator.

• logfile.txt, contains the same output that is presented to the user in the Terminal

window as the EBIED simulator runs.

• output bksct se.txt, contains two columns listing the backscattered electron and sec-

ondary electron yield at each time the output data is saved.

• output e BSE.txt, contains the number of backscattered electrons exiting each sur-

face bin as a function distance from electron beam axis for each time the output

data is saved.

• output e SE.txt, contains the number of secondary electrons exiting each surface bin

as a function distance from electron beam axis for each time the output data is saved.

• output electron flux profile.txt, contains the electron flux profile as a function dis-

tance from electron beam axis for each time the output data is saved.



Chapter 4. Hybrid Model Simulator Details 70

• output growth.txt, contains the growth rate of the deposited molecular concentration

as a function distance from electron beam axis for each time the output data is saved.

• output N big D.txt, contains the deposited molecule concentration as a function

distance from electron beam axis for each time the output data is saved.

• output N little d.txt, contains the deposition precursor concentration as a function

distance from electron beam axis for each time the output data is saved.

• output N little e.txt, contains the etch precursor concentration as a function distance

from electron beam axis for each time the output data is saved.

• output surface.txt, contains the surface height as a function distance from electron

beam axis for each time the output data is saved.

• output track.txt, contains the coordinates of each scattering event each electron

made within the growing structure/substrate. Note, a custom Matlab script was

written to parse this data as it contains the x, y, z coordinates for each scattering

event separated by zeros for each electron.

• input previous simulation.txt, contains the height of each surface bin and the dis-

tance each surface bin is from the electron beam axis, including the concentrations

of the deposit, etch, and deposited molecules. These values allow a simulation to be

restarted at a later time.

4.5 Summary of Warning and Error Messages within the

EBIED Simulator

This section contains a summary of each warning/error message within the EBIED simu-

lator to help the user with any issues that may arise. The warning messages do not stop

the running of the simulator but act to inform the user that there maybe an issue. The

error messages do stop the running of the simulator as these are problems that cannot be

overcome.



Chapter 4. Hybrid Model Simulator Details 71

• Warning (Code n): An electron travelled outside the defined depth array. Increase

the size of input parameter, length of electron...maximum z depth array, to prevent

this warning.

– This warning message tells the user to increase the size of the quoted input pa-

rameter so the electron maximum z depth and deposited energy can be recorded.

The numbered code is for the software developer to know where in the EBIED

simulator code this warning occurred.

• Warning! n electron(s) escaped the simulation area. Increase the size of input

parameter, number of surface bins, to prevent this warning.

– This warning message tells the user that an electron has escaped the bounds

of the simulation area and to increase the quoted input parameter so it can be

recorded.

• Warning: The deposition precursor molecule diffusion coefficient is less than 1.0!

Turning diffusion off!

– This warning message tells the user the input diffusion related parameters for

the deposition precursor resulted in a diffusion coefficient of less than 1.0, and

therefore, the Continuum model will proceed with no diffusion. If the Contin-

uum model is to run as normal using a diffusion coefficient of less than 1.0 there

would be an error.

• Warning: The etch precursor molecule diffusion coefficient is less than 1.0! Turning

diffusion off!

– This warning message tells the user the inputted diffusion related parameters

for the etch precursor resulted in a diffusion coefficient of less than 1.0, and

therefore, the Continuum model will proceed with no diffusion. If the Contin-

uum model is to run as normal using a diffusion coefficient of less than 1.0 there

would be an error.

• Warning (Deposit Gas): The dimensionless diffusion coefficient, D’=n, does not

obey the inequality, 0 < D′ < 0.5, surface diffusion may no longer behave correctly.



Chapter 4. Hybrid Model Simulator Details 72

Increase the size of input parameter, delta r, or decrease the size of input parameter,

delta t, to prevent this warning.

– This warning message tells the user the dimensionless diffusion coefficient for

the deposition precursor does not obey the inequality, see Section 3.1.1, and

how to fix the issue.

• Warning (Etch Gas): The dimensionless diffusion coefficient, D’=n, does not obey

the inequality, 0 < D′ < 0.5, surface diffusion may no longer behave correctly.

Increase the size of input parameter, delta r, or decrease the size of input parameter,

delta t, to prevent this warning.

– This warning message tells the user the dimensionless diffusion coefficient for

the etch precursor does not obey the inequality, see section 3.1.1, and how to

fix the issue.

• Warning: Deposit precursor molecules have diffused out of final surface bin, surface

diffusion may no longer behave correctly. Increase the size of input parameter,

number of surface bins, to prevent this warning.

– This warning message tells the user that enough deposition precursor molecules

have diffused out of the final surface bin to cause diffusion to behave not quite

correctly and how to fix this issue.

• Warning: Etchant precursor molecules have diffused out of final surface bin, surface

diffusion may no longer behave correctly. Increase the size of input parameter,

number of surface bins, to prevent this warning.

– This warning message tells the user that enough etch precursor molecules have

diffused out of the final surface bin to cause diffusion to behave not quite cor-

rectly and how to fix this issue.

• Error: Tridiagonal Solver Failed, the simulation is now exiting! This is difficult error

to solve, suggested solutions are to increase the frequency of the Monte Carlo module

or reduce the time step.



Chapter 4. Hybrid Model Simulator Details 73

– This error message tells the user that the Crank-Nicholson solver used in the

Continuum model failed and provides suggestions to fix this issue in future

simulations. Unfortunately this error crashes the simulator.

• Error: The electron beam tilt is greater than 89.9 degrees, the simulator is now

exiting! Decrease the electron beam tilt and restart the simulation.

– This error message tells the user the input electron beam tilt is too high and

to reduce this value.

Resolving issues in the EBIED simulator is addressed by warning and error messages. Not

all issues can be captured by standard messages, however, and it is the responsibility of

the researcher to overcome these on a case by case basis.



Chapter 5

Localized Probing of Gas Molecule

Adsorption Energies and

Desorption Attempt Frequencies

5.1 Introduction

Electron beam induced etching (EBIE) and deposition (EBID) can be used as analysis

techniques for the characterisation of adsorbates at surfaces, enabling the measurement

of properties that include the gas molecule adsorption energy (Ea), desorption attempt

frequency (k0), diffusion coefficient, and electron dissociation cross-section [1, 4, 20, 52,

63, 64, 67, 70, 71]. Unlike complimentary conventional techniques such as thermally pro-

grammed desorption (TPD)[96, 97] the use of EBIE and EBID as analysis techniques

offers high spatial resolution, and the ability to perform measurements on adsorbates in

the steady state at various pressures and temperatures.

Characterisation of adsorbates by EBID and EBIE typically involves the measurement

of deposition or etch rates as a function of one or more control parameters (e.g. electron

beam flux, substrate temperature, precursor vapor pressure). The rates are analysed using

methods based on models of EBIE/EBID rate kinetics to extract the adsorbate properties

of interest. There has been a few prior studies[19, 52] using EBIE/EBID rate kinetics, the

74



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 75

interpretation is not clear due to very different experimental methodology from standard

surface science techniques (e.g. TDP).

A specific example discussed in the literature is the measurement of Ea realized by Ar-

rhenius analysis of electron beam induced deposition rates. A number of groups have

reported that the value of Ea measured by EBID is ∼ 2.5 to 5 times lower than expected

[1, 70, 71], and the surprising result that Ea scales inversely with the electron beam cur-

rent used to perform EBID.[71] These observations are attributed to electron stimulated

desorption[70, 71].

In the following chapter an Arrhenius analyses of EBID rates yield activation energies

and pre-exponential factors that are expected to scale with electron beam current (and

other parameters). Explanation of these dependencies using established models of EBID

rate kinetics is discussed. A series of conditions are defined where the activation energies

and prefactors correspond to Ea and k0, respectively. The results are also applicable to

EBIE and illustrate that: (i) EBID and EBIE are indeed expected to enable meaningful,

quantitative characterization of adsorbates, and (ii) the results of such analyses require

careful interpretation in the context of mechanisms behind EBIE/EBID rate kinetics.

The results in this chapter use the Hybrid Continuum-Monte Carlo model as defined earlier

in Chapter 3 to simulate EBID with cyclopentadienyl trimethyl platinum as the precursor

gas. The specific conditions used were:

Electron Beam

• Diameter, 10.0 nm

• Energy, 5.0 keV

• Current, 10 pA to 10 nA

Precursor Molecule

• Atomic number, 78.0 (Pt)

• Atomic weight, 195.084 amu (PtC5)



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 76

• Density, 21.45 g/cm3 (PtC5)

• Energy required to produce a SE, 0.03 keV (Pt)[98]

• SE escape depth,[98] 5.0 Å

• Pressure, 10 mPa

• Surface area,[55] 35.7 Å2

• Sticking coefficient,[55] 1.0

• Net electron dissociation cross section, 1.0 Å2

• Desorption energy,[99] 666 meV

• Desorption prefactor,[22] 1013 Hz

• Diffusion energy,[99] 0.114 eV

• Diffusion prefactor,[55] 4.16×109 A2/s

5.2 Arrhenius analysis of deposition rates

The precursor molecule adsorption energy (Ea) and attempt frequency (k0) can, in prin-

ciple, be obtained by Arrhenius analysis of the growth rates of deposits made by EBID.

This approach is valid only if the growth rates scale exponentially with reciprocal substrate

temperature (1/T ), and the scaling is caused solely by the temperature-dependence of the

adsorption time (τ):

τ =
1

k0
exp

(
Ea

kBT

)
. (5.1)

EBID growth rates can be calculated by solving equations for the rate of change of con-

centration of precursor gas adsorbates at the substrate surface (∂Na/∂t)[19, 44], referred

here as Equation 5.2, and in Chapter 3 as Equation 3.1:

∂Na

∂t
= Λ− Na

τ
− ∂Nα

∂t
+Da∇2Na, (5.2)



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 77

where t is time and a and α represent gas molecule adsorbates and its fragments generated

by electron induced dissociation, respectively. ∂Na
∂t is given by a sum of fluxes representing

precursor adsorption (Λ), desorption (Na
τ ), electron induced dissociation (

∂Nα
∂t ) and surface

diffusion (Da∇2Na). N is number density at the surface, τ is the adsorbate residence time

at the surface, and Da is the diffusion coefficient. Adsorbate surface coverage (Θ) is

typically assumed to be limited to 1 monolayer by the Langmuir isotherm:

Λ = sF (1−Θ), (5.3)

Θ = ANa (5.4)

where s and F are the gas molecule sticking coefficient and flux, respectively, and A is

the area of a single surface site. The rate of change of concentration of the fragments α is

given by:
∂Nα

∂t
= nσfNa, (5.5)

where f is electron flux, σ is the effective cross-section [100] for electron-induced dissocia-

tion of the adsorbates a, and n is the number of fragments generated per adsorbate. The

etch or deposition rate scales with ∂Nα
∂t . In the case of deposition, the vertical growth rate

is given by:
∂h

∂t
= VγσfNa, (5.6)

where h is the deposit height, and Vγ is the volume of a single molecule added to the

substrate per adsorbate dissociated in the deposition reaction.

In cylindrical coordinates the following parameters are functions of the radial distance (r)

from the electron beam axis: Na, Nα, Λ, Θ, f and h. The gas molecule flux (F ) is typically

assumed to be independent of r and t over the area irradiated by electrons (exceptions are

discussed in [55, 101, 102]):

F =
P√

2πmgkBTg

, (5.7)

where P is gas pressure, mg is the gas molecule mass, kB is Boltzmann’s constant and Tg

is gas temperature.



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 78

Referring to standard EBID equations, 5.2 and 5.6, Arrhenius analysis of growth rates

therefore yields Ea and k0 only if:

(1) the adsorption flux Λ is independent of T over the range of T used to perform the

analysis (i.e. Θ ≈ 0, ds/dT ≈ 0, and dF/dT ≈ 0, so that Λ ≈ sF ), referred to as the

‘athermal adsorption flux condition’,

(2) the thermal desorption rate is much greater than the adsorbate dissociation rate (i.e.

τ−1 � σf), referred to as the ‘reaction-rate limited growth condition’,

(3) net transport of adsorbates through diffusion is negligible (i.e. ∇2Na ≈ 0), referred

to as the ‘negligible diffusion condition’, and

(4) the growth rate is measured in the steady state (i.e. ∂Na/∂t ≈ 0), referred to as the

‘steady state growth condition’.

Under these conditions, Eqns. 5.2 and 5.6 reduce to:

0 = sF − Na

τ
− σfNa, (5.8)

∂h

∂t
=

VγσfsF

τ−1 + σf
, (5.9)

≈ VγσfsFτ, (5.10)

and Arrhenius analysis of ∂h/∂t yields Ea/kB and VγσfsFk−10 (i.e. both the adsorption

energy Ea and desorption attempt frequency k0 can be deduced if the quantity VγσfsF is

known).

As an example of the number of deposits an experimentalist would need to collect, Figure

5.1, contains a small sample of EBID deposits each grown for increasing time and temper-

ature. In Figure 5.1 an observation is that as time progresses the deposit size increases

and once the FWHM of the deposit no longer increases (see insert example) steady state

is reached. Another observation is as temperature increases the size of the deposits de-

creases and becomes dependent on temperature. This behaviour is needed in order to

study desorption.



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 79

Figure 5.1: A series of deposits shown as a function of time and temperature, with an
insert depicting the typical progression of a deposit’s FWHM with time. The point where

the FWHM no longer increases with time is considered steady state growth.

Each of the subsequent Figures in this Chapter all required an Arrhenius analysis to

calculate the desired quantity. As an example of the Arrhenius analysis performed, Figure

5.2 contains a series of plots illustrating the dependence of ln(∂h/∂t) on 1/T is linear

when the four conditions defined are satisfied. The dependence of ln(∂h/∂t) on 1/T can

become sub-linear if one or more of the conditions is violated. Specifically, the extent

of the deviation from linearity scales with the rate of change of the magnitude of the

underlying process with reciprocal temperature (e.g. the rate of change of coverage caused

by depletion with 1/T is greatest when the electron beam current is in the range of ∼ 50

to 500 pA).

In the following sections, the effect conditions 1-4 has on the activation energies and pref-

actors obtained by Arrhenius analysis of EBID rates is shown. The author demonstrates

that if any one of these conditions is not satisfied then Equation 5.10 is invalid and the

values yielded by Arrhenius analysis diverge from Ea and k0.

In the following, the term ‘activation energy’ and ‘pre-factor’ are used to mean the values

obtained by Arrhenius analysis of EBID growth rates, irrespective of whether or not they

correspond to the adsorption energy and the desorption attempt frequency, respectively.



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 80

-8

-6

-4

-2

0

2

ln
(∂

h/
∂t

)

0.002500.002450.002400.002350.002300.002250.00220
1/T (K

-1
)

a)

0.01 pA

0.05 pA

0.1 pA

0.5 pA

1.0 pA

5.0 pA

10.0 pA

3.0

2.5

2.0

1.5

1.0

ln
(∂

h/
∂t

)

0.002500.002450.002400.002350.002300.002250.00220
1/T (K

-1
)

b)

500 pA

100 pA

50 pA

1 nA

Figure 5.2: Plots of ln(∂h/∂t) versus 1/T simulated using electron beam currents in the
range of 0.01 pA – 1 nA in the absence of diffusion. Also shown are the corresponding

straight line fits used to obtain the activation energies plotted in Figure 5.6.



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 81

5.2.1 Athermal adsorption flux condition

Gas molecules incident onto the substrate either adsorb to or reflect from the surface. The

fraction that adsorb is given by the product s(1 − Θ) in Equation 5.3, and the fraction

that reflect is given by sΘ. Hence, if the coverage Θ changes with T , the rate at which gas

molecules are reflected from occupied surface sites affects the temperature dependence of

the adsorption flux Λ which, in turn, affects Na(T ), ∂h/∂t(T ) and the activation energy

and prefactor yielded by Arrhenius analysis of EBID rates.

The surface coverage Θ increases with P and 1/T as shown in Figure 5.3 for the platinum

precursor considered in the simulations. The purple area indicates the range of P and T

corresponding to the ‘athermal adsorption flux condition’, where Θ ≈ 0. In this part of the

parameter space, the effect of Θ(T ) on Arrhenius analysis of deposition rates is negligible.

Outside this region, Θ� 0 and the activation energy and prefactor obtained by Arrhenius

analysis of ∂h/∂t both approach zero as Θ → 1. This is illustrated in Figure 5.4 and 5.5

by plots of the activation energy and prefactor obtained as a function of T (using a current

density of 1.27×10−7 nA/nm2 and a precursor pressure of 10 mPa). The shapes of the

curves in Figure 5.4 and 5.5 are governed by the functional form of the Langmuir isotherm

used in Equation 5.3 (i.e. the dependence of Λ on Θ). Other isotherms will change the

shapes of the curves, but will not be independent of Θ, except for the idealized special

case of unlimited multilayer adsorption of non-interacting adsorbates in which Λ = sF .

The primary practical implication of the athermal adsorption flux condition is that Ar-

rhenius analysis of EBID rates must be performed under conditions of negligible surface

coverage because ∂Na/∂T → 0 as Θ→ 1 due to reflection of gas phase precursor molecules

from occupied surface sites. If Θ > 0 then both Ea and k0 will be underestimated by an

amount that scales with Θ in a manner defined by the adsorption isotherm.

We note that since Λ = sF (1 − Θ), s and F must also not vary with T in order for the

athermal adsorption flux condition to be satisfied. The sticking coefficient can typically be

assumed to be independent of T (as has been done in the simulations). This assumption is

not valid in some cases, such as that of activated sticking encountered in chemisorption [63].

The gas molecule flux F (given by Equation 5.7) is independent of substrate temperature

T if it is varied independently of the gas temperature (Tg). This requirement is satisfied



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 82

Figure 5.3: Precursor coverage (Θ) plotted as a function of pressure (P ) and substrate
temperature (T ) in the limit of zero electron flux (f → 0). The purple region indicates
the range of P and T over which the effect of Θ on Arrhenius analysis of EBID rates is

negligible.

in most EBID experiments because standard EBID is a cold-wall deposition technique in

which Tg is dominated by the temperature of the capillary used to deliver the precursor

gas.

5.2.2 Reaction-rate limited growth condition

The reaction-rate limited growth condition is violated (i.e. τ−1 �� σf) if the rate at

that adsorbates are consumed in the deposition reaction (σf) is significant relative to the

thermal desorption rate. In this situation, Equation 5.10 is not a good approximation of

Equation 5.9, and the activation energies and prefactors yielded by Arrhenius analyses of

EBID rates diverge from Ea and k0, respectively. This is illustrated in Figure 5.6 by a plot

of the activation energy obtained as a function of beam current in the absence of diffusion

(the simulation is performed withD fixed at zero in order to delineate the effects of σf from

the additional effects of diffusion that are discussed below). An increase in beam current

causes an increase in the electron flux (f) that, in turn, causes an increase in the adsorbate



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 83

700

600

500

400

300

200

100

0

Ac
tiv

at
ion

 en
er

gy
 (m

eV
)

450400350300250
T (K)

0.9906 0.3791 0.0152 0.001 0.0001
Θ

Ea = 666 meV

Figure 5.4: Activation energy obtained by Arrhenius analysis of the EBID rate (∂h/∂t)
simulated at a number of temperature windows between 250 K and 450 K. The adsorption
energy (Ea) of 666 meV is shown as a dashed line. The top axis shows the precursor
coverage (Θ) corresponding to each temperature shown on the bottom axis. The activation
energy diverges from Ea as Θ → 1. [Each datapoint was calculated from EBID rates

simulated over a temperature window ΔT in the range of 20 to 50 K.]

consumption rate in the deposition reaction (σf). If σf is significant relative to τ−1, the

denominator of Equation 5.9 is dominated by the temperature-independent σf . Hence, the

activation energies (and prefactors) yielded by Arrhenius analyses of EBID rates approach

zero as σf → ∞. More specifically, in the absence of diffusion, the activation energy is

directly proportional to the extent of depletion (given by Θr→0/Θr→∞ since f = 0 at

r = ∞). This is illustrated in Figure 5.6 by a plot of Θr→0/Θr→∞, superimposed on the

plot of activation energy versus beam current.

The primary practical consequence of the reaction-rate limited growth condition is that

EBID must be performed in the so-called reaction rate limited growth regime [44] defined

by τ−1 � σf (i.e. in the regime where electron irradiation does not cause significant

depletion of precursor adsorbates).



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 84

101
102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014

Pr
e-

fa
ct

or
 (H

z)

450400350300250
T (K)

0.9906 0.3791 0.0152 0.001 0.0001
Θ

k0 = 1013 Hz

Figure 5.5: Prefactors corresponding to the activation energies shown in Figure 5.4.
The desorption attempt frequency (k0) of 10

13 Hz is shown as a dashed line. The top
axis shows the precursor coverage (Θ) corresponding to each temperature shown on the

bottom axis. The prefactor diverges from k0 as Θ→ 1.

5.2.3 Negligible diffusion condition

If the concentration gradient, ∇2Na �≈ 0, adsorbates are replenished not only through

adsorption from the gas phase, but also via diffusion along the substrate surface [44].

This is significant because any adsorbate replenishment mechanism that is distinct from

adsorption alters the temperature-dependence of the coverage Θ and hence the activation

energy (and prefactor) yielded by Arrhenius analysis of deposition rates.

In EBID, adsorbate replenishment through diffusion is negligible in the reaction rate lim-

ited growth regime [44] because net adsorbate transport through diffusion requires an

adsorbate concentration gradient. Hence, if the reaction-rate limited growth condition is

satisfied (i.e. τ−1 � σf), then the negligible diffusion condition is automatically satisfied

(i.e. ∇2Na ≈ 0). This is illustrated in Figure 5.6 by the plot of activation energy versus

beam current (simulated with diffusion activated in the model) it shows that the activation

energy approaches Ea as the extent of depletion approaches zero.



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 85

1.0

0.8

0.6

0.4

0.2

0.0

Depletion

10-2 10-1 100 101 102 103 104

Electron beam current (pA)

700

600

500

400

300

200

100

0

Ac
tiv

at
io

n 
en

er
gy

 (m
eV

)

 Activation energy (Da = 0)
 Depletion (Da = 0)
  Activation energy  (Da > 0)

Figure 5.6: Dependence of activation energy on beam current simulated in the absence
of diffusion (Da = 0) and in the presence of diffusion (Da = D0e

−Ed/(kBT ), where Ed is the
diffusion energy). Also shown is a plot of adsorbate depletion (Θr→0/Θr→∞) simulated
at the beam axis (r → 0) in the absence of diffusion. The activation energy diverges from
the adsorption energy (Ea) of 666 meV as the extent of depletion approaches 1. The
precursor pressure was 0.01 Pa and the temperature was varied from 400 to 450 K.

In Figure 5.6, the difference between the curves of activation energy versus beam current

simulated with and without diffusion show that the net effect of diffusion is to decrease

the discrepancy between the activation energy and Ea. This is expected since the net flow

through diffusion acts to replenish adsorbates consumed in EBID, and therefore, alleviates

depletion.

5.2.4 Steady state growth condition

In order to obtain Ea and k0, the Arrhenius analysis must be performed in the steady

state (whereby ∂Na
∂t ≈ 0 and ∂h/∂t is constant). If steady state has not been attained, the

growth rate changes during the time interval where ∂h/∂t is measured by an amount that

is different at each substrate temperature, thereby altering the activation energies and

prefactors obtained by the Arrhenius analysis of EBID growth rates. In practice, this is

problematic only if the reaction rate limited growth condition is not satisfied, the growth



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 86

time is too short, or some process such as electron beam damage modifies the deposit

height while it is being grown by EBID. Experimentally, the condition of steady state

growth can be verified by measuring deposit heights at each temperature versus time, and

by showing that the rate of change of height is constant.

5.3 General implications for the determination of adsorbate

properties

The discussion and conclusions drawn from this research can also be applied to other re-

search projects. In particular those focused on other precursor adsorbates. In the following

section how the details of this research can be applied by others is discussed.

The overarching qualitative implication of the first three conditions (athermal adsorption

flux, reaction-rate limited growth and negligible diffusion) is that the activation energy

measured by EBID is lower than Ea if any one of the conditions is violated. The dis-

crepancy occurs if the increase in adsorbate concentration with reciprocal temperature is

smaller than expected from the thermal desorption rate τ−1. Violations of one or more of

these conditions likely account for the fact that activation energies reported in the EBID

literature are often lower than Ea, but never greater than Ea [1, 70, 71].

General conclusions are also applicable to EBIE, as it is analogous to EBID, except that

Equation 5.6 represents the etch pit depth rather than the deposit height. The above

analysis is strictly applicable only to systems where adsorption is described by a single

potential well. In cases such as activated chemisorption, described by multiple potential

wells and one or more adsorption barriers [63, 72, 103], the above analysis must be re-done

using appropriate rate equations in order to determine the correct meaning and scaling

of activation energies and prefactors obtained in different temperature regimes. Care

must also be taken to ensure that mechanisms that are not accounted for by Equation

5.2 do not alter the temperature dependence of Na. For example, adsorbate-adsorbate

interactions are not included and also, in EBIE, a number of such special cases have been

identified[2, 3, 12, 51, 52]. In these instances, the meaning of the measured activation



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 87

energies and prefactors must be evaluated on a case-by-case basis, using the appropriate

rate equations.

It should be noted that, in the present work, Arrhenius analysis is applied to vertical

deposition rates at the beam axis (i.e. |∂h/∂t|r→0). The conclusions are, applicable to

Arrhenius analysis of all other measures of growth rate such as the deposit volume [71]

and mass [70]. In these cases, the steady state growth condition is more stringent because

steady state is attained only once the deposit shape stops changing due to the time-

evolution of the electron interaction volume inside a growing deposit (see, for example,

the discussions of the time-evolution of deposit shapes and base diameters in [6, 60, 74]).

Qualitatively, the decrease in activation energy with increasing beam current seen in Fig-

ure 5.6 is observed experimentally[71]. It is attributed to ESD[70, 71] rather than the

phenomenon of adsorbate depletion that is inherent to EBID. ESD causes the adsor-

bate concentration (Na) to decrease at a rate σEf , where σE is the cross-section for

ESD[48, 97, 104, 105]. It can be incorporated into Equation 5.2 in the form of the ESD

flux σEfNa:
∂Na

∂t
= Λ−

(
Na

τ
+ σEfNa

)
− ∂Nα

∂t
+Da∇2Na, (5.11)

and therefore alters the denominator of Equation 5.9:

∂h

∂t
=

VγσfsF

τ−1 + σEf + σf
. (5.12)

Consequently, the ESD rate σEf affects Arrhenius analysis by contributing to adsorbate

depletion in the same manner as the dissociation rate σf . The extent of ESD is typically

negligible since, for most adsorbates, σE lie in the range[97] 10−7Å2 to 10−2Å2 (i.e., in

general, σE 	 σ). Thus the decrease in activation energy with beam current observed by

Li et al. [71] is expected from the net effect of σf + σEf even if σE is negligible. It is

caused by an increase in the extent of depletion of precursor adsorbates with increasing

electron flux (i.e. violation of the reaction rate limited growth condition), irrespective of

whether or not ESD plays a significant role in EBID.



Chapter 5. Localized Probing of Gas Molecule Adsorption Energies and Desorption
Attempt Frequencies 88

5.4 Conclusion

Development of a hybrid continuum-Monte Carlo model of electron beam induced etching

and deposition enables accurate calculation of the growth of nano- and micro-structures

over the length and time scales used in experiments. The model was used to simulate

the dependencies of EBID rates on experimentally controlled growth parameters, and to

interpret the physical meaning of activation energies and pre-exponential factors obtained

by Arrhenius analysis of EBID rates. The activation energies are shown to correspond

to precursor molecule adsorption energies, and the prefactors to desorption attempt fre-

quencies, provided that EBID is performed under specific conditions. It is shown how

deviations from these conditions affect the Arrhenius analysis and explained the observed

trends as being caused by changes in adsorbate concentration with key EBID experimental

parameters.



Chapter 6

Electron Beam Induced

Deposition As a Technique for the

Analysis of Precursor Molecule

Diffusion Barriers and Pre-Factors

6.1 Introduction

Continuing the analysis outlined in the prior chapter, the same model was used to develop

a procedure for the determination of the diffusion barrier (ED) and pre-exponential factor

(Do), by exploiting the fact that the precursor molecules consumed in EBID are replenished

through two pathways – adsorption from the gas phase and diffusion along the surface.

It is shown that diffusion gives rise to a growth rate component which can be isolated,

and that Arrhenius analysis of this growth rate component can be used to deduce ED

and Do. The technique is compelling relative to conventional diffusion analysis techniques

[106, 107] because it yields both ED and Do and can be combined with the analysis in

Chapter 5 to obtain the corrugation factor (defined as the ratio of the diffusion energy

and the adsorption energy) from a single set of self-consistent data with nanoscale spatial

resolution.

89



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 90

Is it noted that Utke et al. [4] and Szkudlarek et al.[65] previously used the deposit

geometry to estimate the diffusion coefficient of Cu(hfac)2. Fowlkes et al.[64] estimated

the diffusion coefficient of W(CO)6 by an analysis of the growth rates of pillars fabricated

by EBID using a pulsed electron beam. In this chapter ED andDo are probed by measuring

the dependence of diffusion rate on substrate temperature.

The results presented use the Hybrid Continuum-Monte Carlo model as defined earlier

in Chapter 3 to simulate EBID with cyclopentadienyl trimethyl platinum using a 5 keV,

1 nA, stationary, Gaussian electron beam with a diameter of 100 nm, a diffusion energy

and pre-exponential factor of 114 meV and 4.16 × 109 Å2s−1, respectively, and substrate

temperatures in the range of 120 to 350 K. The diffusion energy and pre-exponential

factor used here were respectively reported in the work by Shen et al. [99] and Winkler et

al.[55](the values were assumed to be the same on the growing deposit and the substrate).

All other model input parameters are identical to those used in Chapter 5. Langmuir

adsorption is assumed at all temperatures, hence precursor condensation that occurs at

low temperatures is ignored by the model. This point is discussed further below.

6.2 Roles of Desorption and Diffusion in EBID

It is shown in Chapter 5 that Arrhenius analysis of EBID rates can be used to obtain

the adsorption energy and desorption attempt frequency. Specifically, under appropriate

conditions the deposit growth rate, R, can be approximated by:

R ≈ V σfsFτ (6.1)

≈ V σfsF τoexp

(
Ea

kBT

)
(6.2)

and a plot of ln(R) vs 1/T is linear, and has a slope of Ea
kBT and a y-intercept of V σfsFτo.

Equation 6.1 is valid only in the so-called reaction rate limited growth regime [5] where

adsorbate depletion caused by the electron beam is negligible. In this regime, diffusion

plays a negligible role in the replenishment of adsorbates consumed in EBID[10]. However,

in the opposite extreme of high depletion (encountered at high electron beam current

densities), diffusion can make a very significant contribution to EBID [4, 5, 64]. This is



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 91

illustrated in Figure 6.1(a) which shows cross-sectional slices through deposits simulated at

a number of temperatures. At the lowest temperature shown in the figure, the deposit has

a flat-top geometry because D is negligible, and precursor adsorbates under the Gaussian

electron beam are highly depleted – i.e. within the flat region of the deposit, the vast

majority of molecules adsorbing through sF are consumed in EBID through σfNa. At

elevated temperatures, each deposit contains a characteristic ‘ring’ generated by adsorbates

supplied through surface diffusion (i.e. through the term D∇2Na in Equation 3.1). The

ring is also seen in the steady state vertical deposition rates R(r) shown in Figure 6.1(b)

for a number of temperatures Tn. In the following sections, an Arrhenius analysis of the

volumetric growth rate of this ring is used to obtain ED and Do.

6.3 Adsorbate Transport Through Diffusion

The diffusion flux in the EBID model (Equation 3.1) yields the net transport of adsorbates

across the surface. It consists of a diffusion coefficient, D, multiplied by the driving force

of diffusion, ∇2Na. The latter relates the net flow of adsorbates across the surface to the

adsorbate concentration gradient at each point on the surface. In cylindrical coordinates,

the driving force of diffusion, represented from hereon by c, is given by:

c = ∇2Na =
∂2Na

∂r2
+
1

r

∂Na

∂r
(6.3)

Since c and D appear as a product in Equation 3.1, the dependence of c on r and T must

be understood if we are to develop an Arrhenius analysis technique for the determination

of ED and Do.

Figure 6.2(a) shows c(r) profiles corresponding to the R(r) profiles in Figure 6.1(b) at a

number of temperatures Tn, simulated under conditions of significant depletion caused by

the electron beam. The extent of depletion is illustrated in Figure 6.2(b) by plots of the

surface coverage Θ(r) and the normalized electron flux profile fN (r).

The plots of c(r) show that it is comprised of two distinct regions separated by ro: one

positive (at r < ro, where in this particular case ro ∼ 125 nm) and the other negative (at



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 92

6

5

4

3

2

1

0

R
 (n

m
 s

-1
), 

f N
 (x

5)

250200150100500
r (nm)

 Tn = 150K
 Tn = 170K
 Tn = 200K
 Tn = 225K
 Tn = 250K
 Tn = 275K
 Tn = 300K
 Tn = 320K

(b)

Figure 6.1: Effects of diffusion on the shapes of deposits grown by EBID. (a) A series
of deposits simulated as a function of temperature. At low temperatures, the deposit
geometry is unaffected by diffusion, but at elevated temperatures each deposit contains
a characteristic ‘ring’ generated by adsorbates supplied through surface diffusion. (b)
Steady state vertical growth rates (R) calculated as a function of distance (r) from the
electron beam axis at a number of temperatures (Tn). All simulations were performed
using a Gaussian electron beam under conditions of high adsorbate depletion near the
beam axis. The normalized electron flux profile fN (r) is shown as a dashed curve in (b).

r > ro). To explain the dependence of c on r, we must consider how adsorbates are replen-

ished during EBID. When electrons irradiate the substrate, an adsorbate concentration

gradient (i.e. the coverage gradient seen in Figure 6.2(b)) forms as precursor molecules are

consumed in the deposition reaction. The consumed adsorbates are replenished through

adsorption from the gas phase and diffusion along the surface. The diffusing adsorbates

originate in the negative part of c(r), labelled ‘source’ in Figure 6.2(a), and are dissociated

in the positive region, labelled ‘sink’. The integral of c(r) over the sink region (0 ≤ r ≤ ro)

is a fluence C (in units of Å−2) corresponding to in-diffusing adsorbates that are disso-

ciated by electrons and give rise to the formation of the rings seen in Figure 6.1. CD is



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 93

-3

-2

-1

0

1

2

3

c(
r)

 [x
10

7 ] (
Å-4

)

250200150100500
r (nm)

ro

sink

source

(a)

 Tn = 275K
 Tn = 300K
 Tn = 320K

 

 Tn = 150 K
 Tn = 170 K
 Tn = 200 K
 Tn = 225 K

1.2

1.0

0.8

0.6

0.4

0.2

0.0

C
ov

er
ag

e,
 f N

250200150100500
r (nm)

Θ(r → 0) ≈ 0

Θ(r → ∞) ≈ 1(b)

Figure 6.2: (a) Steady state plots of the driving force of diffusion (c) versus distance (r)
from the electron beam axis at a number of temperatures (Tn). Each c(r) profile contains
two distinct regions corresponding to the source and sink of adsorbates that diffuse along
the surface and are consumed in EBID. The sink and source are separated by ro, shown
as a dashed line at 125 nm. (b) Corresponding adsorbate coverage profiles (Θ(r)), and

the normalized electron flux profile ((fN (r), dashed grey curve).

therefore the corresponding growth rate, and the volumetric deposition rates of the rings

(in units of Å3s−1) are therefore given by:

RV D = V CD (6.4)

= V C Do exp

(−ED

kBT

)
(6.5)

Equations 6.4 and 6.5 are analogous to Equation 6.1 and 6.2, and as shown below, a plot

of ln(RV D/C) versus 1/Tm can be used to obtain ED and Do, provided the quantity C is

known at each of the temperatures Tm used to generate the Arrhenius plot. The Arrhenius



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 94

analysis must be performed on the quantity RV D/C (rather than RV D) because C is a

function of T , as shown in Figure 6.3(a). Corresponding plots of RV D(T ) and RV D/C(T )

are shown in parts (b) and (c) of the figure, and discussed below.

The above arguments, however, are valid only over a particular temperature window,

shown in Figure 6.3, as is discussed in detail below.

Experimentally, C can be obtained at any given temperature Tn by measuring the depo-

sition rate R(r) and rearranging Equation 3.2 to give Na(r):

Na = R/V σf (6.6)

which can then be substituted into Equation 6.3 to obtain c(r). Integration of c(r) over

0 ≤ r ≤ ro gives C. Hence, at a given temperature Tn, a plot of ln(RV D/C) versus 1/Tm

can be obtained from the measured experimental growth rates (R(r, Tm) and RV (Tm),

where Tm represents a set of temperatures centered on Tn used to generate the Arrhenius

plot (see, for example, the simulated Arrhenius plots shown in Figure 6.4). The quantities

V , σ and f(r, T ) must also be known because they appear in Equation 6.6. The electron

flux profile f(r, T ) is a function of T because it includes electrons emitted from the deposit

at each temperature used to generate the Arrhenius plot (e.g. see how the deposit geometry

changes with T in Figure 6.1). It can be obtained using Monte-Carlo simulations of

electron-solid interactions [80, 88, 108] and the geometries of deposits grown by EBID. If

the dissociation cross-section σ is not known, it can be approximated by an analysis of

EBID growth rates [64].

6.4 Extraction of Diffusion Energies and Pre-Exponential

Factors

Figure 6.5(a) shows plots of activation energies and pre-exponential factors obtained by

Arrhenius analyses of RV D at a number of temperatures Tn. The corresponding diffusion

coefficients are shown in Figure 6.5(b). Each point n was generated as follows:



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 95

0.6

0.5

0.4

0.3

0.2

0.1

0.0

C
 (Å

-2
)

350300250200150
Tn (K)

Tn = 275 K 

Tn = 220 K 

(a)

8

6

4

2

0

R
V

D
 [x

10
7 ] (

Å
3 s-1

)

350300250200150
Tn (K)

Tn = 275 K 

Tn = 220 K 

(b)

4

3

2

1

0

R
V

D
/C

 [x
10

9 ] (
Å

5 s-1
)

350300250200150
Tn (K)

Tn = 275 K 

Tn = 220 K 

(c)

Figure 6.3: (a) The fluence (C) found by integrating c(r) over the sink (0 ≤ r ≤ ro)
shown in Figure 6.2(a), plotted for a number of temperatures Tn. (b,c) Correspond-
ing plots of RV D and RV D/C versus Tn. The Arrhenius analysis method yields good

approximations to ED and Do at temperatures between ∼ 220 K and ∼ 275 K.



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 96

21

20

19

18

17

ln
(R

V
D
/C

)

876543

1/Tm [x10-3] (K-1)

 Tn = 150 K
 Tn = 200 K
 Tn = 250 K
 Tn = 300 K

Figure 6.4: Arrhenius plots used to generate the data in Figure 6.5(a) at temperatures
(Tn) of 150, 200, 250 and 300 K.

• EBID was simulated at each of the temperatures (Tn) plotted in Figure 6.5(a) in order

to obtain a set of deposits and the corresponding vertical growth rates R(r, Tn). Such

data can be obtained experimentally by performing EBID as a function of substrate

temperature.

• Na(r, Tn) was calculated using Equation 6.6, and using the values of V and σ used

in the simulations. These values must be known if this procedure is applied to

experimental data, as must f(r, Tn). The latter can be obtained using Monte-Carlo

simulations of electron trajectories in the deposit made at each temperature.

• C(Tn), shown in Figure 6.3(a), was calculated by substituting Na(r, Tn) into Equa-

tion 6.3, and integrating c(r, Tn) over 0 ≤ r ≤ ro.

• RV D, shown in Figure 6.3(b), was calculated by performing each simulation with

and without diffusion and by taking the difference between the resulting simulated

volumes. It was analyzed on the basis of Equation 6.4. An experimental method for

the measurement of RV D is discussed below.



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 97

350

300

250

200

150

100

50

0

A
ct

iv
at

io
n 

en
er

gy
 (

m
eV

)

350300250200150
Tn (K)

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

10
14

10
15

Pre-exponential factor (Å
2s

-1)

 Activation energy
 Pre-factor

ED

Do

condition 3
is violated

Tn = 220 K

 

Tn = 275 K 

 

condition 4
is violated

(a)

10
6

2

4

6

10
7

2

4

6

10
8

2

Di
ff

us
io

n 
co

ef
fic

ie
nt

 (
Å

2 s-1
)

350300250200150
T (K)

Tn = 220 K

Tn = 275 K 
(b)

Figure 6.5: (a) Activation energy (red) and pre-exponential factor (blue) obtained by
Arrhenius analysis of RV D/C at a number of temperatures Tn. The quantities are ap-
proximately equal to ED and Do (shown as dashed lines) over the temperature window
220 � Tn � 275 K. (b) Diffusion coefficient (D) versus temperature (dashed black curve),
and diffusion coefficients (red diamonds) calculated using the activation energies and pre-

exponential factors in (a).



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 98

• An Arrhenius plot of ln(RV D/C) was produced for each temperature Tn, using

growth rate data from five temperatures Tm centered on Tn (i.e. m = n + i, where

i is an integer in the range of -2 and 2). Figure 6.4 shows these plots for Tn = 150,

200, 250 and 300 K.

• The slope of each Arrhenius plot yields an activation energy (multiplied by −1
kBTn

)

and a pre-exponential factor (multiplied by V ), as per Equation 6.5.

The data in Figure 6.5(a) shows that the activation energies and pre-exponential factors

obtained using this procedure are good approximations to ED and Do over a particular

temperature range, which in this case is 220 � Tn � 275 K (the ‘true’ values ED = 114 meV

and Do = 4.16×109 Å2s−1, shown as dashed lines on the plot, are those that were used in
the model [10] that was used to simulate EBID in the first step of the above procedure). It

is noted that the method appears to produce correct diffusion coefficients (Figure 6.5(b))

at temperatures between ∼ 275 K and ∼ 300 K because, in this temperature range, errors

in the activation energy and pre-exponential factor offset each other when Equation 2.5 is

used to calculate D.

The reasons for why the Arrhenius analysis method fails at temperatures that are too high

or too low are discussed in detail below.

6.5 Pre-requisites

Arrhenius analysis can be used to extract ED and Do if the following set of conditions is

satisfied at each temperature Tn used to perform EBID:

1. Steady state growth condition: The vertical growth rate must be constant: ∂R
∂t ≈ 0.

2. Significant adsorbate concentration gradient condition: Adsorbate coverage must be

low near the beam axis (as r → 0) and high far away from the beam (r →∞).

3. Diffusion-dominated replenishment condition: Adsorbate replenishment near the de-

posit periphery (i.e. near ro, shown in Figure 6.2(a)), must be dominated by diffu-

sion, which is satisfied when D∇2Na � sF in the vicinity of ro.



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 99

4. Efficient adsorbate consumption condition: In-diffusing adsorbates (i.e those diffus-

ing from the source to the sink shown in Figure 6.2(a)) must be dissociated by

electrons, which is satisfied when σf � 1/τ .

In the following sections each condition is discussed and with an explanation why the

Arrhenius analysis method fails when any one of the above conditions is not satisfied.

6.5.1 Condition 1 - Steady State Growth

During the early stages of EBID, R(r) changes with time as the surface irradiated by

the electron beam evolves from that of a horizontal plane into a structure that eventually

grows at a constant rate antiparallel to the electron beam (as discussed in [6, 10, 60, 74]).

The growth rates used for Arrhenius analysis must be measured in the steady state so that

changes in RV D/C with T are caused purely by the temperature dependence of D, and are

not affected by the temperature-dependence of the transition from the initial to the steady

state. Experimentally, attainment of a steady state can be verified simply by fabricating a

set of deposits as a function of growth time, and by measuring R(r, t). Models such as the

one used here output the time evolution of R(r); hence, it is easy to ensure that Condition

1 is satisfied, and the results in Figure 6.5(a) were obtained in the steady state.

6.5.2 Condition 2 - Significant adsorbate concentration gradient

Adsorbate depletion under the electron beam is needed in order to generate a concentration

gradient that gives rise to net flow of surface-adsorbed precursor molecules. In the absence

of a concentration gradient, c(r) ≈ 0, and diffusion does not contribute to EBID[10, 44].

In the opposite extreme, illustrated for the case of the Langmuir isotherm in Figure 6.2(b),

Θ(r → 0) ≈ 0 and Θ(r → ∞) ≈ 1, RV D is maximized and hence errors associated with

the measurement of RV D are minimized.

Significant depletion (Θ(r → 0) ≈ 0) occurs in the so-called mass transport limited growth

regime where the adsorbate dissociation rate is much greater than the adsorbate replen-

ishment rate [44]: σf � sF/Na + τ−1. This condition is realized by using a high electron

beam current density.



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 100

0.25

0.20

0.15

0.10

0.05

0.00

C 
(Å

-2
)

10-2 10-1 100 101 102 103 104

Electron Beam Current (pA)

0.106 1.051 9.759 55.675 96.784 99.788 99.982
Depletion (%)

 

 

reaction rate
limited growth

regime
 

mass transport
limited growth

regime

Figure 6.6: The fluence C plotted as a function of electron beam current.

Far away from the beam, adsorbate coverage is saturated (i.e. Θ(r → ∞) ≈ 1) when

the adsorption rate is much greater than the thermal desorption rate: sF � Na/τ . This

condition is realized by using a high precursor gas pressure.

The data in Figure 6.5(a) were obtained in the limit of high depletion and are not affected

by condition 2. To demonstrate what happens when the adsorbate concentration gradient

is too small, Figure 6.6 shows a plot of C as a function of electron beam current (for a beam

diameter of 100 nm). The extent of depletion, defined as the percentage 100
(
1− Θ(r→0)

Θ(r→∞)

)
,

is shown on the top axis. The data show that C ≈ 0 in the reaction rate limited growth

regime, and that it increases with electron beam current in the mass transport limited

growth regime. The Arrhenius analysis method obviously fails as C → 0.

6.5.3 Condition 3 - Diffusion-dominated replenishment

Adsorbates diffusing from the source to the sink shown in Figure 6.2(a) give rise to the

formation of the rings seen in Figure 6.1, and to RV D. However, vacant surface sites in

the sink are also populated by gas molecules adsorbing from the gas phase. Hence, the

growth rate of the ring is dominated by the diffusing adsorbates only if D∇2Na � sF (in

the vicinity of ro). If this condition is not satisfied (i.e. if the diffusion rate is too low



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 101

because T is too low), then RV D has a significant contribution from sF and the magnitude

of this contribution increases with decreasing T . The net effect is seen in Figure 6.3(b) as

a reduction in the slope of RV D(T ) below ∼ 220 K. Consequently, the Arrhenius analysis

method fails at low temperatures (see Figure 6.5(a)) because the temperature-dependence

of RV D/C is not dominated by the temperature-dependence of D (which is defined by

Equation 2.5).

To confirm that the failure of the Arrhenius analysis method at low tempertures is caused

by violation of condition 3, Figure 6.7 shows a plot of the maximum flux of diffusing

adsorbates (max[D∇2Na(r)]) versus Tn. The plot reveals that this flux is equal to the

adsorption flux (sF ) at ∼ 200 K. That is, the condition D∇2Na � sF is violated as the

5 point temperature window used to generate each point Tn in Figure 6.5(a) approaches

200 K.

It is noted that at temperatures in excess of ∼ 290 K, the plot in Figure 6.7 shows that

max[D∇2Na(r)] rapidly decreases with increasing T . This is caused by depopulation of

the surface through thermal desorption which compromises the Arrhenius analysis method

because the EBID rate approaches zero as Na → 0. This effect contributes to the failure

of the method at high temperatures seen in Figure 6.5(a). However, the failure at high

temperatures is also contributed to by condition 4, which is discussed below.

A plot equivalent to Figure 6.7 can be generated using experimental EBID data, and can

therefore be used to find the range of temperatures over which condition 3 is satisfied.

6.5.4 Condition 4 - Efficient adsorbate consumption

The driving force of diffusion c(r) defines the net mass transport of adsorbates from the

source to the sink shown in Figure 6.2(a). However, the in-diffusing adsorbates must

not desorb (term Na/τ in Eqn. 3.1), but must instead be dissociated by electrons (term

σfNa) in order to be consumed in the EBID reaction and contribute to RV D. Hence,

if the condition σf � 1/τ is not satisfied (i.e. if the residence time of adsorbates at

the surface is too short because the temperature is too high), then both RV D and C are

reduced by an amount that scales with T due to the exponential dependence of 1/τ on



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 102

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Pr
ec

ur
so

r F
lu

x 
(Å

-2
s-1

)

350300250200150
Tn (K)

 max[D∇
2
Na(r)]

 sF
Tn = 290 K

Tn = 200 K

Figure 6.7: Maximum flux of diffusing adsorbates (max[D∇2Na(r)]) plotted at a number
of temperatures Tn. The adsorption flux (sF ) is shown as a dashed horizontal line.

T (Equation 2.3). This effect is seen in Figure 6.3(a-b), where it causes abrupt changes

in the slopes of C(T ) and RV D(T ) at temperatures greater than ∼ 275 K. Consequently,

the Arrhenius analysis method fails at high temperatures (see Figure 6.5(a)) because the

temperature-dependence of RV D/C is not dominated by the temperature-dependence of

D.

It is noted that the plot of RV D on Tn in Figure 6.3(b) reveals that RV D increases with

T up to 275 K, beyond which it decays with increasing T . The general shape of this

curve is the consequence of two competing exponential dependencies on temperature: the

increase in D with T defined by Equation 2.5, and the decrease in τ with T defined by

Equation 2.3. The rapid decay in RV D(T ) at high temperatures is caused by violation of

condition 4 (i.e. desorption of in-diffusing adsorbates) which becomes significant at 275 K,

and is distinct from the thermal depopulation of the surface seen in Figure 6.7 which is

insignificant below ∼ 290 K.

Experimentally, the maximum temperature at which condition 4 is satisfied can be found

using plots of C(T ) and RV D(T ) analogous to those shown in Figure 6.3.



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 103

6.6 Limitations of the Arrhenius analysis method

In the previous sections ED and Do can be found by Arrhenius analysis of nanostruc-

ture growth rates provided the analysis is performed over a specific temperature window.

Within this window (shown in Figure 6.5(a)), the mean errors in ED and Do are 9% and

30%, respectively. The latter is greater because Do is obtained from the y-intercepts of

the Arrhenius plots shown in Figure 6.4, where the vertical axis is ln(RV D/C). The mean

error in ln(Do) is smaller than 2%.

The valid temperature window is defined by the temperature-dependence of ln(RV D/C).

Specifically, within the window, conditions 3 and 4 are satisfied and the temperature-

dependence of ln(RV D/C) is dominated by that of D (given by Equation 2.5). Outside

the window, the method fails because the temperature-dependence of ln(RV D/C) changes

as condition 3 and/or 4 is violated. The method also fails if nanostructure growth rates are

not measured in the steady state (condition 1), or the electron beam current density and

hence the extent of adsorbate depletion is too low (condition 2). If all four conditions are

satisfied, uncertainties in ED and Do are dominated by noise in c(r) profiles (see Figure

6.2a) because of the ∇2 operator in Equation 6.3. Hence, in practice, nanostructure

geometries (i.e. growth rates) must be measured to a high degree of accuracy in order to

minimize noise in c(r).

The width of the valid temperature window is system specific (e.g. it is affected by the the

corrugation factor[106] ED/Ea), and can be maximized by tuning the precursor pressure

and electron beam current density.

Finally, we note that deployment of the proposed method requires an experimental pro-

cedure for the attainment of RV D(Tn). The simplest procedure is to collect a set of

R(r, Tn) profiles such as that shown in Figure 6.1(b), subtract the lowest temperature pro-

file R(r, Tmin) from each R(r, Tn) and integrate the resulting curves over r to get RV D(Tn).

To demonstrate the validity of this approach we used our simulated R(r, Tn) profiles to

obtain RV D(Tn) using Tmin values of 120 and 150 K. Figure 6.8 shows the resulting plots of

activation energy and pre-exponential factor versus Tn. It shows that the analysis method

works, but Tmin affects the width of the valid temperature window (as expected), which is



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 104

characterized by a plateau in each curve. We note that the dependencies of the activation

energy and pre-factor on Tn beyond the plateau depend on the method used to obtain

RV D, as is seen by the differences between the results in Figure 6.8 and 6.5(a). This is a

consequence of the effects of Tmin and violation of condition 4 on the diffusion-free compo-

nent of the growth rate (produced by adsorption from the gas phase) at low and high Tn,

respectively. The minimum temperature that can be used to perform conventional EBID

(rather than cryogenic EBID [109, 110]) is limited by adsorbate condensation onto the

substrate. Condensation (i.e. formation of multilayers rather than Langmuir adsorption

defined by the term (1−Θ) in Equation 3.1) was ignored in our analysis (however, the pre-
cursor condensation temperature is easy to find and avoid experimentally [52, 109, 110]).

More generally, the analysis presented here must be re-done for systems that do not ex-

hibit Langmuir adsorption, and systems in which coverage-dependent phenomena such as

adsorbate-adsorbate interactions are significant (i.e. such effects must be incorporated

into Equation 3.1).

As a general guide to experimentalists the number of deposits required is quite large with

the entire project estimated to take several weeks. This is due to the sheer number of de-

posits required to find the correct temperature range, electron beam current, and precursor

gas pressure where diffusion is dominate. Once found the steady state growth rates also

need to be determined for each of probed temperatures. Assuming best case conditions,

using the temperature range shown here with one pillar per 10 K, with only 5 pillars to

find steady state, that is 100 pillars, which depending on the growth rate of the precursor

and the experimentalist the total time could be several days. In comparison the time re-

quired to simulate the electron flux profile of each pillars is insignificant of approximately

10 minutes per pillar due to the hybrid simulator’s ability for custom surfaces to be input.

The author through experience can imagine the several weeks mentioned earlier being the

most likely time frame.

6.7 Conclusion

Using the hybrid Continuum-Monte Carlo model a method was developed which enables

the calculation of diffusion energies and pre-exponential factors by Arrhenius analysis of



Chapter 6. Electron Beam Induced Deposition As a Technique for the Analysis of
Precursor Molecule Diffusion Barriers and Pre-Factors 105

250

200

150

100

50

A
ct

iv
at

io
n 

en
er

gy
 (

m
eV

)

350300250200150
Tn (K)

10
7

10
8

10
9

10
10

10
11

10
12 Pre-exponential factor (Å

2s
-1)

 Activation energy
 Pre-factor

ED

Do

(a) Tmin = 120 K

250

200

150

100

50

A
ct

iv
at

io
n 

en
er

gy
 (

m
eV

)

350300250200150
Tn (K)

10
7

10
8

10
9

10
10

10
11

10
12 Pre-exponential factor (Å

2s
-1)

 Activation energy
 Pre-factor

ED

Do

(b) Tmin = 150 K

Figure 6.8: Activation energy (red) and pre-exponential factor (blue) obtained by Ar-
rhenius analysis of RV D/C at a number of temperatures Tn. The volume RV D(Tn) was
estimated by subtracting (a) R(r, Tmin = 120 K) and (a) R(r, Tmin = 150 K) from each

R(r, Tn) profile, and integrating the resulting curves over r.

nanostructure deposition rates. The method is valid under specific growth conditions that

were defined quantitatively. The results pave the way for experimental studies of adsorbate

diffusion by EBID.



Chapter 7

Conclusion

A hybrid Continuum-Monte Carlo model was developed which simulates the growth of

EBIED nano-structures over the length and time scales used in experiments. A Continuum

EBIED model was used to simulate nanostructure growth, and a Monte Carlo electron

scattering model to simulate electron trajectories where by using a hybrid approach the

unique pitfalls of each modelling technique were overcome. Each model was extended

beyond those available in literature to accommodate an evolving surface shape and the

complex interaction of the electron beam with the surface. The resulting hybrid model was

verified to show expected growth behaviour, in all relevant directions rather than a fixed

direction, and the electron flux profile of primary, backscattered, and secondary electrons

evolved with the growing structure.

The hybrid model was used to simulate the dependency EBID growth rates have on ex-

perimentally controlled growth parameters and how the relationship between them can

be used to determine precursor specific coefficients. It was shown by performing an Ar-

rhenius analysis of EBID growth rates under certain conditions activation energies and

pre-exponential factors can be obtained and that these correspond to desorption and dif-

fusion energies and attempt frequencies. Also, described were how deviations from these

conditions effect the Arrhenius analysis and how these compare to previous observations

seen in literature. The accuracy of the results presented opens the way for EBIED to be

a complimentary characterisation technique to other conventional methods.

106



Appendix A

Diffusion Test Code

1 //

2 // simulator.c

3 //

4 // Created by Jared Cullen on 19/11/2012.

5 // Last Updated by Jared Cullen on 3/12/2012.

6 // Copyright (c) 2012 University of Technology, Sydney. All rights reserved.

7 //

8 // Non-Uniform Grid Spacing Diffusion Test.

9

10 //Include Files.

11 #include <math.h>

12 #include <stdlib.h>

13 #include <stdio.h>

14 #include <time.h>

15

16 //Modules.

17 #include "./modules/solve_matrix.c"

18

19 //Main Program.

20 int main(int argc, char* argv[]) {

21 double specific_seed = 10.0;

22 struct timeval t1;

23 gettimeofday(&t1, NULL);

24 srand(specific_seed);

25 //srand(t1.tv_usec * t1.tv_sec);

26

27 //Variable Declarations.

28 int i,j;

29 int num_pts = 100;

30 int num_steps = 100;

31 double RHS[num_pts];

32 double answer[num_pts];

33 double LD[num_pts];

34 double CD[num_pts];

107



Appendix A. Diffusion Test Code 108

35 double UD[num_pts];

36 double conc[num_pts];

37 double r[num_pts];

38 double delta_t = 1.0E-9;

39 double delta_r = 1.0;

40 double delta_r_int = delta_r;

41 double diff_coeff = 1.0E8;

42 double asym_para;

43 double rand_num;

44 double area;

45 double sum = 0.0;

46 double pi = 3.141592653589793;

47 double temp_r;

48 double grad;

49 int uniform_switch = 0;

50

51 //Initial Calculations.

52 for (i=0;i<num_pts;i++) {

53 rand_num = rand();

54 conc[i] = 0.01;

55 if (uniform_switch == 1) {

56 r[i] = (double)(i+1)*delta_r;

57 } else {

58 r[i] = (double)(i+1)*delta_r+((rand_num/((double)RAND_MAX+1))-0.5)*

delta_r*0.1;

59 }

60 }

61 conc[49] = 0.1;

62

63 printf("\n");

64 for (i=0;i<num_pts;i++) {

65 printf("%g\t%g\n",r[i],conc[i]);

66 }

67 printf("\n");

68

69 //Calculate Total Concentration.

70 j = 0;

71 area = pi*(pow(r[j]+(r[j+1]-r[j])/2.0,2.0)-pow(r[j]-delta_r/2.0,2.0));

72 sum += conc[j]/area;

73 j = num_pts-1;

74 sum = pi*(pow(r[j]+delta_r/2.0,2.0)-pow(r[j]-(r[j]-r[j-1])/2.0,2.0));

75 sum += conc[j]/area;

76 for (j=1;j<num_pts-1;j++) {

77 area = pi*(pow(r[j]+(r[j+1]-r[j])/2.0,2.0)-pow(r[j]-(r[j]-r[j-1])

/2.0,2.0));

78 sum += conc[j]/area;

79 }

80 printf("%g\n",sum);

81 sum = 0.0;

82

83 //Solver

84 if (uniform_switch == 1) {

85 //Solver - Uniform



Appendix A. Diffusion Test Code 109

86 for (i=0;i<num_steps;i++) {

87 delta_r = r[1]-r[0];

88 RHS[0] = 0.0;

89 answer[0] = 1.0;

90 LD[0] = ((-1.0*diff_coeff)/(2.0*delta_r*delta_r))+(diff_coeff/(4.0*

delta_r*delta_r));

91 CD[0] = 1.0;

92 UD[0] = -1.0;

93 delta_r = r[num_pts-1]-r[num_pts-2];

94 RHS[num_pts-1] = 0.0;

95 answer[num_pts-1] = 1.0;

96 LD[num_pts-1] = -1.0;

97 CD[num_pts-1] = 1.0;

98 UD[num_pts-1] = ((-1.0*diff_coeff)/(2.0*delta_r*delta_r))-(diff_coeff

/(4.0*r[num_pts-1]*delta_r*delta_r));

99 for (j=1;j<(num_pts-1);j++) {

100 delta_r = (r[j+1]-r[j-1])/2.0;

101 RHS[j] = conc[j]*(1.0/delta_t-((2.0*diff_coeff)/(2.0*delta_r*

delta_r)))+conc[j-1]*((diff_coeff/(2.0*delta_r*delta_r))-(diff_coeff/(4.0*r[

num_pts-1]*delta_r*delta_r)))+conc[j+1]*((diff_coeff/(2.0*delta_r*delta_r))+(

diff_coeff/(4.0*r[num_pts-1]*delta_r*delta_r)));

102 answer[j] = 1.0;

103 LD[j] = ((-1.0*diff_coeff)/(2.0*delta_r*delta_r))+(diff_coeff

/(4.0*r[num_pts-1]*delta_r*delta_r));

104 CD[j] = (1.0/delta_t)+((2.0*diff_coeff)/(2.0*delta_r*delta_r));

105 UD[j] = ((-1.0*diff_coeff)/(2.0*delta_r*delta_r))-(diff_coeff

/(4.0*r[num_pts-1]*delta_r*delta_r));

106 }

107 solve_matrix(num_pts,LD,CD,UD,RHS,answer);

108 for (j=0;j<num_pts;j++) {

109 conc[j] = answer[j];

110 }

111 if (i%(num_steps/10) == 0) {

112 printf("\n");

113 for (j=0;j<num_pts;j++) {

114 printf("%g\t%g\n",r[j],answer[j]);

115 }

116 printf("\n");

117 }

118

119 //Calculate Total Concentration.

120 j = 0;

121 area = pi*(pow(r[j]+(r[j+1]-r[j])/2.0,2.0)-pow(r[j]-delta_r/2.0,2.0))

;

122 sum += conc[j]/area;

123 j = num_pts-1;

124 sum = pi*(pow(r[j]+delta_r/2.0,2.0)-pow(r[j]-(r[j]-r[j-1])/2.0,2.0));

125 sum += conc[j]/area;

126 for (j=1;j<num_pts-1;j++) {

127 area = pi*(pow(r[j]+(r[j+1]-r[j])/2.0,2.0)-pow(r[j]-(r[j]-r[j-1])

/2.0,2.0));

128 sum += conc[j]/area;

129 }



Appendix A. Diffusion Test Code 110

130 printf("%g\n",sum);

131 sum = 0.0;

132 }

133 } else {

134 //Solver - Non-Uniform

135 for (i=0;i<num_steps;i++) {

136 delta_r = r[1]-r[0];

137 asym_para = 0.0;

138 RHS[0] = 0.0;

139 answer[0] = 1.0;

140 LD[0] = (1.0/(1.0+asym_para))*((-1.0*diff_coeff)/(2.0*delta_r*delta_r

))+(diff_coeff/(4.0*delta_r*delta_r));

141 CD[0] = 1.0;

142 UD[0] = -1.0;

143 delta_r = r[num_pts-1]-r[num_pts-2];

144 asym_para = 0.0;

145 RHS[num_pts-1] = 0.0;

146 answer[num_pts-1] = 1.0;

147 LD[num_pts-1] = -1.0;

148 CD[num_pts-1] = 1.0;

149 UD[num_pts-1] = (1.0/(1.0-asym_para))*((-1.0*diff_coeff)/(2.0*delta_r

*delta_r))-(diff_coeff/(4.0*r[num_pts-1]*delta_r*delta_r));

150 for (j=1;j<(num_pts-1);j++) {

151 delta_r = (r[j+1]-r[j-1])/2.0;

152 asym_para = (r[j]-r[j-1]-delta_r)/delta_r;

153 RHS[j] = conc[j]*(1.0/delta_t-(2.0/(1.0-asym_para*asym_para))*((

diff_coeff)/(2.0*delta_r*delta_r)))+conc[j-1]*(1.0/(1.0+asym_para))*((

diff_coeff/(2.0*delta_r*delta_r))-(diff_coeff/(4.0*r[num_pts-1]*delta_r*

delta_r)))+conc[j+1]*(1.0/(1.0-asym_para))*((diff_coeff/(2.0*delta_r*delta_r)

)+(diff_coeff/(4.0*r[num_pts-1]*delta_r*delta_r)));

154 answer[j] = 1.0;

155 LD[j] = (1.0/(1.0+asym_para))*((-1.0*diff_coeff)/(2.0*delta_r*

delta_r))+(diff_coeff/(4.0*r[num_pts-1]*delta_r*delta_r));

156 CD[j] = (1.0/delta_t)+(2.0/(1.0-asym_para*asym_para))*((

diff_coeff)/(2.0*delta_r*delta_r));

157 UD[j] = (1.0/(1.0-asym_para))*((-1.0*diff_coeff)/(2.0*delta_r*

delta_r))-(diff_coeff/(4.0*r[num_pts-1]*delta_r*delta_r));

158 }

159 solve_matrix(num_pts,LD,CD,UD,RHS,answer);

160 for (j=0;j<num_pts;j++) {

161 conc[j] = answer[j];

162 }

163 if (i%(num_steps/10) == 0) {

164 printf("\n");

165 for (j=0;j<num_pts;j++) {

166 printf("%g\t%g\n",r[j],answer[j]);

167 }

168 printf("\n");

169 }

170 //Calculate Total Concentration.

171 j = 0;

172 area = pi*(pow(r[j]+(r[j+1]-r[j])/2.0,2.0)-pow(r[j]-delta_r/2.0,2.0))

;



Appendix A. Diffusion Test Code 111

173 sum += conc[j]/area;

174 j = num_pts-1;

175 sum = pi*(pow(r[j]+delta_r/2.0,2.0)-pow(r[j]-(r[j]-r[j-1])/2.0,2.0));

176 sum += conc[j]/area;

177 for (j=1;j<num_pts-1;j++) {

178 area = pi*(pow(r[j]+(r[j+1]-r[j])/2.0,2.0)-pow(r[j]-(r[j]-r[j-1])

/2.0,2.0));

179 sum += conc[j]/area;

180 }

181 printf("%g\n",sum);

182 sum = 0.0;

183 //Calculate new r values and then modify the conc values by the

appropiate gradient.

184 for (j=1;j<(num_pts-1);j++) {

185 rand_num = rand();

186 temp_r = (double)(j+1)*delta_r_int+((rand_num/((double)RAND_MAX

+1))-0.5)*delta_r_int*0.1;

187 grad = (conc[j+1]-conc[j-1])/(r[j+1]-r[j-1]);

188 conc[j] = conc[j]+(grad*(temp_r-r[j]));

189 r[j] = temp_r;

190 }

191 }

192 }

193 }



Appendix B

Hybrid Continuum-Monte Carlo

Simulator Code

The following code is for the Hybrid Continuum-Monte Carlo Simulator code. Modules
from Numerical Recipes in C[111] are not reproduced here.

B.1 Constants

1 //

2 // constants.h

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This file contains all the constants required for the EBIED simulator.

7

8 #ifndef _constants_h

9 #define _constants_h

10 #endif

11

12 #define PI 3.141592653589793

13 #define BOLTZMANN_CONSTANT 1.38066E-23 //J/K

14 #define ELECTRON_CHARGE 1.60217657E-19 //coulombs

B.2 Variable Structures

1 //

2 // constants.h

112



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 113

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This file contains all the structures required for the EBIED simulator.

7

8 #ifndef _structures_h

9 #define _structures_h

10 #endif

11

12 struct precursor {

13 double reactive_product_flux; // in A-2s-1.

14 double initial_gas_coverage; //concentration

15 double gas_partial_pressure; // in Pa.

16 double reactive_product_molecular_mass; // in amu*1.66053873E-27 to give kg.

17 double reactive_product_density;// in kg/A3.

18 double surface_area; // in angstrom^2.

19 double desorption_time; // in sec.

20 double desorption_energy; // in eV.

21 double desorption_attempt_frequency; //in s.

22 double diffusion_coefficient; // in angstrom^2/s.

23 double diffusion_energy; // in eV.

24 double diffusion_attempt_frequency; // in angstrom^2/s.

25 double sticking_coefficient; // (dimensionless)

26 double PE_electron_cross_section; // in angstrom^2.

27 double BSE_electron_cross_section; // in angstrom^2.

28 double SE_electron_cross_section; // in angstrom^2.

29 };

30 typedef struct precursor Precursor;

31

32 struct toggle {

33 int electron_trajectory_simulator; // MC electron trajectories, On(1) or Off

(0).

34 int electron_trajectory_tracking; // track electron trajectories, On(1) or

Off(0).

35 int electron_beam_projection; // electron beam surface projection, On

(1) or Off(0).

36 int electron_beam_shape; // top hat profile(1) or gaussian profile

(0).

37 int surface_evolution; // surface evolution, normal to the

surface(1) or standard(0).

38 int previous_simulation; // load the output data from a previous

simulation.

39 int diffusion; // surface diffusion, on(1) or off(0). //

FIXME: diffusion itself can be set to zero ???

40 int coverage; // initial surface coverage, monolayer(1)

or no coverage (0).

41 };

42 typedef struct toggle Toggle;

43

44 struct material {

45 double atomic_number; //material atomic number.

46 double atomic_weight; //material atomic weight.

47 double density; //material density, in g/cm3.



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 114

48 double epsilon; //effective energy required to produce an SE, in keV.

49 double lambda; //effective SE escape depth, in A.

50 };

51 typedef struct material Material;

52

53 struct electron_beam {

54 double cutoff_energy; //cutoff energy in keV in bulk case.

55 double top_hat_abruptness; //abruptness of top hat electron beam profile.

56 double diameter; //electron beam diameter in A.

57 double energy; //input electron beam energy in keV.

58 double current; //electron beam current, in electron/sec.

59 double tilt; //electron beam tilt, in degrees.

60 };

61 typedef struct electron_beam Electron_beam;

B.3 Function Prototypes

1 //

2 // prototypes.h

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This file contains all the prototypes required for the EBIED simulator.

7

8 #ifndef _prototypes_h

9 #define _prototypes_h

10 #endif

11

12 #define MPI_ON

13

14 //Malloc Arrays

15 extern double *r_coordinate_array;

16 extern double *z_coordinate_array;

17 extern double *electron_flux_profile_array;

18 extern double *electron_starting_location_probability_array;

19 extern double *backscattered_electron_location_array;

20 extern double *secondary_electron_location_array;

21 extern double *etch_precursor_gas_concentration_previous_two_time_step_array;

22 extern double *etch_precursor_gas_concentration_previous_time_step_array;

23 extern double *etch_precursor_gas_concentration_current_time_step_array;

24 extern double *deposit_precursor_gas_concentration_previous_two_time_step_array;

25 extern double *deposit_precursor_gas_concentration_previous_time_step_array;

26 extern double *deposit_precursor_gas_concentration_current_time_step_array;

27 extern double *reactive_product_concentration_previous_time_step_array;

28 extern double *reactive_product_concentration_current_time_step_array;

29 extern double *growth_or_etch_rate_array;

30 extern double *electron_energy_deposited_array;

31 extern double *electron_maximum_z_depth_array;

32 extern double *r_coordinate_secondary_array_one;

33 extern double *r_coordinate_secondary_array_two;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 115

34 extern double *surface_line_equation_array_one;

35 extern double *surface_line_equation_array_two;

36 extern double *surface_line_equation_array_three;

37 extern double *temporary_z_gradient;

38 extern double *previous_r_coordinate_array;

39 extern double *previous_z_coordinate_array;

40 extern double *

previous_deposit_precursor_gas_concentration_previous_time_step_array;

41 extern double *previous_etch_precursor_gas_concentration_previous_time_step_array

;

42 extern double *previous_reactive_product_concentration_previous_time_step_array;

43 extern double *right_hand_side;

44 extern double *answer;

45 extern double *answer_temp;

46 extern double *lower_diagonal;

47 extern double *central_diagonal;

48 extern double *upper_diagonal;

49 extern double *r_array;

50 extern double *primary_electron_array;

51 extern double *backscattered_electron_array;

52 extern double *secondary_electron_array;

53 extern double *temp_primary_electron_array;

54 extern double *temp_primary_electron_flux_profile_array;

55 extern double *temp_electron_starting_location_probability_array;

56 extern double *local_secondary_electron_location_array;

57 extern double *sum_secondary_electron_location_array;

58 extern double *local_backscattered_electron_location_array;

59 extern double *sum_backscattered_electron_location_array;

60 extern double *local_electron_energy_deposited_array;

61 extern double *sum_electron_energy_deposited_array;

62 extern double *local_electron_maximum_z_depth_array;

63 extern double *sum_electron_maximum_z_depth_array;

64 extern double *electron_tracking_x_position_array;

65 extern double *electron_tracking_y_position_array;

66 extern double *electron_tracking_z_position_array;

67 extern double *r_coordinate_both_directions;

68 extern double *z_coordinate_both_directions;

69 extern double *temporary_r_coordinate_secondary_array_one;

70 extern double *temporary_r_coordinate_secondary_array_two;

71 extern double *temporary_surface_line_equation_array_one;

72 extern double *temporary_surface_line_equation_array_two;

73 extern double *temporary_surface_line_equation_array_three;

74 extern double *dC;

75 extern double *temporary_z_coordinate_array;

76 extern double *temporary_r_coordinate_array;

77 extern double *temporary_reactive_product_concentration_current_time_step_array_y

;

78 extern double *temporary_reactive_product_concentration_current_time_step_array_x

;

79 extern double *

temporary_etch_precursor_gas_concentration_current_time_step_array_y;

80 extern double *

temporary_etch_precursor_gas_concentration_current_time_step_array_x;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 116

81 extern double *

temporary_deposit_precursor_gas_concentration_current_time_step_array_y;

82 extern double *

temporary_deposit_precursor_gas_concentration_current_time_step_array_x;

83 extern double *PE_electron_flux_profile_array;

84 extern double *BSE_electron_flux_profile_array;

85 extern double *SE_electron_flux_profile_array;

86 extern double **print_electron_flux_profile_array;

87 extern double **print_N_little_e;

88 extern double **print_N_little_d;

89 extern double **print_N_big_d;

90 extern double **print_growth_rate;

91 extern double **print_surface;

92 extern double **print_secondary_electrons;

93 extern double **print_backscattered_electrons;

94 extern double *temporary_ND_array;

95 extern double *time_per_time_step_array;

96

97 //Functions

98 void malloc_memory(int number_of_surface_bins,int

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,int

maximum_electron_track_length,int number_of_simulation_time_steps);

99 void free_memory();

100 void *safe_malloc(int n_bytes);

101 void safe_free(double **ptr);

102 void logfile_printf(const char *fmt, ...);

103 void ludcmp(float **a, int n, int *indx, float *d, int *error_flag);

104 void lubksb(float **a, int n, int *indx, float b[]);

105

106 void ebied_solver(Precursor etch_precursor,Precursor deposit_precursor,Toggle

toggle,double gas_temperature,double

deposit_pinned_reaction_electron_cross_section,double

deposit_precursor_reaction_electron_cross_section,double delta_t,double

delta_r,int number_of_surface_bins,int no_etch_area);

107

108 void ebied_solver_no_diffusion(Precursor etch_precursor,Precursor

deposit_precursor,Toggle toggle,double gas_temperature,double

deposit_pinned_reaction_electron_cross_section,double

deposit_precursor_reaction_electron_cross_section,double delta_t,double

delta_r,int number_of_surface_bins);

109

110 void ebid_solver(Precursor deposit_precursor,Toggle toggle,double gas_temperature

,double delta_t,double delta_r,int number_of_surface_bins);

111

112 void electron_flux_profile(Toggle toggle,Electron_beam electron_beam,int

number_of_surface_bins,double delta_t,double delta_r,double

backscattered_electron_coefficient,double secondary_electron_coefficient,int

i);

113

114 void primary_interpolation(double *r[],double *z[],int length,double delta_r,int

number_of_points_original);

115



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 117

116 void secondary_interpolation(double r[],double *z[],double z_orig[],double

r_interp[],int length,int number_of_points,int order,double delta_r);

117

118 void polynomial_fit(double (*coeff)[],double *gradient,double x_data[],double

y_data[],int order,int number_of_points,int *error_flag);

119

120 void matrix_inversion(int N,float matrix_data[N][N],float (*y)[N][N],int *

error_flag);

121

122 void matrix_multiplication(int A_r,int A_c,int B_r,int B_c,float matrix_A[A_r][

A_c],float matrix_B[B_r][B_c],float (*matrix_C)[A_r][B_c]);

123

124 void monte_carlo_data_collection(int

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,int

number_of_electron_trajectories,int number_of_surface_bins,int

number_of_backscattered_electrons,double *backscattered_electron_coefficient,

double *secondary_electron_coefficient);

125

126 void monte_carlo_electron_trajectory_simulator(Electron_beam electron_beam,

Material lower_material,Material upper_material,int

electron_trajectory_tracking,double delta_r,int

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,int

number_of_surface_bins,double layered_material_interface_depth,int

maximum_electron_track_length,int number_of_electron_trajectories,double

z_depth_minimum,double z_depth_maximum,int *number_of_backscattered_electrons

,int seed);

127

128 void get_constants(double *sg_a,double *al_a,double *lam_a,double at_num,double

at_wht,double density,double inc_energy);

129

130 void reset_coordinates(double *s_en,double *x,double *y,double *z,double *cx,

double *cy,double *cz,double inc_energy,int surface_length);

131

132 void s_scatter(double energy,double al_a,double *sp,double *ga,double *cp);

133

134 void new_coord(double step,double x,double y,double z,double cx,double cy,double

cz,double sp,double ga,double cp,double *ca,double *cb,double *cc,double *xn,

double *yn,double *zn);

135

136 void reset_next_step(double ca,double cb,double cc,double xn,double yn,double zn,

double step,double *cx,double *cy,double *cz,double *x,double *y,double *z,

double *s_en,double density,double at_num,double at_wht,double SE_epsilon,

double SE_lambda,int number_of_intersections,double exit_x1,double exit_y1,

double exit_x2,double exit_y2,double e_length_d,double delta_r,int

number_of_surface_bins,int intersection_index1);

137

138 void monte_carlo_surface_setup(int number_of_surface_bins,double *z_depth_minimum

,double *z_depth_maximum);

139

140 void set_default_parameters(int *number_of_electron_trajectories,

141 int *number_of_surface_bins,

142 int *number_of_simulation_time_steps,

143 int *run_MC_every_zero_point_X_percent,



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 118

144 int *save_simulation_data_every_X_percent,

145 int *

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

146 int *maximum_electron_track_length,

147 double *delta_r,

148 double *delta_t,

149 Electron_beam *electron_beam,

150 double *layered_material_interface_depth,

151 Material *upper_material,

152 Material *lower_material,

153 double *gas_temperature,

154 Precursor *etch_precursor,

155 Precursor *deposit_precursor,

156 double *

deposit_pinned_reaction_electron_cross_section,

157 double *

deposit_precursor_reaction_electron_cross_section,

158 Toggle *toggle,

159 int *number_of_points,

160 int *order,

161 int *no_etch_order,

162 int *seed,

163 int *wave_type,

164 int *square_wave_period,

165 int *square_wave_min_current,

166 int *square_wave_max_current,

167 double *triangle_wave_rate,

168 int *triangle_wave_min_current,

169 int *triangle_wave_max_current,

170 int *pulsing_period,

171 int *pulse_on_time,

172 int *pulse_off_time,

173 int *time_delay,

174 double *precursor_diffusion_tolerance,

175 double *substrate_temperature);

176

177 void read_input_parameters(int *number_of_electron_trajectories,int *

number_of_surface_bins,int *number_of_simulation_time_steps,int *

run_MC_every_zero_point_X_percent,int *save_simulation_data_every_X_percent,

int *length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

int *maximum_electron_track_length,double *delta_r,double *delta_t,

Electron_beam *electron_beam,double *layered_material_interface_depth,

Material *upper_material,Material *lower_material,double *gas_temperature,

Precursor *etch_precursor,Precursor *deposit_precursor,double *

deposit_pinned_reaction_electron_cross_section,double *

deposit_precursor_reaction_electron_cross_section,Toggle *toggle,int *

number_of_points,int *order,int *no_etch_area,int *seed,int *wave_type,int *

square_wave_period,int *square_wave_min_current,int *square_wave_max_current,

double *triangle_wave_rate,int *triangle_wave_min_current,int *

triangle_wave_max_current,int *pulsing_period,int *pulse_on_time,int *

pulse_off_time,int *time_delay,double *precursor_diffusion_tolerance,double *

substrate_temperature);

178



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 119

179 void read_input_previous_simulation(int number_of_surface_bins);

180

181 void save_current_simulation_data(int

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,double

backscattered_electron_coefficient,double secondary_electron_coefficient,int

number_of_surface_bins,int number_of_electron_trajectories,int

current_time_step,int val1,int val2,int number_of_simulation_time_steps,int

save_simulation_data_every_X_percent);

182

183 void setup_save_files();

184

185 void solve_matrix(int n, double *a, double *b, double *c, double *v, double *x);

186

187 void surface_evolution(Precursor deposit_precursor,Precursor etch_precursor,

Material lower_material,

188 Material upper_material,int evolve_surface_normal,int

number_of_points,int order,int number_of_surface_bins,double delta_t,double

delta_r,double layered_material_interface_depth,int time_step,Toggle toggle);

189

190 void Free2DDoubleArray(double **theArray);

191

192 int are_all_areas_equal(double r[],double z[],int length,double delta_r);

193

194 int sgn(double x);

195

196 double compute_lambda(double energy,double al_a,double sg_a,double lam_a);

197

198 double mean_ionisation_potential(double at_num);

199

200 double stop_pwr(double energy,double at_num,double at_wht);

201

202 double** Make2DDoubleArray(int arraySizeX, int arraySizeY);

203

204 double linear_interp(double x[],double y[],int n,double xi);

205

206 int gsl_fit_linear(const double * x, const size_t xstride, const double * y,

const size_t ystride, size_t n, double * c0, double * c1, double * cov00,

double * cov01, double * cov11, double * sumsq);

B.4 Simulator Core

1 //

2 // simulator.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This is the central program for the EBIED Simulator.

7 //

8

9 #ifdef XCODE



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 120

10 //if compliling with xcode include these files

11 #include <math.h>

12 #include <stdlib.h>

13 #include <stdio.h>

14 #include <time.h>

15 #include <assert.h>

16 #include <sys/stat.h>

17 #include "./modules/constants.h"

18 #include "./modules/structures.h"

19 #include "./modules/prototypes.h"

20 #ifdef MPI_ON

21 //if also using openmpi include it too

22 #include <mpi.h>

23 #endif

24 #else

25 //if compliling with anything else e.g. gcc include all files

26 #include <math.h>

27 #include <stdlib.h>

28 #include <stdio.h>

29 #include <stdarg.h>

30 #include <time.h>

31 #include <assert.h>

32 #include <sys/stat.h>

33 #include <sys/time.h>

34 #include <string.h>

35 #include <gsl/gsl_fit.h>

36 #include "./modules/constants.h"

37 #include "./modules/structures.h"

38 #include "./modules/prototypes.h"

39 #ifdef MPI_ON

40 //if also using openmpi include it too

41 #include <mpi.h>

42 #endif

43 #include "./modules/solve_matrix.c"

44 #include "./modules/setup_save_files.c"

45 #include "./modules/save_current_simulation_data.c"

46 #include "./modules/ebie_ebid_solver.c"

47 #include "./modules/monte_carlo_surface_setup.c"

48 #include "./modules/monte_carlo_data_collection.c"

49 #include "./modules/monte_carlo_electron_trajectory_simulator.c"

50 #include "./modules/electron_flux_profile.c"

51 #include "./modules/surface_evolution.c"

52 #include "./modules/read_input_parameters.c"

53 #include "./modules/read_input_previous_simulation.c"

54 #include "./modules/interpolation.c"

55 #include "./modules/logfile_printf.c"

56 #endif

57

58 //Global Malloc Arrays

59 double *r_coordinate_array = NULL;

60 double *z_coordinate_array = NULL;

61 double *electron_flux_profile_array = NULL;

62 double *electron_starting_location_probability_array = NULL;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 121

63 double *backscattered_electron_location_array = NULL;

64 double *secondary_electron_location_array = NULL;

65 double *etch_precursor_gas_concentration_previous_two_time_step_array = NULL;

66 double *etch_precursor_gas_concentration_previous_time_step_array = NULL;

67 double *etch_precursor_gas_concentration_current_time_step_array = NULL;

68 double *deposit_precursor_gas_concentration_previous_two_time_step_array = NULL;

69 double *deposit_precursor_gas_concentration_previous_time_step_array = NULL;

70 double *deposit_precursor_gas_concentration_current_time_step_array = NULL;

71 double *reactive_product_concentration_previous_time_step_array = NULL;

72 double *reactive_product_concentration_current_time_step_array = NULL;

73 double *growth_or_etch_rate_array = NULL;

74 double *electron_energy_deposited_array = NULL;

75 double *electron_maximum_z_depth_array = NULL;

76 double *r_coordinate_secondary_array_one = NULL;

77 double *r_coordinate_secondary_array_two = NULL;

78 double *surface_line_equation_array_one = NULL;

79 double *surface_line_equation_array_two = NULL;

80 double *surface_line_equation_array_three = NULL;

81 double *temporary_z_gradient = NULL;

82 double *previous_r_coordinate_array = NULL;

83 double *previous_z_coordinate_array = NULL;

84 double *previous_deposit_precursor_gas_concentration_previous_time_step_array =

NULL;

85 double *previous_etch_precursor_gas_concentration_previous_time_step_array = NULL

;

86 double *previous_reactive_product_concentration_previous_time_step_array = NULL;

87 double *right_hand_side = NULL;

88 double *answer = NULL;

89 double *answer_temp = NULL;

90 double *lower_diagonal = NULL;

91 double *central_diagonal = NULL;

92 double *upper_diagonal = NULL;

93 double *r_array = NULL;

94 double *primary_electron_array = NULL;

95 double *backscattered_electron_array = NULL;

96 double *secondary_electron_array = NULL;

97 double *temp_primary_electron_array = NULL;

98 double *temp_primary_electron_flux_profile_array = NULL;

99 double *temp_electron_starting_location_probability_array = NULL;

100 double *local_secondary_electron_location_array = NULL;

101 double *sum_secondary_electron_location_array = NULL;

102 double *local_backscattered_electron_location_array = NULL;

103 double *sum_backscattered_electron_location_array = NULL;

104 double *local_electron_energy_deposited_array = NULL;

105 double *sum_electron_energy_deposited_array = NULL;

106 double *local_electron_maximum_z_depth_array = NULL;

107 double *sum_electron_maximum_z_depth_array = NULL;

108 double *electron_tracking_x_position_array = NULL;

109 double *electron_tracking_y_position_array = NULL;

110 double *electron_tracking_z_position_array = NULL;

111 double *r_coordinate_both_directions = NULL;

112 double *z_coordinate_both_directions = NULL;

113 double *temporary_r_coordinate_secondary_array_one = NULL;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 122

114 double *temporary_r_coordinate_secondary_array_two = NULL;

115 double *temporary_surface_line_equation_array_one = NULL;

116 double *temporary_surface_line_equation_array_two = NULL;

117 double *temporary_surface_line_equation_array_three = NULL;

118 double *dC = NULL;

119 double *temporary_z_coordinate_array = NULL;

120 double *temporary_r_coordinate_array = NULL;

121 double *temporary_reactive_product_concentration_current_time_step_array_y = NULL

;

122 double *temporary_reactive_product_concentration_current_time_step_array_x = NULL

;

123 double *temporary_etch_precursor_gas_concentration_current_time_step_array_y =

NULL;

124 double *temporary_etch_precursor_gas_concentration_current_time_step_array_x =

NULL;

125 double *temporary_deposit_precursor_gas_concentration_current_time_step_array_y =

NULL;

126 double *temporary_deposit_precursor_gas_concentration_current_time_step_array_x =

NULL;

127 double *PE_electron_flux_profile_array = NULL;

128 double *BSE_electron_flux_profile_array = NULL;

129 double *SE_electron_flux_profile_array = NULL;

130 double **print_electron_flux_profile_array = NULL;

131 double **print_N_little_e = NULL;

132 double **print_N_little_d = NULL;

133 double **print_N_big_d = NULL;

134 double **print_growth_rate = NULL;

135 double **print_surface = NULL;

136 double **print_secondary_electrons = NULL;

137 double **print_backscattered_electrons = NULL;

138 double *temporary_ND_array = NULL;

139 double *time_per_time_step_array = NULL;

140

141 //standard linear interpolation method

142 double linear_interp(double x[],double y[],int n,double xi) {

143 double yi = 0.0;

144 int i;

145 for (i=0;i<n-1;i++) {

146 if ((xi > x[i] && xi < x[i+1]) || (xi == x[i]) || (xi == x[i+1])) {

147 yi = y[i]+(y[i+1]-y[i])*((xi-x[i])/(x[i+1]-x[i]));

148 return yi;

149 }

150 }

151 return yi;

152 }

153

154 //gets the sign (positive/negative) of a number

155 int sgn(double x) {

156 if (x < 0.0) {

157 return -1.0;

158 } else {

159 return 1.0;

160 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 123

161 }

162

163 //malloc memory for a two dimentional array

164 double** Make2DDoubleArray(int arraySizeX, int arraySizeY) {

165 double** theArray;

166 int i;

167 theArray = (double**) malloc(arraySizeX*sizeof(double*));

168 for (i = 0; i < arraySizeX; i++) {

169 theArray[i] = (double*) malloc(arraySizeY*sizeof(double));

170 }

171 return theArray;

172 }

173

174 //free malloc’ed memory for a two dimentional array

175 void Free2DDoubleArray(double **theArray) {

176 free(*theArray);

177 free(theArray);

178 theArray = NULL;

179 }

180

181 //malloc memory and check if sucessful

182 void *safe_malloc(int n_bytes) {

183 void *ptr = malloc(n_bytes);

184 assert(ptr != NULL);

185 return ptr;

186 }

187

188 //free malloc’ed memory

189 void safe_free(double **ptr) {

190 free(*ptr);

191 *ptr = NULL;

192 }

193

194 //giant function to make all memory needed for simulator arrays

195 void malloc_memory(int number_of_surface_bins,int

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,int

maximum_electron_track_length,int number_of_simulation_time_steps) {

196 //Declarations

197 int N = number_of_surface_bins*sizeof(double);

198 int N2 =

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array*sizeof

(double);

199 int N3 = maximum_electron_track_length*sizeof(double);

200 int N4 = number_of_simulation_time_steps*sizeof(double);

201 r_coordinate_array = safe_malloc(N);

202 z_coordinate_array = safe_malloc(N);

203 electron_flux_profile_array = safe_malloc(N);

204 electron_starting_location_probability_array = safe_malloc(N);

205 backscattered_electron_location_array = safe_malloc(N);

206 secondary_electron_location_array = safe_malloc(N);

207 etch_precursor_gas_concentration_previous_two_time_step_array = safe_malloc(N

);

208 etch_precursor_gas_concentration_previous_time_step_array = safe_malloc(N);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 124

209 etch_precursor_gas_concentration_current_time_step_array = safe_malloc(N);

210 deposit_precursor_gas_concentration_previous_two_time_step_array =

safe_malloc(N);

211 deposit_precursor_gas_concentration_previous_time_step_array = safe_malloc(N)

;

212 deposit_precursor_gas_concentration_current_time_step_array = safe_malloc(N);

213 reactive_product_concentration_previous_time_step_array = safe_malloc(N);

214 reactive_product_concentration_current_time_step_array = safe_malloc(N);

215 growth_or_etch_rate_array = safe_malloc(N);

216 electron_energy_deposited_array = safe_malloc(N2);

217 electron_maximum_z_depth_array = safe_malloc(N2);

218 r_coordinate_secondary_array_one = safe_malloc(2*N);

219 r_coordinate_secondary_array_two = safe_malloc(2*N);

220 surface_line_equation_array_one = safe_malloc(2*N);

221 surface_line_equation_array_two = safe_malloc(2*N);

222 surface_line_equation_array_three = safe_malloc(2*N);

223 temporary_z_gradient = safe_malloc(N);

224 previous_r_coordinate_array = safe_malloc(N);

225 previous_z_coordinate_array = safe_malloc(N);

226 previous_deposit_precursor_gas_concentration_previous_time_step_array =

safe_malloc(N);

227 previous_etch_precursor_gas_concentration_previous_time_step_array =

safe_malloc(N);

228 previous_reactive_product_concentration_previous_time_step_array =

safe_malloc(N);

229 right_hand_side = safe_malloc(N);

230 answer = safe_malloc(N);

231 answer_temp = safe_malloc(N);

232 lower_diagonal = safe_malloc(N);

233 central_diagonal = safe_malloc(N);

234 upper_diagonal = safe_malloc(N);

235 r_array = safe_malloc(N);

236 primary_electron_array = safe_malloc(N);

237 backscattered_electron_array = safe_malloc(N);

238 secondary_electron_array = safe_malloc(N);

239 temp_primary_electron_array = safe_malloc(N);

240 temp_primary_electron_flux_profile_array = safe_malloc(N);

241 temp_electron_starting_location_probability_array = safe_malloc(N);

242 local_secondary_electron_location_array = safe_malloc(N);

243 sum_secondary_electron_location_array = safe_malloc(N);

244 local_backscattered_electron_location_array = safe_malloc(N);

245 sum_backscattered_electron_location_array = safe_malloc(N);

246 local_electron_energy_deposited_array = safe_malloc(N2);

247 sum_electron_energy_deposited_array = safe_malloc(N2);

248 local_electron_maximum_z_depth_array = safe_malloc(N2);

249 sum_electron_maximum_z_depth_array = safe_malloc(N2);

250 electron_tracking_x_position_array = safe_malloc(N3);

251 electron_tracking_y_position_array = safe_malloc(N3);

252 electron_tracking_z_position_array = safe_malloc(N3);

253 r_coordinate_both_directions = safe_malloc(2*N);

254 z_coordinate_both_directions = safe_malloc(2*N);

255 temporary_r_coordinate_secondary_array_one = safe_malloc(2*N);

256 temporary_r_coordinate_secondary_array_two = safe_malloc(2*N);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 125

257 temporary_surface_line_equation_array_one = safe_malloc(2*N);

258 temporary_surface_line_equation_array_two = safe_malloc(2*N);

259 temporary_surface_line_equation_array_three = safe_malloc(2*N);

260 dC = safe_malloc(N);

261 temporary_z_coordinate_array = safe_malloc(N);

262 temporary_r_coordinate_array = safe_malloc(N);

263 temporary_reactive_product_concentration_current_time_step_array_y =

safe_malloc(N);

264 temporary_reactive_product_concentration_current_time_step_array_x =

safe_malloc(N);

265 temporary_etch_precursor_gas_concentration_current_time_step_array_y =

safe_malloc(N);

266 temporary_etch_precursor_gas_concentration_current_time_step_array_x =

safe_malloc(N);

267 temporary_deposit_precursor_gas_concentration_current_time_step_array_y =

safe_malloc(N);

268 temporary_deposit_precursor_gas_concentration_current_time_step_array_x =

safe_malloc(N);

269 PE_electron_flux_profile_array = safe_malloc(N);

270 BSE_electron_flux_profile_array = safe_malloc(N);

271 SE_electron_flux_profile_array = safe_malloc(N);

272 temporary_ND_array = safe_malloc(N);

273 time_per_time_step_array = safe_malloc(N4);

274 }

275

276 //giant function to free all malloc’ed memory

277 void free_memory() {

278 safe_free(&r_coordinate_array);

279 safe_free(&z_coordinate_array);

280 safe_free(&electron_flux_profile_array);

281 safe_free(&electron_starting_location_probability_array);

282 safe_free(&backscattered_electron_location_array);

283 safe_free(&secondary_electron_location_array);

284 safe_free(&etch_precursor_gas_concentration_previous_two_time_step_array);

285 safe_free(&etch_precursor_gas_concentration_previous_time_step_array);

286 safe_free(&etch_precursor_gas_concentration_current_time_step_array);

287 safe_free(&deposit_precursor_gas_concentration_previous_two_time_step_array);

288 safe_free(&deposit_precursor_gas_concentration_previous_time_step_array);

289 safe_free(&deposit_precursor_gas_concentration_current_time_step_array);

290 safe_free(&reactive_product_concentration_previous_time_step_array);

291 safe_free(&reactive_product_concentration_current_time_step_array);

292 safe_free(&growth_or_etch_rate_array);

293 safe_free(&electron_energy_deposited_array);

294 safe_free(&electron_maximum_z_depth_array);

295 safe_free(&r_coordinate_secondary_array_one);

296 safe_free(&r_coordinate_secondary_array_two);

297 safe_free(&surface_line_equation_array_one);

298 safe_free(&surface_line_equation_array_two);

299 safe_free(&surface_line_equation_array_three);

300 safe_free(&temporary_z_gradient);

301 safe_free(&previous_r_coordinate_array);

302 safe_free(&previous_z_coordinate_array);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 126

303 safe_free(&

previous_deposit_precursor_gas_concentration_previous_time_step_array);

304 safe_free(&previous_etch_precursor_gas_concentration_previous_time_step_array

);

305 safe_free(&previous_reactive_product_concentration_previous_time_step_array);

306 safe_free(&right_hand_side);

307 safe_free(&answer);

308 safe_free(&answer_temp);

309 safe_free(&lower_diagonal);

310 safe_free(&central_diagonal);

311 safe_free(&upper_diagonal);

312 safe_free(&r_array);

313 safe_free(&primary_electron_array);

314 safe_free(&backscattered_electron_array);

315 safe_free(&secondary_electron_array);

316 safe_free(&temp_primary_electron_array);

317 safe_free(&temp_primary_electron_flux_profile_array);

318 safe_free(&temp_electron_starting_location_probability_array);

319 safe_free(&local_secondary_electron_location_array);

320 safe_free(&sum_secondary_electron_location_array);

321 safe_free(&local_backscattered_electron_location_array);

322 safe_free(&sum_backscattered_electron_location_array);

323 safe_free(&local_electron_energy_deposited_array);

324 safe_free(&sum_electron_energy_deposited_array);

325 safe_free(&local_electron_maximum_z_depth_array);

326 safe_free(&sum_electron_maximum_z_depth_array);

327 safe_free(&electron_tracking_x_position_array);

328 safe_free(&electron_tracking_y_position_array);

329 safe_free(&electron_tracking_z_position_array);

330 safe_free(&r_coordinate_both_directions);

331 safe_free(&z_coordinate_both_directions);

332 safe_free(&temporary_r_coordinate_secondary_array_one);

333 safe_free(&temporary_r_coordinate_secondary_array_two);

334 safe_free(&temporary_surface_line_equation_array_one);

335 safe_free(&temporary_surface_line_equation_array_two);

336 safe_free(&temporary_surface_line_equation_array_three);

337 safe_free(&dC);

338 safe_free(&temporary_z_coordinate_array);

339 safe_free(&temporary_r_coordinate_array);

340 safe_free(&temporary_reactive_product_concentration_current_time_step_array_y

);

341 safe_free(&temporary_reactive_product_concentration_current_time_step_array_x

);

342 safe_free(&

temporary_etch_precursor_gas_concentration_current_time_step_array_y);

343 safe_free(&

temporary_etch_precursor_gas_concentration_current_time_step_array_x);

344 safe_free(&

temporary_deposit_precursor_gas_concentration_current_time_step_array_y);

345 safe_free(&

temporary_deposit_precursor_gas_concentration_current_time_step_array_x);

346 safe_free(&PE_electron_flux_profile_array);

347 safe_free(&BSE_electron_flux_profile_array);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 127

348 safe_free(&SE_electron_flux_profile_array);

349 safe_free(&temporary_ND_array);

350 safe_free(&time_per_time_step_array);

351 }

352

353 //calculates the intial precursor coverage

354 void compute_EBIED_initial_coverage(double delta_t, Precursor deposit_precursor,

Precursor etch_precursor, double *C_etch_p, double *C_depo_p) {

355 int i, n = 1e8;

356 double dt,t = 0.0;

357 double increase = 2.0;

358 #ifdef MPI_ON

359 int node_number;

360 MPI_Comm_rank(MPI_COMM_WORLD, &node_number);

361 #else

362 int node_number = 0;

363 #endif

364 dt = delta_t;

365

366

367 double s_depo = deposit_precursor.sticking_coefficient;

368 double f_depo = deposit_precursor.reactive_product_flux;

369 double A_depo = deposit_precursor.surface_area;

370 double t_depo = deposit_precursor.desorption_time;

371 double s_etch = etch_precursor.sticking_coefficient;

372 double f_etch = etch_precursor.reactive_product_flux;

373 double A_etch = etch_precursor.surface_area;

374 double t_etch = etch_precursor.desorption_time;

375 double C_depo_old = 0.0;

376 double C_etch_old = 0.0;

377

378 if (node_number == 0) {

379 logfile_printf("---------------------------------\n");

380 logfile_printf("Running Initial Precursor Gas Coverage Calculator...\n");

381 logfile_printf("---------------------------------\n");

382 }

383

384 if (f_depo > 0.0 && f_etch == 0.0) {

385 //if only depo gas

386 *C_depo_p = (s_depo*f_depo)/(s_depo*f_depo*A_depo+1/t_depo);

387 *C_etch_p = 0.0;

388 } else if (f_etch > 0.0 && f_depo == 0.0) {

389 //if only etch gas

390 *C_depo_p = 0.0;

391 *C_etch_p = (s_etch*f_etch)/(s_etch*f_etch*A_etch+1/t_etch);;

392 } else {

393 //if both gases

394 // get ballpark figures quickly

395 for(i=0;i<n;i++){

396 double C_vacancies = 1.0-(A_etch*C_etch_old+A_depo*C_depo_old);

397 *C_depo_p = dt*(s_depo*f_depo*C_vacancies - C_depo_old/t_depo) +

C_depo_old;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 128

398 *C_etch_p = dt*(s_etch*f_etch*C_vacancies - C_etch_old/t_etch) +

C_etch_old;

399 if (*C_depo_p > 0.0 && *C_etch_p > 0.0) { // if negative

concentration, change dt rate of increase

400 C_depo_old = *C_depo_p;

401 C_etch_old = *C_etch_p;

402 t += dt;

403 dt *= increase;

404 } else {

405 dt /= increase;

406 increase /= 1.1;

407 if (increase < 1.01) {

408 increase = 1.01;

409 }

410 }

411 }

412 // perfect the answer

413 for (i=0;i<n;i++) {

414 double C_vacancies = 1.0-(A_etch**C_etch_p+A_depo**C_depo_p);

415 *C_depo_p = delta_t*(s_depo*f_depo*C_vacancies - *C_depo_p/t_depo) +

*C_depo_p;

416 *C_etch_p = delta_t*(s_etch*f_etch*C_vacancies - *C_etch_p/t_etch) +

*C_etch_p;

417 }

418 if (isnan(*C_depo_p) || isnan(*C_etch_p)) {

419 *C_depo_p = (s_depo*f_depo)/(s_depo*f_depo*A_depo+1/t_depo);

420 *C_etch_p = (s_etch*f_etch)/(s_etch*f_etch*A_etch+1/t_etch);

421 }

422 }

423

424 if (node_number == 0) {

425 logfile_printf("---------------------------------\n");

426 logfile_printf("Time:%g seconds, Deposit Initial Coverage:%g,Etchant

Initial Coverage:%g\n",(double)i*delta_t+t,*C_depo_p,*C_etch_p);

427 logfile_printf("---------------------------------\n");

428 }

429 }

430

431 //Main Program.

432 int main(int argc, char* argv[]) {

433 //Main Program Start.

434 time_t simulation_start_time,simulation_end_time;

435 simulation_start_time = time(0);

436

437 int node_number = 0;

438 int total_number_of_nodes = 1;

439

440 //Setup Save Files.

441 if (node_number == 0) {

442 setup_save_files();

443 }

444

445 //printf mpi status



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 129

446 #ifdef MPI_ON

447 MPI_Init(&argc, &argv);

448 MPI_Comm_rank(MPI_COMM_WORLD, &node_number);

449 MPI_Comm_size(MPI_COMM_WORLD, &total_number_of_nodes);

450 if (node_number == 0) {

451 logfile_printf("--------Simulation Started-------\n");

452 logfile_printf("OpenMPI is ON, running with a total of %d CPU core(s)

.\n",total_number_of_nodes);

453 }

454 #else

455 logfile_printf("--------Simulation Started-------\n");

456 logfile_printf("OpenMPI is OFF, running with a total of %d CPU core(s).\n

",total_number_of_nodes);

457 #endif

458

459 //Structures Declarations.

460 Precursor etch_precursor;

461 Precursor deposit_precursor;

462 Toggle toggle;

463 Material upper_material;

464 Material lower_material;

465 Electron_beam electron_beam;

466

467 //Variable Declarations.

468 int i,j;

469 int run_MC_every_X_time_steps;

470 int save_simulation_data_every_X_time_steps;

471 int save_current_data_counter;

472 int number_of_backscattered_electrons;

473 int maxZindex;

474 double maxZ,FWHM,aspectRatio;

475 double backscattered_electron_coefficient = 0.0;

476 double secondary_electron_coefficient = 0.0;

477 double z_depth_minimum;

478 double z_depth_maximum;

479 double simulation_percentage;

480 double sum_flux = 0.0;

481 double C_etch = 0.0,C_depo = 0.0;

482 double current_time = 0.0;

483

484 //Input Parameters Variable Declarations.

485 int number_of_electron_trajectories = 0;

486 int number_of_surface_bins = 0;

487 int number_of_simulation_time_steps = 0;

488 int run_MC_every_zero_point_X_percent = 0; // FIXME: minor -

run_MC_every_zero_point_X_percent doesn’t work when # timesteps is small

489 int save_simulation_data_every_X_percent = 0; // FIXME: minor -

save_simulation_data_every_X_percent doesn’t work when # timesteps is small

490 int length_of_electron_energy_deposited_and_electron_maximum_z_depth_array =

0;

491 int maximum_electron_track_length = 0;

492 double delta_r;

493 double delta_t;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 130

494 double layered_material_interface_depth;

495 double gas_temperature,substrate_temperature;

496 double deposit_pinned_reaction_electron_cross_section;

497 double deposit_precursor_reaction_electron_cross_section;

498 int number_of_points;

499 int order;

500 int no_etch_area;

501 int seed;

502 int val1 = 0;

503 int val2 = 1;

504 int wave_type;

505 int square_wave_period;

506 int square_wave_min_current;

507 int square_wave_max_current;

508 double triangle_wave_rate;

509 int triangle_wave_min_current;

510 int triangle_wave_max_current;

511 int pulsing_period;

512 int pulse_on_time;

513 int pulse_off_time;

514 double temp_ebeam_current;

515 int time_delay = 0;

516 double precursor_diffusion_tolerance;

517 double SE_MC_weighting_factor;

518 double sim_goodness = 1.0;

519 double max_dt = 0.1;

520

521 //Read In Input Parameter Values From Disk.

522 read_input_parameters(&number_of_electron_trajectories,&

number_of_surface_bins,&number_of_simulation_time_steps,&

run_MC_every_zero_point_X_percent,&save_simulation_data_every_X_percent,&

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,&

maximum_electron_track_length,&delta_r,&delta_t,&electron_beam,&

layered_material_interface_depth,&upper_material,&lower_material,&

gas_temperature,&etch_precursor,&deposit_precursor,&

deposit_pinned_reaction_electron_cross_section,&

deposit_precursor_reaction_electron_cross_section,&toggle,&number_of_points,&

order,&no_etch_area,&seed,&wave_type,&square_wave_period,&

square_wave_min_current,&square_wave_max_current,&triangle_wave_rate,&

triangle_wave_min_current,&triangle_wave_max_current,&pulsing_period,&

pulse_on_time,&pulse_off_time,&time_delay,&precursor_diffusion_tolerance,&

substrate_temperature);

523

524 if (electron_beam.tilt > 89.9) {

525 // input of an electron beam tilt where the beam would not intersect a

flat surface

526 if (node_number == 0) {

527 logfile_printf("---------------------------------\n");

528 logfile_printf("Error: The electron beam tilt is greater than 89.9

degrees, the simulator is now exiting! Decrease the electron beam tilt and

restart the simulation.\n");

529 logfile_printf("---------------------------------\n");

530 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 131

531 #ifdef MPI_ON

532 MPI_Barrier(MPI_COMM_WORLD);

533 MPI_Finalize();

534 #else

535 exit(-1);

536 #endif

537 }

538

539 //Print Input Parameters To Terminal

540 if (node_number == 0) {

541 logfile_printf("---Simulation Input Parameters---\n");

542 logfile_printf("number_of_electron_trajectories = %d\n",

number_of_electron_trajectories);

543 logfile_printf("number_of_surface_bins = %d\n",number_of_surface_bins);

544 logfile_printf("number_of_simulation_time_steps = %d\n",

number_of_simulation_time_steps);

545 logfile_printf("run_MC_every_zero_point_X_percent = %d\n",

run_MC_every_zero_point_X_percent);

546 logfile_printf("save_simulation_data_every_X_percent = %d\n",

save_simulation_data_every_X_percent);

547 logfile_printf("

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array = %d\n

",length_of_electron_energy_deposited_and_electron_maximum_z_depth_array);

548 logfile_printf("maximum_electron_track_length = %d\n",

maximum_electron_track_length);

549 logfile_printf("delta_r = %g\n",delta_r);

550 logfile_printf("delta_t = %g\n",delta_t);

551 logfile_printf("electron_beam.cutoff_energy = %g\n",electron_beam.

cutoff_energy);

552 logfile_printf("electron_beam.top_hat_abruptness = %g\n",electron_beam.

top_hat_abruptness);

553 logfile_printf("electron_beam.diameter = %g\n",electron_beam.diameter);

554 logfile_printf("electron_beam.energy = %g\n",electron_beam.energy);

555 logfile_printf("electron_beam.current = %g\n",electron_beam.current);

556 logfile_printf("electron_beam.tilt = %g\n",electron_beam.tilt);

557 logfile_printf("layered_material_interface_depth = %g\n",

layered_material_interface_depth);

558 logfile_printf("upper_material.atomic_number = %g\n",upper_material.

atomic_number);

559 logfile_printf("upper_material.atomic_weight = %g\n",upper_material.

atomic_weight);

560 logfile_printf("upper_material.density = %g\n",upper_material.density);

561 logfile_printf("upper_material.epsilon = %g\n",upper_material.epsilon);

562 logfile_printf("upper_material.lambda = %g\n",upper_material.lambda);

563 logfile_printf("lower_material.atomic_number = %g\n",lower_material.

atomic_number);

564 logfile_printf("lower_material.atomic_weight = %g\n",lower_material.

atomic_weight);

565 logfile_printf("lower_material.density = %g\n",lower_material.density);

566 logfile_printf("lower_material.epsilon = %g\n",lower_material.epsilon);

567 logfile_printf("lower_material.lambda = %g\n",lower_material.lambda);

568 logfile_printf("gas_temperature = %g\n",gas_temperature);

569 logfile_printf("substrate_temperature = %g\n",substrate_temperature);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 132

570 logfile_printf("etch_precursor.gas_partial_pressure = %g\n",

etch_precursor.gas_partial_pressure);

571 logfile_printf("etch_precursor.reactive_product_molecular_mass = %g\n",

etch_precursor.reactive_product_molecular_mass);

572 logfile_printf("etch_precursor.surface_area = %g\n",etch_precursor.

surface_area);

573 logfile_printf("etch_precursor.desorption_energy = %g\n",etch_precursor.

desorption_energy);

574 logfile_printf("etch_precursor.desorption_attempt_frequency = %g\n",

etch_precursor.desorption_attempt_frequency);

575 logfile_printf("etch_precursor.diffusion_energy = %g\n",etch_precursor.

diffusion_energy);

576 logfile_printf("etch_precursor.diffusion_attempt_frequency = %g\n",

etch_precursor.diffusion_attempt_frequency);

577 logfile_printf("etch_precursor.sticking_coefficient = %g\n",

etch_precursor.sticking_coefficient);

578 logfile_printf("etch_precursor.PE_electron_cross_section = %g\n",

etch_precursor.PE_electron_cross_section);

579 logfile_printf("etch_precursor.BSE_electron_cross_section = %g\n",

etch_precursor.BSE_electron_cross_section);

580 logfile_printf("etch_precursor.SE_electron_cross_section = %g\n",

etch_precursor.SE_electron_cross_section);

581 logfile_printf("deposit_precursor.gas_partial_pressure = %g\n",

deposit_precursor.gas_partial_pressure);

582 logfile_printf("deposit_precursor.reactive_product_molecular_mass = %g\n"

,deposit_precursor.reactive_product_molecular_mass);

583 logfile_printf("deposit_precursor.surface_area = %g\n",deposit_precursor.

surface_area);

584 logfile_printf("deposit_precursor.desorption_energy = %g\n",

deposit_precursor.desorption_energy);

585 logfile_printf("deposit_precursor.desorption_attempt_frequency = %g\n",

deposit_precursor.desorption_attempt_frequency);

586 logfile_printf("deposit_precursor.diffusion_energy = %g\n",

deposit_precursor.diffusion_energy);

587 logfile_printf("deposit_precursor.diffusion_attempt_frequency = %g\n",

deposit_precursor.diffusion_attempt_frequency);

588 logfile_printf("deposit_precursor.sticking_coefficient = %g\n",

deposit_precursor.sticking_coefficient);

589 logfile_printf("deposit_precursor.PE_electron_cross_section = %g\n",

deposit_precursor.PE_electron_cross_section);

590 logfile_printf("deposit_precursor.BSE_electron_cross_section = %g\n",

deposit_precursor.BSE_electron_cross_section);

591 logfile_printf("deposit_precursor.SE_electron_cross_section = %g\n",

deposit_precursor.SE_electron_cross_section);

592 logfile_printf("deposit_pinned_reaction_electron_cross_section = %g\n",

deposit_pinned_reaction_electron_cross_section);

593 logfile_printf("deposit_precursor_reaction_electron_cross_section = %g\n"

,deposit_precursor_reaction_electron_cross_section);

594 logfile_printf("toggle.electron_trajectory_simulator = %d\n",toggle.

electron_trajectory_simulator);

595 logfile_printf("toggle.electron_trajectory_tracking = %d\n",toggle.

electron_trajectory_tracking);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 133

596 logfile_printf("toggle.electron_beam_projection = %d\n",toggle.

electron_beam_projection);

597 logfile_printf("toggle.electron_beam_shape = %d\n",toggle.

electron_beam_shape);

598 logfile_printf("toggle.surface_evolution = %d\n",toggle.surface_evolution

);

599 logfile_printf("toggle.previous_simulation = %d\n",toggle.

previous_simulation);

600 logfile_printf("toggle.coverage = %d\n",toggle.coverage);

601 logfile_printf("wave_type = %d\n",wave_type);

602 logfile_printf("square_wave_period = %d\n",square_wave_period);

603 logfile_printf("square_wave_min_current = %d\n",square_wave_min_current);

604 logfile_printf("square_wave_max_current = %d\n",square_wave_max_current);

605 logfile_printf("triangle_wave_rate = %d\n",triangle_wave_rate);

606 logfile_printf("triangle_wave_min_current = %d\n",

triangle_wave_min_current);

607 logfile_printf("triangle_wave_max_current = %d\n",

triangle_wave_max_current);

608 logfile_printf("pulsing_period = %d\n",pulsing_period);

609 logfile_printf("pulse_on_time = %d\n",pulse_on_time);

610 logfile_printf("pulse_off_time = %d\n",pulse_off_time);

611 logfile_printf("number_of_points = %d\n",number_of_points);

612 logfile_printf("order = %d\n",order);

613 logfile_printf("no_etch_area = %d\n",no_etch_area);

614 logfile_printf("seed = %d\n",seed);

615 logfile_printf("time_delay = %d\n",time_delay);

616 logfile_printf("precursor_diffusion_tolerance = %g\n",

precursor_diffusion_tolerance);

617 logfile_printf("---------------------------------\n");

618 }

619 maximum_electron_track_length = 1000;

620

621 //Malloc Variable Declarations.

622 malloc_memory(number_of_surface_bins,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

maximum_electron_track_length,number_of_simulation_time_steps);

623 print_electron_flux_profile_array = Make2DDoubleArray(200/

save_simulation_data_every_X_percent,number_of_surface_bins);

624 print_N_little_e = Make2DDoubleArray(200/save_simulation_data_every_X_percent

,number_of_surface_bins);

625 print_N_little_d = Make2DDoubleArray(200/save_simulation_data_every_X_percent

,number_of_surface_bins);

626 print_N_big_d = Make2DDoubleArray(200/save_simulation_data_every_X_percent,

number_of_surface_bins);

627 print_growth_rate = Make2DDoubleArray(200/

save_simulation_data_every_X_percent,number_of_surface_bins);

628 print_surface = Make2DDoubleArray(200/save_simulation_data_every_X_percent,

number_of_surface_bins);

629 print_secondary_electrons = Make2DDoubleArray(200/

save_simulation_data_every_X_percent,number_of_surface_bins);

630 print_backscattered_electrons = Make2DDoubleArray(200/

save_simulation_data_every_X_percent,number_of_surface_bins);

631



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 134

632 //Initial Calculations.

633 SE_MC_weighting_factor = 100000.0;

634 run_MC_every_X_time_steps = 1;

635 save_simulation_data_every_X_time_steps = number_of_simulation_time_steps

/100*save_simulation_data_every_X_percent;//save the simulator data every X

time steps to disk.

636 etch_precursor.reactive_product_flux = (etch_precursor.gas_partial_pressure

*1.0E-20)/sqrt(2.0*PI*etch_precursor.reactive_product_molecular_mass*

BOLTZMANN_CONSTANT*gas_temperature);//reactive product flux, in A-2s-1.

637 deposit_precursor.reactive_product_flux = (deposit_precursor.

gas_partial_pressure*1.0E-20)/sqrt(2.0*PI*deposit_precursor.

reactive_product_molecular_mass*BOLTZMANN_CONSTANT*gas_temperature);//

reactive product flux, in A-2s-1.

638 etch_precursor.desorption_time = etch_precursor.desorption_attempt_frequency*

exp((etch_precursor.desorption_energy*ELECTRON_CHARGE)/(BOLTZMANN_CONSTANT*

substrate_temperature));

639 etch_precursor.diffusion_coefficient = etch_precursor.

diffusion_attempt_frequency*exp(-(etch_precursor.diffusion_energy*

ELECTRON_CHARGE)/(BOLTZMANN_CONSTANT*substrate_temperature));

640 deposit_precursor.desorption_time = deposit_precursor.

desorption_attempt_frequency*exp((deposit_precursor.desorption_energy*

ELECTRON_CHARGE)/(BOLTZMANN_CONSTANT*substrate_temperature));

641 deposit_precursor.diffusion_coefficient = deposit_precursor.

diffusion_attempt_frequency*exp(-(deposit_precursor.diffusion_energy*

ELECTRON_CHARGE)/(BOLTZMANN_CONSTANT*substrate_temperature));

642 save_current_data_counter = 1;

643 electron_beam.current *= 1.0E-12/ELECTRON_CHARGE;

644 temp_ebeam_current = electron_beam.current;

645

646 //print initial calculations

647 if (node_number == 0) {

648 logfile_printf("---------------------------------\n");

649 logfile_printf("Deposit Flux:%g A-2s-1,Etchant Flux:%g A-2s-1\n",

deposit_precursor.reactive_product_flux,etch_precursor.reactive_product_flux)

;

650 logfile_printf("Deposit Desorption Time:%g s,Etchant Desorption Time:%g s

\n",deposit_precursor.desorption_time,etch_precursor.desorption_time);

651 logfile_printf("Deposit Diffusion Coefficient:%g A2s-1,Etchant Diffusion

Coefficient:%g A2s-1\n",deposit_precursor.diffusion_coefficient,

etch_precursor.diffusion_coefficient);

652 logfile_printf("---------------------------------\n");

653 }

654

655 //check to see if diffusion coefficient is above 1.0

656 toggle.diffusion = 1;

657 if (deposit_precursor.diffusion_coefficient<1.0 && deposit_precursor.

gas_partial_pressure > 0.0) {

658 if (node_number == 0) {

659 logfile_printf("---------------------------------\n");

660 logfile_printf("Warning: The deposition precursor molecule diffusion

coefficient is less than 1.0! Turning diffusion off!\n");

661 logfile_printf("---------------------------------\n");

662 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 135

663 toggle.diffusion = 0;

664 }

665 if (etch_precursor.diffusion_coefficient<1.0 && etch_precursor.

gas_partial_pressure > 0.0) {

666 if (node_number == 0) {

667 logfile_printf("---------------------------------\n");

668 logfile_printf("Warning: The etch precursor molecule diffusion

coefficient is less than 1.0! Turning diffusion off!\n");

669 logfile_printf("---------------------------------\n");

670 }

671 toggle.diffusion = 0;

672 }

673

674 //check dimentionless diffusion coefficient obeys the inequalty, 0<D’<0.5

675 if (toggle.diffusion) {

676 double dimentionless_diffusion_coefficient = (deposit_precursor.

diffusion_coefficient*delta_t)/(delta_r*delta_r);

677 if (dimentionless_diffusion_coefficient < 0 ||

dimentionless_diffusion_coefficient > 0.5) {

678 if (node_number == 0) {

679 logfile_printf("---------------------------------\n");

680 logfile_printf("Warning (Deposit Gas): The dimentionless

diffusion coefficient, D’=%g, does not obey the inequalty, 0<D’<0.5, surface

diffusion may no longer behave correctly. Increase the size of input

parameter, ’delta_r’, or decrease the size of input parameter, ’delta_t’, to

prevent this warning.\n",dimentionless_diffusion_coefficient);

681 logfile_printf("---------------------------------\n");

682 }

683 }

684 dimentionless_diffusion_coefficient = (etch_precursor.

diffusion_coefficient*delta_t)/(delta_r*delta_r);

685 if (dimentionless_diffusion_coefficient < 0 ||

dimentionless_diffusion_coefficient > 0.5) {

686 if (node_number == 0) {

687 logfile_printf("---------------------------------\n");

688 logfile_printf("Warning (Etch Gas): The dimentionless diffusion

coefficient, D’=%g, does not obey the inequalty, 0<D’<0.5, surface diffusion

may no longer behave correctly. Increase the size of input parameter, ’

delta_r’, or decrease the size of input parameter, ’delta_t’, to prevent this

warning.\n",dimentionless_diffusion_coefficient);

689 logfile_printf("---------------------------------\n");

690 }

691 }

692 }

693

694 //Setup Core Arrays.

695 if (toggle.previous_simulation == 0) {

696 // set up new simulation start

697 if (toggle.coverage) {

698 compute_EBIED_initial_coverage(delta_t, deposit_precursor,

etch_precursor, &C_etch, &C_depo);

699 } else {

700 C_depo = 0.0;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 136

701 C_etch = 0.0;

702 }

703 for (i=0;i<number_of_surface_bins;i++) {

704 deposit_precursor_gas_concentration_previous_two_time_step_array[i] =

C_depo;//n_d;

705 deposit_precursor_gas_concentration_previous_time_step_array[i] =

C_depo;//n_d;

706 etch_precursor_gas_concentration_previous_two_time_step_array[i] =

C_etch;//n_e;

707 etch_precursor_gas_concentration_previous_time_step_array[i] = C_etch

;//n_e;

708 reactive_product_concentration_previous_time_step_array[i] = 0.0;

709 growth_or_etch_rate_array[i] = 0.0;

710 z_coordinate_array[i] = 0.0;

711 r_coordinate_array[i] = ((double)i+1.0)*delta_r;

712 }

713 } else { //fix EBIED previous simulation

714 read_input_previous_simulation(number_of_surface_bins);

715 for (i=0;i<number_of_surface_bins;i++) {

716 deposit_precursor_gas_concentration_previous_two_time_step_array[i] =

previous_deposit_precursor_gas_concentration_previous_time_step_array[i];

717 deposit_precursor_gas_concentration_previous_time_step_array[i] =

previous_deposit_precursor_gas_concentration_previous_time_step_array[i];

718 etch_precursor_gas_concentration_previous_two_time_step_array[i] =

previous_etch_precursor_gas_concentration_previous_time_step_array[i];

719 etch_precursor_gas_concentration_previous_time_step_array[i] =

previous_etch_precursor_gas_concentration_previous_time_step_array[i];

720 reactive_product_concentration_previous_time_step_array[i] =

previous_reactive_product_concentration_previous_time_step_array[i];

721 growth_or_etch_rate_array[i] = 0.0;

722 z_coordinate_array[i] = previous_z_coordinate_array[i];

723 r_coordinate_array[i] = previous_r_coordinate_array[i];

724 }

725 C_depo =

previous_deposit_precursor_gas_concentration_previous_time_step_array[i];

726 C_etch =

previous_etch_precursor_gas_concentration_previous_time_step_array[i];

727 }

728

729 //Electron Flux Profile.

730 electron_flux_profile(toggle,electron_beam,number_of_surface_bins,delta_t,

delta_r,backscattered_electron_coefficient,secondary_electron_coefficient,i);

731

732 /*if(toggle.electron_trajectory_simulator)

733 {

734 //Monte Carlo, Surface Setup.

735 monte_carlo_surface_setup(number_of_surface_bins,&z_depth_minimum,&

z_depth_maximum);

736

737 //Monte Carlo, Electron Trajectories.



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 137

738 monte_carlo_electron_trajectory_simulator(electron_beam,lower_material,

upper_material,toggle.electron_trajectory_tracking,delta_r,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

number_of_surface_bins,layered_material_interface_depth,

maximum_electron_track_length,number_of_electron_trajectories,z_depth_minimum

,z_depth_maximum,&number_of_backscattered_electrons,seed);

739

740 //Monte Carlo, Data Collection.

741 monte_carlo_data_collection(

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

number_of_electron_trajectories,number_of_surface_bins,

number_of_backscattered_electrons,&backscattered_electron_coefficient,&

secondary_electron_coefficient);

742

743 //Electron Flux Profile.

744 electron_flux_profile(toggle,electron_beam,number_of_surface_bins,delta_t

,delta_r,backscattered_electron_coefficient,secondary_electron_coefficient,i)

;

745 }

746

747 //printf BSE and SE

748 if (node_number == 0) {

749 logfile_printf("---------------------------------\n");

750 logfile_printf("Secondary Electron Yield:%g,Backscattered Electron

Coefficient:%g\n",secondary_electron_coefficient,

backscattered_electron_coefficient);

751 logfile_printf("---------------------------------\n");

752 }

753

754 for (i=0;i<number_of_surface_bins;i++) {

755 sum_flux += electron_flux_profile_array[i]; // FIXME: does this need X

annulus?

756 }

757

758 if (node_number == 0) {

759 logfile_printf("---------------------------------\n");

760 logfile_printf("Intergrated Flux:%g electrons/sec\n",sum_flux);

761 logfile_printf("---------------------------------\n");

762 }*/

763

764 //EBIED Simulator.

765 clock_t continuum_start_time,continuum_end_time;

766 clock_t surfevo_start_time,surfevo_end_time;

767 clock_t eflux_start_time,eflux_end_time;

768 clock_t montecarlo_start_time,montecarlo_end_time;

769 for (i=0;i<number_of_simulation_time_steps;i++) {

770 //Monte Carlo.

771 if(toggle.electron_trajectory_simulator && electron_beam.current > 0) {

772 montecarlo_start_time = clock();

773 //Monte Carlo, Surface Setup.

774 monte_carlo_surface_setup(number_of_surface_bins,&z_depth_minimum,&

z_depth_maximum);

775



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 138

776 //Monte Carlo, Electron Trajectories.

777 monte_carlo_electron_trajectory_simulator(electron_beam,

lower_material,upper_material,toggle.electron_trajectory_tracking,delta_r,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

number_of_surface_bins,layered_material_interface_depth,

maximum_electron_track_length,number_of_electron_trajectories,z_depth_minimum

,z_depth_maximum,&number_of_backscattered_electrons,seed);

778

779 //Monte Carlo, Data Collection.

780 monte_carlo_data_collection(

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

number_of_electron_trajectories,number_of_surface_bins,

number_of_backscattered_electrons,&backscattered_electron_coefficient,&

secondary_electron_coefficient);

781 if (node_number == 0) {

782 logfile_printf("---------------------------------\n");

783 logfile_printf("Secondary Electron Yield:%g,Backscattered

Electron Coefficient:%g\n",secondary_electron_coefficient,

backscattered_electron_coefficient);

784 logfile_printf("---------------------------------\n");

785 }

786 montecarlo_end_time = clock();

787 //Electron Flux Profile.

788 eflux_start_time = clock();

789 electron_flux_profile(toggle,electron_beam,number_of_surface_bins,

delta_t,delta_r,backscattered_electron_coefficient,

secondary_electron_coefficient,i);

790 eflux_end_time = clock();

791 }

792

793 //check for diffusion

794 if (toggle.diffusion) {

795 //EBIED Solver.

796 continuum_start_time = clock();

797 if (etch_precursor.gas_partial_pressure > 0.0) {

798 //if etch and/or depo run EBIED code

799 delta_t *= 1.1;

800 if (delta_t > max_dt) {

801 delta_t = max_dt;

802 }

803 ebied_solver(etch_precursor,deposit_precursor,toggle,

gas_temperature,deposit_pinned_reaction_electron_cross_section,

deposit_precursor_reaction_electron_cross_section,delta_t,delta_r,

number_of_surface_bins,no_etch_area);

804 } else {

805 //if depo only run EBID code

806 delta_t *= 1.1;

807 if (delta_t > max_dt) {

808 delta_t = max_dt;

809 }

810 ebid_solver(deposit_precursor,toggle,gas_temperature,delta_t,

delta_r,number_of_surface_bins);

811 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 139

812 current_time += delta_t;

813 time_per_time_step_array[i] = current_time;

814 continuum_end_time = clock();

815 } else {

816 //EBIED Solver, diffusion off.

817 ebied_solver_no_diffusion(etch_precursor,deposit_precursor,toggle,

gas_temperature,deposit_pinned_reaction_electron_cross_section,

deposit_precursor_reaction_electron_cross_section,delta_t,delta_r,

number_of_surface_bins);

818 }

819

820 //Surface Evolution.

821 surfevo_start_time = clock();

822 surface_evolution(deposit_precursor,etch_precursor,lower_material,

upper_material,toggle.surface_evolution,number_of_points,order,

number_of_surface_bins,delta_t,delta_r,layered_material_interface_depth,i,

toggle);

823 surfevo_end_time = clock();

824

825 //Save Current Simulation Data.

826 if (save_current_data_counter == save_simulation_data_every_X_time_steps

&& (node_number == 0)) {

827 save_current_simulation_data(

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

backscattered_electron_coefficient,secondary_electron_coefficient,

number_of_surface_bins,number_of_electron_trajectories,i+2,val1,val2,

number_of_simulation_time_steps,save_simulation_data_every_X_percent);

828 val1 += 2;

829 val2 += 2;

830 save_current_data_counter = 1;

831 } else {

832 save_current_data_counter++;

833 }

834

835 //Simulation Progress.

836 if ((i%(number_of_simulation_time_steps/100) == 0) && (i != 0) && (

node_number == 0)) {

837 simulation_end_time = time(0);

838 simulation_percentage = (double)i/(double)

number_of_simulation_time_steps*100.0;

839 double time_left_hours = floor((difftime(simulation_end_time,

simulation_start_time)/simulation_percentage*(100.0-simulation_percentage))

/60/60);

840 double time_left_mins = floor((difftime(simulation_end_time,

simulation_start_time)/simulation_percentage*(100.0-simulation_percentage))

/60-time_left_hours*60);

841 double time_left_secs = floor((difftime(simulation_end_time,

simulation_start_time)/simulation_percentage*(100.0-simulation_percentage))-

time_left_mins*60-time_left_hours*60*60);

842 logfile_printf("Progress: %g%%, Estimated Time Remaining: %g hour(s)

%g minute(s) %g second(s). Current Time:%g, DeltaT:%g,TimeStep:%d\n",

simulation_percentage,time_left_hours,time_left_mins,time_left_secs,

current_time,delta_t,i);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 140

843 if (z_coordinate_array[0] > 0.0) {

844 maxZ = z_coordinate_array[1];

845 maxZindex = 1;

846 for (j=2;j<number_of_surface_bins;j++) {

847 if (z_coordinate_array[j] > maxZ) {

848 maxZ = z_coordinate_array[j];

849 maxZindex = j;

850 }

851 }

852 for (j=maxZindex;j<number_of_surface_bins;j++) {

853 if (maxZ/2.0 > z_coordinate_array[j]) {

854 FWHM = 2*r_coordinate_array[j-1];

855 break;

856 }

857 }

858 aspectRatio = maxZ/FWHM;

859 }

860 //calculate structure volume

861 for (j=0;j<number_of_surface_bins;j++) {

862 if (z_coordinate_array[j] >= layered_material_interface_depth) {

863 deposit_precursor.reactive_product_density = upper_material.

density*1.0E-27;

864 } else {

865 deposit_precursor.reactive_product_density = lower_material.

density*1.0E-27;

866 }

867 temporary_r_coordinate_array[j] = r_coordinate_array[j];

868 temporary_z_coordinate_array[j] =

reactive_product_concentration_current_time_step_array[j]*deposit_precursor.

reactive_product_molecular_mass/deposit_precursor.reactive_product_density;

869 }

870 double ND_volume = temporary_z_coordinate_array[0]*PI*

temporary_r_coordinate_array[0]*temporary_r_coordinate_array[0];

871 double current_volume = z_coordinate_array[0]*PI*r_coordinate_array

[0]*r_coordinate_array[0];

872 double interval = (r_coordinate_array[number_of_surface_bins-1]-

r_coordinate_array[0])/10000.0;

873 double xi = r_coordinate_array[0]+interval;

874 for (j=1;j<10000;j++) {

875 current_volume += linear_interp(r_coordinate_array,

z_coordinate_array,number_of_surface_bins,xi)*PI*(xi*xi-((xi-interval)*(xi-

interval)));

876 ND_volume += linear_interp(temporary_r_coordinate_array,

temporary_z_coordinate_array,number_of_surface_bins,xi)*PI*(xi*xi-((xi-

interval)*(xi-interval)));

877 xi += interval;

878 }

879 //adjust max delta t based on simulation goodness

880 sim_goodness = 1.0-fabs(current_volume/ND_volume-1);

881 //max_dt *= sim_goodness;

882

883 logfile_printf("---------------------------------\n");



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 141

884 logfile_printf("Simulation Goodness [Good(1)-Bad(0)]:%g,Current

Structure Volume (A3):%g,Deposited Structure Volume (A3):%g\n",sim_goodness,

current_volume,ND_volume);

885 logfile_printf("---------------------------------\n");

886 //Check to see if molecules have diffused out of final bin.

887 if (deposit_precursor_gas_concentration_current_time_step_array[

number_of_surface_bins-1] < C_depo*(1-(precursor_diffusion_tolerance/100))) {

888 if (node_number == 0) {

889 logfile_printf("---------------------------------\n");

890 logfile_printf("Warning: Deposit precursor molecules have

diffused out of final surface bin, surface diffusion may no longer behave

correctly. Increase the size of input parameter, ’number_of_surface_bins’, to

prevent this warning.\n");

891 logfile_printf("---------------------------------\n");

892 }

893 }

894 if (etch_precursor_gas_concentration_current_time_step_array[

number_of_surface_bins-1] < C_etch*(1-(precursor_diffusion_tolerance/100))) {

895 if (node_number == 0) {

896 logfile_printf("---------------------------------\n");

897 logfile_printf("Warning: Etchant precursor molecules have

diffused out of final surface bin, surface diffusion may no longer behave

correctly. Increase the size of input parameter, ’number_of_surface_bins’, to

prevent this warning.\n");

898 logfile_printf("---------------------------------\n");

899 }

900 }

901 }

902

903 #ifdef MPI_ON

904 MPI_Barrier(MPI_COMM_WORLD);

905 #endif

906 }

907

908 //Main Program End.

909 if (node_number == 0) {

910 logfile_printf("Progress: 100%%\n");

911 //Save data for next simulation

912 FILE *fp;

913 fp=fopen("./inputs/input_previous_simulation.txt", "w");

914 for (i=0;i<number_of_surface_bins;i++) {

915 fprintf(fp,"%d\t%g\t%g\t%g\t%g\t%g\n",i+1,r_coordinate_array[i],

z_coordinate_array[i],

deposit_precursor_gas_concentration_current_time_step_array[i],

etch_precursor_gas_concentration_current_time_step_array[i],

reactive_product_concentration_current_time_step_array[i]);

916 }

917 fclose(fp);

918 simulation_end_time = time(0);

919 double time_left_hours = floor(difftime(simulation_end_time,

simulation_start_time)/60/60);

920 double time_left_mins = floor(difftime(simulation_end_time,

simulation_start_time)/60)-time_left_hours*60;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 142

921 double time_left_secs = floor(difftime(simulation_end_time,

simulation_start_time))-time_left_mins*60-time_left_hours*60*60;

922 logfile_printf("---------Simulation Ended--------\n");

923 logfile_printf("The total wall time was: %g hour(s) %g minute(s) %g

second(s)\n",time_left_hours,time_left_mins,time_left_secs);

924 logfile_printf("---------------------------------\n");

925 if (z_coordinate_array[0] > 0.0) {

926 logfile_printf("MaxZ Height:%g\tFWHM:%g\tAspect Ratio:%g\tTotal Time

:%g\n",maxZ,FWHM,aspectRatio,current_time);

927 }

928 //Calculate time for Continuum and Monte Carlo modules

929 logfile_printf("Continuum Run Time:%E sec\n",(double)(continuum_end_time-

continuum_start_time)/CLOCKS_PER_SEC);

930 logfile_printf("Surface Evolution Run Time:%E sec\n",(double)(

surfevo_end_time-surfevo_start_time)/CLOCKS_PER_SEC);

931 logfile_printf("Electron Flux Run Time:%E sec\n",(double)(eflux_end_time-

eflux_start_time)/CLOCKS_PER_SEC);

932 logfile_printf("Monte Carlo Run Time:%E sec\n",(double)(

montecarlo_end_time-montecarlo_start_time)/CLOCKS_PER_SEC);

933 }

934 #ifdef MPI_ON

935 MPI_Barrier(MPI_COMM_WORLD);

936 MPI_Finalize();

937 #endif

938 exit(0);

939

940 }

B.5 EBID/EBIE & EBIED Solver

1 //

2 // ebie_ebid_solver.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This function contains the continuum model equations for EBID/EBIE/EBIED.

7 //

8 #ifdef XCODE

9 #include <stdlib.h>

10 #include <math.h>

11 #include <stdio.h>

12 #include "structures.h"

13 #include "prototypes.h"

14 #include <gsl/gsl_fit.h>

15 #endif

16

17 //calculates the precursor and deposit molecule concentration over time

18 void ebied_solver(Precursor etch_precursor,

19 Precursor deposit_precursor,

20 Toggle toggle,



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 143

21 double gas_temperature,

22 double deposit_pinned_reaction_electron_cross_section,

23 double deposit_precursor_reaction_electron_cross_section,

24 double delta_t,

25 double delta_r,

26 int number_of_surface_bins,

27 int no_etch_area)

28 {

29

30 int j;

31 double r;

32

33

34 //if surface evo, make an r array a string of point along the surface

35 //this maybe be incorrect and must FIX!!!

36 if (toggle.surface_evolution) {

37 r_array[0] = r_coordinate_array[0];

38 for (j=1;j<number_of_surface_bins;j++) {

39 double dr = r_coordinate_array[j]-r_coordinate_array[j-1];

40 double dz = z_coordinate_array[j]-z_coordinate_array[j-1];

41 r_array[j] = r_array[j-1]+sqrt(dr*dr + dz*dz);

42 }

43 } else {

44 for (j=0;j<number_of_surface_bins;j++) {

45 r_array[j] = r_coordinate_array[j];

46 }

47 }

48

49 double D_etch = etch_precursor.diffusion_coefficient;

50 double s_etch = etch_precursor.sticking_coefficient;

51 double f_etch = etch_precursor.reactive_product_flux;

52 double A_etch = etch_precursor.surface_area;

53 double t_etch = etch_precursor.desorption_time;

54 double sigma_PE_etch = etch_precursor.PE_electron_cross_section;

55 double sigma_BSE_etch = etch_precursor.BSE_electron_cross_section;

56 double sigma_SE_etch = etch_precursor.SE_electron_cross_section;

57

58 double D_depo = deposit_precursor.diffusion_coefficient;

59 double s_depo = deposit_precursor.sticking_coefficient;

60 double f_depo = deposit_precursor.reactive_product_flux;

61 double A_depo = deposit_precursor.surface_area;

62 double t_depo = deposit_precursor.desorption_time;

63 double sigma_PE_depo = deposit_precursor.PE_electron_cross_section;

64 double sigma_BSE_depo = deposit_precursor.BSE_electron_cross_section;

65 double sigma_SE_depo = deposit_precursor.SE_electron_cross_section;

66

67 //calculate Etch Molecule Concentration the first time

68 right_hand_side[0] = 0.0;

69 answer[0] = 1.0;

70 lower_diagonal[0] = ((-1.0*D_etch)/(2.0*delta_r*delta_r))+(D_etch/(4.0*

delta_r));

71 central_diagonal[0] = 1.0;

72 upper_diagonal[0] = -1.0;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 144

73 right_hand_side[number_of_surface_bins-1] = 0.0;

74 answer[number_of_surface_bins-1] = 1.0;

75 lower_diagonal[number_of_surface_bins-1] = -1.0;

76 central_diagonal[number_of_surface_bins-1] = 1.0;

77 r = r_array[number_of_surface_bins-1];

78 upper_diagonal[number_of_surface_bins-1] = ((-1.0*D_etch)/(2.0*delta_r*

delta_r))-(D_etch/(4.0*r*delta_r));

79 for (j=1;j<(number_of_surface_bins-1);j++) {

80 if (j <= no_etch_area) {

81 sigma_PE_etch = 0.0;

82 sigma_BSE_etch = 0.0;

83 sigma_SE_etch = 0.0;

84 } else {

85 sigma_PE_etch = etch_precursor.PE_electron_cross_section;

86 sigma_BSE_etch = etch_precursor.BSE_electron_cross_section;

87 sigma_SE_etch = etch_precursor.SE_electron_cross_section;

88 }

89 r = r_array[j];

90 right_hand_side[j] = s_etch*f_etch+

etch_precursor_gas_concentration_previous_time_step_array[j]*(1.0/delta_t-

s_etch*f_etch*A_etch/2.0-1.0/(2.0*t_etch)-(sigma_PE_etch*

PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])/2.0-((2.0*D_etch)/(2.0*delta_r*delta_r)))

+(deposit_precursor_gas_concentration_previous_time_step_array[j])*(-1.0*

s_etch*f_etch*A_depo)+

etch_precursor_gas_concentration_previous_time_step_array[j-1]*((D_etch/(2.0*

delta_r*delta_r))-(D_etch/(4.0*r*delta_r)))+

etch_precursor_gas_concentration_previous_time_step_array[j+1]*((D_etch/(2.0*

delta_r*delta_r))+(D_etch/(4.0*r*delta_r)));

91 lower_diagonal[j] = ((-1.0*D_etch)/(2.0*delta_r*delta_r))+(D_etch/(4.0*r*

delta_r));

92 central_diagonal[j] = (1.0/delta_t+s_etch*f_etch*A_etch/2.0+1.0/(2.0*

t_etch)+(sigma_PE_etch*PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])/2.0)+((2.0*D_etch)/(2.0*delta_r*delta_r));

93 upper_diagonal[j] = ((-1.0*D_etch)/(2.0*delta_r*delta_r))-(D_etch/(4.0*r*

delta_r));

94 answer[j] = 1.0;

95 }

96

97 solve_matrix(number_of_surface_bins,

98 lower_diagonal,

99 central_diagonal,

100 upper_diagonal,

101 right_hand_side,

102 answer);

103

104 //calculate the Deposit Molecule Concentration the first time

105 right_hand_side[0] = 0.0;

106 answer[0] = 1.0;

107 lower_diagonal[0] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))+(D_depo/(4.0*

delta_r));



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 145

108 central_diagonal[0] = 1.0;

109 upper_diagonal[0] = -1.0;

110 right_hand_side[number_of_surface_bins-1] = 0.0;

111 answer[number_of_surface_bins-1] = 1.0;

112 lower_diagonal[number_of_surface_bins-1] = -1.0;

113 central_diagonal[number_of_surface_bins-1] = 1.0;

114 r = r_array[number_of_surface_bins-1];

115 upper_diagonal[number_of_surface_bins-1] = ((-1.0*D_depo)/(2.0*delta_r*

delta_r))-(D_depo/(4.0*r*delta_r));

116 for (j=1;j<(number_of_surface_bins-1);j++) {

117 r = r_array[j];

118 right_hand_side[j] = s_depo*f_depo+

deposit_precursor_gas_concentration_previous_time_step_array[j]*(1.0/delta_t-

s_depo*f_depo*A_depo/2.0-1.0/(2.0*t_depo)-(sigma_PE_depo*

PE_electron_flux_profile_array[j]+sigma_BSE_depo*

BSE_electron_flux_profile_array[j]+sigma_SE_depo*

SE_electron_flux_profile_array[j])/2.0-(sigma_PE_etch*

PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])*(answer[j]+

etch_precursor_gas_concentration_previous_time_step_array[j])*

deposit_precursor_reaction_electron_cross_section/4.0-((2.0*D_depo)/(2.0*

delta_r*delta_r)))+((answer[j]+

etch_precursor_gas_concentration_previous_time_step_array[j])/2.0)*(-1.0*

s_depo*f_depo*A_etch)+

deposit_precursor_gas_concentration_previous_time_step_array[j-1]*((D_depo

/(2.0*delta_r*delta_r))-(D_depo/(4.0*r*delta_r)))+

deposit_precursor_gas_concentration_previous_time_step_array[j+1]*((D_depo

/(2.0*delta_r*delta_r))+(D_depo/(4.0*r*delta_r)));

119 lower_diagonal[j] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))+(D_depo/(4.0*r*

delta_r));

120 central_diagonal[j] = (1.0/delta_t+s_depo*f_depo*A_depo/2.0+1.0/(2.0*

t_depo)+(sigma_PE_depo*PE_electron_flux_profile_array[j]+sigma_BSE_depo*

BSE_electron_flux_profile_array[j]+sigma_SE_depo*

SE_electron_flux_profile_array[j])/2.0+(sigma_PE_etch*

PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])*(answer[j]+

etch_precursor_gas_concentration_previous_time_step_array[j])*

deposit_precursor_reaction_electron_cross_section/4.0)+((2.0*D_depo)/(2.0*

delta_r*delta_r));

121 upper_diagonal[j] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))-(D_depo/(4.0*r*

delta_r));

122 answer[j] = 1.0;

123 }

124

125 solve_matrix(number_of_surface_bins,

126 lower_diagonal,

127 central_diagonal,

128 upper_diagonal,

129 right_hand_side,answer);

130

131 //calculate the Etch Molecule Concentration a second time



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 146

132 right_hand_side[0] = 0.0;

133 answer[0] = 1.0;

134 lower_diagonal[0] = ((-1.0*D_etch)/(2.0*delta_r*delta_r))+(D_etch/(4.0*

delta_r));

135 central_diagonal[0] = 1.0;

136 upper_diagonal[0] = -1.0;

137 right_hand_side[number_of_surface_bins-1] = 0.0;

138 answer[number_of_surface_bins-1] = 1.0;

139 lower_diagonal[number_of_surface_bins-1] = -1.0;

140 central_diagonal[number_of_surface_bins-1] = 1.0;

141 r = r_array[number_of_surface_bins-1];

142 upper_diagonal[number_of_surface_bins-1] = ((-1.0*D_etch)/(2.0*delta_r*

delta_r))-(D_etch/(4.0*r*delta_r));

143 for (j=1;j<(number_of_surface_bins-1);j++) {

144 if (j <= no_etch_area) {

145 sigma_PE_etch = 0.0;

146 sigma_BSE_etch = 0.0;

147 sigma_SE_etch = 0.0;

148 } else {

149 sigma_PE_etch = etch_precursor.PE_electron_cross_section;

150 sigma_BSE_etch = etch_precursor.BSE_electron_cross_section;

151 sigma_SE_etch = etch_precursor.SE_electron_cross_section;

152 }

153 r = r_array[j];

154 right_hand_side[j] = s_etch*f_etch+

etch_precursor_gas_concentration_previous_time_step_array[j]*(1.0/delta_t-

s_etch*f_etch*A_etch/2.0-1.0/(2.0*t_etch)-(sigma_PE_etch*

PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])/2.0-((2.0*D_etch)/(2.0*delta_r*delta_r)))

+((answer[j]+deposit_precursor_gas_concentration_previous_time_step_array[j])

/2.0)*(-1.0*s_etch*f_etch*A_depo)+

etch_precursor_gas_concentration_previous_time_step_array[j-1]*((D_etch/(2.0*

delta_r*delta_r))-(D_etch/(4.0*r*delta_r)))+

etch_precursor_gas_concentration_previous_time_step_array[j+1]*((D_etch/(2.0*

delta_r*delta_r))+(D_etch/(4.0*r*delta_r)));

155 lower_diagonal[j] = ((-1.0*D_etch)/(2.0*delta_r*delta_r))+(D_etch/(4.0*r*

delta_r));

156 central_diagonal[j] = (1.0/delta_t+s_etch*f_etch*A_etch/2.0+1.0/(2.0*

t_etch)+(sigma_PE_etch*PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])/2.0)+((2.0*D_etch)/(2.0*delta_r*delta_r));

157 upper_diagonal[j] = ((-1.0*D_etch)/(2.0*delta_r*delta_r))-(D_etch/(4.0*r*

delta_r));

158 answer[j] = 1.0;

159 }

160

161 solve_matrix(number_of_surface_bins,

162 lower_diagonal,

163 central_diagonal,

164 upper_diagonal,

165 right_hand_side,answer);

166



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 147

167 for (j=0;j<number_of_surface_bins;j++) {

168 etch_precursor_gas_concentration_current_time_step_array[j] = answer[j];

169 }

170

171 //calculate the Deposit Molecule Concentration a second time

172 right_hand_side[0] = 0.0;

173 answer[0] = 1.0;

174 lower_diagonal[0] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))+(D_depo/(4.0*

delta_r));

175 central_diagonal[0] = 1.0;

176 upper_diagonal[0] = -1.0;

177 right_hand_side[number_of_surface_bins-1] = 0.0;

178 answer[number_of_surface_bins-1] = 1.0;

179 lower_diagonal[number_of_surface_bins-1] = -1.0;

180 central_diagonal[number_of_surface_bins-1] = 1.0;

181 r = r_array[number_of_surface_bins-1];

182 upper_diagonal[number_of_surface_bins-1] = ((-1.0*D_depo)/(2.0*delta_r*

delta_r))-(D_depo/(4.0*r*delta_r));

183 for (j=1;j<(number_of_surface_bins-1);j++) {

184 r = r_array[j];

185 right_hand_side[j] = s_depo*f_depo+

deposit_precursor_gas_concentration_previous_time_step_array[j]*(1.0/delta_t-

s_depo*f_depo*A_depo/2.0-1.0/(2.0*t_depo)-(sigma_PE_depo*

PE_electron_flux_profile_array[j]+sigma_BSE_depo*

BSE_electron_flux_profile_array[j]+sigma_SE_depo*

SE_electron_flux_profile_array[j])/2.0-(sigma_PE_etch*

PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])*(answer[j]+

etch_precursor_gas_concentration_previous_time_step_array[j])*

deposit_precursor_reaction_electron_cross_section/4.0-((2.0*D_depo)/(2.0*

delta_r*delta_r)))+((answer[j]+

etch_precursor_gas_concentration_previous_time_step_array[j])/2.0)*(-1.0*

s_depo*f_depo*A_etch)+

deposit_precursor_gas_concentration_previous_time_step_array[j-1]*((D_depo

/(2.0*delta_r*delta_r))-(D_depo/(4.0*r*delta_r)))+

deposit_precursor_gas_concentration_previous_time_step_array[j+1]*((D_depo

/(2.0*delta_r*delta_r))+(D_depo/(4.0*r*delta_r)));

186 lower_diagonal[j] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))+(D_depo/(4.0*r*

delta_r));

187 central_diagonal[j] = (1.0/delta_t+s_depo*f_depo*A_depo/2.0+1.0/(2.0*

t_depo)+(sigma_PE_depo*PE_electron_flux_profile_array[j]+sigma_BSE_depo*

BSE_electron_flux_profile_array[j]+sigma_SE_depo*

SE_electron_flux_profile_array[j])/2.0+(sigma_PE_etch*

PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])*(answer[j]+

etch_precursor_gas_concentration_previous_time_step_array[j])*

deposit_precursor_reaction_electron_cross_section/4.0)+((2.0*D_depo)/(2.0*

delta_r*delta_r));

188 upper_diagonal[j] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))-(D_depo/(4.0*r*

delta_r));

189 answer[j] = 1.0;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 148

190 }

191

192 solve_matrix(number_of_surface_bins,

193 lower_diagonal,

194 central_diagonal,

195 upper_diagonal,

196 right_hand_side,

197 answer);

198

199 for (j=0;j<number_of_surface_bins;j++) {

200 deposit_precursor_gas_concentration_current_time_step_array[j] = answer[j

];

201 }

202

203 //calculate the Deposited Molecule Concentration

204 for (j=0;j<number_of_surface_bins;j++) {

205 if (j <= no_etch_area) {

206 sigma_PE_etch = 0.0;

207 sigma_BSE_etch = 0.0;

208 sigma_SE_etch = 0.0;

209 } else {

210 sigma_PE_etch = etch_precursor.PE_electron_cross_section;

211 sigma_BSE_etch = etch_precursor.BSE_electron_cross_section;

212 sigma_SE_etch = etch_precursor.SE_electron_cross_section;

213 }

214 if (deposit_precursor.gas_partial_pressure < 0.00001) {

215 reactive_product_concentration_current_time_step_array[j] = -(

sigma_PE_etch*PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])*

etch_precursor_gas_concentration_current_time_step_array[j]*delta_t+

reactive_product_concentration_previous_time_step_array[j];

216 } else {

217 reactive_product_concentration_current_time_step_array[j] = delta_t

*(((sigma_PE_depo*PE_electron_flux_profile_array[j]+sigma_BSE_depo*

BSE_electron_flux_profile_array[j]+sigma_SE_depo*

SE_electron_flux_profile_array[j])*

deposit_precursor_gas_concentration_current_time_step_array[j])-((

sigma_PE_etch*PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])*

etch_precursor_gas_concentration_current_time_step_array[j])*(1.0-

deposit_pinned_reaction_electron_cross_section*

deposit_precursor_gas_concentration_current_time_step_array[j])*(

deposit_precursor_reaction_electron_cross_section*

reactive_product_concentration_previous_time_step_array[j])+(

reactive_product_concentration_previous_time_step_array[j]/delta_t));

218 }

219 }

220 }

221

222



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 149

223 //calculates the precursor and deposit molecule concentration over time, without

diffusion

224 void ebied_solver_no_diffusion(Precursor etch_precursor,Precursor

deposit_precursor,Toggle toggle,double gas_temperature,double

deposit_pinned_reaction_electron_cross_section,double

deposit_precursor_reaction_electron_cross_section,double delta_t,double

delta_r,int number_of_surface_bins) {

225

226 int j;

227

228 double s_etch = etch_precursor.sticking_coefficient;

229 double f_etch = etch_precursor.reactive_product_flux;

230 double A_etch = etch_precursor.surface_area;

231 double t_etch = etch_precursor.desorption_time;

232 double sigma_PE_etch = etch_precursor.PE_electron_cross_section;

233 double sigma_BSE_etch = etch_precursor.BSE_electron_cross_section;

234 double sigma_SE_etch = etch_precursor.SE_electron_cross_section;

235

236 double s_depo = deposit_precursor.sticking_coefficient;

237 double f_depo = deposit_precursor.reactive_product_flux;

238 double A_depo = deposit_precursor.surface_area;

239 double t_depo = deposit_precursor.desorption_time;

240 double sigma_PE_depo = deposit_precursor.PE_electron_cross_section;

241 double sigma_BSE_depo = deposit_precursor.BSE_electron_cross_section;

242 double sigma_SE_depo = deposit_precursor.SE_electron_cross_section;

243

244 for (j=0;j<number_of_surface_bins;j++) {

245 //Etch Molecule Concentration

246 etch_precursor_gas_concentration_current_time_step_array[j] = delta_t*(

s_etch*f_etch+deposit_precursor_gas_concentration_previous_time_step_array[j

]*(-1.0*s_etch*f_etch*A_depo)+

etch_precursor_gas_concentration_previous_time_step_array[j]*(1.0/delta_t-

s_etch*f_etch*A_etch-1.0/t_etch-(sigma_PE_etch*PE_electron_flux_profile_array

[j]+sigma_BSE_etch*BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])));

247 //Deposit Molecule Concentration

248 deposit_precursor_gas_concentration_current_time_step_array[j] = delta_t

*(s_depo*f_depo+etch_precursor_gas_concentration_previous_time_step_array[j

]*(-1.0*s_depo*f_depo*A_etch)+

deposit_precursor_gas_concentration_previous_time_step_array[j]*(1.0/delta_t-

s_depo*f_depo*A_depo-1.0/t_depo-(sigma_PE_depo*PE_electron_flux_profile_array

[j]+sigma_BSE_depo*BSE_electron_flux_profile_array[j]+sigma_SE_depo*

SE_electron_flux_profile_array[j])-(sigma_PE_etch*

PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])*

etch_precursor_gas_concentration_previous_time_step_array[j]*

deposit_precursor_reaction_electron_cross_section));

249 //Deposited Molecule Concentration



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 150

250 reactive_product_concentration_current_time_step_array[j] = delta_t*(((

sigma_PE_depo*PE_electron_flux_profile_array[j]+sigma_BSE_depo*

BSE_electron_flux_profile_array[j]+sigma_SE_depo*

SE_electron_flux_profile_array[j])*

deposit_precursor_gas_concentration_current_time_step_array[j])-((

sigma_PE_etch*PE_electron_flux_profile_array[j]+sigma_BSE_etch*

BSE_electron_flux_profile_array[j]+sigma_SE_etch*

SE_electron_flux_profile_array[j])*

etch_precursor_gas_concentration_current_time_step_array[j])*(1.0-

deposit_pinned_reaction_electron_cross_section*

deposit_precursor_gas_concentration_current_time_step_array[j])*(

deposit_precursor_reaction_electron_cross_section*

reactive_product_concentration_previous_time_step_array[j])+(

reactive_product_concentration_previous_time_step_array[j]/delta_t));

251 }

252 }

253

254 //calculates the precursor and deposit molecule concentration over time, EBID

only

255 void ebid_solver(Precursor deposit_precursor,Toggle toggle,double gas_temperature

,double delta_t,double delta_r,int number_of_surface_bins) {

256 #ifdef MPI_ON

257 int node_number;

258 MPI_Comm_rank(MPI_COMM_WORLD, &node_number);

259 #else

260 int node_number = 0;

261 #endif

262

263 int j;

264 double r;

265

266 //if surface evo, make an r array a string of point along the surface

267 //this maybe be incorrect and must FIX!!!

268 if (toggle.surface_evolution) {

269 r_array[0] = r_coordinate_array[0];

270 for (j=1;j<number_of_surface_bins;j++) {

271 double dr = r_coordinate_array[j]-r_coordinate_array[j-1];

272 double dz = z_coordinate_array[j]-z_coordinate_array[j-1];

273 r_array[j] = r_array[j-1]+sqrt(dr*dr + dz*dz);

274 }

275 } else {

276 for (j=0;j<number_of_surface_bins;j++) {

277 r_array[j] = r_coordinate_array[j];

278 }

279 }

280

281 double D_depo = deposit_precursor.diffusion_coefficient;

282 double s_depo = deposit_precursor.sticking_coefficient;

283 double f_depo = deposit_precursor.reactive_product_flux;

284 double A_depo = deposit_precursor.surface_area;

285 double t_depo = deposit_precursor.desorption_time;

286 double sigma_PE_depo = deposit_precursor.PE_electron_cross_section;

287 double sigma_BSE_depo = deposit_precursor.BSE_electron_cross_section;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 151

288 double sigma_SE_depo = deposit_precursor.SE_electron_cross_section;

289

290 //construct electron flux array

291 for (j=0;j<number_of_surface_bins;j++) {

292 electron_flux_profile_array[j] = sigma_PE_depo*

PE_electron_flux_profile_array[j]+sigma_BSE_depo*

BSE_electron_flux_profile_array[j]+sigma_SE_depo*

SE_electron_flux_profile_array[j];

293 }

294 //fit tails of eflux profile to smooth it out

295 //find r position at 10% of the eflux maximum

296 int r_pos_10percent;

297 for (r_pos_10percent=0;r_pos_10percent<number_of_surface_bins;r_pos_10percent

++) {

298 if (electron_flux_profile_array[r_pos_10percent] <

electron_flux_profile_array[0]/200) {

299 break;

300 }

301 }

302 //find r position at eflux ~= 0.001 e.g. very small

303 int r_pos_0001;

304 for (r_pos_0001=r_pos_10percent;r_pos_0001<number_of_surface_bins;r_pos_0001

++) {

305 if (electron_flux_profile_array[r_pos_0001] < 0.01) {

306 break;

307 }

308 }

309 //construct arrays to fit

310 double x_data[r_pos_0001-r_pos_10percent];

311 double y_data[r_pos_0001-r_pos_10percent];

312 for (j=0;j<r_pos_0001-r_pos_10percent;j++) {

313 x_data[j] = r_coordinate_array[j+r_pos_10percent];

314 y_data[j] = log10(electron_flux_profile_array[j+r_pos_10percent]);

315 }

316 //fit data

317 double c0;

318 double c1;

319 double cov00;

320 double cov01;

321 double cov11;

322 double sumsq;

323 gsl_fit_linear(x_data,1,y_data,1,r_pos_0001-r_pos_10percent,&c0,&c1,&cov00,&

cov01,&cov11,&sumsq);

324

325 //print result to logfile

326 if (node_number == 0) {

327 logfile_printf("# best fit: Y = %g + %g X\n", c0, c1);

328 logfile_printf("# covariance matrix:\n");

329 logfile_printf("# [ %g, %g\n# %g, %g]\n",cov00, cov01, cov01, cov11);

330 logfile_printf("# sumsq = %g\n", sumsq);

331 logfile_printf("# r0.5 = %g, r0001 = %g\n", r_coordinate_array[

r_pos_10percent],r_coordinate_array[r_pos_0001]);

332 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 152

333

334 //set eflux profile beyond 10% value to fit result

335 for (j=r_pos_10percent;j<r_pos_0001;j++) {

336 electron_flux_profile_array[j] = pow(10.0,c0+c1*r_coordinate_array[j]);

337 }

338 //smooth edges to make the disconnect line up better

339 for (j=-2;j<=2;j++) {

340 electron_flux_profile_array[j+r_pos_10percent] = (

electron_flux_profile_array[j+r_pos_10percent-2]+electron_flux_profile_array[

j+r_pos_10percent-1]+electron_flux_profile_array[j+r_pos_10percent]+

electron_flux_profile_array[j+r_pos_10percent+1]+electron_flux_profile_array[

j+r_pos_10percent+2])/5.0;

341 }

342 for (j=-2;j<=2;j++) {

343 electron_flux_profile_array[j+r_pos_0001] = (electron_flux_profile_array[j+

r_pos_0001-2]+electron_flux_profile_array[j+r_pos_0001-1]+

electron_flux_profile_array[j+r_pos_0001]+electron_flux_profile_array[j+

r_pos_0001+1]+electron_flux_profile_array[j+r_pos_0001+2])/5.0;

344 }

345

346

347 //calculated EBID, Nd

348 right_hand_side[0] = 0.0;

349 answer[0] = 1.0;

350 lower_diagonal[0] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))+(D_depo/(4.0*

delta_r));

351 central_diagonal[0] = 1.0;

352 upper_diagonal[0] = -1.0;

353 right_hand_side[number_of_surface_bins-1] = 0.0;

354 answer[number_of_surface_bins-1] = 1.0;

355 lower_diagonal[number_of_surface_bins-1] = -1.0;

356 central_diagonal[number_of_surface_bins-1] = 1.0;

357 r = r_array[number_of_surface_bins-1];

358 upper_diagonal[number_of_surface_bins-1] = ((-1.0*D_depo)/(2.0*delta_r*

delta_r))-(D_depo/(4.0*r*delta_r));

359 for (j=1;j<(number_of_surface_bins-1);j++) {

360 r = r_array[j];

361 right_hand_side[j] = s_depo*f_depo+

deposit_precursor_gas_concentration_previous_time_step_array[j]*(1.0/delta_t-

s_depo*f_depo*A_depo/2.0-1.0/(2.0*t_depo)-electron_flux_profile_array[j

]/2.0-((2.0*D_depo)/(2.0*delta_r*delta_r)))+

deposit_precursor_gas_concentration_previous_time_step_array[j-1]*((D_depo

/(2.0*delta_r*delta_r))-(D_depo/(4.0*r*delta_r)))+

deposit_precursor_gas_concentration_previous_time_step_array[j+1]*((D_depo

/(2.0*delta_r*delta_r))+(D_depo/(4.0*r*delta_r)));

362 lower_diagonal[j] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))+(D_depo/(4.0*r*

delta_r));

363 central_diagonal[j] = (1.0/delta_t+s_depo*f_depo*A_depo/2.0+1.0/(2.0*

t_depo)+electron_flux_profile_array[j]/2.0+((2.0*D_depo)/(2.0*delta_r*delta_r

)));

364 upper_diagonal[j] = ((-1.0*D_depo)/(2.0*delta_r*delta_r))-(D_depo/(4.0*r*

delta_r));

365 answer[j] = 1.0;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 153

366 }

367 solve_matrix(number_of_surface_bins,

368 lower_diagonal,

369 central_diagonal,

370 upper_diagonal,

371 right_hand_side,

372 answer);

373

374 //calculate ND

375 for (j=0;j<number_of_surface_bins;j++) {

376 deposit_precursor_gas_concentration_current_time_step_array[j] = answer[j

];

377 reactive_product_concentration_current_time_step_array[j] =

electron_flux_profile_array[j]*

deposit_precursor_gas_concentration_current_time_step_array[j]*delta_t+

reactive_product_concentration_previous_time_step_array[j];

378 }

379 }

B.6 Electron Flux Profile

1 //

2 // electron_flux_profile.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This is the module which calculates the electron flux profile with a shape of

a top hat or gaussian and with projection turned on or off, for the EBIED

Simulator.

7 //

8 #ifdef XCODE

9 #include <stdlib.h>

10 #include <stdio.h>

11 #include <math.h>

12 #include "structures.h"

13 #include "constants.h"

14 #include "prototypes.h"

15 #endif

16

17 void electron_flux_profile(Toggle toggle,

18 Electron_beam electron_beam,

19 int number_of_surface_bins,

20 double delta_t,

21 double delta_r,

22 double backscattered_electron_coefficient,

23 double secondary_electron_coefficient,int i) {

24

25 int j;

26 double sum_primary;

27 double sum_backscattered;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 154

28 double sum_secondary;

29 double n_electrons_per_sec;

30

31 if (toggle.electron_beam_shape) {

32 // top hat shape

33 // FIXME: correct area (Jared)

34 sum_primary = 0.0;

35 } else {

36 // Gaussian

37 sum_primary = PI*pow((r_coordinate_array[1]-r_coordinate_array[0])

/2.0,2.0);

38 }

39 sum_backscattered = 1.0; // prevent "divide by zero" in normalization

40 sum_secondary = 1.0; // prevent "divide by zero" in normalization

41

42 // define the beam (the primary electron array)

43 for (j=0;j<number_of_surface_bins;j++) {

44 if (toggle.electron_beam_shape) {

45 //top hat beam shape

46 temp_primary_electron_array[j] = 1.0/(exp(electron_beam.

top_hat_abruptness*(2.0*r_coordinate_array[j]/electron_beam.diameter-1.0))

+1.0);

47 } else {

48 //gaussian beam shape

49 temp_primary_electron_array[j] = exp(-1.0*pow(r_coordinate_array[j

],2.0)/pow(electron_beam.diameter/2.0,2.0));

50 }

51

52 double r1;

53 double r2;

54 if(j==0) {

55 r1 = r_coordinate_array[j] - delta_r/2.0;

56 r2 = (r_coordinate_array[j+1]+r_coordinate_array[j])/2.0;

57 }

58 else if(j == number_of_surface_bins-1) {

59 r1 = (r_coordinate_array[j]+r_coordinate_array[j-1])/2.0;

60 r2 = r_coordinate_array[j] + delta_r/2.0;

61 } else {

62 r1 = (r_coordinate_array[j]+r_coordinate_array[j-1])/2.0;

63 r2 = (r_coordinate_array[j+1]+r_coordinate_array[j])/2.0;

64 }

65 double annular_area = PI*(r2*r2 - r1*r1);

66 if (annular_area <= 0.0) {

67 if (toggle.electron_beam_projection) {

68 annular_area = 0.0;

69 } else {

70 annular_area = abs(PI*(r2*r2 - r1*r1));

71 }

72 }

73 primary_electron_array[j] = annular_area*temp_primary_electron_array[j];

74 }

75

76 // copy locations



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 155

77 for (j=0;j<number_of_surface_bins;j++) {

78 backscattered_electron_array[j] = backscattered_electron_location_array[j

];

79 secondary_electron_array[j] = secondary_electron_location_array[j];

80 }

81

82 // compute sums

83 for (j=0;j<number_of_surface_bins;j++) {

84 sum_primary += primary_electron_array[j];

85 sum_backscattered += backscattered_electron_array[j];

86 sum_secondary += secondary_electron_array[j];

87 }

88

89 // normalize arrays

90 for (j=0;j<number_of_surface_bins;j++) {

91 primary_electron_array[j] = (primary_electron_array[j]/sum_primary)*

electron_beam.current;

92 backscattered_electron_array[j] = (backscattered_electron_array[j]/

sum_backscattered)*electron_beam.current*backscattered_electron_coefficient;

93 secondary_electron_array[j] = (secondary_electron_array[j]/sum_secondary)

*electron_beam.current*secondary_electron_coefficient;

94 }

95

96 // prepare for the MC algorithm

97 for (j=0;j<number_of_surface_bins;j++) {

98 temp_primary_electron_flux_profile_array[j] = primary_electron_array[j];

99 }

100

101 // transform back to "normal space" from "annular space"

102 for (j=0;j<number_of_surface_bins;j++) {

103 double r1;

104 double r2;

105 double sin90 = sin(90*PI/180.0);

106 double distc,dista;

107 double sinA = 1.0;

108 if(j==0) {

109 r1 = r_coordinate_array[j] - delta_r/2.0;

110 r2 = (r_coordinate_array[j+1]+r_coordinate_array[j])/2.0;

111 }

112 else if(j == number_of_surface_bins-1) {

113 r1 = (r_coordinate_array[j]+r_coordinate_array[j-1])/2.0;

114 r2 = r_coordinate_array[j] + delta_r/2.0;

115 } else {

116 r1 = (r_coordinate_array[j]+r_coordinate_array[j-1])/2.0;

117 r2 = (r_coordinate_array[j+1]+r_coordinate_array[j])/2.0;

118 }

119 if (toggle.electron_beam_projection) {

120 //Surface Projection On

121 if(j==0) {

122 dista = r_coordinate_array[j+1]-r_coordinate_array[j];

123 distc = sqrt(pow(z_coordinate_array[j+1]-z_coordinate_array[j

],2.0)+pow(r_coordinate_array[j+1]-r_coordinate_array[j],2.0));

124 sinA = (sin90/distc*dista);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 156

125 } else if(j == number_of_surface_bins-1) {

126 sinA = 1.0;

127 } else {

128 dista = r_coordinate_array[j+1]-r_coordinate_array[j-1];

129 distc = sqrt(pow(z_coordinate_array[j+1]-z_coordinate_array[j

-1],2.0)+pow(r_coordinate_array[j+1]-r_coordinate_array[j-1],2.0));

130 sinA = (sin90/distc*dista);

131 }

132 }

133 double annular_area;

134 if (sinA < 0.0) {

135 annular_area = PI*(r1*r1 - r2*r2);

136 } else {

137 annular_area = PI*(r2*r2 - r1*r1);

138 }

139 if (annular_area <= 0.0) {

140 annular_area = 1.0;

141 }

142 n_electrons_per_sec = primary_electron_array[j]*sinA +

backscattered_electron_array[j] + secondary_electron_array[j];

143

144 PE_electron_flux_profile_array[j] = primary_electron_array[j]*sinA/

annular_area;

145 BSE_electron_flux_profile_array[j] = backscattered_electron_array[j]/

annular_area;

146 SE_electron_flux_profile_array[j] = secondary_electron_array[j]/

annular_area;

147 electron_flux_profile_array[j] = PE_electron_flux_profile_array[j]+

BSE_electron_flux_profile_array[j]+SE_electron_flux_profile_array[j];

148 }

149 //flaten first bin when MC is ON

150 if (toggle.electron_trajectory_simulator) {

151 electron_flux_profile_array[0] = electron_flux_profile_array[1];

152 }

153

154 // compute cumulative sum of the flux profile (probability distribution of

how likely an electron is to enter the substrate from the primary beam

155 temp_electron_starting_location_probability_array[0] =

temp_primary_electron_flux_profile_array[0];

156 for (j=1;j<number_of_surface_bins;j++) {

157 temp_electron_starting_location_probability_array[j] =

temp_primary_electron_flux_profile_array[j]+

temp_electron_starting_location_probability_array[j-1];

158 }

159 // normalize from 0 to 1

160 for (j=0;j<number_of_surface_bins;j++) {

161 electron_starting_location_probability_array[j] =

temp_electron_starting_location_probability_array[j]/

temp_electron_starting_location_probability_array[number_of_surface_bins-1];

162 }

163 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 157

B.7 Linear Interpolation

1 //

2 // interpolation.c

3 //

4 // Created by Jared Cullen on 26/03/2012.

5 // Last Updated by Jared Cullen on 19/11/2013.

6 // Copyright (c) 2013 University of Technology, Sydney. All rights reserved.

7 //

8 // This function performs linear interpolation on the input arrays for the EBIED

Simulator.

9 //

10 #ifdef __MACH__

11 #include <math.h>

12 #include <stdio.h>

13 #include <assert.h>

14 #include "constants.h"

15 #include "structures.h"

16 #include "prototypes.h"

17 #endif

18

19 void primary_interpolation(double *r[],

20 double *z[],

21 int length,

22 double delta_r,

23 int number_of_points) {

24 int i;

25 double r1,r2,r3,z1,z2,z3,angle,grad;

26 double distance;

27 double cos_d, sin_d;

28

29 i = 0;

30 (*r)[i] = delta_r;

31

32 i = 1;

33 r1 = (*r)[i-1];

34 r2 = (*r)[i];

35 z1 = (*z)[i-1];

36 z2 = (*z)[i];

37 distance = sqrt(pow(z2-z1,2.0)+pow(r2-r1,2.0));

38 grad = (z2-z1)/(r2-r1);

39 angle = atan(grad);

40 cos_d = cos(angle)*(delta_r-distance);

41 sin_d = sin(angle)*(delta_r-distance);

42 (*r)[i] = cos_d+r2;

43 (*z)[i] = sin_d+z2;

44

45 for (i=2;i<length-1;i++) {

46 r1 = (*r)[i-1];

47 r2 = (*r)[i];

48 r3 = (*r)[i+1];

49 z1 = (*z)[i-1];

50 z2 = (*z)[i];



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 158

51 z3 = (*z)[i+1];

52 distance = sqrt(pow(z2-z1,2.0)+pow(r2-r1,2.0));

53 //grad = (z2-z1)/(r2-r1);

54 grad = (3*(z1*r1+z2*r2+z3*r3)-(r3+r2+r1)*(z3+z2+z1))/(3*(r1*r1+r2*r2+r3*r3)-(

r1+r2+r3)*(r1+r2+r3));

55 angle = atan(grad);

56 cos_d = cos(angle)*(delta_r-distance);

57 sin_d = sin(angle)*(delta_r-distance);

58 (*r)[i] = cos_d+r2;

59 (*z)[i] = sin_d+z2;

60 }

61

62 i = length-1;

63 r1 = (*r)[i-1];

64 r2 = (*r)[i];

65 z1 = (*z)[i-1];

66 z2 = (*z)[i];

67 distance = sqrt(pow(z2-z1,2.0)+pow(r2-r1,2.0));

68 grad = (z2-z1)/(r2-r1);

69 angle = atan(grad);

70 cos_d = cos(angle)*(delta_r-distance);

71 sin_d = sin(angle)*(delta_r-distance);

72 (*r)[i] = cos_d+r2;

73 (*z)[i] = sin_d+z2;

74 }

75

76 void secondary_interpolation(double r[],double *z[],double z_orig[],double

r_interp[],int length,int number_of_points,int order,double delta_r) {

77 int p1 = (number_of_points-1)/2;

78 int p2 = (number_of_points-1)/2;

79 int i;

80 double z_grad;

81 double z_temp,r_temp;

82

83 for (i=1;i<p1;i++) {

84 z_temp = z_orig[-(i-p1)];

85 r_temp = -r[-(i-p1)];

86 z_grad = (z_orig[i+p2]-z_temp)/(r[i+p2]-r_temp);

87 (*z)[i] = z_grad*(r_interp[i]-r[i])+(*z)[i];

88 }

89 for (i=p1;i<length;i++) {

90 if (i+p2 > length) {

91 p2--;

92 }

93 z_grad = (z_orig[i+p2]-z_orig[i-p1])/(r[i+p2]-r[i-p1]);

94 (*z)[i] = z_grad*(r_interp[i]-r[i])+(*z)[i];

95 }

96 }

B.8 Monte Carlo Data Collection



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 159

1 //

2 // monte_carlo_data_collection.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // this module collects all the data from each node together and redistributes

this data back.

7 #ifdef XCODE

8 #include <stdlib.h>

9 #include <stdio.h>

10 #include "structures.h"

11 #include "prototypes.h"

12 #ifdef MPI_ON

13 #include <mpi.h>

14 #endif

15 #endif

16

17 void monte_carlo_data_collection(int

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,int

number_of_electron_trajectories,int number_of_surface_bins,int

number_of_backscattered_electrons,double *backscattered_electron_coefficient,

double *secondary_electron_coefficient) {

18

19 int i,j,k;

20 double secondary_electron_location_sum;//,k;

21

22 #ifdef MPI_ON

23 //collect data from all nodes

24 //collect,number_of_backscattered_electrons

25 int local_number_of_backscattered_electrons =

number_of_backscattered_electrons;

26 int sum_number_of_backscattered_electrons = 0;

27 MPI_Reduce(&local_number_of_backscattered_electrons,&

sum_number_of_backscattered_electrons,1,MPI_INT,

28 MPI_SUM,0,MPI_COMM_WORLD);

29 MPI_Bcast(&sum_number_of_backscattered_electrons,1,MPI_INT,0,

MPI_COMM_WORLD);

30 number_of_backscattered_electrons = sum_number_of_backscattered_electrons

;

31

32 //collect,secondary_electron_location_array

33 for (j=0;j<number_of_surface_bins;j++) {

34 local_secondary_electron_location_array[j] =

secondary_electron_location_array[j];

35 sum_secondary_electron_location_array[j] = 0.0;

36 }

37 MPI_Reduce(local_secondary_electron_location_array,

sum_secondary_electron_location_array,number_of_surface_bins,MPI_DOUBLE,

38 MPI_SUM,0,MPI_COMM_WORLD);

39 MPI_Bcast(sum_secondary_electron_location_array,number_of_surface_bins,

MPI_DOUBLE,0,MPI_COMM_WORLD);

40 for (j=0;j<number_of_surface_bins;j++) {



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 160

41 secondary_electron_location_array[j] =

sum_secondary_electron_location_array[j];

42 }

43

44 //collect,backscattered_electron_location_array

45 for (j=0;j<number_of_surface_bins;j++) {

46 local_backscattered_electron_location_array[j] =

backscattered_electron_location_array[j];

47 sum_backscattered_electron_location_array[j] = 0.0;

48 }

49 MPI_Reduce(local_backscattered_electron_location_array,

sum_backscattered_electron_location_array,number_of_surface_bins,MPI_DOUBLE,

MPI_SUM,0,MPI_COMM_WORLD);

50 MPI_Bcast(sum_backscattered_electron_location_array,

number_of_surface_bins,MPI_DOUBLE,0,MPI_COMM_WORLD);

51 for (j=0;j<number_of_surface_bins;j++) {

52 backscattered_electron_location_array[j] =

sum_backscattered_electron_location_array[j];

53 }

54

55 //collect,electron_energy_deposited_array

56 for (j=0;j<

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array;j++) {

57 local_electron_energy_deposited_array[j] =

electron_energy_deposited_array[j];

58 sum_electron_energy_deposited_array[j] = 0.0;

59 }

60 MPI_Reduce(local_electron_energy_deposited_array,

sum_electron_energy_deposited_array,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);

61 MPI_Bcast(sum_electron_energy_deposited_array,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

MPI_DOUBLE,0,MPI_COMM_WORLD);

62 for (j=0;j<

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array;j++) {

63 electron_energy_deposited_array[j] =

sum_electron_energy_deposited_array[j];

64 }

65

66 //collect,electron_energy_deposited_array

67 for (j=0;j<

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array;j++) {

68 local_electron_maximum_z_depth_array[j] =

electron_maximum_z_depth_array[j];

69 sum_electron_maximum_z_depth_array[j] = 0.0;

70 }

71 MPI_Reduce(local_electron_maximum_z_depth_array,

sum_electron_maximum_z_depth_array,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 161

72 MPI_Bcast(sum_electron_maximum_z_depth_array,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

MPI_DOUBLE,0,MPI_COMM_WORLD);

73 for (j=0;j<

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array;j++) {

74 electron_maximum_z_depth_array[j] =

sum_electron_maximum_z_depth_array[j];

75 }

76 #endif

77

78 //calculated SE yield and BSE coeff

79 secondary_electron_location_sum = 0.0;

80 for (j=0;j<number_of_surface_bins;j++) {

81 secondary_electron_location_sum += secondary_electron_location_array[j];

82 }

83 *secondary_electron_coefficient = secondary_electron_location_sum/(double)

number_of_electron_trajectories;

84 *backscattered_electron_coefficient = (double)

number_of_backscattered_electrons/(double)number_of_electron_trajectories;

85

86 //smooth SE and BSE profiles, to an 11 point window

87 k = 0;

88 for (i=0;i<number_of_surface_bins;i++) {

89 sum_secondary_electron_location_array[i] = 0;

90 sum_backscattered_electron_location_array[i] = 0;

91 //k = 0;

92 for (j=-k;j<=k;j++) {

93 if (i+j >= 0 && i+j < number_of_surface_bins) {

94 sum_secondary_electron_location_array[i] +=

secondary_electron_location_array[i+j];

95 sum_backscattered_electron_location_array[i] +=

backscattered_electron_location_array[i+j];

96 //k++;

97 }

98 }

99 if (i == 0) {

100 sum_secondary_electron_location_array[i] +=

secondary_electron_location_array[i];

101 sum_backscattered_electron_location_array[i] +=

backscattered_electron_location_array[i];

102 }

103 sum_secondary_electron_location_array[i] =

sum_secondary_electron_location_array[i]/(k*2+1);

104 sum_backscattered_electron_location_array[i] =

sum_backscattered_electron_location_array[i]/(k*2+1);

105 k++;

106 if (k > 5) {

107 k = 5;

108 }

109 }

110 for (i=0;i<number_of_surface_bins;i++) {

111 secondary_electron_location_array[i] =

sum_secondary_electron_location_array[i];



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 162

112 backscattered_electron_location_array[i] =

sum_backscattered_electron_location_array[i];

113 }

114 }

B.9 Monte Carlo Electron Trajectories

1 //

2 // monte_carlo_electron_trajectory_simulator.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This is the module which performs monte carlo electron trajectory simulation

turned on or off, and electron tracking on or off for the EBIED Simulator.

7 //

8 #ifdef XCODE

9 #include "structures.h"

10 #include "constants.h"

11 #include "prototypes.h"

12 #include <sys/time.h>

13 #include <stdlib.h>

14 #include <stdio.h>

15 #include <math.h>

16 #include <assert.h>

17

18 #ifdef MPI_ON

19 #include <mpi.h>

20 #endif

21 #endif

22

23 //check if trajectory crossed into a segment

24 void segments_intersect(double x11, double y11, double x12, double y12,

25 double x21, double y21, double x22, double y22,

26 int *intersection,double *x,double *y) {

27 // check if two segments intersect, return 1 if true, 0 if false

28 //outputs the intersection x,y coordinates

29

30 //start as false

31 *intersection = 0; // false

32

33 int count = 0;

34

35 double A1 = y12-y11;

36 double B1 = x11-x12;

37 double C1 = A1*x11+B1*y11;

38

39 double A2 = y22-y21;

40 double B2 = x21-x22;

41 double C2 = A2*x21+B2*y21;

42



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 163

43 double det = A1*B2 - A2*B1;

44 if(det != 0) {

45 // lines intersect at x and y

46 *x = (B2*C1 - B1*C2)/det;

47 *y = (A1*C2 - A2*C1)/det;

48

49 // order the points small to large

50 double xx1 = fmin(x21, x22);

51 double xx2 = fmax(x21, x22);

52 double yy1 = fmin(y21, y22);

53 double yy2 = fmax(y21, y22);

54

55 // check if intersection is within segment

56 if (xx1 < *x) {

57 count++;

58 } else if (xx1-*x < 0.00001 && -0.00001 < xx1-*x) {

59 count++;

60 }

61 if (*x < xx2) {

62 count++;

63 } else if (xx2-*x < 0.00001 && -0.00001 < xx2-*x) {

64 count++;

65 }

66 if (yy1 < *y) {

67 count++;

68 } else if (yy1-*y < 0.00001 && -0.00001 < yy1-*y) {

69 count++;

70 }

71 if (*y < yy2) {

72 count++;

73 } else if (yy2-*y < 0.00001 && -0.00001 < yy2-*y) {

74 count++;

75 }

76 if (count == 4) {

77 *intersection = 1; // true

78 }

79 }

80 }

81

82 //checks if electron is leaving the surface

83 void is_leaving_volume(double z1,

84 double z2,

85 double r1,

86 double r2,

87 int number_of_surface_bins,

88 double* z,

89 double* r,

90 int *outputBinIndex,// 0 not leaving, 1 and above is bin+1

91 double *output_r,

92 double *output_z) {

93 int intersection = 0;

94 double intersection_r,intersection_z;

95



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 164

96 // walk the whole surface to check for intersections

97 int i;

98 int start = 0;

99 int end = number_of_surface_bins-1;

100 for(i=start; i<end; i++) {

101 // check if electron trajectory crosses surface segment

102 segments_intersect(r1,z1,r2,z2,r[i],z[i],r[i+1],z[i+1],&intersection,&

intersection_r,&intersection_z);

103 if(intersection) {

104 if (z1 < intersection_z && intersection_z < z2) {

105 *outputBinIndex = i+1;

106 *output_r = intersection_r;

107 *output_z = intersection_z;

108 break;//output where intersection occured, index,r,z

109 }

110 }

111 }

112 }

113

114 //checks if electron is re-entering surface

115 void is_reentering_volume(double z1,

116 double z2,

117 double r1,

118 double r2,

119 int number_of_surface_bins,

120 double* z,

121 double* r,

122 int *outputBinIndex,// 0 not leaving, 1 and above is bin

+1

123 double *output_r,

124 double *output_z) {

125 int intersection = 0;

126 double intersection_r,intersection_z;

127

128 // walk the whole surface to check for intersections

129 int i;

130 if (r2 < r1) {

131 for(i=*outputBinIndex; i>=0; i--) { //start from exit point +1

132 // check if electron trajectory crosses surface segment

133 segments_intersect(r1,z1,r2,z2,r[i],z[i],r[i+1],z[i+1],&intersection

,&intersection_r,&intersection_z);

134 if(intersection) {

135 *outputBinIndex = i+1;

136 *output_r = intersection_r;

137 *output_z = intersection_z;

138 break;//output where reentry occured, index,r,z

139 }

140 }

141 } else {

142 for(i=*outputBinIndex; i<number_of_surface_bins-1; i++) { //start from

exit point +1

143 // check if electron trajectory crosses surface segment



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 165

144 segments_intersect(r1,z1,r2,z2,r[i],z[i],r[i+1],z[i+1],&intersection

,&intersection_r,&intersection_z);

145 if(intersection) {

146 *outputBinIndex = i+1;

147 *output_r = intersection_r;

148 *output_z = intersection_z;

149 break;//output where reentry occured, index,r,z

150 }

151 }

152 }

153

154 }

155

156 //main MC module

157 void monte_carlo_electron_trajectory_simulator(Electron_beam electron_beam,

158 Material lower_material,

159 Material upper_material,

160 int electron_trajectory_tracking,

161 double delta_r,

162 int

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

163 int number_of_surface_bins,

164 double

layered_material_interface_depth,

165 int maximum_electron_track_length,

166 int

number_of_electron_trajectories,

167 double z_depth_minimum,

168 double z_depth_maximum,

169 int *

number_of_backscattered_electrons,

170 int seed) {

171

172 // Refer to the book by David Joy (1995)

173 // "Monte carlo modelling for electron microscopy and microanalysis"

174 // Chapter 3 - Single Scattering Model

175 //

176 #ifdef MPI_ON

177 int node_number,total_number_of_nodes;

178 MPI_Comm_rank(MPI_COMM_WORLD, &node_number);

179 MPI_Comm_size(MPI_COMM_WORLD, &total_number_of_nodes);

180 #else

181 int node_number = 0;

182 int total_number_of_nodes = 1;

183 #endif

184

185 //set random number seed

186 struct timeval t1;

187 gettimeofday(&t1, NULL);

188 if (seed < 0) {

189 #ifdef MPI_ON

190 srand((unsigned)(t1.tv_usec * t1.tv_sec)*node_number);

191 #else



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 166

192 srand((unsigned)(t1.tv_usec * t1.tv_sec));

193 #endif

194 } else {

195 #ifdef MPI_ON

196 srand(seed*node_number);

197 #else

198 srand(seed);

199 #endif

200 }

201

202 int i;

203 int current_electron_number = 1;

204 int electron_tracking_counter;

205 int number_of_electron_trajectories_per_node = (int)floor((double)

number_of_electron_trajectories/(double)total_number_of_nodes);

206 int number_of_intersections,intersection_index1,intersection_index2,

lost_electrons = 0;

207 double at_num,at_wht,density,sg_a,al_a,lam_a,s_en,x,y,z,xn,yn,zn,cx,cy,cz,sp,

ga,cp,ca,cb,cc,lambda,lambda1,lambda2;

208 double electron_step_length,electron_step_length1,electron_step_length2,

random_number,maximum_electron_z_depth,exit_x1,exit_x2,exit_y1,exit_y2,

vaccum_distance;

209 double SE_epsilon,SE_lambda;

210 Material material;

211

212 // set values initially

213 number_of_intersections = 0;

214 exit_x1 = exit_x2 = exit_y1 = exit_y2 = number_of_surface_bins - 1;

215 intersection_index1 = intersection_index2 = number_of_surface_bins - 1;

216

217 // reset input arrays

218 maximum_electron_z_depth = 0;

219 *number_of_backscattered_electrons = 0;

220 for (i=0;i<number_of_surface_bins;i++) {

221 secondary_electron_location_array[i] = 0.0;

222 backscattered_electron_location_array[i] = 0.0;

223 }

224 for (i=0;i<

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array;i++) {

225 electron_energy_deposited_array[i] = 0.0;

226 electron_maximum_z_depth_array[i] = 0.0;

227 }

228

229 //

230 if ((node_number == 0) && electron_trajectory_tracking == 1) {

231 FILE *fp;

232 fp=fopen("./outputs/output_track.txt", "w");

233 fclose(fp);

234 }

235 // loop over every electron requested

236 while (current_electron_number <= number_of_electron_trajectories_per_node) {

237

238 // re-clear electron tracking array



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 167

239 if (electron_trajectory_tracking == 1) {

240 for (i=0;i<maximum_electron_track_length;i++) {

241 electron_tracking_x_position_array[i] = 0.0;

242 electron_tracking_y_position_array[i] = 0.0;

243 electron_tracking_z_position_array[i] = 0.0;

244 }

245 electron_tracking_counter = 0;

246 }

247

248 // setup the material at surface current depth into material

249 // (if we have etched deeply, we might be in the lower material)

250 if (z_coordinate_array[0] <= layered_material_interface_depth) {

251 material = lower_material;

252 } else {

253 material = upper_material;

254 }

255 at_num = material.atomic_number;

256 at_wht = material.atomic_weight;

257 density = material.density;

258 SE_epsilon = material.epsilon;

259 SE_lambda = material.lambda;

260 get_constants(&sg_a,&al_a,&lam_a,at_num,at_wht,density,electron_beam.

energy);

261

262 // find the starting point (taking into account surface height, and beam

probability)

263 //where the electron comes from into the surface

264 reset_coordinates(&s_en,&x,&y,&z,&cx,&cy,&cz,electron_beam.energy,

number_of_surface_bins);

265

266 if (electron_trajectory_tracking == 1) {

267 electron_tracking_x_position_array[electron_tracking_counter] = x;

268 electron_tracking_y_position_array[electron_tracking_counter] = y;

269 electron_tracking_z_position_array[electron_tracking_counter] = z;

270 electron_tracking_counter++;

271 }

272

273 //the first scattering event (handles 0 - 89.9 tilted electron beam)

274 random_number = rand();

275 lambda = compute_lambda(s_en,al_a,sg_a,lam_a);

276 electron_step_length = -lambda*log(random_number/((double)RAND_MAX+1));

277 cp = cos((PI/180.0)*electron_beam.tilt);//angle of electron beam tilt

278 sp = sqrt(1.0-cp*cp);

279 ga = 2.0*PI*cos((PI/180.0)*0.0);//azimuthal scattering angle = 0

280 new_coord(electron_step_length,x,y,z,cx,cy,cz,sp,ga,cp,&ca,&cb,&cc,&xn,&

yn,&zn);

281 reset_next_step(ca,cb,cc,xn,yn,zn,electron_step_length,&cx,&cy,&cz,&x,&y

,&z,&s_en,density,at_num,at_wht,SE_epsilon,SE_lambda,number_of_intersections,

exit_x1,exit_y1,exit_x2,exit_y2,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

delta_r,number_of_surface_bins,intersection_index1);

282

283 if (electron_trajectory_tracking == 1) {



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 168

284 electron_tracking_x_position_array[electron_tracking_counter] = x;

285 electron_tracking_y_position_array[electron_tracking_counter] = y;

286 electron_tracking_z_position_array[electron_tracking_counter] = z;

287 electron_tracking_counter++;

288 }

289

290 // now electron is in the substrate

291 // iterate until it loses energy or exits surface

292 number_of_intersections = 0; //electron has not intersected the surface

293 while ((s_en > electron_beam.cutoff_energy) && (number_of_intersections

== 0)) {

294 if (zn >= layered_material_interface_depth) {

295 material = lower_material;

296 } else {

297 material = upper_material;

298 }

299 at_num = material.atomic_number;

300 at_wht = material.atomic_weight;

301 density = material.density;

302 SE_epsilon = material.epsilon;

303 SE_lambda = material.lambda;

304 get_constants(&sg_a,&al_a,&lam_a,at_num,at_wht,density,electron_beam.

energy);

305

306 // compute scattering event

307 lambda = compute_lambda(s_en,al_a,sg_a,lam_a);

308 random_number = rand();

309 electron_step_length = -lambda*log(random_number/((double)RAND_MAX+1)

);

310 s_scatter(s_en,al_a,&sp,&ga,&cp);

311 new_coord(electron_step_length,x,y,z,cx,cy,cz,sp,ga,cp,&ca,&cb,&cc,&

xn,&yn,&zn);

312

313 // if electron leaves simulation then record lost_electrons += 1 and

exit

314 double r1 = sqrt(pow(x,2)+pow(y,2));

315 double rn1 = sqrt(pow(xn,2)+pow(yn,2));

316 if (rn1 > (number_of_surface_bins*delta_r)) {

317 lost_electrons++;

318 break;

319 }

320 // if electron is near the surface, check for surface exit

321 if (-zn >= z_depth_minimum) {

322 int electron_left_volume = 0;

323 double electron_left_r,electron_left_z;

324 is_leaving_volume(-z,-zn,r1,rn1,number_of_surface_bins*2,

z_coordinate_both_directions,r_coordinate_both_directions,

325 &electron_left_volume,&electron_left_r,&

electron_left_z);//did an electron leave and where

326 if (electron_left_volume) {

327 int electron_reentered_volume = electron_left_volume;

328 double electron_reentered_r,electron_reentered_z;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 169

329 is_reentering_volume(-z,-zn,r1,rn1,number_of_surface_bins*2,

z_coordinate_both_directions,r_coordinate_both_directions,

330 &electron_reentered_volume,&

electron_reentered_r,&electron_reentered_z);//did an electron reenter and

where

331 if (electron_left_volume > number_of_surface_bins) {

332 electron_left_volume = electron_left_volume-

number_of_surface_bins;

333 } else {

334 electron_left_volume = number_of_surface_bins-

electron_left_volume;

335 }

336 if (electron_reentered_volume > number_of_surface_bins) {

337 electron_reentered_volume = electron_reentered_volume-

number_of_surface_bins;

338 } else {

339 electron_reentered_volume = number_of_surface_bins-

electron_reentered_volume;

340 }

341 //*outputBinIndex = i+1;

342 if (electron_reentered_volume == electron_left_volume) {

343 //one intersection records the backscattered electron

344 *number_of_backscattered_electrons += 1;

345 maximum_electron_z_depth = 0.0;

346 //electron_left_volume = ceil(electron_left_volume/

delta_r);

347 backscattered_electron_location_array[

electron_left_volume-1] += 1.0;

348 number_of_intersections = 1;//electron has BS

349 } else {

350 //two intersections adjusts the trajectory for reentry

351 //electron_left_volume = ceil(electron_left_volume/

delta_r);

352 //electron_reentered_volume = ceil(

electron_reentered_volume/delta_r);

353 backscattered_electron_location_array[

electron_left_volume-1] += 1.0;

354 backscattered_electron_location_array[

electron_reentered_volume-1] += 1.0;

355 vaccum_distance = sqrt(pow(electron_reentered_r-

electron_left_r,2.0)+pow(electron_reentered_z-electron_left_z,2.0));

356 xn = x+(electron_step_length+vaccum_distance)*ca;

357 yn = y+(electron_step_length+vaccum_distance)*cb;

358 zn = z+(electron_step_length+vaccum_distance)*cc;

359 //printf("xn:%g,yn:%g,zn:%g,x:%g,y:%g,z:%g\n",xn,yn,zn,x,

y,z);

360 number_of_intersections = 2;//electron has FS

361 //temporary code to allow compatibility with old code

until testing complete

362 exit_x2 = electron_reentered_r;

363 exit_y2 = electron_reentered_z;

364 intersection_index2 = electron_reentered_volume-1;

365 //



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 170

366 }

367 //temporary code to allow compatibility with old code until

testing complete

368 exit_x1 = electron_left_r;

369 exit_y1 = electron_left_z;

370 intersection_index1 = electron_left_volume-1;

371 //

372 } else {

373 number_of_intersections = 0;//electron in material

374 }

375 }

376

377 // if we have crossed from one material to the next

378 if ((-z < layered_material_interface_depth) && (-zn >

layered_material_interface_depth)) {

379 lambda2 = lambda;

380 at_num = upper_material.atomic_number;

381 at_wht = upper_material.atomic_weight;

382 density = upper_material.density;

383 SE_epsilon = upper_material.epsilon;

384 SE_lambda = upper_material.lambda;

385 get_constants(&sg_a,&al_a,&lam_a,at_num,at_wht,density,

electron_beam.energy);

386 lambda = compute_lambda(s_en,al_a,sg_a,lam_a);

387 lambda1 = lambda;

388 electron_step_length2 = sqrt(pow((

layered_material_interface_depth-(-z))/cc,2));

389 electron_step_length1 = sqrt(pow(((-zn)-

layered_material_interface_depth)/cc,2));

390 if (lower_material.atomic_number >= upper_material.atomic_number)

{

391 electron_step_length1 = electron_step_length1*(lambda2/

lambda1);

392 } else {

393 electron_step_length1 = electron_step_length1*(lambda1/

lambda2);

394 }

395 xn = x+(electron_step_length1+electron_step_length2)*ca;

396 yn = y+(electron_step_length1+electron_step_length2)*cb;

397 zn = z+(electron_step_length1+electron_step_length2)*cc;

398 //printf("xn:%g,yn:%g,zn:%g,x:%g,y:%g,z:%g\n",xn,yn,zn,x,y,z);

399 } else if ((-z > layered_material_interface_depth) && (-zn <

layered_material_interface_depth)) {

400 lambda1 = lambda;

401 at_num = lower_material.atomic_number;

402 at_wht = lower_material.atomic_weight;

403 density = lower_material.density;

404 SE_epsilon = lower_material.epsilon;

405 SE_lambda = lower_material.lambda;

406 get_constants(&sg_a,&al_a,&lam_a,at_num,at_wht,density,

electron_beam.energy);

407 lambda = compute_lambda(s_en,al_a,sg_a,lam_a);

408 lambda2 = lambda;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 171

409 electron_step_length1 = sqrt(pow((

layered_material_interface_depth-(-z))/cc,2));

410 electron_step_length2 = sqrt(pow(((-zn)-

layered_material_interface_depth)/cc,2));

411 if (upper_material.atomic_number >= lower_material.atomic_number)

{

412 electron_step_length2 = electron_step_length2*(lambda1/

lambda2);

413 } else {

414 electron_step_length2 = electron_step_length2*(lambda2/

lambda1);

415 }

416 xn = x+(electron_step_length1+electron_step_length2)*ca;

417 yn = y+(electron_step_length1+electron_step_length2)*cb;

418 zn = z+(electron_step_length1+electron_step_length2)*cc;

419 //printf("xn:%g,yn:%g,zn:%g,x:%g,y:%g,z:%g\n",xn,yn,zn,x,y,z);

420 }

421

422 // track max depth

423 if (maximum_electron_z_depth < zn) {

424 maximum_electron_z_depth = zn;

425 }

426

427 if (electron_trajectory_tracking == 1) {

428 electron_tracking_x_position_array[electron_tracking_counter] =

xn;

429 electron_tracking_y_position_array[electron_tracking_counter] =

yn;

430 electron_tracking_z_position_array[electron_tracking_counter] =

zn;

431 electron_tracking_counter++;

432 }

433 //

434 reset_next_step(ca,cb,cc,xn,yn,zn,electron_step_length,&cx,&cy,&cz,&x

,&y,&z,&s_en,density,at_num,at_wht,SE_epsilon,SE_lambda,

number_of_intersections,exit_x1,exit_y1,exit_x2,exit_y2,

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

delta_r,number_of_surface_bins,intersection_index1);

435 //allow simulation to continue for FSE

436 if (number_of_intersections == 2) {

437 number_of_intersections = 0;

438 }

439 }// while loop complete

440 // scattering of electron in material complete

441 // (electron has come to a rest or

442 // electron has left the material)

443

444 current_electron_number = current_electron_number + 1;

445 if (maximum_electron_z_depth >= 0.0) {

446 maximum_electron_z_depth += (

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array-1.0)

/2.0;

447 } else {



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 172

448 maximum_electron_z_depth = (

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array-1.0)

/2.0+maximum_electron_z_depth;

449 }

450 if (((int)round(maximum_electron_z_depth) < 0) || ((int)round(

maximum_electron_z_depth) >

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array)) {

451 //logfile_printf("4 (int)round(maximum_electron_z_depth):%d\n",(int)

round(maximum_electron_z_depth));

452 logfile_printf("---------------------------------\n");

453 logfile_printf("Warning (Code 4): An electron has travelled outside

the defined depth array. Increase the size of input parameter, ’

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array’, to

prevent this warning.\n");

454 logfile_printf("---------------------------------\n");

455 #ifdef MPI_ON

456 MPI_Barrier(MPI_COMM_WORLD);

457 MPI_Finalize();

458 #endif

459 exit(0);

460 } else {

461 electron_maximum_z_depth_array[(int)round(maximum_electron_z_depth)]

+= 1.0;

462 }

463 maximum_electron_z_depth = -(

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array-1.0)

/2.0;

464 if ((node_number == 0) && electron_trajectory_tracking == 1) {

465 FILE *fp;

466 fp=fopen("./outputs/output_track.txt", "a");

467 for (i=0;i<maximum_electron_track_length;i++) {

468 fprintf(fp, "%g\t%g\t%g\n",

469 electron_tracking_x_position_array[i],

470 electron_tracking_y_position_array[i],

471 electron_tracking_z_position_array[i]);

472 if ((electron_tracking_x_position_array[i] == 0) && (

electron_tracking_x_position_array[i+1] == 0)) {

473 break;

474 }

475 }

476 fclose(fp);

477 }

478 }

479 if (lost_electrons > 0 && node_number == 0) {//tell the user some electrons

got out of the simulation area

480 logfile_printf("---------------------------------\n");

481 logfile_printf("Warning! %d electron(s) escaped the simulation area.

Increase the size of input parameter, ’number_of_surface_bins’, to prevent

this warning.\n",lost_electrons);

482 logfile_printf("---------------------------------\n");

483 }

484 }

485



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 173

486

487

488 double mean_ionisation_potential(double at_num) { //keV

489 // Refer to Chapter 3 "Monte carlo modelling for EM" by David Joy (1995)

490 //mean ionization potential represents the effective average energy loss per

interaction between the incident electron and the solid

491 return((9.76*at_num+(58.5/pow(at_num,0.19)))*0.001);

492 }

493

494 void get_constants(double *sg_a,double *al_a,double *lam_a,double at_num,double

at_wht,double density,double inc_energy) {

495 // Refer to Chapter 3 "Monte carlo modelling for EM" by David Joy (1995)

496 //computes some constants needed by the program

497 double er;

498 *al_a = pow(at_num,0.67)*3.4E-3;

499 //relativistically correct the beam energy for use up to 500 keV

500 er = (inc_energy+511.0)/(inc_energy+1024.0);

501 er = er*er;

502 *lam_a = at_wht/(density*6.0221415E23); //lambda in cm

503 *lam_a = *lam_a*1.0E8; //put into angstroms

504 *sg_a = at_num*at_num*4*PI*5.21E-21*er;

505 }

506

507 void reset_coordinates(double *s_en,double *x,double *y,double *z,double *cx,

double *cy,double *cz,double inc_energy,int surface_length) {

508 // Refer to Chapter 3 "Monte carlo modelling for EM" by David Joy (1995)

509 int i;

510 //work out r position

511 double rand_num = rand();

512 for (i=0;i<surface_length;i++) {

513 if (electron_starting_location_probability_array[i] > (rand_num/((double)

RAND_MAX+1))) {

514 break;

515 }

516 }

517 double r_pos = r_coordinate_array[i];

518 //work out angle

519 rand_num = rand();

520 double r_angle = (rand_num/((double)RAND_MAX+1))*2.0*PI;

521 //convert to cartesian

522 *x = r_pos*cos(r_angle);

523 *y = r_pos*sin(r_angle);

524 *z = -z_coordinate_array[i];

525 //printf("x:%g,y:%g,z:%g\n",*x,*y,*z);

526 //final starting bits

527 *cx = 0.0;

528 *cy = 0.0;

529 *cz = 1.0;

530 *s_en = inc_energy;

531 }

532

533 double compute_lambda(double energy,double al_a,double sg_a,double lam_a) {

534 // Refer to Chapter 3 "Monte carlo modelling for EM" by David Joy (1995)



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 174

535 //computes elastic MFP for single scattering model

536 double al,ak,sg;

537 al = al_a/energy;

538 ak = al*(1.0+al);

539 //giving sg cross-section in cm2 as

540 sg = sg_a/(energy*energy*ak);

541 //and lambda in angstroms is

542 return(lam_a/sg);

543 }

544

545 void s_scatter(double energy,double al_a,double *sp,double *ga,double *cp) {

546 // Refer to Chapter 3 "Monte carlo modelling for EM" by David Joy (1995)

547 double rand_num = rand();

548 double al,Rl;

549 al = al_a/energy;

550 Rl = rand_num/((double)RAND_MAX+1);

551 *cp = 1.0-((2.0*al*Rl)/(1.0+al-Rl));

552 *sp = sqrt(1.0-(*cp)*(*cp));

553 //and get the azimuthal scattering angle

554 rand_num = rand();

555 *ga = 2.0*PI*(rand_num/((double)RAND_MAX+1));

556 }

557

558 void new_coord(double step,double x,double y,double z,double cx,double cy,double

cz,double sp,double ga,double cp,double *ca,double *cb,double *cc,double *xn,

double *yn,double *zn) {

559 // Refer to Chapter 3 "Monte carlo modelling for EM" by David Joy (1995)

560 //gets xn,yn,zn from x,y,z and scattering angles

561 //find the transformation angles

562 double an_m,an_n,vl,v2,v3,v4;

563 if (cz == 0.0) {

564 cz = 0.000001;

565 }

566 an_m = (-cx/cz);

567 an_n = 1.0/sqrt(1+(an_m*an_m));

568 //save computation time by getting all the transcendentals first

569 vl = an_n*sp;

570 v2 = an_n*an_m*sp;

571 v3 = cos(ga);

572 v4 = sin(ga);

573 //find the new direction cosines

574 *ca = (cx*cp)+(vl*v3)+(cy*v2*v4);

575 *cb = (cy*cp)+(v4*(cz*vl-cx*v2));

576 *cc = (cz*cp)+(v2*v3)-(cy*vl*v4);

577 //and get the new coordinates

578 *xn = x+step*(*ca);

579 *yn = y+step*(*cb);

580 *zn = z+step*(*cc);

581 //printf("xn:%g,yn:%g,zn:%g,x:%g,y:%g,z:%g\n",*xn,*yn,*zn,x,y,z);

582 }

583

584 void reset_next_step(double ca,

585 double cb,



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 175

586 double cc,

587 double xn,

588 double yn,

589 double zn,

590 double step,

591 double *cx,

592 double *cy,

593 double *cz,

594 double *x,

595 double *y,

596 double *z,

597 double *s_en,

598 double density,

599 double at_num,

600 double at_wht,

601 double SE_epsilon,

602 double SE_lambda,

603 int number_of_intersections,

604 double exit_x1,

605 double exit_y1,

606 double exit_x2,

607 double exit_y2,

608 double e_length_d,

609 double delta_r,

610 int number_of_surface_bins,

611 int intersection_index1) {

612 // Refer to Chapter 3 "Monte carlo modelling for EM" by David Joy (1995)

613 //resets variables for next trajectory step

614 double del_E;

615 int i,dist_z_index,dist_zn_index,num_bins;

616 double step1,step2,r1,rn1;

617 double num_sec,dist_z,dist_zn,dist;

618 int z_idx, zn_idx;

619 //

620 r1 = sqrt(pow(*x,2)+pow(*y,2));

621 rn1 = sqrt(pow(xn,2)+pow(yn,2));

622 //find the energy lost on this step

623 del_E = step*stop_pwr(*s_en,at_num,at_wht)*density*1E-8;

624 //so the current energy is

625 *s_en = *s_en-del_E;

626 if (number_of_intersections == 2) {

627 step1 = sqrt(pow(exit_x1-r1,2)+pow(exit_y1-(*z),2));

628 step2 = sqrt(pow(rn1-exit_x2,2)+pow((-zn)-exit_y2,2));

629 z_idx = (int)round( (e_length_d-1.0)/2.0+(*z) );

630 zn_idx = (int)round( (e_length_d-1.0)/2.0+zn );

631 if ((z_idx >= 0) && (z_idx < e_length_d) && (zn_idx >= 0) && (zn_idx <

e_length_d)) {

632 electron_energy_deposited_array[z_idx] += del_E*(step1/(step1+step2))

;

633 electron_energy_deposited_array[zn_idx] += del_E*(step2/(step1+step2)

);

634 } else {

635 //logfile_printf("8 z_idx:%d,z:%g\n",z_idx,(*z));



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 176

636 //logfile_printf("8 zn_idx:%d,zn:%g\n",zn_idx,zn);

637 logfile_printf("---------------------------------\n");

638 logfile_printf("Warning (Code 8): An electron has travelled outside

the defined depth array. Increase the size of input parameter, ’

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array’, to

prevent this warning.\n");

639 logfile_printf("---------------------------------\n");

640 #ifdef MPI_ON

641 MPI_Barrier(MPI_COMM_WORLD);

642 MPI_Finalize();

643 #endif

644 exit(0);

645 }

646 } else {

647 zn_idx = (int)round((e_length_d-1.0)/2.0+zn);

648 if ((zn_idx < 0) || (zn_idx > e_length_d)) {

649 //logfile_printf("7 zn_idx:%d,zn:%g\n",zn_idx,zn);

650 logfile_printf("---------------------------------\n");

651 logfile_printf("Warning (Code 7): An electron has travelled outside

the defined depth array. Increase the size of input parameter, ’

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array’, to

prevent this warning.\n");

652 logfile_printf("---------------------------------\n");

653 #ifdef MPI_ON

654 MPI_Barrier(MPI_COMM_WORLD);

655 MPI_Finalize();

656 #endif

657 exit(0);

658 // FIXME: hack to prevent energy deposited outside array length

659 // is there a better way to deal with this?

660 //zn = *z;

661 } else {

662 electron_energy_deposited_array[zn_idx] += del_E;

663 }

664 }

665 // electron leaving material

666 if (number_of_intersections == 1) {

667 step = sqrt(pow(exit_x1-r1,2)+pow(exit_y1-(-*z),2));

668 del_E = step*stop_pwr(*s_en,at_num,at_wht)*density*1E-8;

669 num_sec = del_E*(1.0/SE_epsilon);

670 r1 = sqrt(pow(*x,2)+pow(*y,2));

671 rn1 = exit_x1;

672 dist_z = dist_zn = 10000000.0;

673 dist_z_index = dist_zn_index = number_of_surface_bins - 1;

674

675 // find dist_z where electron is leaving

676 for (i=0;i<number_of_surface_bins;i++) {

677 dist = sqrt(pow(r_coordinate_array[i]-r1,2)+pow(z_coordinate_array[i

]-(-(*z)),2));

678 if (dist < dist_z) {

679 dist_z = dist;

680 dist_z_index = i;

681 } else {



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 177

682 break;

683 }

684 }

685 // find dist_zn where electron is leaving

686 for (i=0;i<number_of_surface_bins;i++) {

687 dist = sqrt(pow(r_coordinate_array[i]-rn1,2)+pow(z_coordinate_array[i

]-(-zn),2));

688 if (dist < dist_zn) {

689 dist_zn = dist;

690 dist_zn_index = i;

691 } else {

692 break;

693 }

694 }

695 // distribute the SE based on where they could escape from

696 num_bins = abs(dist_zn_index-dist_z_index);

697 if (num_bins == 0) {

698 secondary_electron_location_array[dist_z_index] += 0.5*num_sec*exp(-

dist_z/SE_lambda);

699 } else if (num_bins == 1) {

700 secondary_electron_location_array[dist_z_index] += 0.5*num_sec/2.0*

exp(-dist_z/SE_lambda);

701 secondary_electron_location_array[dist_zn_index] += 0.5*num_sec/2.0*

exp(-dist_zn/SE_lambda);

702 } else {

703 secondary_electron_location_array[dist_z_index] += 0.5*num_sec/(

double)(num_bins+1)*exp(-dist_z/SE_lambda);

704 secondary_electron_location_array[dist_zn_index] += 0.5*num_sec/(

double)(num_bins+1)*exp(-dist_zn/SE_lambda);

705 if (dist_zn_index > dist_z_index) {

706 for (i=1;i<num_bins;i++) {

707 dist = sqrt(pow(r_coordinate_array[dist_z_index+i]-sqrt(pow(*

x+(step/(double)(num_bins)*(double)i)*ca,2)+pow(*y+(step/(double)(num_bins)*(

double)i)*cb,2)),2)+pow(z_coordinate_array[dist_z_index+i]-(-*z+(step/(double

)(num_bins)*(double)i)*cc),2));

708 secondary_electron_location_array[dist_z_index+i] += 0.5*

num_sec/(double)(num_bins+1)*exp(-dist/SE_lambda);

709 }

710 } else {

711 for (i=1;i<num_bins;i++) {

712 dist = sqrt(pow(r_coordinate_array[dist_z_index-i]-sqrt(pow(*

x+(step/(double)(num_bins)*(double)i)*ca,2)+pow(*y+(step/(double)(num_bins)*(

double)i)*cb,2)),2)+pow(z_coordinate_array[dist_z_index-i]-(-*z+(step/(double

)(num_bins)*(double)i)*cc),2));

713 secondary_electron_location_array[dist_z_index-i] += 0.5*

num_sec/(double)(num_bins+1)*exp(-dist/SE_lambda);

714 }

715 }

716 }

717 } else if (number_of_intersections == 2) {

718 //

719 step = sqrt(pow(exit_x1-r1,2)+pow(exit_y1-(-*z),2));

720 del_E = step*stop_pwr(*s_en,at_num,at_wht)*density*1E-8;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 178

721 num_sec = del_E*(1.0/SE_epsilon);

722 r1 = sqrt(pow(*x,2)+pow(*y,2));

723 rn1 = exit_x1;

724 dist_z = dist_zn = 10000000.0;

725 dist_z_index = dist_zn_index = number_of_surface_bins - 1;

726

727 for (i=0;i<number_of_surface_bins;i++) {

728 dist = sqrt(pow(r_coordinate_array[i]-r1,2)+pow(z_coordinate_array[i

]-(-(*z)),2));

729 if (dist < dist_z) {

730 dist_z = dist;

731 dist_z_index = i;

732 } else {

733 break;

734 }

735 }

736 for (i=0;i<number_of_surface_bins;i++) {

737 dist = sqrt(pow(r_coordinate_array[i]-rn1,2)+pow(z_coordinate_array[i

]-(-zn),2));

738 if (dist < dist_zn) {

739 dist_zn = dist;

740 dist_zn_index = i;

741 } else {

742 break;

743 }

744 }

745 // handle electron exit (re-entry is below)

746 num_bins = abs(dist_zn_index-dist_z_index);

747 if (num_bins == 0) {

748 secondary_electron_location_array[dist_z_index] += 0.5*num_sec*exp(-

dist_z/SE_lambda);

749 } else if (num_bins == 1) {

750 secondary_electron_location_array[dist_z_index] += 0.5*num_sec/2.0*

exp(-dist_z/SE_lambda);

751 secondary_electron_location_array[dist_zn_index] += 0.5*num_sec/2.0*

exp(-dist_zn/SE_lambda);

752 } else {

753 secondary_electron_location_array[dist_z_index] += 0.5*num_sec/(

double)(num_bins+1)*exp(-dist_z/SE_lambda);

754 secondary_electron_location_array[dist_zn_index] += 0.5*num_sec/(

double)(num_bins+1)*exp(-dist_zn/SE_lambda);

755 if (dist_zn_index > dist_z_index) {

756 for (i=1;i<num_bins;i++) {

757 dist = sqrt(pow(r_coordinate_array[dist_z_index+i]-sqrt(pow(*

x+(step/(double)(num_bins)*(double)i)*ca,2)+pow(*y+(step/(double)(num_bins)*(

double)i)*cb,2)),2)+pow(z_coordinate_array[dist_z_index+i]-(-*z+(step/(double

)(num_bins)*(double)i)*cc),2));

758 secondary_electron_location_array[dist_z_index+i] += 0.5*

num_sec/(double)(num_bins+1)*exp(-dist/SE_lambda);

759 }

760 } else {

761 for (i=1;i<num_bins;i++) {



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 179

762 dist = sqrt(pow(r_coordinate_array[dist_z_index-i]-sqrt(pow(*

x+(step/(double)(num_bins)*(double)i)*ca,2)+pow(*y+(step/(double)(num_bins)*(

double)i)*cb,2)),2)+pow(z_coordinate_array[dist_z_index-i]-(-*z+(step/(double

)(num_bins)*(double)i)*cc),2));

763 secondary_electron_location_array[dist_z_index-i] += 0.5*

num_sec/(double)(num_bins+1)*exp(-dist/SE_lambda);

764 }

765 }

766 }

767 //

768 step = sqrt(pow(rn1-exit_x2,2)+pow((-zn)-exit_y2,2));

769 del_E = step*stop_pwr(*s_en,at_num,at_wht)*density*1E-8;

770 num_sec = del_E*(1.0/SE_epsilon);

771 r1 = exit_x2;

772 rn1 = sqrt(pow(xn,2)+pow(yn,2));

773 dist_z = dist_zn = 10000000.0;

774 dist_z_index = dist_zn_index = number_of_surface_bins - 1;

775

776 for (i=0;i<number_of_surface_bins;i++) {

777 dist = sqrt(pow(r_coordinate_array[i]-r1,2)+pow(z_coordinate_array[i

]-(-(*z)),2));

778 if (dist < dist_z) {

779 dist_z = dist;

780 dist_z_index = i;

781 } else {

782 break;

783 }

784 }

785 for (i=0;i<number_of_surface_bins;i++) {

786 dist = sqrt(pow(r_coordinate_array[i]-rn1,2)+pow(z_coordinate_array[i

]-(-zn),2));

787 if (dist < dist_zn) {

788 dist_zn = dist;

789 dist_zn_index = i;

790 } else {

791 break;

792 }

793 }

794

795 // handle re-entry

796 num_bins = abs(dist_zn_index-dist_z_index);

797 if (num_bins == 0) {

798 secondary_electron_location_array[dist_z_index] += 0.5*num_sec*exp(-

dist_z/SE_lambda);

799 } else if (num_bins == 1) {

800 secondary_electron_location_array[dist_z_index] += 0.5*num_sec/2.0*

exp(-dist_z/SE_lambda);

801 secondary_electron_location_array[dist_zn_index] += 0.5*num_sec/2.0*

exp(-dist_zn/SE_lambda);

802 } else {

803 secondary_electron_location_array[dist_z_index] += 0.5*num_sec/(

double)(num_bins+1)*exp(-dist_z/SE_lambda);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 180

804 secondary_electron_location_array[dist_zn_index] += 0.5*num_sec/(

double)(num_bins+1)*exp(-dist_zn/SE_lambda);

805 if (dist_zn_index > dist_z_index) {

806 for (i=1;i<num_bins;i++) {

807 dist = sqrt(pow(r_coordinate_array[dist_z_index+i]-sqrt(pow(*

x+(step/(double)(num_bins)*(double)i)*ca,2)+pow(*y+(step/(double)(num_bins)*(

double)i)*cb,2)),2)+pow(z_coordinate_array[dist_z_index+i]-(-*z+(step/(double

)(num_bins)*(double)i)*cc),2));

808 secondary_electron_location_array[dist_z_index+i] += 0.5*

num_sec/(double)(num_bins+1)*exp(-dist/SE_lambda);

809 }

810 } else {

811 for (i=1;i<num_bins;i++) {

812 dist = sqrt(pow(r_coordinate_array[dist_z_index-i]-sqrt(pow(*

x+(step/(double)(num_bins)*(double)i)*ca,2)+pow(*y+(step/(double)(num_bins)*(

double)i)*cb,2)),2)+pow(z_coordinate_array[dist_z_index-i]-(-*z+(step/(double

)(num_bins)*(double)i)*cc),2));

813 secondary_electron_location_array[dist_z_index-i] += 0.5*

num_sec/(double)(num_bins+1)*exp(-dist/SE_lambda);

814 }

815 }

816 }

817 } else {

818 //

819 num_sec = del_E*(1.0/SE_epsilon);

820 dist_z = dist_zn = 10000000.0;

821 dist_z_index = dist_zn_index = number_of_surface_bins - 1;

822

823 for (i=0;i<number_of_surface_bins;i++) {

824 dist = sqrt(pow(r_coordinate_array[i]-r1,2)+pow(z_coordinate_array[i

]-(-(*z)),2));

825 if (dist < dist_z) {

826 dist_z = dist;

827 dist_z_index = i;

828 } else {

829 break;

830 }

831 }

832 for (i=0;i<number_of_surface_bins;i++) {

833 dist = sqrt(pow(r_coordinate_array[i]-rn1,2)+pow(z_coordinate_array[i

]-(-zn),2));

834 if (dist < dist_zn) {

835 dist_zn = dist;

836 dist_zn_index = i;

837 } else {

838 break;

839 }

840 }

841 //

842 num_bins = abs(dist_zn_index-dist_z_index);

843 if (num_bins == 0) {

844 secondary_electron_location_array[dist_z_index] += 0.5*num_sec*exp(-

dist_z/SE_lambda);



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 181

845 } else if (num_bins == 1) {

846 secondary_electron_location_array[dist_z_index] += 0.5*num_sec/2.0*

exp(-dist_z/SE_lambda);

847 secondary_electron_location_array[dist_zn_index] += 0.5*num_sec/2.0*

exp(-dist_zn/SE_lambda);

848 } else {

849 secondary_electron_location_array[dist_z_index] += 0.5*num_sec/(

double)(num_bins+1)*exp(-dist_z/SE_lambda);

850 secondary_electron_location_array[dist_zn_index] += 0.5*num_sec/(

double)(num_bins+1)*exp(-dist_zn/SE_lambda);

851 if (dist_zn_index > dist_z_index) {

852 for (i=1;i<num_bins;i++) {

853 dist = sqrt(pow(r_coordinate_array[dist_z_index+i]-sqrt(pow(*

x+(step/(double)(num_bins)*(double)i)*ca,2)+pow(*y+(step/(double)(num_bins)*(

double)i)*cb,2)),2)+pow(z_coordinate_array[dist_z_index+i]-(-*z+(step/(double

)(num_bins)*(double)i)*cc),2));

854 secondary_electron_location_array[dist_z_index+i] += 0.5*

num_sec/(double)(num_bins+1)*exp(-dist/SE_lambda);

855 }

856 } else {

857 for (i=1;i<num_bins;i++) {

858 dist = sqrt(pow(r_coordinate_array[dist_z_index-i]-sqrt(pow(*

x+(step/(double)(num_bins)*(double)i)*ca,2)+pow(*y+(step/(double)(num_bins)*(

double)i)*cb,2)),2)+pow(z_coordinate_array[dist_z_index-i]-(-*z+(step/(double

)(num_bins)*(double)i)*cc),2));

859 secondary_electron_location_array[dist_z_index-i] += 0.5*

num_sec/(double)(num_bins+1)*exp(-dist/SE_lambda);

860 }

861 }

862 }

863 }

864 //

865

866 *cx = ca;

867 *cy = cb;

868 *cz = cc;

869 *x = xn;

870 *y = yn;

871 *z = zn;

872 }

873

874 double stop_pwr(double energy,double at_num,double at_wht) {

875 //this computes the stopping power in keV/g/cm2 using the modified Bethe

expression of Eg. (3.21)

876 double temp;

877 if (energy < 0.025) {

878 energy = 0.025;

879 }

880 temp = log(1.166*(energy+0.85*mean_ionisation_potential(at_num))/

mean_ionisation_potential(at_num));

881 return(temp*78500*at_num/(at_wht*energy));

882

883 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 182

B.10 Monte Carlo Surface Setup

1 //

2 // monte_carlo_surface_setup.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This is the module sets up the input surface needed by monte carlo module.

7 //

8 #ifdef XCODE

9 #include <stdlib.h>

10 #include "structures.h"

11 #include "prototypes.h"

12 #endif

13

14 void monte_carlo_surface_setup(int number_of_surface_bins,

15 double *z_depth_minimum,

16 double *z_depth_maximum) {

17 int array_length,j,k;

18 array_length = number_of_surface_bins*2;

19

20 // find surface z min and max

21 *z_depth_minimum = 100000.0;

22 *z_depth_maximum = 0.0;

23 for (k=0;k<number_of_surface_bins;k++) {

24 if (z_coordinate_array[k] < *z_depth_minimum) {

25 *z_depth_minimum = z_coordinate_array[k];

26 }

27 if (z_coordinate_array[k] > *z_depth_maximum) {

28 *z_depth_maximum = z_coordinate_array[k];

29 }

30 }

31

32 // create a doubled mirrored surface in r

33 j = number_of_surface_bins-1;

34 for (k=0;k<number_of_surface_bins;k++) {

35 r_coordinate_both_directions[k] = -r_coordinate_array[j];

36 z_coordinate_both_directions[k] = z_coordinate_array[j];

37 r_coordinate_both_directions[k+number_of_surface_bins] =

r_coordinate_array[k];

38 z_coordinate_both_directions[k+number_of_surface_bins] =

z_coordinate_array[k];

39 j--;

40 }

41

42 // Note: the r,z values are the midpoints of the bins, to find which bin to

assign an electron,

43 // we must calculate the half-bins and do a line-line test

44 //

45 // define bins shifted by +half and -half bin

46 r_coordinate_secondary_array_one[0] = r_coordinate_both_directions[0];

47 r_coordinate_secondary_array_two[0] = (r_coordinate_both_directions[1]+

r_coordinate_both_directions[0])/2.0;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 183

48 for (k=1;k<array_length-1;k++) {

49 r_coordinate_secondary_array_one[k] = (r_coordinate_both_directions[k]+

r_coordinate_both_directions[k-1])/2.0;

50 r_coordinate_secondary_array_two[k] = (r_coordinate_both_directions[k]+

r_coordinate_both_directions[k+1])/2.0;

51 }

52 r_coordinate_secondary_array_one[array_length-1] = (

r_coordinate_both_directions[array_length-1]+r_coordinate_both_directions[

array_length-2])/2.0;

53 r_coordinate_secondary_array_two[array_length-1] =

r_coordinate_both_directions[array_length-1];

54

55 // compute surface line equations: Ax + By = C

56 // _array_one = A

57 // _array_two = B

58 // _array_three =

59 k = 0;

60 surface_line_equation_array_one[k] = ((z_coordinate_both_directions[k+1]+

z_coordinate_both_directions[k])/2.0)-z_coordinate_both_directions[k];

61 surface_line_equation_array_two[k] = r_coordinate_secondary_array_one[k]-

r_coordinate_secondary_array_two[k];

62 surface_line_equation_array_three[k] =

temporary_surface_line_equation_array_one[k]*r_coordinate_secondary_array_one

[k]

63 +

temporary_surface_line_equation_array_two[k]*z_coordinate_both_directions[k];

64 for (k=1;k<array_length-1;k++) {

65 surface_line_equation_array_one[k] = ((z_coordinate_both_directions[k]+

z_coordinate_both_directions[k+1])/2.0)

66 -((z_coordinate_both_directions[k

]+z_coordinate_both_directions[k-1])/2.0);

67 surface_line_equation_array_two[k] = r_coordinate_secondary_array_one[k]-

r_coordinate_secondary_array_two[k];

68 surface_line_equation_array_three[k] =

temporary_surface_line_equation_array_one[k]*r_coordinate_secondary_array_one

[k]

69 +

temporary_surface_line_equation_array_two[k]*((z_coordinate_both_directions[k

]+z_coordinate_both_directions[k-1])/2.0);

70 }

71 k = array_length-1;

72 surface_line_equation_array_one[k] = z_coordinate_both_directions[k]-((

z_coordinate_both_directions[k]+z_coordinate_both_directions[k-1])/2.0);

73 surface_line_equation_array_two[k] = r_coordinate_secondary_array_one[k]-

r_coordinate_secondary_array_two[k];

74 surface_line_equation_array_three[k] =

temporary_surface_line_equation_array_one[k]*r_coordinate_secondary_array_one

[k]+temporary_surface_line_equation_array_two[k]*z_coordinate_both_directions

[k];

75 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 184

B.11 Read Input Parameters

1 //

2 // read_input_parameters.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This is the module reads in the input parameter values from an input file,

for the EBIED Simulator.

7 //

8 #ifdef XCODE

9 #include <stdio.h>

10 #include <string.h>

11 #include "structures.h"

12 #include "prototypes.h"

13 #endif

14

15 void set_default_parameters(int *number_of_electron_trajectories,

16 int *number_of_surface_bins,

17 int *number_of_simulation_time_steps,

18 int *run_MC_every_zero_point_X_percent,

19 int *save_simulation_data_every_X_percent,

20 int *

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

21 int *maximum_electron_track_length,

22 double *delta_r,

23 double *delta_t,

24 Electron_beam *electron_beam,

25 double *layered_material_interface_depth,

26 Material *upper_material,

27 Material *lower_material,

28 double *gas_temperature,

29 Precursor *etch_precursor,

30 Precursor *deposit_precursor,

31 double *

deposit_pinned_reaction_electron_cross_section,

32 double *

deposit_precursor_reaction_electron_cross_section,

33 Toggle *toggle,

34 int *number_of_points,

35 int *order,

36 int *no_etch_area,

37 int *seed,

38 int *wave_type,

39 int *square_wave_period,

40 int *square_wave_min_current,

41 int *square_wave_max_current,

42 double *triangle_wave_rate,

43 int *triangle_wave_min_current,

44 int *triangle_wave_max_current,

45 int *pulsing_period,

46 int *pulse_on_time,

47 int *pulse_off_time,



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 185

48 int *time_delay,

49 double *precursor_diffusion_tolerance,

50 double *substrate_temperature) {

51 //Default Input Parameter Values

52 *number_of_electron_trajectories = 1000;

53 *number_of_surface_bins = 1000;

54 *number_of_simulation_time_steps = 1000;

55 *run_MC_every_zero_point_X_percent = 1;

56 *save_simulation_data_every_X_percent = 10;

57 *length_of_electron_energy_deposited_and_electron_maximum_z_depth_array =

100001;

58 *maximum_electron_track_length = 2000;

59 *delta_r = 1.0;

60 *delta_t = 1.0E-6;

61 (*electron_beam).cutoff_energy = 0.05;

62 (*electron_beam).top_hat_abruptness = 25.0;

63 (*electron_beam).diameter = 40.0;

64 (*electron_beam).energy = 1.0;

65 (*electron_beam).current = 6.241509e9;

66 (*electron_beam).tilt = 0.0;

67 *layered_material_interface_depth = 0.0;

68 (*upper_material).atomic_number = 47.0; //upper material atomic number.

69 (*upper_material).atomic_weight = 107.8682; //upper material atomic weight.

70 (*upper_material).density = 10.49; //upper material density, in g/cm3.

71 (*upper_material).epsilon = 0.05; //effective energy required to produce an

SE, in keV.

72 (*upper_material).lambda = 10.0; //effective SE escape depth, in A.

73 (*lower_material).atomic_number = 47.0; //lower material atomic number.

74 (*lower_material).atomic_weight = 107.8682; //lower material atomic weight.

75 (*lower_material).density = 10.49; //lower material density, in g/cm3.

76 (*lower_material).epsilon = 0.05; //effective energy required to produce an

SE, in keV.

77 (*lower_material).lambda = 10.0; //effective SE escape depth, in A.

78 *gas_temperature = 290.0;

79 (*etch_precursor).gas_partial_pressure = 1.0;

80 (*etch_precursor).reactive_product_molecular_mass = 2.12981E-25;

81 (*etch_precursor).surface_area = 68.0;

82 (*etch_precursor).desorption_energy = 1.0;

83 (*etch_precursor).desorption_attempt_frequency = 1.0;

84 (*etch_precursor).diffusion_energy = 1.0;

85 (*etch_precursor).diffusion_attempt_frequency = 1.0E8;

86 (*etch_precursor).sticking_coefficient = 1.0;

87 (*etch_precursor).PE_electron_cross_section = 1.0;

88 (*etch_precursor).BSE_electron_cross_section = 1.0;

89 (*etch_precursor).SE_electron_cross_section = 1.0;

90 (*deposit_precursor).gas_partial_pressure = 1.0;

91 (*deposit_precursor).reactive_product_molecular_mass = 2.12981E-25;

92 (*deposit_precursor).surface_area = 68.0;

93 (*deposit_precursor).desorption_energy = 1.0;

94 (*deposit_precursor).desorption_attempt_frequency = 1.0;

95 (*deposit_precursor).diffusion_energy = 1.0;

96 (*deposit_precursor).diffusion_attempt_frequency = 1.0E8;

97 (*deposit_precursor).sticking_coefficient = 1.0;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 186

98 (*deposit_precursor).PE_electron_cross_section = 1.0;

99 (*deposit_precursor).BSE_electron_cross_section = 1.0;

100 (*deposit_precursor).SE_electron_cross_section = 1.0;

101 *deposit_pinned_reaction_electron_cross_section = 1.0;

102 *deposit_precursor_reaction_electron_cross_section = 1.0;

103 (*toggle).electron_trajectory_simulator = 1;

104 (*toggle).electron_trajectory_tracking = 0;

105 (*toggle).electron_beam_projection = 1;

106 (*toggle).electron_beam_shape = 0;

107 (*toggle).surface_evolution = 1;

108 (*toggle).previous_simulation = 0;

109 (*toggle).coverage = 1;

110 wave_type = 0;

111 *square_wave_period = 100;

112 *square_wave_min_current = 100;

113 *square_wave_max_current = 1000;

114 *triangle_wave_rate = 1;

115 *triangle_wave_min_current = 100;

116 *triangle_wave_max_current = 1000;

117 *number_of_points = 21;

118 *order = 1;

119 *no_etch_area = 0;

120 *seed = -1;

121 *time_delay = 0;

122 *precursor_diffusion_tolerance = 0.1;

123 *substrate_temperature = 290.0;

124 }

125

126 void read_input_parameters(int *number_of_electron_trajectories,

127 int *number_of_surface_bins,

128 int *number_of_simulation_time_steps,

129 int *run_MC_every_zero_point_X_percent,

130 int *save_simulation_data_every_X_percent,

131 int *

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,

132 int *maximum_electron_track_length,

133 double *delta_r,

134 double *delta_t,

135 Electron_beam *electron_beam,

136 double *layered_material_interface_depth,

137 Material *upper_material,

138 Material *lower_material,

139 double *gas_temperature,

140 Precursor *etch_precursor,

141 Precursor *deposit_precursor,

142 double *deposit_pinned_reaction_electron_cross_section

,

143 double *

deposit_precursor_reaction_electron_cross_section,

144 Toggle *toggle,

145 int *number_of_points,

146 int *order,

147 int *no_etch_area,



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 187

148 int *seed,

149 int *wave_type,

150 int *square_wave_period,

151 int *square_wave_min_current,

152 int *square_wave_max_current,

153 double *triangle_wave_rate,

154 int *triangle_wave_min_current,

155 int *triangle_wave_max_current,

156 int *pulsing_period,

157 int *pulse_on_time,

158 int *pulse_off_time,

159 int *time_delay,

160 double *precursor_diffusion_tolerance,

161 double *substrate_temperature) {

162 //Start, Read In Input Parameters

163 char variable_name[100];

164 double variable_data_double;

165 int variable_data_int;

166 int variable_data_long_int;

167 FILE *fp;

168

169 //Read In Input Paremeters, Double Data Type

170 fp = fopen("./inputs/input_parameters.txt","r");

171 while (!feof(fp)) {

172 fscanf(fp,"%s = %lf\n",variable_name,&variable_data_double);

173 if (strcmp("delta_r",variable_name) == 0) {

174 *delta_r = variable_data_double;

175 continue;

176 }

177 if (strcmp("delta_t",variable_name) == 0) {

178 *delta_t = variable_data_double;

179 continue;

180 }

181 if (strcmp("electron_beam.cutoff_energy",variable_name) == 0) {

182 (*electron_beam).cutoff_energy = variable_data_double;

183 continue;

184 }

185 if (strcmp("electron_beam.top_hat_abruptness",variable_name) == 0) {

186 (*electron_beam).top_hat_abruptness = variable_data_double;

187 continue;

188 }

189 if (strcmp("electron_beam.diameter",variable_name) == 0) {

190 (*electron_beam).diameter = variable_data_double;

191 continue;

192 }

193 if (strcmp("electron_beam.energy",variable_name) == 0) {

194 (*electron_beam).energy = variable_data_double;

195 continue;

196 }

197 if (strcmp("electron_beam.current",variable_name) == 0) {

198 (*electron_beam).current = variable_data_double;

199 continue;

200 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 188

201 if (strcmp("electron_beam.tilt",variable_name) == 0) {

202 (*electron_beam).tilt = variable_data_double;

203 continue;

204 }

205 if (strcmp("layered_material_interface_depth",variable_name) == 0) {

206 *layered_material_interface_depth = variable_data_double;

207 continue;

208 }

209 if (strcmp("upper_material.atomic_number",variable_name) == 0) {

210 (*upper_material).atomic_number = variable_data_double;

211 continue;

212 }

213 if (strcmp("upper_material.atomic_weight",variable_name) == 0) {

214 (*upper_material).atomic_weight = variable_data_double;

215 continue;

216 }

217 if (strcmp("upper_material.density",variable_name) == 0) {

218 (*upper_material).density = variable_data_double;

219 continue;

220 }

221 if (strcmp("upper_material.epsilon",variable_name) == 0) {

222 (*upper_material).epsilon = variable_data_double;

223 continue;

224 }

225 if (strcmp("upper_material.lambda",variable_name) == 0) {

226 (*upper_material).lambda = variable_data_double;

227 continue;

228 }

229 if (strcmp("lower_material.atomic_number",variable_name) == 0) {

230 (*lower_material).atomic_number = variable_data_double;

231 continue;

232 }

233 if (strcmp("lower_material.atomic_weight",variable_name) == 0) {

234 (*lower_material).atomic_weight = variable_data_double;

235 continue;

236 }

237 if (strcmp("lower_material.density",variable_name) == 0) {

238 (*lower_material).density = variable_data_double;

239 continue;

240 }

241 if (strcmp("lower_material.epsilon",variable_name) == 0) {

242 (*lower_material).epsilon = variable_data_double;

243 continue;

244 }

245 if (strcmp("lower_material.lambda",variable_name) == 0) {

246 (*lower_material).lambda = variable_data_double;

247 continue;

248 }

249 if (strcmp("gas_temperature",variable_name) == 0) {

250 *gas_temperature = variable_data_double;

251 continue;

252 }

253 if (strcmp("substrate_temperature",variable_name) == 0) {



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 189

254 *substrate_temperature = variable_data_double;

255 continue;

256 }

257 if (strcmp("etch_precursor.gas_partial_pressure",variable_name) == 0) {

258 (*etch_precursor).gas_partial_pressure = variable_data_double;

259 continue;

260 }

261 if (strcmp("etch_precursor.reactive_product_molecular_mass",variable_name

) == 0) {

262 (*etch_precursor).reactive_product_molecular_mass =

variable_data_double;

263 continue;

264 }

265 if (strcmp("etch_precursor.surface_area",variable_name) == 0) {

266 (*etch_precursor).surface_area = variable_data_double;

267 continue;

268 }

269 if (strcmp("etch_precursor.desorption_energy",variable_name) == 0) {

270 (*etch_precursor).desorption_energy = variable_data_double;

271 continue;

272 }

273 if (strcmp("etch_precursor.desorption_attempt_frequency",variable_name)

== 0) {

274 (*etch_precursor).desorption_attempt_frequency = variable_data_double

;

275 continue;

276 }

277 if (strcmp("etch_precursor.diffusion_energy",variable_name) == 0) {

278 (*etch_precursor).diffusion_energy = variable_data_double;

279 continue;

280 }

281 if (strcmp("etch_precursor.diffusion_attempt_frequency",variable_name) ==

0) {

282 (*etch_precursor).diffusion_attempt_frequency = variable_data_double;

283 continue;

284 }

285 if (strcmp("etch_precursor.sticking_coefficient",variable_name) == 0) {

286 (*etch_precursor).sticking_coefficient = variable_data_double;

287 continue;

288 }

289 if (strcmp("etch_precursor.PE_electron_cross_section",variable_name) ==

0) {

290 (*etch_precursor).PE_electron_cross_section = variable_data_double;

291 continue;

292 }

293 if (strcmp("etch_precursor.BSE_electron_cross_section",variable_name) ==

0) {

294 (*etch_precursor).BSE_electron_cross_section = variable_data_double;

295 continue;

296 }

297 if (strcmp("etch_precursor.SE_electron_cross_section",variable_name) ==

0) {

298 (*etch_precursor).SE_electron_cross_section = variable_data_double;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 190

299 continue;

300 }

301 if (strcmp("deposit_precursor.gas_partial_pressure",variable_name) == 0)

{

302 (*deposit_precursor).gas_partial_pressure = variable_data_double;

303 continue;

304 }

305 if (strcmp("deposit_precursor.reactive_product_molecular_mass",

variable_name) == 0) {

306 (*deposit_precursor).reactive_product_molecular_mass =

variable_data_double;

307 continue;

308 }

309 if (strcmp("deposit_precursor.surface_area",variable_name) == 0) {

310 (*deposit_precursor).surface_area = variable_data_double;

311 continue;

312 }

313 if (strcmp("deposit_precursor.desorption_energy",variable_name) == 0) {

314 (*deposit_precursor).desorption_energy = variable_data_double;

315 continue;

316 }

317 if (strcmp("deposit_precursor.desorption_attempt_frequency",variable_name

) == 0) {

318 (*deposit_precursor).desorption_attempt_frequency =

variable_data_double;

319 continue;

320 }

321 if (strcmp("deposit_precursor.diffusion_energy",variable_name) == 0) {

322 (*deposit_precursor).diffusion_energy = variable_data_double;

323 continue;

324 }

325 if (strcmp("deposit_precursor.diffusion_attempt_frequency",variable_name)

== 0) {

326 (*deposit_precursor).diffusion_attempt_frequency =

variable_data_double;

327 continue;

328 }

329 if (strcmp("deposit_precursor.sticking_coefficient",variable_name) == 0)

{

330 (*deposit_precursor).sticking_coefficient = variable_data_double;

331 continue;

332 }

333 if (strcmp("deposit_precursor.PE_electron_cross_section",variable_name)

== 0) {

334 (*deposit_precursor).PE_electron_cross_section = variable_data_double

;

335 continue;

336 }

337 if (strcmp("deposit_precursor.BSE_electron_cross_section",variable_name)

== 0) {

338 (*deposit_precursor).BSE_electron_cross_section =

variable_data_double;

339 continue;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 191

340 }

341 if (strcmp("deposit_precursor.SE_electron_cross_section",variable_name)

== 0) {

342 (*deposit_precursor).SE_electron_cross_section = variable_data_double

;

343 continue;

344 }

345 if (strcmp("deposit_pinned_reaction_electron_cross_section",variable_name

) == 0) {

346 *deposit_pinned_reaction_electron_cross_section =

variable_data_double;

347 continue;

348 }

349 if (strcmp("deposit_precursor_reaction_electron_cross_section",

variable_name) == 0) {

350 *deposit_precursor_reaction_electron_cross_section =

variable_data_double;

351 continue;

352 }

353 if (strcmp("triangle_wave_rate",variable_name) == 0) {

354 *triangle_wave_rate = variable_data_double;

355 continue;

356 }

357 if (strcmp("precursor_diffusion_tolerance",variable_name) == 0) {

358 *precursor_diffusion_tolerance = variable_data_double;

359 continue;

360 }

361 if (strcmp("substrate_temperature",variable_name) == 0) {

362 *substrate_temperature = variable_data_double;

363 continue;

364 }

365 }

366 fclose(fp);

367

368 //Read In Input Paremeters, Int Data Type

369 fp = fopen("./inputs/input_parameters.txt","r");

370 while (!feof(fp)) {

371 fscanf(fp,"%s = %d\n",variable_name,&variable_data_long_int);

372 if (strcmp("number_of_electron_trajectories",variable_name) == 0) {

373 *number_of_electron_trajectories = variable_data_long_int;

374 continue;

375 }

376 if (strcmp("number_of_surface_bins",variable_name) == 0) {

377 *number_of_surface_bins = variable_data_long_int;

378 continue;

379 }

380 if (strcmp("number_of_simulation_time_steps",variable_name) == 0) {

381 *number_of_simulation_time_steps = variable_data_long_int;

382 continue;

383 }

384 if (strcmp("run_MC_every_zero_point_X_percent",variable_name) == 0) {

385 *run_MC_every_zero_point_X_percent = variable_data_long_int;

386 continue;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 192

387 }

388 if (strcmp("save_simulation_data_every_X_percent",variable_name) == 0) {

389 *save_simulation_data_every_X_percent = variable_data_long_int;

390 continue;

391 }

392 if (strcmp("

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array",

variable_name) == 0) {

393 *

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array =

variable_data_long_int;

394 continue;

395 }

396 if (strcmp("maximum_electron_track_length",variable_name) == 0) {

397 *maximum_electron_track_length = variable_data_long_int;

398 continue;

399 }

400 }

401 fclose(fp);

402

403 //Read In Input Paremeters, Int Data Type

404 fp = fopen("./inputs/input_parameters.txt","r");

405 while (!feof(fp)) {

406 fscanf(fp,"%s = %d\n",variable_name,&variable_data_int);

407 if (strcmp("toggle.electron_trajectory_simulator",variable_name) == 0) {

408 (*toggle).electron_trajectory_simulator = variable_data_int;

409 continue;

410 }

411 if (strcmp("toggle.electron_trajectory_tracking",variable_name) == 0) {

412 (*toggle).electron_trajectory_tracking = variable_data_int;

413 continue;

414 }

415 if (strcmp("toggle.electron_beam_projection",variable_name) == 0) {

416 (*toggle).electron_beam_projection = variable_data_int;

417 continue;

418 }

419 if (strcmp("toggle.electron_beam_shape",variable_name) == 0) {

420 (*toggle).electron_beam_shape = variable_data_int;

421 continue;

422 }

423 if (strcmp("toggle.surface_evolution",variable_name) == 0) {

424 (*toggle).surface_evolution = variable_data_int;

425 continue;

426 }

427 if (strcmp("toggle.previous_simulation",variable_name) == 0) {

428 (*toggle).previous_simulation = variable_data_int;

429 continue;

430 }

431 if (strcmp("toggle.coverage",variable_name) == 0) {

432 (*toggle).coverage = variable_data_int;

433 continue;

434 }

435 if (strcmp("wave_type",variable_name) == 0) {



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 193

436 *wave_type = variable_data_int;

437 continue;

438 }

439 if (strcmp("square_wave_period",variable_name) == 0) {

440 *square_wave_period = variable_data_int;

441 continue;

442 }

443 if (strcmp("square_wave_min_current",variable_name) == 0) {

444 *square_wave_min_current = variable_data_int;

445 continue;

446 }

447 if (strcmp("square_wave_max_current",variable_name) == 0) {

448 *square_wave_max_current = variable_data_int;

449 continue;

450 }

451 if (strcmp("triangle_wave_min_current",variable_name) == 0) {

452 *triangle_wave_min_current = variable_data_int;

453 continue;

454 }

455 if (strcmp("triangle_wave_max_current",variable_name) == 0) {

456 *triangle_wave_max_current = variable_data_int;

457 continue;

458 }

459 if (strcmp("pulsing_period",variable_name) == 0) {

460 *pulsing_period = variable_data_int;

461 continue;

462 }

463 if (strcmp("pulse_on_time",variable_name) == 0) {

464 *pulse_on_time = variable_data_int;

465 continue;

466 }

467 if (strcmp("pulse_off_time",variable_name) == 0) {

468 *pulse_off_time = variable_data_int;

469 continue;

470 }

471 if (strcmp("number_of_points",variable_name) == 0) {

472 *number_of_points = variable_data_int;

473 continue;

474 }

475 if (strcmp("order",variable_name) == 0) {

476 *order = variable_data_int;

477 continue;

478 }

479 if (strcmp("no_etch_area",variable_name) == 0) {

480 *no_etch_area = variable_data_int;

481 continue;

482 }

483 if (strcmp("seed",variable_name) == 0) {

484 *seed = variable_data_int;

485 continue;

486 }

487 if (strcmp("time_delay",variable_name) == 0) {

488 *time_delay = variable_data_int;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 194

489 continue;

490 }

491 }

492 fclose(fp);

493

494 //End, Read In Input Parameters

495 }

B.12 Read Previous Simulation Data

1 //

2 // read_input_previous_simulation.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This is the module reads in a previous simulation outputs from an input file,

for the EBIED Simulator.

7 //

8 #ifdef XCODE

9 #include <stdio.h>

10 #include "structures.h"

11 #include "prototypes.h"

12 #endif

13

14 void read_input_previous_simulation(int number_of_surface_bins) {

15 FILE *fp;

16 int index,i;

17 double input_r,input_z,input_Nd,input_Ne,input_ND;

18 fp = fopen("./inputs/input_previous_simulation.txt","r");

19 while (!feof(fp)) {

20 fscanf(fp,"%d\t%lf\t%lf\t%lf\t%lf\t%lf\n",&index,&input_r,&input_z,&

input_Nd,&input_Ne,&input_ND);

21 previous_r_coordinate_array[index-1] = input_r;

22 previous_z_coordinate_array[index-1] = input_z;

23 previous_deposit_precursor_gas_concentration_previous_time_step_array[

index-1] = input_Nd;

24 previous_etch_precursor_gas_concentration_previous_time_step_array[index

-1] = input_Ne;

25 previous_reactive_product_concentration_previous_time_step_array[index-1]

= input_ND;

26 }

27 fclose(fp);

28 if (index<number_of_surface_bins) {

29 for (i=index;i<number_of_surface_bins;i++) {

30 previous_r_coordinate_array[i] = previous_r_coordinate_array[i-1]+(

previous_r_coordinate_array[i-1]-previous_r_coordinate_array[i-2]);

31 previous_z_coordinate_array[i] = input_z;

32 previous_deposit_precursor_gas_concentration_previous_time_step_array

[i] = input_Nd;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 195

33 previous_etch_precursor_gas_concentration_previous_time_step_array[i]

= input_Ne;

34 previous_reactive_product_concentration_previous_time_step_array[i] =

input_ND;

35 }

36 }

37 }

B.13 Output Current Simulation Data

1 //

2 // save_current_simulation_data.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This function save the current simulation data for the EBIED Simulator.

7 //

8 #ifdef XCODE

9 #include <stdio.h>

10 #include "structures.h"

11 #include "prototypes.h"

12 #endif

13

14 void save_current_simulation_data(int

length_of_electron_energy_deposited_and_electron_maximum_z_depth_array,double

backscattered_electron_coefficient,double secondary_electron_coefficient,int

number_of_surface_bins,int number_of_electron_trajectories,int

current_time_step,int val1,int val2,int number_of_simulation_time_steps,int

save_simulation_data_every_X_percent) {

15 int j,k;

16 FILE *fp;

17 //

18 fp=fopen("./outputs/output_electron_flux_profile.txt", "w");

19 for (k=0;k<number_of_surface_bins;k++) {

20 print_electron_flux_profile_array[val1][k] = r_coordinate_array[k];

21 print_electron_flux_profile_array[val2][k] = electron_flux_profile_array[

k];

22 }

23 fprintf(fp,"Electron Flux Profile\n");

24 for (j=0;j<=val1/2;j++) {

25 fprintf(fp,"Time(sec) %g\t\t",time_per_time_step_array[

number_of_simulation_time_steps/(100/save_simulation_data_every_X_percent)*j

]);

26 }

27 fprintf(fp,"\n");

28 for (j=0;j<=val2/2;j++) {

29 fprintf(fp,"r(A)\teFlux(electrons/s)\t");

30 }

31 fprintf(fp,"\n");

32 for (k=0;k<number_of_surface_bins;k++) {



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 196

33 for (j=0;j<=val2;j++) {

34 fprintf(fp,"%g\t",print_electron_flux_profile_array[j][k]);

35 }

36 fprintf(fp,"\n");

37 }

38 fclose(fp);

39 //

40 fp=fopen("./outputs/output_N_little_e.txt", "w");

41 for (k=0;k<number_of_surface_bins;k++) {

42 print_N_little_e[val1][k] = r_coordinate_array[k];

43 print_N_little_e[val2][k] =

etch_precursor_gas_concentration_previous_time_step_array[k];

44 }

45 fprintf(fp,"Etch Precursor Concentration\n");

46 for (j=0;j<=val1/2;j++) {

47 fprintf(fp,"Time(sec) %g\t\t",time_per_time_step_array[

number_of_simulation_time_steps/(100/save_simulation_data_every_X_percent)*j

]);

48 }

49 fprintf(fp,"\n");

50 for (j=0;j<=val2/2;j++) {

51 fprintf(fp,"r(A)\tConcentration(molecules/A2)\t");

52 }

53 fprintf(fp,"\n");

54 for (k=0;k<number_of_surface_bins;k++) {

55 for (j=0;j<=val2;j++) {

56 fprintf(fp,"%g\t",print_N_little_e[j][k]);

57 }

58 fprintf(fp,"\n");

59 }

60 fclose(fp);

61 //

62 fp=fopen("./outputs/output_N_little_d.txt", "w");

63 for (k=0;k<number_of_surface_bins;k++) {

64 print_N_little_d[val1][k] = r_coordinate_array[k];

65 print_N_little_d[val2][k] =

deposit_precursor_gas_concentration_previous_time_step_array[k];

66 }

67 fprintf(fp,"Deposit Precursor Concentration\n");

68 for (j=0;j<=val1/2;j++) {

69 fprintf(fp,"Time(sec) %g\t\t",time_per_time_step_array[

number_of_simulation_time_steps/(100/save_simulation_data_every_X_percent)*j

]);

70 }

71 fprintf(fp,"\n");

72 for (j=0;j<=val2/2;j++) {

73 fprintf(fp,"r(A)\tConcentration(molecules/A2)\t");

74 }

75 fprintf(fp,"\n");

76 for (k=0;k<number_of_surface_bins;k++) {

77 for (j=0;j<=val2;j++) {

78 fprintf(fp,"%g\t",print_N_little_d[j][k]);

79 }



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 197

80 fprintf(fp,"\n");

81 }

82 fclose(fp);

83 //

84 fp=fopen("./outputs/output_N_big_d.txt", "w");

85 for (k=0;k<number_of_surface_bins;k++) {

86 print_N_big_d[val1][k] = r_coordinate_array[k];

87 print_N_big_d[val2][k] =

reactive_product_concentration_previous_time_step_array[k];

88 }

89 fprintf(fp,"Deposited Molecule Concentration\n");

90 for (j=0;j<=val1/2;j++) {

91 fprintf(fp,"Time(sec) %g\t\t",time_per_time_step_array[

number_of_simulation_time_steps/(100/save_simulation_data_every_X_percent)*j

]);

92 }

93 fprintf(fp,"\n");

94 for (j=0;j<=val2/2;j++) {

95 fprintf(fp,"r(A)\tConcentration(molecules/A2)\t");

96 }

97 fprintf(fp,"\n");

98 for (k=0;k<number_of_surface_bins;k++) {

99 for (j=0;j<=val2;j++) {

100 fprintf(fp,"%g\t",print_N_big_d[j][k]);

101 }

102 fprintf(fp,"\n");

103 }

104 fclose(fp);

105 //

106 /*fp=fopen("./outputs/output_growth.txt", "w");

107 for (k=0;k<number_of_surface_bins;k++) {

108 print_growth_rate[val1][k] = r_coordinate_array[k];

109 print_growth_rate[val2][k] = growth_or_etch_rate_array[k];

110 }

111 fprintf(fp,"Growth/Etch Rate\n");

112 for (j=0;j<=val1/2;j++) {

113 fprintf(fp,"Time(sec) %g\t\t",time_per_time_step_array[

number_of_simulation_time_steps/(100/save_simulation_data_every_X_percent)*j

]);

114 }

115 fprintf(fp,"\n");

116 for (j=0;j<=val2/2;j++) {

117 fprintf(fp,"r(A)\tRate(molecules/s)\t");

118 }

119 fprintf(fp,"\n");

120 for (k=0;k<number_of_surface_bins;k++) {

121 for (j=0;j<=val2;j++) {

122 fprintf(fp,"%g\t",print_growth_rate[j][k]);

123 }

124 fprintf(fp,"\n");

125 }

126 fclose(fp);*/

127 //



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 198

128 fp=fopen("./outputs/output_surface.txt", "w");

129 for (k=0;k<number_of_surface_bins;k++) {

130 print_surface[val1][k] = r_coordinate_array[k];

131 print_surface[val2][k] = z_coordinate_array[k];

132 }

133 fprintf(fp,"Surface Height\n");

134 for (j=0;j<=val1/2;j++) {

135 fprintf(fp,"Time(sec) %g\t\t",time_per_time_step_array[

number_of_simulation_time_steps/(100/save_simulation_data_every_X_percent)*j

]);

136 }

137 fprintf(fp,"\n");

138 for (j=0;j<=val2/2;j++) {

139 fprintf(fp,"r(A)\tz(A)\t");

140 }

141 fprintf(fp,"\n");

142 for (k=0;k<number_of_surface_bins;k++) {

143 for (j=0;j<=val2;j++) {

144 fprintf(fp,"%g\t",print_surface[j][k]);

145 }

146 fprintf(fp,"\n");

147 }

148 fclose(fp);

149 //

150 fp=fopen("./outputs/output_e_SE.txt", "w");

151 for (k=0;k<number_of_surface_bins;k++) {

152 print_secondary_electrons[val1][k] = r_coordinate_array[k];

153 print_secondary_electrons[val2][k] = secondary_electron_location_array[k

];

154 }

155 fprintf(fp,"Secondary Electron Counts\n");

156 for (j=0;j<=val1/2;j++) {

157 fprintf(fp,"Time(sec) %g\t\t",time_per_time_step_array[

number_of_simulation_time_steps/(100/save_simulation_data_every_X_percent)*j

]);

158 }

159 fprintf(fp,"\n");

160 for (j=0;j<=val2/2;j++) {

161 fprintf(fp,"r(A)\tSE(counts)\t");

162 }

163 fprintf(fp,"\n");

164 for (k=0;k<number_of_surface_bins;k++) {

165 for (j=0;j<=val2;j++) {

166 fprintf(fp,"%g\t",print_secondary_electrons[j][k]);

167 }

168 fprintf(fp,"\n");

169 }

170 fclose(fp);

171 //

172 fp=fopen("./outputs/output_e_BSE.txt", "w");

173 for (k=0;k<number_of_surface_bins;k++) {

174 print_backscattered_electrons[val1][k] = r_coordinate_array[k];



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 199

175 print_backscattered_electrons[val2][k] =

backscattered_electron_location_array[k];

176 }

177 fprintf(fp,"Backscattered Electron Counts\n");

178 for (j=0;j<=val1/2;j++) {

179 fprintf(fp,"Time(sec) %g\t\t",time_per_time_step_array[

number_of_simulation_time_steps/(100/save_simulation_data_every_X_percent)*j

]);

180 }

181 fprintf(fp,"\n");

182 for (j=0;j<=val2/2;j++) {

183 fprintf(fp,"r(A)\tBSE(counts)\t");

184 }

185 fprintf(fp,"\n");

186 for (k=0;k<number_of_surface_bins;k++) {

187 for (j=0;j<=val2;j++) {

188 fprintf(fp,"%g\t",print_backscattered_electrons[j][k]);

189 }

190 fprintf(fp,"\n");

191 }

192 fclose(fp);

193 //

194 fp=fopen("./outputs/output_bksct_se.txt", "a");

195 fprintf(fp,"%g\t%g\n",backscattered_electron_coefficient,

secondary_electron_coefficient);

196 fclose(fp);

197 //

198 //Save data for next simulation

199 fp=fopen("./inputs/input_previous_simulation.txt", "w");

200 for (k=0;k<number_of_surface_bins;k++) {

201 fprintf(fp,"%d\t%g\t%g\t%g\t%g\t%g\n",k+1,r_coordinate_array[k],

z_coordinate_array[k],

deposit_precursor_gas_concentration_current_time_step_array[k],

etch_precursor_gas_concentration_current_time_step_array[k],

reactive_product_concentration_current_time_step_array[k]);

202 }

203 fclose(fp);

204 }

B.14 Create Output Files

1 //

2 // setup_save_files.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This creates the save files for the EBIED Simulator.

7 //

8 #ifdef XCODE

9 #include <stdio.h>



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 200

10 #include <sys/stat.h>

11 #include "structures.h"

12 #include "prototypes.h"

13 #endif

14

15 void setup_save_files() {

16 mkdir("./outputs",S_IRWXU|S_IRWXG);

17 FILE *fp;

18 fp=fopen("./outputs/output_electron_flux_profile.txt", "w");

19 fprintf(fp,"EFlux\n");

20 fclose(fp);

21 fp=fopen("./outputs/output_e_SE.txt", "w");

22 fprintf(fp,"e_SE\n");

23 fclose(fp);

24 fp=fopen("./outputs/output_N_little_e.txt", "w");

25 fprintf(fp,"N_e\n");

26 fclose(fp);

27 fp=fopen("./outputs/output_N_little_d.txt", "w");

28 fprintf(fp,"N_d\n");

29 fclose(fp);

30 fp=fopen("./outputs/output_N_big_D.txt", "w");

31 fprintf(fp,"N_D\n");

32 fclose(fp);

33 /*fp=fopen("./outputs/output_growth.txt", "w");

34 fprintf(fp,"Growth Rate\n");

35 fclose(fp);*/

36 fp=fopen("./outputs/output_surface.txt", "w");

37 fprintf(fp,"Surface Height\n");

38 fclose(fp);

39 fp=fopen("./outputs/output_e_BSE.txt", "w");

40 fprintf(fp,"e_BSE\n");

41 fclose(fp);

42 fp=fopen("./outputs/output_bksct_se.txt", "w");

43 fprintf(fp,"BSE Coefficient\tSE Yield\n");

44 fclose(fp);

45 fp=fopen("./outputs/logfile.txt", "w");

46 fprintf(fp,"--------Simulation Logfile-------\n");

47 fclose(fp);

48 }

B.15 Crank-Nicholson Solver

1 //

2 // solve_matrix.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This is the tridiagonal matrix solver for the EBIED Simulator.

7 //

8 // Inputs: n - number of equations.



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 201

9 // a - sub-diagonal (means it is the diagonal below the main

diagonal,

10 // -- indexed from 1..n-1).

11 // b - the main diagonal.

12 // c - sup-diagonal (means it is the diagonal above the main

diagonal

13 // -- indexed from 0..n-2).

14 // v - right part.

15 //

16 // Outputs: x - the answer.

17 #ifdef XCODE

18 #include "structures.h"

19 #include "prototypes.h"

20 #endif

21

22 void solve_matrix(int n, double *a, double *b, double *c, double *v, double *x) {

23 int i;

24 for (i=1;i<n;i++) {

25 double m = a[i]/b[i-1];

26 b[i] = b[i] - m*c[i-1];

27 v[i] = v[i] - m*v[i-1];

28 }

29 x[n-1] = v[n-1]/b[n-1];

30 for (i=n-2;i>=0;i--) {

31 x[i]=(v[i]-c[i]*x[i+1])/b[i];

32 }

33 }

B.16 Surface Evolution

1 //

2 // surface_evolution.c

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // This is the module which performs surface evolution and interpolation, for

the EBIED Simulator.

7 //

8 #ifdef XCODE

9 #include <stdlib.h>

10 #include <stdio.h>

11 #include <math.h>

12 #include <assert.h>

13 #include "structures.h"

14 #include "prototypes.h"

15 #endif

16

17 void surface_evolution(Precursor deposit_precursor,

18 Precursor etch_precursor,

19 Material lower_material,



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 202

20 Material upper_material,

21 int evolve_surface_normal,

22 int number_of_points,

23 int order,

24 int number_of_surface_bins,

25 double delta_t,

26 double delta_r,

27 double layered_material_interface_depth,int time_step,

Toggle toggle)

28 {

29 int j;

30

31 int number_of_points_original = number_of_points;

32

33 if (evolve_surface_normal) {

34 // advance surface in the normal direction

35 for (j=0;j<number_of_surface_bins;j++) {

36 dC[j] = reactive_product_concentration_current_time_step_array[j] -

37 reactive_product_concentration_previous_time_step_array[j];

38 growth_or_etch_rate_array[j] = dC[j] / delta_t;

39 }

40 int p1 = (number_of_points-1)/2;

41 int p2 = (number_of_points-1)/2;

42 double z_gradient;

43

44 for (j=0;j<p1;j++) {

45 z_gradient = (z_coordinate_array[j+p2]-z_coordinate_array[-(j-p1)])/(

r_coordinate_array[j+p2]+r_coordinate_array[-(j-p1)]);

46

47 if (z_coordinate_array[j] >= layered_material_interface_depth) {

48 deposit_precursor.reactive_product_density = upper_material.

density*1.0E-27;

49 } else {

50 deposit_precursor.reactive_product_density = lower_material.

density*1.0E-27;

51 }

52

53 double deposit_atomic_volume = deposit_precursor.

reactive_product_molecular_mass/deposit_precursor.reactive_product_density;

54 double distance_to_move = dC[j]*deposit_atomic_volume;

55

56 double angle = atan(-z_gradient);

57 double test_z = distance_to_move*cos(angle)+z_coordinate_array[j];

58

59 double test_r = distance_to_move*sin(-angle)+r_coordinate_array[j];

60

61 temporary_z_coordinate_array[j] = test_z;

62 temporary_r_coordinate_array[j] = test_r;

63 //

64

65 if ((isnan(temporary_z_coordinate_array[j])) || (

temporary_r_coordinate_array[j] < 0.0)) {

66 // z_gradient was zero, so evolve in z only



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 203

67 temporary_z_coordinate_array[j] =

reactive_product_concentration_current_time_step_array[j]*

deposit_atomic_volume;

68 temporary_r_coordinate_array[j] = r_coordinate_array[j];

69 }

70 }

71 for (j=p1;j<number_of_surface_bins;j++) {

72 if (j+p2 > number_of_surface_bins) {

73 p2--;

74 }

75 z_gradient = (z_coordinate_array[j+p2]-z_coordinate_array[(j-p1)])/(

r_coordinate_array[j+p2]-r_coordinate_array[(j-p1)]);

76

77 if (z_coordinate_array[j] >= layered_material_interface_depth) {

78 deposit_precursor.reactive_product_density = upper_material.

density*1.0E-27;

79 } else {

80 deposit_precursor.reactive_product_density = lower_material.

density*1.0E-27;

81 }

82

83 double deposit_atomic_volume = deposit_precursor.

reactive_product_molecular_mass/deposit_precursor.reactive_product_density;

84 double distance_to_move = dC[j]*deposit_atomic_volume;

85

86 double angle = atan(-z_gradient);

87 double test_z = distance_to_move*cos(angle)+z_coordinate_array[j];

88

89 double test_r = distance_to_move*sin(-angle)+r_coordinate_array[j];

90

91 temporary_z_coordinate_array[j] = test_z;

92 temporary_r_coordinate_array[j] = test_r;

93 //

94

95 if ((isnan(temporary_z_coordinate_array[j])) || (

temporary_r_coordinate_array[j] < 0.0)) {

96 // z_gradient was zero, so evolve in z only

97 temporary_z_coordinate_array[j] =

reactive_product_concentration_current_time_step_array[j]*

deposit_atomic_volume;

98 temporary_r_coordinate_array[j] = r_coordinate_array[j];

99 }

100 }

101 // completed moving points in the surface normal direction

102

103 //remap points in decending r, effectively sorting the array.

104 double temp_r,temp_z,temp_Nd,temp_Ne,temp_ND;

105 int max_index = 0;

106 double maxz = temporary_z_coordinate_array[0];

107 for (j=1; j<number_of_surface_bins; j++) {

108 if (maxz < temporary_z_coordinate_array[j]) {

109 maxz = temporary_z_coordinate_array[j];

110 max_index = j;



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 204

111 }

112 }

113 if (max_index > 0) {

114 for (j=1;j<max_index;j++) {

115 if (temporary_r_coordinate_array[j] <

temporary_r_coordinate_array[j-1]) {

116 temp_r = temporary_r_coordinate_array[j-1];

117 temp_z = temporary_z_coordinate_array[j-1];

118 temp_Nd =

deposit_precursor_gas_concentration_current_time_step_array[j-1];

119 temp_Ne =

etch_precursor_gas_concentration_current_time_step_array[j-1];

120 temp_ND =

reactive_product_concentration_current_time_step_array[j-1];

121 //

122 temporary_r_coordinate_array[j-1] =

temporary_r_coordinate_array[j];

123 temporary_z_coordinate_array[j-1] =

temporary_z_coordinate_array[j];

124 deposit_precursor_gas_concentration_current_time_step_array[j

-1] = deposit_precursor_gas_concentration_current_time_step_array[j];

125 etch_precursor_gas_concentration_current_time_step_array[j-1]

= etch_precursor_gas_concentration_current_time_step_array[j];

126 reactive_product_concentration_current_time_step_array[j-1] =

reactive_product_concentration_current_time_step_array[j];

127 //

128 temporary_r_coordinate_array[j] = temp_r;

129 temporary_z_coordinate_array[j] = temp_z;

130 deposit_precursor_gas_concentration_current_time_step_array[j

] = temp_Nd;

131 etch_precursor_gas_concentration_current_time_step_array[j] =

temp_Ne;

132 reactive_product_concentration_current_time_step_array[j] =

temp_ND;

133 }

134 }

135 }

136

137 // interpolation which remaps the data point locations based

138 // on the correct area to an annulus to a flat surface

139 // stash values into temporary arrays

140 for (j=0;j<number_of_surface_bins;j++) {

141 temporary_etch_precursor_gas_concentration_current_time_step_array_y[

j] = etch_precursor_gas_concentration_current_time_step_array[j];

142

temporary_deposit_precursor_gas_concentration_current_time_step_array_y[j] =

deposit_precursor_gas_concentration_current_time_step_array[j];

143 temporary_reactive_product_concentration_current_time_step_array_y[j]

= reactive_product_concentration_current_time_step_array[j];

144 temporary_etch_precursor_gas_concentration_current_time_step_array_x[

j] = r_coordinate_array[j];



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 205

145

temporary_deposit_precursor_gas_concentration_current_time_step_array_x[j] =

r_coordinate_array[j];

146 temporary_reactive_product_concentration_current_time_step_array_x[j]

= r_coordinate_array[j];

147 }

148

149 // move the surface

150 primary_interpolation(&temporary_r_coordinate_array,

151 &temporary_z_coordinate_array,

152 number_of_surface_bins,

153 delta_r,

154 number_of_points_original);

155

156 // move all the concentrations the same amount the surface moved

157 secondary_interpolation(

temporary_etch_precursor_gas_concentration_current_time_step_array_x,

158 &

temporary_etch_precursor_gas_concentration_current_time_step_array_y,

159

temporary_etch_precursor_gas_concentration_current_time_step_array_y,

160 temporary_r_coordinate_array,

161 number_of_surface_bins,number_of_points_original,

order,delta_r);

162

163 secondary_interpolation(

temporary_deposit_precursor_gas_concentration_current_time_step_array_x,

164 &

temporary_deposit_precursor_gas_concentration_current_time_step_array_y,

165

temporary_deposit_precursor_gas_concentration_current_time_step_array_y,

166 temporary_r_coordinate_array,

167 number_of_surface_bins,number_of_points_original,

order,delta_r);

168

169 secondary_interpolation(

temporary_reactive_product_concentration_current_time_step_array_x,

170 &

temporary_reactive_product_concentration_current_time_step_array_y,

171

temporary_reactive_product_concentration_current_time_step_array_y,

172 temporary_r_coordinate_array,

173 number_of_surface_bins,number_of_points_original,

order,delta_r);

174

175

176 // copy values back to original arrays

177 for (j=0;j<number_of_surface_bins;j++) {

178 z_coordinate_array[j] = temporary_z_coordinate_array[j];

179 etch_precursor_gas_concentration_previous_two_time_step_array[j] =

etch_precursor_gas_concentration_previous_time_step_array[j];

180 etch_precursor_gas_concentration_previous_time_step_array[j] =

temporary_etch_precursor_gas_concentration_current_time_step_array_y[j];



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 206

181 deposit_precursor_gas_concentration_previous_two_time_step_array[j] =

deposit_precursor_gas_concentration_previous_time_step_array[j];

182 deposit_precursor_gas_concentration_previous_time_step_array[j] =

temporary_deposit_precursor_gas_concentration_current_time_step_array_y[j];

183 reactive_product_concentration_previous_time_step_array[j] =

temporary_reactive_product_concentration_current_time_step_array_y[j];

184 r_coordinate_array[j] = temporary_r_coordinate_array[j];

185 }

186

187

188

189 } else {

190 //

191 // advance surface in z only (straight up or down)

192 //

193 for (j=0;j<number_of_surface_bins;j++) {

194 growth_or_etch_rate_array[j] = (

reactive_product_concentration_current_time_step_array[j]-

reactive_product_concentration_previous_time_step_array[j])/delta_t;

195 etch_precursor_gas_concentration_previous_time_step_array[j] =

etch_precursor_gas_concentration_current_time_step_array[j];

196 deposit_precursor_gas_concentration_previous_time_step_array[j] =

deposit_precursor_gas_concentration_current_time_step_array[j];

197 reactive_product_concentration_previous_time_step_array[j] =

reactive_product_concentration_current_time_step_array[j];

198 if (z_coordinate_array[j] >= layered_material_interface_depth) {

199 deposit_precursor.reactive_product_density = upper_material.

density*1.0E-27;

200 } else {

201 deposit_precursor.reactive_product_density = lower_material.

density*1.0E-27;

202 }

203

204 double deposit_atomic_volume = deposit_precursor.

reactive_product_molecular_mass/deposit_precursor.reactive_product_density;

205 z_coordinate_array[j] =

reactive_product_concentration_current_time_step_array[j]*

deposit_atomic_volume;

206 }

207

208 // (no remapping is needed here) - this matches the functionality of the

Mathematica code from Charlene Lobo

209 // (no interpolation needed here)

210 }

211 }

B.17 Print to Logfile

1 //

2 // logfile_printf.c



Appendix B. Hybrid Continuum-Monte Carlo Simulator Code 207

3 //

4 // Copyright (c) 2015 University of Technology, Sydney. All rights reserved.

5 //

6 // this module outputs the printf command to a logfile aswell as the default

print to the terminal.

7 //

8 #ifdef XCODE

9 #include <stdio.h>

10 #include <stdlib.h>

11 #include <stdarg.h>

12 #include "structures.h"

13 #include "prototypes.h"

14 #endif

15

16 void logfile_printf(const char *fmt, ...) {

17 va_list args;

18 size_t len;

19 char *space;

20 FILE *fp;

21

22 va_start(args, fmt);

23 len = vsnprintf(0, 0, fmt, args);

24 va_end(args);

25 if ((space = malloc(len + 1)) != 0) {

26 va_start(args, fmt);

27 vsnprintf(space, len+1, fmt, args);

28 va_end(args);

29 fp=fopen("./outputs/logfile.txt", "a");

30 fprintf(fp,"%s",space);

31 printf("%s",space);

32 fflush(NULL);

33 fclose(fp);

34 free(space);

35 }

36 }



Appendix C

Model Derivations

C.1 EBID/EBIE - Uniform Grid Spacing Derivation

This is the derivation of the EBID model with uniform grid spacing in the form required

by the Crank-Nicholson method.

∂Nd(r, t)

∂t
= sdFd[1−Nd(r, t)Ad]−Nd(r, t)

τd
+Dd

[
∂2Nd(r, t)

∂r2
+
1

r

∂Nd(r, t)

∂r

]
−σdf(r)Nd(r, t)

(C.1)

First we simplify the equation by grouping together like terms in Equation C.2.

∂Nd(r, t)

∂t
= sdFd+Nd(r, t)

[
−sdFdAd− 1

τd
−σdf(r)

]
+Dd

[
∂2Nd(r, t)

∂r2
+
1

r

∂Nd(r, t)

∂r

]
(C.2)

208



Appendix C. Model Derivations 209

We must then discretise the partial differentials using the forward and backward time

centered space scheme.

Nd(r, t+ 1)−Nd(r, t)

Δt
= sdFd +

(
Nd(r, t+ 1) +Nd(r, t)

2

)[
−sdFdAd − 1

τd
− σdf(r)

]

+
Dd

2

[
Nd(r + 1, t+ 1)− 2Nd(r, t+ 1) +Nd(r − 1, t+ 1)

(Δr)2

+
Nd(r + 1, t)− 2Nd(r, t) +Nd(r − 1, t)

(Δr)2

]

+
Dd

2r

[
Nd(r + 1, t+ 1)−Nd(r − 1, t+ 1)

2Δr

+
Nd(r + 1, t)−Nd(r − 1, t)

2Δr

]

(C.3)

The forward time step terms are positioned on the LHS of the equation and the backward

time step terms on the RHS, in Equation C.4

Nd(r, t+ 1)

[
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2

]

− Dd

2

[
Nd(r + 1, t+ 1)− 2Nd(r, t+ 1) +Nd(r − 1, t+ 1)

(Δr)2

]

− Dd

2r

[
Nd(r + 1, t+ 1)−Nd(r − 1, t+ 1)

2Δr

]

=

sdFd +Nd(r, t)

[
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2

]

+
Dd

2

[
Nd(r + 1, t)− 2Nd(r, t) +Nd(r − 1, t)

(Δr)2

]

+
Dd

2r

[
Nd(r + 1, t)−Nd(r − 1, t)

2Δr

]

(C.4)



Appendix C. Model Derivations 210

Like terms in space are then grouped together in Equation C.5

Nd(r + 1, t+ 1)

[
− Dd

2(Δr)2
− Dd

4rΔr

]
+

Nd(r, t+ 1)

[
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2
+

Dd

(Δr)2

]
+

Nd(r − 1, t+ 1)

[
− Dd

2(Δr)2
+

Dd

4rΔr

]

=

sdFd+Nd(r + 1, t)

[
Dd

2(Δr)2
+

Dd

4rΔr

]
+

Nd(r, t)

[
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2
− Dd

(Δr)2

]
+

Nd(r − 1, t)

[
Dd

2(Δr)2
− Dd

4rΔr

]

(C.5)

Equation C.5 is solved as a tridiagonal matrix, with the most common form being A ·x =
B, where the LHS is contained within A and the RHS is contained within B. The break-

down of Equation C.5 into the required matrix form is done in Equation C.6.

[A][N(t+ 1)] = [sdFd] + [B][N(t)] (C.6)

where the matrices [A], [B], and [sdFd] are

[A] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

a b c · · · 0
...

. . .
. . .

. . .
...

0 · · · a b c

0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.7)

a = − Dd

2(Δr)2
+

Dd

4rΔr
(C.8)

b =
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2
+

Dd

(Δr)2
(C.9)

a = − Dd

2(Δr)2
− Dd

4rΔr
(C.10)



Appendix C. Model Derivations 211

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

d e f · · · 0
...

. . .
. . .

. . .
...

0 · · · d e f

0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.11)

d =
Dd

2(Δr)2
− Dd

4rΔr
(C.12)

e =
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2
− Dd

(Δr)2
(C.13)

f =
Dd

2(Δr)2
+

Dd

4rΔr
(C.14)

[sdFd] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

sdFd

...

sdFd

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.15)

The first and last points in each matrix are set boundary conditions required for a zero

gradient concentration change at these end points.

C.1.1 Von Neumann Stability

The stability of the EBID model is derived in the following section based on the Von

Neumann stability criteria, that the amplification factor |ε| is less than 1[84].



Appendix C. Model Derivations 212

The derivation of the stability follows on from Equation C.5 where Nd(r, t) is replaced by

εteikrΔr, where k is the spatial wave number.

εt+1eik(r+1)Δr

[
− Dd

2(Δr)2
− Dd

4rΔr

]
+

εt+1eikrΔr

[
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2
+

Dd

(Δr)2

]
+

εt+1eik(r−1)Δr

[
− Dd

2(Δr)2
+

Dd

4rΔr

]

=

sdFd+ε
teik(r+1)Δr

[
Dd

2(Δr)2
+

Dd

4rΔr

]
+

εteikrΔr

[
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2
− Dd

(Δr)2

]
+

εteik(r−1)Δr

[
Dd

2(Δr)2
− Dd

4rΔr

]

(C.16)

Equation C.16 is divided by eikrΔr. Note, the sdFd constant term is assumed to be ignored

and therefore removed.

εt+1eikΔr

[
− Dd

2(Δr)2
− Dd

4rΔr

]
+

εt+1
[
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2
+

Dd

(Δr)2

]
+

εt+1e−ikΔr

[
− Dd

2(Δr)2
+

Dd

4rΔr

]

=

εteikΔr

[
Dd

2(Δr)2
+

Dd

4rΔr

]
+

εt
[
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2
− Dd

(Δr)2

]
+

εte−ikΔr

[
Dd

2(Δr)2
− Dd

4rΔr

]

(C.17)

The eikΔr terms are replaced to be more consistent by using the identities in Equations

C.18, C.19, and C.20.

cos(kΔr) =
eikΔr + e−ikΔr

2
(C.18)

sin2(
kΔr

2
) =

1− cos(kΔr)

2
(C.19)



Appendix C. Model Derivations 213

sin(kΔr) =
eikΔr − e−ikΔr

2i
(C.20)

εt+1
[
2Dd

(Δr)2
sin2(kΔr)− i

Dd

2rΔr
sin(kΔr) +

1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2

]

=

εt
[
− 2Dd

(Δr)2
sin2(kΔr) + i

Dd

2rΔr
sin(kΔr) +

1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2

] (C.21)

Equation C.21 is simplified by performing the substitution, β = sdFdAd
2 + 1

2τd
+ σdf(r)

2 , on

these constant terms.

εt+1
[
2Dd

(Δr)2
sin2(kΔr)− i

Dd

2rΔr
sin(kΔr) +

1

Δt
+ β

]

=

εt
[
− 2Dd

(Δr)2
sin2(kΔr) + i

Dd

2rΔr
sin(kΔr) +

1

Δt
− β

] (C.22)

By rearranging the equation the amplification factor can be determined using the equation,

|ε| = | εt+1

εt |
εt+1

εt
=
− 2Dd
(Δr)2

sin2(kΔr) + i Dd
2rΔr sin(kΔr) + 1

Δt − β

2Dd
(Δr)2

sin2(kΔr)− i Dd
2rΔr sin(kΔr) + 1

Δt + β
(C.23)

However, it is noted that this equation contains a complex number in the denominator,

therefore to further this derivation we must multiply by the complex conjugate to remove it.

The following series of algebraic steps are rather complex, so to provide some perspective

on the process see Equation C.24

a+ ib

c+ id
=

a+ ib

c+ id
· c− id

c− id
=
(ac+ bd) + i(bc− ad)

c2 + d2
=

ac+ bd

c2 + d2
+ i

bc+ ad

c2 + d2
(C.24)

where

a = − 2Dd

(Δr)2
sin2(kΔr) +

1

Δt
− β (C.25)

b =
Dd

2rΔr
sin(kΔr) (C.26)

c =
2Dd

(Δr)2
sin2(kΔr) +

1

Δt
+ β (C.27)

d = − Dd

2rΔr
sin(kΔr) (C.28)



Appendix C. Model Derivations 214

First the denominator is calculated

(
2Dd

(Δr)2
sin2(kΔr) +

1

Δt
+ β)2 + (− Dd

2rΔr
sin(kΔr))2 (C.29)

4D2
d

(Δr)4
sin4(kΔr)+

4Dd

(Δr)2Δt
sin2(kΔr)+

4Ddβ

(Δr)2
sin2(kΔr)+

1

(Δt)2
+
2β

Δt
+β2+

D2
d

4r2(Δr)2
sin2(kΔr)

(C.30)
4Dd

(Δr)2
sin2(kΔr)

[
Dd

(Δr)2
sin2(kΔr) +

1

Δt
+ β +

Dd

16r2

]
+

1

(Δt)2
+
2β

Δt
+ β2 (C.31)

and second the numerator

[
(− 2Dd

(Δr)2
sin2(kΔr) +

1

Δt
− β) · ( 2Dd

(Δr)2
sin2(kΔr) +

1

Δt
+ β)

+ (
Dd

2rΔr
sin(kΔr)) · (− Dd

2rΔr
sin(kΔr))

]

+ i

[
(

Dd

2rΔr
sin(kΔr)) · ( 2Dd

(Δr)2
sin2(kΔr) +

1

Δt
+ β)

− (− 2Dd

(Δr)2
sin2(kΔr) +

1

Δt
− β) · (− Dd

2rΔr
sin(kΔr))

]
(C.32)

[
− 4D2

d

(Δr)4
sin4(kΔr)− 4Ddβ

(Δr)2
sin2(kΔr) +

1

(Δt)2
− β2 − D2

d

4r2(Δr)2
sin2(kΔr)

]

+ i

[
Dd

rΔrΔt
sin(kΔr)

] (C.33)

4Dd

(Δr)2
sin2(kΔr)

[
− Dd

(Δr)2
sin2(kΔr)−β− Dd

16r2

]
+

1

(Δt)2
−β2+i

[
Dd

rΔrΔt
sin(kΔr)

]
(C.34)

Finally the previous two sections are combined with the real component

4Dd
(Δr)2

sin2(kΔr)

[
− Dd
(Δr)2

sin2(kΔr)− β − Dd
16r2

]
+ 1

(Δt)2
− β2

4Dd
(Δr)2

sin2(kΔr)

[
Dd
(Δr)2

sin2(kΔr) + 1
Δt + β + Dd

16r2

]
+ 1

(Δt)2
+ 2β

Δt + β2
(C.35)

and the imaginary component

i
Dd

rΔrΔt sin(kΔr)

4Dd
(Δr)2

sin2(kΔr)

[
Dd
(Δr)2

sin2(kΔr) + 1
Δt + β + Dd

16r2

]
+ 1

(Δt)2
+ 2β

Δt + β2
(C.36)

Since we have eliminated the imaginary term from the denominator the magnitude of the

amplification factor can be calculated using Equation C.37, where x is the real component



Appendix C. Model Derivations 215

and y is the imaginary component

|ε| =
√

x2 + y2 (C.37)

We will first calculate the x2 term

[
4Dd
(Δr)2

sin2(kΔr)

[
− Dd
(Δr)2

sin2(kΔr)− β − Dd
16r2

]
+ 1

(Δt)2
− β2

]2
[
4Dd
(Δr)2

sin2(kΔr)

[
Dd
(Δr)2

sin2(kΔr) + 1
Δt + β + Dd

16r2

]
+ 1

(Δt)2
+ 2β

Δt + β2
]2 (C.38)

(4r2((Δr)4(−1 + β2(Δt)2) + 4βDd(Δr)2(Δt)2 sin2(kΔr) + 4D2
d(Δt)2 sin2(kΔr))

+D2
d(Δr)2(Δt)2 sin2(kΔr))2

(4r2((Δr)2(1 + βΔt) + 2DdΔt sin2(kΔr))2 +D2
d(Δr)2(Δt)2 sin2(kΔr))2

(C.39)

and then the y2 term

[
Dd

rΔrΔt sin(kΔr)

]2
[
4Dd
(Δr)2

sin2(kΔr)

[
Dd
(Δr)2

sin2(kΔr) + 1
Δt + β + Dd

16r2

]
+ 1

(Δt)2
+ 2β

Δt + β2
]2 (C.40)

16D2
d(Δr)6(Δt)2r2 sin2(kΔr)

(4r2((Δr)2(1 + βΔt) + 2DdΔt sin2(kΔr))2 +D2
d(Δr)2(Δt)2 sin2(kΔr))2

(C.41)

Adding x2 and y2 together we obtain

4r2((Δr)2(−1 + βΔt) + 2DdΔt sin2(kΔr))2 +D2
d(Δr)2(Δt)2 sin2(kΔr)

4r2((Δr)2(1 + βΔt) + 2DdΔt sin2(kΔr))2 +D2
d(Δr)2(Δt)2 sin2(kΔr)

(C.42)

Equation C.42 is still a very complex equation with a large number of terms, therefore

to provide some simplicity we expand and rearrange the equation also re-introducing the



Appendix C. Model Derivations 216

square root term

|ε| =

√√√√√√√√√√√√√

D2
d(Δr)2(Δt)2 sin2(kΔr) + 16D2

d(Δt)2r2 sin4(kΔr) + 16βDd(Δr)2(Δt)2r2 sin2(kΔr)

+ 4β2(Δr)4(Δt)2r2 + 4(Δr)4r2 − 16Dd(Δr)2Δtr2 sin2(kΔr)− 8β(Δr)4Δtr2

D2
d(Δr)2(Δt)2 sin2(kΔr) + 16D2

d(Δt)2r2 sin4(kΔr) + 16βDd(Δr)2(Δt)2r2 sin2(kΔr)

+ 4β2(Δr)4(Δt)2r2 + 4(Δr)4r2 + 16Dd(Δr)2Δtr2 sin2(kΔr) + 8β(Δr)4Δtr2

(C.43)

From Equation C.43 the condition |ε| ≤ 1 is only true when two conditions are met.

First, the numerator must always be less than the denominator, which is evident with two

negative terms only appearing in the numerator. Second, that these negative terms do not

result in a negative numerator, which is true under the following reasonable assumptions

(with explanations):

• Δt > 0, the size of the simulation time step can only have a positive non-zero value

• Δr > 0, the size of the surface bins can only have a positive non-zero value

• Dd > 0, regardless of how slow diffusion may be at low temperatures it will still have

a value greater than zero

• β > 0, from earlier β = sdFdAd
2 + 1

2τd
+ σdf(r)

2 , even at no precursor flux, Fd = 0,

and no electron flux F (r) = 0, desorption will still occur no matter the temperature

resulting in a value greater than zero

• r > 0, the first surface bin is always 1×Δr and therefore greater than zero

C.2 EBID/EBIE - Non-Uniform Grid Spacing Derivation

This is the derivation of the EBID model with non-uniform grid spacing in the form

required by the Crank-Nicholson Finite Difference Method [81], which employs the ideas

presented in Section 3.3.2.1 and Sobey [94]. The complete derivation by Sobey [94] of

non-uniform grid spacings is omitted here but the prominent equation, 15, is shown below



Appendix C. Model Derivations 217

in Equation C.44, which expresses the discretisation of second partial derivative.

∂2C

∂x2

∣∣∣n = 1

(Δx)2

[
1

1 +Ai
Cn
i−1 −

2

1−A2
i

Cn
i +

1

1−Ai
Cn
i+1

]
(C.44)

Applying this asymmetry parameter to the first spatial derivative, we obtain Equation

C.45.
∂C

∂x

∣∣∣n = 1

2Δx

[
1

1 +Ai
Cn
i−1 −

1

1−Ai
Cn
i+1

]
(C.45)

With the definition of the first and second spatial derivatives, the derivation of the EBID

model with non-uniform grid spacing is as follows, where r is equivalent to x and t is

equivalent to n, however in the radial coordinate system.

∂Nd(r, t)

∂t
= sdFd[1−Nd(r, t)Ad]− Nd(r, t)

τd
+D

[
∂2Nd(r, t)

∂r2
+
1

r

∂Nd(r, t)

∂r

]
−σdf(r)Nd(r, t)

(C.46)

We begin again by simplifing Equation C.46 by grouping together like terms in Equation

C.47.

∂Nd(r, t)

∂t
= sdFd+Nd(r, t)

[
−sdFdAd− 1

τd
−σdf(r)

]
+D

[
∂2Nd(r, t)

∂r2
+
1

r

∂Nd(r, t)

∂r

]
(C.47)

We again discretise the partial differential using the forward and backward time centered

space scheme.

Nd(r, t+ 1)−Nd(r, t)

Δt
= sdFd +

(
Nd(r, t+ 1) +Nd(r, t)

2

)[
−sdFdAd − 1

τd
− σdf(r)

]

+
D

2(Δr)2

[
1

1−Ai
Nd(r + 1, t+ 1)− 2

1−A2
i

Nd(r, t+ 1)

+
1

1 +Ai
Nd(r − 1, t+ 1)

+
1

1−Ai
Nd(r + 1, t)− 2

1−A2
i

Nd(r, t)

+
1

1 +Ai
Nd(r − 1, t)

]

+
D

4rΔr

[
1

1−Ai
Nd(r + 1, t+ 1)− 1

1 +Ai
Nd(r − 1, t+ 1)

+
1

1−Ai
Nd(r + 1, t)− 1

1 +Ai
Nd(r − 1, t)

]

(C.48)



Appendix C. Model Derivations 218

The forward time step terms are positioned on the LHS of the equation and the backward

time step terms on the RHS, in Equation C.49

Nd(r, t+ 1)

[
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2

]

− D

2(Δr)2

[
1

1−Ai
Nd(r + 1, t+ 1)− 2

1−A2
i

Nd(r, t+ 1) +
1

1 +Ai
Nd(r − 1, t+ 1)

]

− D

4rΔr

[
1

1−Ai
Nd(r + 1, t+ 1)− 1

1 +Ai
Nd(r − 1, t+ 1)

]

= sdFd +Nd(r, t)

[
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2

]

+
D

2(Δr)2

[
1

1−Ai
Nd(r + 1, t)− 2

1−A2
i

Nd(r, t) +
1

1 +Ai
Nd(r − 1, t)

]

+
D

4rΔr

[
1

1−Ai
Nd(r + 1, t)− 1

1 +Ai
Nd(r − 1, t)

]

(C.49)

Like terms in space are again grouped together in Equation C.50

Nd(r + 1, t+ 1)

[
1

1−Ai

][
− D

2(Δr)2
− D

4rΔr

]
+

Nd(r, t+ 1)

[
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2
+

2

1−A2
i

D

2(Δr)2

]
+

Nd(r − 1, t+ 1)

[
1

1 +Ai

][
− D

2(Δr)2
+

D

4rΔr

]

=

sdFd +Nd(r + 1, t)

[
1

1−Ai

][
D

2(Δr)2
+

D

4rΔr

]
+

Nd(r, t)

[
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2
− 2

1−A2
i

D

2(Δr)2

]
+

Nd(r − 1, t)

[
1

1 +Ai

][
D

2(Δr)2
− D

4rΔr

]

(C.50)

Equation C.50 is now in a form similar to Equation C.5 that can be expressed in a tridi-

agonal matrix form required for the Crank-Nicholson method.



Appendix C. Model Derivations 219

C.3 EBIED - Derivation

This is the derivation of the EBIED model in the form required by the Crank-Nicholson

method. The derivation is split into three sections, Nd, deposit precursor gas concentra-

tion, Ne, etchant precursor gas concentration and ND, deposited molecule concentration.

C.3.1 Deposit Precursor Gas Concentration

∂Nd(r, t)

∂t
=sdFd[1− (Ne(r, t)Ae +Nd(r, t)Ad)]− Nd(r, t)

τd
+D

[
∂2Nd(r, t)

∂r2
+
1

r

∂Nd(r, t)

∂r

]

− σdf(r)Nd(r, t)− (σef(r)Ne(r, t))σrdNd(r, t)

(C.51)

First we simplify Equation C.51 by grouping together like terms in Equation C.52.

∂Nd(r, t)

∂t
=sdFd +Nd(r, t)

[
−sdFdAd − 1

τd
− σdf(r)− σef(r)Ne(r, t)σrd

]
+Ne(r, t)[−sdFdAe]

+D

[
∂2Nd(r, t)

∂r2
+
1

r

∂Nd(r, t)

∂r

]

(C.52)

We must then discretise the partial differentials using the forward and backward time

centered space scheme.

Nd(r, t+ 1)−Nd(r, t)

Δt
=

sdFd +

(
Nd(r, t+ 1) +Nd(r, t)

2

)[
−sdFdAd − 1

τd
− σdf(r)− σef(r)σrd

(
Ne(r, t+ 1) +Ne(r, t)

2

)]

+

(
Ne(r, t+ 1) +Ne(r, t)

2

)
[−sdFdAe]

+
D

2

[
Nd(r + 1, t+ 1)− 2Nd(r, t+ 1) +Nd(r − 1, t+ 1)

(Δr)2

+
Nd(r + 1, t)− 2Nd(r, t) +Nd(r − 1, t)

(Δr)2

]

+
D

2r

[
Nd(r + 1, t+ 1)−Nd(r − 1, t+ 1)

2Δr

+
Nd(r + 1, t)−Nd(r − 1, t)

2Δr

]

(C.53)



Appendix C. Model Derivations 220

The forward time step terms are positioned on the LHS of the equation and the backward

time step terms on the RHS, in Equation C.54

Nd(r, t+ 1)

[
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2
+

σef(r)σrd(Ne(r, t+ 1) +Ne(r, t))

4

]

− D

2

[
Nd(r + 1, t+ 1)− 2Nd(r, t+ 1) +Nd(r − 1, t+ 1)

(Δr)2

]

− D

2r

[
Nd(r + 1, t+ 1)−Nd(r − 1, t+ 1)

2Δr

]

=

sdFd +Nd(r, t)

[
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2
− σef(r)σrd(Ne(r, t+ 1) +Ne(r, t))

4

]

+ (Ne(r, t+ 1) +Ne(r, t))

[−sdFdAe

2

]

+
D

2

[
Nd(r + 1, t)− 2Nd(r, t) +Nd(r − 1, t)

(Δr)2

]

+
D

2r

[
Nd(r + 1, t)−Nd(r − 1, t)

2Δr

]

(C.54)

Like terms in space are grouped together in Equation C.55

Nd(r + 1, t+ 1)

[
− D

2(Δr)2
− D

4rΔr

]
+

Nd(r, t+ 1)

[
1

Δt
+

sdFdAd

2
+

1

2τd
+

σdf(r)

2
+

σef(r)σrd(Ne(r, t+ 1) +Ne(r, t))

4
+

D

(Δr)2

]
+

Nd(r − 1, t+ 1)

[
− D

2(Δr)2
+

D

4rΔr

]

=

sdFd +Nd(r + 1, t)

[
D

2(Δr)2
+

D

4rΔr

]
+

Nd(r, t)

[
1

Δt
− sdFdAd

2
− 1

2τd
− σdf(r)

2
− σef(r)σrd(Ne(r, t+ 1) +Ne(r, t))

4
− D

(Δr)2

]
+

Nd(r − 1, t)

[
D

2(Δr)2
− D

4rΔr

]
+

(Ne(r, t+ 1) +Ne(r, t))

[−sdFdAe

2

]

(C.55)



Appendix C. Model Derivations 221

Equation C.55 is now in a form similar to Equation C.5 that can be expressed in a tridi-

agonal matrix form required for the Crank-Nicholson method.

C.3.2 Etchant Precursor Gas Concentration

∂Ne(r, t)

∂t
=seFe[1− (Ne(r, t)Ae +Nd(r, t)Ad)]− Ne(r, t)

τe
+D

[
∂2Ne(r, t)

∂r2
+
1

r

∂Ne(r, t)

∂r

]

− σef(r)Ne(r, t)

(C.56)

First we simplify the equation by grouping together like terms in Equation C.57.

∂Ne(r, t)

∂t
=seFe +Ne(r, t)

[
−seFeAe − 1

τe
− σef(r)

]
+Nd(r, t)[−seFeAd]

+D

[
∂2Ne(r, t)

∂r2
+
1

r

∂Ne(r, t)

∂r

] (C.57)

We must then discretise the partial differentials using the forward and backward time

centered space scheme.

Ne(r, t+ 1)−Ne(r, t)

Δt
= seFe +

(
Ne(r, t) +Ne(r, t)

2

)[
−seFeAe − 1

τe
− σef(r)

]

+

(
Nd(r, t) +Nd(r, t)

2

)
[−seFeAd]

+
D

2

[
Ne(r + 1, t+ 1)− 2Ne(r, t+ 1) +Ne(r − 1, t+ 1)

(Δr)2

+
Ne(r + 1, t)− 2Ne(r, t) +Ne(r − 1, t)

(Δr)2

]

+
D

2r

[
Ne(r + 1, t+ 1)−Ne(r − 1, t+ 1)

2Δr

+
Ne(r + 1, t)−Ne(r − 1, t)

2Δr

]

(C.58)



Appendix C. Model Derivations 222

The forward time step terms are positioned on the LHS of the equation and the backward

time step terms on the RHS, in Equation C.59

Ne(r, t+ 1)

[
1

Δt
+

seFeAe

2
+

1

2τe
+

σef(r)

2

]

− D

2

[
Ne(r + 1, t+ 1)− 2Ne(r, t+ 1) +Ne(r − 1, t+ 1)

(Δr)2

]

− D

2r

[
Ne(r + 1, t+ 1)−Ne(r − 1, t+ 1)

2Δr

]

=

seFe +Ne(r, t)

[
1

Δt
− seFeAe

2
− 1

2τe
− σef(r)

2

]

+ (Nd(r, t+ 1) +Nd(r, t))

[−seFeAd

2

]

+
D

2

[
Ne(r + 1, t)− 2Ne(r, t) +Ne(r − 1, t)

(Δr)2

]

+
D

2r

[
Ne(r + 1, t)−Ne(r − 1, t)

2Δr

]

(C.59)

Like terms in space are grouped together in Equation C.60

Ne(r + 1, t+ 1)

[
− D

2(Δr)2
− D

4rΔr

]
+

Ne(r, t+ 1)

[
1

Δt
+

seFeAe

2
+

1

2τe
+

σef(r)

2
+

D

(Δr)2

]
+

Ne(r − 1, t+ 1)

[
− D

2(Δr)2
+

D

4rΔr

]

=

seFe +Ne(r + 1, t)

[
D

2(Δr)2
+

D

4rΔr

]
+

Ne(r, t)

[
1

Δt
− seFeAe

2
− 1

2τe
− σef(r)

2
− D

(Δr)2

]
+

Ne(r − 1, t)

[
D

2(Δr)2
− D

4rΔr

]
+

(Nd(r, t+ 1) +Nd(r, t))

[−seFeAd

2

]

(C.60)

Equation C.60 is now in a form similar to Equation C.5 that can be expressed in a tridiag-

onal matrix form required for the Crank-Nicholson method. It is noted that the final term

in Equation C.60 cannot be solved as it depends on the same time step being calculated,



Appendix C. Model Derivations 223

therefore an approximation is made where the final term becomes,

Nd(r, t)[−seFeAd] (C.61)

this approximation is then fed back into the EBIED equations and the correct result is

calculated.

C.3.3 Deposited Molecule Concentration

∂ND(r, t)

∂t
= [σdf(r)Nd(r, t)]− [σef(r)Ne(r, t)][1− σrdNd(r, t)][σrDND(r, t)] (C.62)

Due to the first order partial differential we only discretise the equation to be centred in

time, in Equation C.63.

ND(r, t+ 1)−ND(r, t)

Δt
= [σdf(r)Nd(r, t)]− [σef(r)Ne(r, t)][1− σrdNd(r, t)][σrDND(r, t)]

(C.63)

Collecting the forward and backward terms together, in Equation C.64

ND(r, t+ 1)

Δt
= [σdf(r)Nd(r, t)]− [σef(r)Ne(r, t)][1−σrdNd(r, t)][σrDND(r, t)]+ [

ND(r, t)

Δt
]

(C.64)

Simplifying, in Equation C.65

ND(r, t+1) = Δt[[σdf(r)Nd(r, t)]−[σef(r)Ne(r, t)][1−σrdNd(r, t)][σrDND(r, t)]+[
ND(r, t)

Δt
]]

(C.65)



Bibliography

[1] Robert W Christy. Formation of Thin Polymer Films by Electron Bombardment. J.

Appl. Phys., 31(9):1680–1683, 1960.

[2] Matthew G Lassiter, Philip D Rack, Home Search, Collections Journals, About

Contact, My Iopscience, I P Address, Matthew G Lassiter, and Philip D Rack.

Nanoscale electron beam induced etching: a continuum model that correlates the

etch profile to the experimental parameters. Nanotechnology, 19(45):455306, October

2008.

[3] Milos Toth, Charlene J. Lobo, Gavin Hartigan, and W. Ralph Knowles. Electron

flux controlled switching between electron beam induced etching and deposition. J.

Appl. Phys., 101(5):54309, 2007.

[4] Ivo Utke, Vinzenz Friedli, Martin Purrucker, and Johann Michler. Resolution in

Focused Electron- and Ion-Beam Induced Processing. J. Vac. Sci. Technol. B, 25

(6):2219–2223, 2007.

[5] Milos Toth, Charlene Lobo, Vinzenz Friedli, Aleksandra Szkudlarek, and Ivo Utke.

Continuum models of focused electron beam induced processing. Beilstein J. Nan-

otechnol., 6:1518–1540, 2015.

[6] Daryl A Smith, Jason D Fowlkes, and Philip D Rack. Understanding the Kinet-

ics and Nanoscale Morphology of Electron-Beam-Induced Deposition via a Three-

Dimensional Monte Carlo Simulation: The Effects of the Precursor Molecule and

the Deposited Material. Small, 4(9):1382–1389, September 2008.

224



Bibliography 225

[7] J. D. Fowlkes, S. J. Randolph, and P. D. Rack. Growth and simulation of high-aspect

ratio nanopillars by primary and secondary electron-induced deposition. J. Vac. Sci.

Technol. B Microelectron. Nanom. Struct., 23(6):2825, 2005.

[8] Zhi-Quan Liu, Kazutaka Mitsuishi, and Kazuo Furuya. A Dynamic Monte Carlo

Study of the in situ Growth of a Substance Deposited Using Electron-Beam-Induced

Deposition. Nanotechnology, 17(15):3832–3837, July 2006.

[9] N Silvis-Cividjian, C W Hagen, and P Kruit. Spatial Resolution Limits in Electron-

Beam-Induced Deposition. J. Appl. Phys., 98(8):84905, 2005.

[10] J Cullen, A Bahm, C J Lobo, M J Ford, and M Toth. Localized Probing of Gas

Molecule Adsorption Energies and Desorption Attempt Frequencies. J. Phys. Chem.

C, 119(28):15948–15953, 2015.

[11] Jared Cullen, Charlene J. Lobo, Michael J. Ford, and Milos Toth. Electron-Beam-

Induced Deposition as a Technique for Analysis of Precursor Molecule Diffusion

Barriers and Prefactors. ACS Appl. Mater. Interfaces, September 2015.

[12] Steven Randolph, Milos Toth, Jared Cullen, Clive Chandler, and Charlene Lobo.

Kinetics of Gas Mediated Electron Beam Induced Etching. Appl. Phys. Lett., 99

(21):213103, 2011.

[13] P Hoffmann, I Utke, and V Friedli. Focused electron-and ion-beam induced pro-

cesses. Thesis, 2008.

[14] C Desjonqueres and D Spanjaard. Concepts in Surface Physics: 2nd Edi-

tion. Springer series in surface sciences. Springer Berlin Heidelberg, 1996. ISBN

9783540586227.

[15] James Bishop, Charlene J. Lobo, Aiden Martin, Mike Ford, Matthew Phillips, and

Milos Toth. Role of activated chemisorption in gas-mediated electron beam induced

deposition. Phys. Rev. Lett., 109(14):3–6, 2012.

[16] Dongbo Li, Mosha H Zhao, J Garra, A M Kolpak, A M Rappe, D A Bonnell, and J M

Vohs. Direct in situ determination of the polarization dependence of physisorption

on ferroelectric surfaces. Nat. Mater., 7(6):473–477, May 2008.



Bibliography 226

[17] Leszek Czepirski, M Balys, and E Nomorowska-Czepirska. Some generalizations of

Langmuir adsorption isotherm. Internet J. Chem., 3(14):1099–8292, 2000.

[18] Stephen Brunauer, Paul Hugh Emmett, and Edward Teller. Adsorption of gases in

multimolecular layers. J. Am. Chem. Soc., 60(2):309–319, 1938.

[19] Ivo Utke, Patrik Hoffmann, and John Melngailis. Gas-Assisted Focused Electron

Beam and Ion Beam Processing and Fabrication. J. Vac. Sci. {&} Technol. B

Microelectron. Nanom. Struct., 26(4):1197, 2008.

[20] V Scheuer, H Koops, and T Tschudi. Electron Beam Decomposition of Carbonyls

on Silicon. Microelectron. Eng., 5(1-4):423–430, 1986.

[21] a. D. Dubner and a. Wagner. The role of gas adsorption in ion-beam-induced depo-

sition of gold. J. Appl. Phys., 66(2):870–874, 1989.

[22] Kristen Fichthorn and Radu Miron. Thermal Desorption of Large Molecules from

Solid Surfaces. Phys. Rev. Lett., 89(19):196103, October 2002.

[23] R Storch, H Stolz, and H W Wassmuth. Desorption kinetics and surface diffusion of

potassium, rubidium and cesium on a silicon(111)7 7-surface. Ann. Phys., 504(5):

315–320, 1992.

[24] Nigel Mason, Yukikazu Itikawa, Nigel Mason, and Yukikazu Itikawa. Cross Sections

for Electron Collisions with Water Molecules. J. Phys. Chem. Ref. Data, 34(1):1,

2005.

[25] Michael Huth, Fabrizio Porrati, Christian Schwalb, Marcel Winhold, Roland Sachser,

Maja Dukic, Jonathan Adams, and Georg Fantner. Focused Electron Beam Induced

Deposition: A Perspective. Beilstein J. Nanotechnol., 3:597–619, 2012.

[26] a. Chutjian, a. Garscadden, and J. M. Wadehra. Electron attachment to molecules

at low electron energies. Phys. Rep., 264(6):393–470, 1996.

[27] S Feil, P Sulzer, a Mauracher, M Beikircher, N Wendt, a Aleem, S Denifl, F Zappa,

S Matt-Leubner, a Bacher, S Matejcik, M Probst, P Scheier, and T D Märk. Electron

Impact Ionization/Dissociation of Molecules: Production of Energetic Radical Ions

and Anions. J. Phys. Conf. Ser., 86:012003, 2007.



Bibliography 227

[28] R.L. Lariviere Stewart. Insulating Films Formed Under Electron and Ion Bombard-

ment. Phys. Rev., 45(1931):488, April 1934.

[29] C. W. Oatley. The early history of the scanning electron microscope. J. Appl. Phys.,

53(2):R1, 1982.

[30] E F BURTON, R S SENNETT, and S G ELLIS. Specimen changes due to electron

bombardment in the electron microscope. Nature, 160(4069):565–567, October 1947.

[31] A N Broers, W W Molzen, J J Cuomo, and N D Wittels. Electron-beam fabrication

of 80-{Å} metal structures. Appl. Phys. Lett., 29(9):596, 1976.

[32] A Botman, M Hesselberth, and J J L Mulders. Improving the conductivity of

platinum-containing nano-structures created by electron-beam-induced deposition.

Microelectron. Eng., 85(5-6):1139–1142, May 2008.

[33] Willem F van Dorp, Bob van Someren, Cornelis W Hagen, Pieter Kruit, Peter A

Crozier, Willem F Van Dorp, Bob Van Someren, Cornelis W Hagen, Pieter Kruit,

and Peter A Crozier. Approaching the Resolution Limit of Nanometer-Scale Electron

Beam-Induced Deposition. Nano Lett., 5(7):1303–1307, July 2005.

[34] M Toth, C J Lobo, W R Knowles, M R Phillips, M T Postek, and A E Vladar.

Nanostructure Fabrication by Ultra-High-Resolution Environmental Scanning Elec-

tron Microscopy. Nano Lett., 7(2):525–530, 2007.

[35] Konrad Rykaczewski, Owen J Hildreth, Dhaval Kulkarni, Matthew R Henry, Song-kil

Kim, Ching Ping Wong, Vladimir V Tsukruk, and Andrei G Fedorov. Maskless and

Resist-Free Rapid Prototyping of Three-Dimensional Structures Through Electron

Beam Induced Deposition ( EBID ) of Carbon in Combination with Metal-Assisted

Chemical Etching ( MaCE ) of Silicon. 2(4):969–973, 2010.

[36] Amalio Fernández-Pacheco, Luis Serrano-Ramón, Jan M Michalik, M Ricardo

Ibarra, José M De Teresa, Liam O’Brien, Dorothée Petit, Jihyun Lee, and Russell P

Cowburn. Three Dimensional Magnetic Nanowires Grown by Focused Electron-

Beam Induced Deposition. Sci. Rep., 3:1–5, March 2013.



Bibliography 228

[37] G Martin, Damiana Lerose, Christoph Niederberger, Johann Michler, Silke Chris-

tiansen, Ivo Utke, Martin Günter Jenke, Damiana Lerose, Christoph Niederberger,

Johann Michler, Silke Christiansen, and Ivo Utke. Toward Local Growth of Individ-

ual Nanowires on Three-Dimensional Microstructures by Using a Minimally Invasive

Catalyst Templating Method. Nano Lett., 11(10):4213–4217, October 2011.

[38] Anastasia V Riazanova, Yuri G M Rikers, Johannes J L Mulders, and Lyubov M

Belova. Pattern Shape Control for Heat Treatment Purification of Electron-Beam-

Induced Deposition of Gold from the Me 2Au(acac) Precursor. Langmuir, 28(14):

6185–6191, April 2012.

[39] Fangfang Wen, Jian Ye, Na Liu, Pol Van Dorpe, Peter Nordlander, and Naomi J

Halas. Plasmon Transmutation: Inducing New Modes in Nanoclusters by Adding

Dielectric Nanoparticles. Nano Lett., 12(9):5020–5026, September 2012.

[40] V Gopal, V R Radmilovic, C Daraio, S Jin, P D Yang, and E A Stach. Rapid

Prototyping of Site-Specific Nanocontacts by Electron and Ion Beam Assisted Direct-

Write Nanolithography. Nano Lett., 4(11):2059–2063, January 2004.

[41] Katja Höflich, Ren Bin Yang, Andreas Berger, Gerd Leuchs, and Silke Christiansen.

The Direct Writing of Plasmonic Gold Nanostructures by Electron-Beam-Induced

Deposition. Adv. Mater., 23(22-23):2657–2661, 2011.

[42] S. J. Randolph, J. D. Fowlkes, and P. D. Rack. Focused, Nanoscale Electron-Beam-

Induced Deposition and Etching. Crit. Rev. Solid State Mater. Sci., 31(3):55–89,

September 2006.

[43] W. F. van Dorp and C. W. Hagen. A Critical Literature Review of Focused Electron

Beam Induced Deposition. J. Appl. Phys., 104(081301):1–42, 2008.

[44] Ivo Utke, Stanislav Moshkalev, and Phillip Russell. Nanofabrication Using Focused

Ion and Electron Beams. Principles and Applications. Oxford University Press, USA,

2012.

[45] P. D. Rack, S. Randolph, Y. Deng, J. Fowlkes, Y. Choi, and D. C. Joy. Nanoscale

electron-beam-stimulated processing. Appl. Phys. Lett., 82(14):2326, 2003.



Bibliography 229

[46] Jianhua Wang, D P Griffis, R Garcia, and P E Russell. Etching characteristics of

chromium thin films by an electron beam induced surface reaction. Semicond. Sci.

Technol., 18(4):199–205, April 2003.

[47] S J Randolph, J D Fowlkes, and P D Rack. Focused electron-beam-induced etching

of silicon dioxide. J. Appl. Phys., 98(3):34902, 2005.

[48] Theodore E. Madey and J T Yates. Electron-Stimulated Desorption as a Tool for

Studies of Chemisorption: A Review. J. Vac. Sci. Technol., 8(4):525, July 1971.

[49] Peter Roediger, Heinz D Wanzenboeck, Gottfried Hochleitner, and Emmerich

Bertagnolli. Crystallinity-retaining removal of germanium by direct-write focused

electron beam induced etching. J. Vac. Sci. Technol. B, 29(4):41801, 2011.

[50] F J Schoenaker, R Córdoba, R Fernández-Pacheco, C Magén, O Stéphan, C Zuriaga-

Monroy, M R Ibarra, and J M De Teresa. Focused electron beam induced etching of

titanium with XeF2. Nanotechnology, 22(26):265304, May 2011.

[51] Aiden A Martin, Matthew R Phillips, and M Toth. Dynamic Surface Site Activation:

A Rate Limiting Process in Electron Beam Induced Etching. ACS Appl. Mater.

Interfaces, 5(16):8002–8007, August 2013.

[52] Aiden A Martin and Milos Toth. Cryogenic Electron Beam Induced Chemical Etch-

ing. ACS Appl. Mater. Interfaces, 6(21):18457–18460, 2014.

[53] A Shih, J Yater, C Hor, and R Abrams. Secondary electron emission studies. Appl.

Surf. Sci., 111:251–258, February 1997.

[54] David C Joy. A Database on Electron-Solid Interactions. Scanning, 17(5):270–275,

April 2008.

[55] Robert Winkler, Jason Fowlkes, Aleksandra Szkudlarek, Ivo Utke, Philip D Rack,

and Harald Plank. The Nanoscale Implications of a Molecular Gas Beam during Elec-

tron Beam Induced Deposition. ACS Appl. Mater. Inter., 6(4):2987–2995, February

2014.



Bibliography 230

[56] P. C. Post, A. Mohammadi-Gheidari, C. W. Hagen, and P. Kruit. Parallel electron-

beam-induced deposition using a multi-beam scanning electron microscope. J. Vac.

Sci. {&} Technol. B Microelectron. Nanom. Struct., 29(6):06F310, 2011.

[57] Nicholas A Roberts, Jason D Fowlkes, Gregory a Magel, and Philip D Rack. En-

hanced material purity and resolution via synchronized laser assisted electron beam

induced deposition of platinum. Nanoscale, 5(1):408–15, 2013.

[58] L M Belova, Olav Hellwig, Elizabeth Dobisz, and E Dan Dahlberg. Rapid prepara-

tion of electron beam induced deposition Co magnetic force microscopy tips with 10

nm spatial resolution. Rev. Sci. Instrum., 83(9):93711, 2012.

[59] a. Notargiacomo, E. Giovine, and L. Di Gaspare. Ion and electron beam deposited

masks for pattern transfer by reactive ion etching. Microelectron. Eng., 88(8):2710–

2713, August 2011.

[60] Young R Y R Choi, Philip D P D Rack, Steven J S J Randolph, Daryl A D A Smith,

and David C D C Joy. Pressure Effect of Growing with Electron Beam-Induced Depo-

sition with Tungsten Hexafluoride and Tetraethylorthosilicate Precursor. Scanning,

28(6):311–318, October 2006.

[61] A Ganczarczyk, M Geller, and a Lorke. XeF2 gas-assisted focused-electron-beam-

induced etching of GaAs with 30 nm resolution. Nanotechnology, 22(4):45301, De-

cember 2010.

[62] Young R. Choi, Philip D. Rack, Bernhard Frost, and David C. Joy. Effect of electron

beam-induced deposition and etching under bias. Scanning, 29(4):171–176, June

2007.

[63] J Bishop, C J Lobo, A Martin, M Ford, M R Phillips, and M Toth. The Role of

Activated Chemisorption in Electron Beam Induced Deposition. Phys. Rev. Lett.,

109:146103, 2012.

[64] Jason D Fowlkes and Philip D Rack. Fundamental Electron-Precursor-Solid Interac-

tions Derived from Time-Dependent Electron-Beam-Induced Deposition Simulations

and Experiments. ACS Nano, 4(3):1619–1629, March 2010.



Bibliography 231

[65] Aleksandra Szkudlarek, Mihai Gabureac, and Ivo Utke. Determination of the Sur-

face Diffusion Coefficient and the Residence Time of Adsorbates via Local Focused

Electron Beam Induced Chemical Vapour Deposition. J. Nanosci. Nanotechnol., 11

(9):8074–8078, August 2011.

[66] W. F. van Dorp, J. D. Wnuk, J. M. Gorham, D. H. Fairbrother, T. E. Madey, and

C. W. Hagen. Electron Induced Dissociation of Trimethyl (Methylcyclopentadienyl)

Platinum (IV): Total Cross Section as a Function of Incident Electron Energy. J.

Appl. Phys., 106(7):74903, 2009.

[67] S. J. Randolph, J. D. Fowlkes, and P. D. Rack. Effects of Heat Generation Dur-

ing Electron-Beam-Induced Deposition of Nanostructures. J. Appl. Phys., 97(12):

124312, 2005.

[68] Milos Toth, Charlene J. Lobo, Michael J. Lysaght, András E. Vladár, and Michael T.

Postek. Contamination-free imaging by electron induced carbon volatilization in

environmental scanning electron microscopy. J. Appl. Phys., 106(3):34306, 2009.

[69] Charlene J Lobo, Milos Toth, Raymond Wagner, Bradley L Thiel, and Michael

Lysaght. High Resolution Radially Symmetric Nanostructures from Simultaneous

Electron Beam Induced Etching and Deposition. Nanotechnology, 19(2):25303, De-

cember 2007.

[70] Willem F. van Dorp, Thomas W. Hansen, Jakob B. Wagner, and JeffT T M De

Hosson. The role of electron-stimulated desorption in focused electron beam induced

deposition. Beilstein J. Nanotechnol., 4(1):474–480, 2013.

[71] Wei Li and David C. Joy. Study of Temperature Influence on Electron Beam Induced

Deposition. J. Vac. Sci. Technol. A, 24(3):431, 2006.

[72] Steven J Randolph, Aurelien Botman, and Milos Toth. Deposition of Highly Porous

Nanocrystalline Platinum on Functionalized Substrates Through Fluorine-Induced

Decomposition of \ce{Pt(PF3)4} Adsorbates. Part. Part. Syst. Charact., pages 672–
677, June 2013.



Bibliography 232

[73] L Bernau, M Gabureac, R Erni, and I Utke. Tunable Nanosynthesis of Composite

Materials by Electron-Impact Reaction. Angew Chem Int Ed., 49(47):8880–8884,

2010.

[74] D A Smith, J D Fowlkes, and P D Rack. A Nanoscale Three-Dimensional Monte

Carlo Simulation of Electron-Beam-Induced Deposition with Gas Dynamics. Nan-

otechnology, 18(26):265308, June 2007.

[75] Daryl A Smith, Jason D Fowlkes, and Philip D Rack. Simulating the Effects of

Surface Diffusion on Electron Beam Induced Deposition via a Three-Dimensional

Monte Carlo Simulation. Nanotechnology, 19(41):415704, September 2008.

[76] N Silvis-Cividjian, C W Hagen, L H A Leunissen, and P Kruit. The role of sec-

ondary electrons in electron-beam-induced- deposition spatial resolution. Microelec-

tron. Eng., 61-62:693–699, May 2002.

[77] K Mitsuishi, Z Q Liu, M Shimojo, M Han, and K Furuya. Dynamic profile cal-

culation of deposition resolution by high-energy electrons in electron-beam-induced

deposition. Ultramicroscopy, 103(1):17–22, April 2005.

[78] Zhi Quan Liu, Kazutaka Mitsuishi, and Kazuo Furuya. Modeling the process of

electron-beam-induced deposition by dynamic Monte Carlo simulation. Japanese J.

Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 44(7 B):5659–5663, 2005.

[79] Konrad Rykaczewski, William B. White, and Andrei G. Fedorov. Analysis of electron

beam induced deposition (EBID) of residual hydrocarbons in electron microscopy.

J. Appl. Phys., 101(5):1–12, 2007.

[80] Pierre Hovington, Dominique Drouin, Raynald Gauvin, David C. Joy, and Neal

Evens. CASINO: A New Monte Carlo Code in C Language for Electron Beam

Interaction—Part I: Description of the Program. Scanning, 19(1):1–14, 20–28, 29–

35, 1997.

[81] J Crank and P Nicolson. A practical method for numerical evaluation of solutions

of partial differential equations of the heat-conduction type. Adv. Comput. Math., 6

(1):207–226, December 1996.



Bibliography 233

[82] G Sun, C.W. W Trueman, C. Sun, C.W. W Trueman, G Sun, and C.W. W True-

man. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional

Maxwell’s equations. Electron. Lett., 39(7):595–597, 2003.

[83] G. D. (Gordon D.) Smith. Numerical solution of partial differential equations : finite

difference methods. Oxford [Oxfordshire] : Clarendon Press ; New York : Oxford

University Press, third edition, 1985. ISBN 0198596413.

[84] John D Anderson. Computational Fluid Dynamics: The Basics with Applications.

McGraw-Hill, Inc., 1 edition, February 1995. ISBN 0-07-001685-2.

[85] H L Thomas. Elliptic Problems in Linear Differential Equations over a Network.

Watson Sci. Comput. Lab Report, Columbia University, New York, January 1949.

[86] W T Lee. Tridiagonal Matrices: Thomas Algorithm. MS6021, Sci. Comput. Univ.

Limerick, pages 1–3, November 2011.

[87] Richard Ghez. Diffusion Phenomena: Cases and Studies . Springer, January 2011.

[88] Electron Microscope Facility University of Tennessee David C. Joy Oak Ridge Na-

tional Laboratory Distinguished Scientist and Director, Knoxville and David C Joy.

Monte Carlo Modeling for Electron Microscopy and Microanalysis. Oxford University

Press, April 1995. ISBN 9780195088748.

[89] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong

Schwarzkopf. Computational geometry. Springer, 2000. ISBN 3662042479.

[90] D E Newbury and R L Myklebust. \emph{Analytical Electron Microscopy}. Ed. R.
H. Geiss, January 1981.

[91] H E Bishop. The History and Development of Monte Carlo Methods for Use in

X-Ray Microanalysis. In Kurt F J Heinrich, D E Newbury, and Harvey Yakowitz,

editors, Use Monte Carlo Calc. electron probe Microanal. scanning electron Microsc.,

page 169. National Bureau of Standards Special Publication 460, December 1976.

[92] D C Joy and S Luo. An empirical stopping power relationship for low-energy elec-

trons. Scanning, 11(4):176–180, 1989.



Bibliography 234

[93] M J Berger and S M Seltzer. Studies in Penetration of Charged Particles in Matter.

Nuclear Science Series Report Number 39. National Academies, December 1964.

[94] R J Sobey. An optimized solution for the diffusion equation on a nonuniform grid.

Int. J. Numer. Methods Eng., 20(3):465–477, 1984.

[95] Eric W. Weisstein. Conical Frustum, 2015.

[96] V P Zhdanov. Arrhenius Parameters for Rate-Processes on Solid-Surfaces. Surf.

Sci. Rep., 12(5):183–242, January 1991.

[97] T E Madey and J T Yates Jr. Desorption Methods as Probes of Kinetics and Bonding

at Surfaces. Surf. Sci., 63(C):203–231, 1977.

[98] Yinghong Lin and David C Joy. A New Examination of Secondary Electron Yield

Data. Surf. Interface Anal., 37(11):895–900, 2005.

[99] Juan Shen, Kaliappan Muthukumar, Harald O Jeschke, and Roser Valenti. Ph-

ysisorption of an Organometallic Platinum Complex on Silica: An Ab Initiostudy.

New J. Phys., 14(7):73040, July 2012.

[100] M Toth. Advances in Gas-Mediated Electron Beam-Induced Etching and Related

Material Processing Techniques. Appl. Phys. A, 117:1623–1629, 2014.

[101] V Friedli and I Utke. Optimized Molecule Supply from Nozzle-Based Gas Injec-

tion Systems for Focused Electron- and Ion-Beam Induced Deposition and Etching:

Simulation and Experiment. J. Phys. D, 42(12):125305, January 2009.

[102] T Bret, I Utke, and P Hoffmann. Influence of the Beam Scan Direction During

Focused Electron Beam Induced Deposition of 3D Nanostructures. Microelectron.

Eng., 78-79:307–313, January 2005.

[103] J Bishop, M Toth, M Phillips, and C Lobo. Effects of Oxygen on Electron Beam In-

duced Deposition of \ce{SiO2} Using Physisorbed and Chemisorbed Tetraethoxysi-
lane. Appl. Phys. Lett., 101(21):211605, November 2012.

[104] M J Drinkwine and D Lichtman. Electron Stimulated Desorption: A Critical Review.

Prog. Surf. Sci., 8(3):123–142, 1977.



Bibliography 235

[105] R D Ramsier and J T Yates. Electron-Stimulated Desorption - Principles and Ap-

plications. Surf. Sci. Rep., 12(6-8):243–378, 1991.

[106] E G Seebauer and C E Allen. Estimating Surface Diffusion Coefficients. Prog. Surf.

Sci., 49(3):265–330, July 1995.

[107] J V Barth. Transport of Adsorbates at Metal Surfaces: From Thermal Migration to

Hot Precursors. Surf. Sci. Rep., 40(3):75–149, December 1999.

[108] J C Kuhr and H J Fitting. Monte Carlo Simulation of Electron Emission from Solids.

J. Electron Spectrosc. Relat. Phenom., 105(2-3):257–273, January 1999.

[109] M Bresin, M Toth, and K A Dunn. Direct-Write 3D Nanolithography at Cryogenic

Temperatures. Nanotechnology, 24(3):35301, January 2013.

[110] M Bresin, B L Thiel, M Toth, and K A Dunn. Focused Electron Beam-Induced

Deposition at Cryogenic Temperatures. J. Mater. Res., 26(3):357–364, 2011.

[111] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, 1992.


	Title Page
	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Objectives and Approach
	1.2 Thesis Outline
	1.3 Published Work

	2 Literature Review
	2.1 Physical Processes
	2.1.1 Adsorption
	2.1.2 Desorption
	2.1.3 Surface Diffusion
	2.1.4 Electron Induced Dissociation

	2.2 Experimental Applications
	2.2.1 The Effect of Various Experimental Parameters
	2.2.2 Resolution of EBID structures

	2.3 Modelling Methods
	2.3.1 Continuum Models
	2.3.2 Monte Carlo Models

	2.4 Summary

	3 Hybrid Continuum-Monte Carlo Model
	3.1 Continuum Equations
	3.1.1 Discretization of Time and Space
	3.1.2 Verification

	3.2 Electron Trajectory Simulation
	3.2.1 Single Scattering Model
	3.2.2 Parametric Model
	3.2.3 Model Extensions
	3.2.3.1 Backscattered & Forward Scattered Electrons
	3.2.3.2 Secondary Electrons

	3.2.4 Veri�cation

	3.3 Model Extensions
	3.3.1 Surface Evolution & Electron Beam Projection
	3.3.2 Surface Di�usion Modelling
	3.3.2.1 Free Form Movement
	3.3.2.2 Area Remapping

	3.3.3 Verification


	4 Hybrid Model Simulator Details
	4.1 User Operation
	4.2 Tutorial: How to run the EBIED simulator
	4.2.1 Mac OS X
	4.2.2 Ubuntu - Linux

	4.3 Summary of Parameters within the EBIED Simulator Input File
	4.3.1 Simulation Parameters
	4.3.2 Electron Beam Parameters
	4.3.3 Material Parameters
	4.3.4 Precursor Parameters
	4.3.5 Module Toggles
	4.3.6 Miscellaneous Parameters

	4.4 Summary of Outputs from the EBIED Simulator
	4.5 Summary of Warning and Error Messages within the EBIED Simulator

	5 Localized Probing of Gas Molecule Adsorption Energies and Desorption Attempt Frequencies
	5.1 Introduction
	5.2 Arrhenius analysis of deposition rates
	5.2.1 Athermal adsorption flux condition
	5.2.2 Reaction-rate limited growth condition
	5.2.3 Negligible diffusion condition
	5.2.4 Steady state growth condition

	5.3 General implications for the determination of adsorbate properties
	5.4 Conclusion

	6 Electron Beam Induced Deposition As a Technique for the Analysis of Precursor Molecule Diffusion Barriers and Pre-Factors
	6.1 Introduction
	6.2 Roles of Desorption and Diffusion in EBID
	6.3 Adsorbate Transport Through Diffusion
	6.4 Extraction of Diffusion Energies and Pre-Exponential Factors
	6.5 Pre-requisites
	6.5.1 Condition 1 - Steady State Growth
	6.5.2 Condition 2 - Significant adsorbate concentration gradient
	6.5.3 Condition 3 - Diffusion-dominated replenishment
	6.5.4 Condition 4 - Efficient adsorbate consumption

	6.6 Limitations of the Arrhenius analysis method
	6.7 Conclusion

	7 Conclusion
	A Diffusion Test Code
	B Hybrid Continuum-Monte Carlo Simulator Code
	B.1 Constants
	B.2 Variable Structures
	B.3 Function Prototypes
	B.4 Simulator Core
	B.5 EBID/EBIE & EBIED Solver
	B.6 Electron Flux Profile
	B.7 Linear Interpolation
	B.8 Monte Carlo Data Collection
	B.9 Monte Carlo Electron Trajectories
	B.10 Monte Carlo Surface Setup
	B.11 Read Input Parameters
	B.12 Read Previous Simulation Data
	B.13 Output Current Simulation Data
	B.14 Create Output Files
	B.15 Crank-Nicholson Solver
	B.16 Surface Evolution
	B.17 Print to Logfile

	C Model Derivations
	C.1 EBID/EBIE - Uniform Grid Spacing Derivation
	C.1.1 Von Neumann Stability

	C.2 EBID/EBIE - Non-Uniform Grid Spacing Derivation
	C.3 EBIED - Derivation
	C.3.1 Deposit Precursor Gas Concentration
	C.3.2 Etchant Precursor Gas Concentration
	C.3.3 Deposited Molecule Concentration


	Bibliography

