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Abstract
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Intelligent Mechatronic Systems Group

Doctor of Philosophy

by Nalika Ulapane

Modern day maintenance of infrastructure demands significant attention to structural

health monitoring. Assessment of surface condition alone is insufficient for health and

strength assessment, creating the necessity to evaluate the integrity of subsurface regions

through Nondestructive Evaluation (NDE). This thesis focuses on approaches to solving

the problem of condition assessment of critical pipes, i.e., large diameter high-pressure

pipes owned and managed by water utilities to distribute consumable fresh water to cus-

tomers, by developing techniques for representing the geometry of electrically conductive

ferromagnetic materials via Pulsed Eddy Current (PEC) sensors.

The main contribution of this thesis is a novel detector coil voltage decay rate based PEC

signal feature, the fundamental behavior of the feature is analytically described and exper-

imentally validated. The feature has a convenient advantage in practical application since

it is directly extractable from raw PEC signals and demonstrates significant invariance to

sensor shape, size, and lift-off. The feature behavior is exploited in two estimation ap-

proaches, in situ measurements on pipes are performed and pipe wall thickness is inferred

with uncertainty.

Firstly, an analytical approach to learning a function mapping the decay rate feature to

test piece thickness with the aid of signals captured on calibration blocks is presented. The

requirement of fabricating calibration blocks to have material properties matching those of

pipes is extremely challenging. Thus, combining ultrasound measurements together with

PEC is proposed to address material variations.
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Secondly, a numerical NDE semi-parametric estimation approach is presented, PEC sen-

sor signals are simulated taking into account measured electrical and magnetic proper-

ties of materials being tested. The thickness-feature function is learned probabilistically

using Gaussian Process. Unlike in the analytical approach, the function is learned non-

parametrically, therefore, variations and marginal nonlinearities are captured. The ad-

vantages over the analytical approach are demonstrated in terms of improved accuracy of

inferred material thickness.

Finally, the resolution of commercial PEC sensors employed on pipes is identified as a

limiting factor for structural integrity assessment. A numerical study on optimizing PEC

sensor architecture to achieve higher resolution while maintaining sufficient penetration

capability is carried out and a framework which can be used to perform 3D profiling by

means of joint inference of thickness and lift-off is proposed.

Keywords: Analytical Modeling, Critical Pipes, Ferromagnetic, Finite Element Analysis,

Gaussian Process, Inverse Eddy Current Problem, Machine Learning, NDE, NDT, Pulsed

Eddy Current Signal
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Chapter 1

Introduction

Modern day maintenance of civil infrastructure demands significant attention to structural

health monitoring. The fact that assessment of surface condition alone being insufficient for

health and strength assessment of most solid structures, creates the necessity to evaluate

the integrity of subsurface regions. Though condition assessment via accessing subsurface

regions using solid state sensors is not possible, and destructively reaching subsurface

regions is not desired, state of the art sensors have been developed to enable Nondestructive

Evaluation (NDE) by means of induced fields and reflected waves. Such NDE techniques

have evolved over the past five decades and are widely being used in different industries

at present for condition assessment of civil infrastructure [7].

This thesis focuses on approaches for solving the problem of acquiring and representing

the geometry of electrically conductive ferromagnetic materials via Pulsed Eddy Current

(PEC) sensor based NDE. The target application is condition assessment of critical pipes;

i.e., large diameter (usually ≥ 300 mm) high pressure pipes owned and managed by water

utilities to distribute consumable fresh water to customers. Critical pipes are manufactured

from gray cast iron, ductile cast iron and mild steels. Therefore, critical pipe materials

are conductive and ferromagnetic in nature.

Analytical and numerical approaches are developed in the thesis for NDE via modeling

PEC sensor interaction with conductive ferromagnetic materials in order to study, charac-

terize and quantify effects of material geometry on sensor signals. The objective is to use

1
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sensor models to characterize relationships between signals and material geometry, and

use the characterized relationships to interpret real world PEC signals for ferromagnetic

material specific quantitative condition assessment purposes.

The thesis presents: (a) a novel PEC signal feature possessing a useful representative

capability of test piece geometry, and analytically described fundamentals behind the fea-

ture’s behavior; (b) an experimental+analytical approach which exploits the feature to

perform NDE of critical pipes; (c) a numerical+probabilistic approach which exploits the

feature to perform NDE of critical pipes; and (d) a study on optimizing sensor geome-

try to achieve higher resolution while maintaining measurement capabilities suitable for

critical pipe assessment. NDE related outcomes of the thesis are evaluated by applying

them for in situ critical pipe condition assessment (Fig. 1.1), and validating interpreted

pipe conditions against destructively measured actuality. Though sensor modeling ap-

proaches presented in this thesis generalize, they are specifically evaluated through us-

ing them to model a commercial PEC sensor provided by Rock Solid Group c© (RSG)

(http://www.rocksolidgroup.com.au/).

Figure 1.1: PEC NDE: (a) PEC signal acquisition on an in situ critical pipe; (b) The
commercial PEC sensor modeled in this thesis.

This chapter introduces the research work presented in the thesis. It commences with a

background of the target application scenario of critical pipe evaluation and details key

research issues. The remaining sections of this chapter describe the thesis scope and its

main contributions and provide the outline of the remainder of the thesis.
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1.1 Background

It is generally recognized worldwide that about 70% of the total asset base of urban water

utilities consists of buried pipes [8]. Sydney Water (http://www.sydneywater.com.au/)

has buried systems valued at over AU$15 billion and this is typical of large utilities.

Most major urban water utilities in Australia have extensive large, critical pressure main

systems, parts of which have been in service up to a century or more [8–10]. Failure of

critical pipes has significant impact on maintaining service levels to customers, loss of fire

fighting supply, compromised safety, transport disruption and other social costs, as well

as significant financial and reputational implications.

With further aging of this vital infrastructure, critical pipe failures will continue to occur.

This will have very high and growing cost implications for the sustainability and effective-

ness of water and wastewater services. This is a worldwide issue, with potential impacts

of climate change on soil properties and moisture which lead to higher costs.

In Australia, the total replacement costs of the pipe network have been estimated to exceed

AU$100 billion [10]. Over the next five years, the costs of urgently needed asset replace-

ment are around AU$5 billion. Maintenance costs over the same period are estimated

at some AU$2.5 billion [10]. Elsewhere, the USEPA estimates that the US public water

sector will require US$335 billion of capital investment over the next 20 years to sustain

essential service levels. Also, US studies indicate that the average cost per failure for large

diameter pipes exceeds US$500,000 [10].

In response to these cost drivers, and to meet demands for reliable water supply services,

water utilities have already made considerable efforts to control potential failures by ap-

plying existing, state-of-the-art methods for failure prediction, condition assessment and

proactive pipe asset management technologies. The methods used have limited level of

confidence which limits the ability to target renewal programs. It has been conservatively

estimated that even a 30% improvement in the present state of the art, would reduce the

high consequence events by 50% and total failure events by 30% resulting in potential

savings of over AU$160 million over a 20 year period to the Australian Water industry

[10]. With better prediction from condition assessment, expenditure can be delayed by
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5 years and replacement costs reduced up to 20%, the projected savings over a 20 year

period will exceed a further AU$300 million [10].

Water utilities urgently need better techniques for estimating the probability of failure of

critical pipelines and for estimating their remaining life. The unavailability of such tools

increases the risk of substantial funds being potentially misdirected through premature

replacements. This could impact on future water service pricing. On the other hand, not

undertaking timely replacement of pipes could lead to increasing number and frequency

of failures with associated costs and disruption.

Corrosion and graphitization are the main causes which weaken the strength of aging

critical pipes and cause them to fail eventually [8, 11]. Knowing the amount of non-

compromised conductive ferromagnetic material remaining in pipe walls is therefore the key

first step towards lifetime or failure prediction. Since corrosion and graphitization occur

on inner and outer surfaces of pipe walls, healthy material often remain in subsurface

regions which cannot be accessed directly. Causing any physical destruction to critical

pipes even in the form of corrosion removal done to access the healthy material surface is

undesired due to the risk of pipe bursts. Therefore, the amount of healthy material can

only be evaluated nondestructively. Consequentially, many NDE techniques have emerged

and grown in demand in the field of critical pipe condition assessment [12].

Due to the conductive and ferromagnetic nature of critical pipe materials, electromagnetic

NDE techniques such as PEC (the focus of this thesis), Magnetic Flux Leakage (MFL)

and Remote Field Testing (RFT) are widely used for critical pipe condition assessment

[12]. Though these technologies are well established and provided commercially at present,

the techniques used in practice have shortcomings. One issue is the requirement of sensor

calibration to achieve quantitative interpretation of pipe condition [6, 13, 14]. Accurate

calibration is challenging in the target application due to the difficulty of obtaining cali-

bration materials having properties which satisfactorily match those of critical pipes. As

a result of calibration errors, interpreted pipe conditions can be observed to deviate from

reality in practice. Another issue is the requirement of time intensive manual labor to

analyze signals individually to accomplish accurate interpretation. Although ferromag-

netic material specific PEC signal processing techniques have been proposed [4, 13, 14],
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an autonomous framework which is readily usable with a commercial PEC tool is lack-

ing. A system which models sensors taking into account unknown material properties and

hence autonomously inferring pipe condition using NDE data, has the potential to greatly

increase productivity of the process and the accuracy of results.

This thesis originated as a part of Activity 2 of the Advanced Condition Assessment

& Pipe Failure Prediction Project (http://www.criticalpipes.com/), which is co-led by

University of Technology Sydney (UTS). The project is strongly supported by Sydney

Water and many Australian and international water utilities, condition assessment service

providers and research institutions. This activity aims to advance knowledge and improve

levels of confidence of direct methods for condition assessment using sensor modeling and

advanced data interpretation techniques which have already been successfully employed in

fields such as aerospace, cargo handling, undersea ecology, land vehicles and mining. The

desired outcome of Activity 2 is a method of accurately predicting sensor readings for a

given geometric description of a buried large critical pipe, and obtaining the best estimate

of the pipe geometry from a set of measurements based on maximum likelihood principles.

As a part of this activity, this thesis deals with PEC sensor specific modeling and data

interpretation.

1.2 Motivation

PEC sensor signals are strictly dependent on the geometry and electrical and magnetic

properties of the material being tested. Therefore, to ensure accurate assessment of geo-

metric condition of a certain material, sensor readings require to be calibrated with respect

to material geometry. Common industrial practice of PEC sensor calibration with respect

to geometry involves using readings acquired on reference test pieces with known geometry

and intrinsic material properties as close as possible to those of the actual material being

evaluated. Such reference test pieces used for calibration are henceforth referred to as

“calibration blocks” in this thesis.
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Calibration blocks can be either fabricated or destructively extracted from the domain

being evaluated. In the application of critical pipe evaluation however, destructive extrac-

tion is not possible due the physical damage it causes to the infrastructure. As a result,

common industrial practice enables geometric calibration of critical pipe materials only by

means of fabricated calibration blocks.

To fabricate calibration blocks which replicate the desired geometric sensitivity, precise

intrinsic properties (specifically electrical conductivity and magnetic permeability) of the

material to be evaluated have to be known. That enables fabricating calibration blocks

having identical or at least very close, intrinsic properties to those of the material required

to be tested. When it comes to pipe assessment however, precise intrinsic properties of

pipe materials are unknown. Specifically, the pipes in focus of this thesis were manufac-

tured and laid in the early 19th century where quality control methods were not widely

enforced. Though measuring the necessary properties is a possibility, having the capabil-

ity to manufacture a critical pipe material to have the exact measured intrinsic property

values is highly unlikely. This is due to critical pipe materials being manufactured by

casting and cooling, a process highly influential on intrinsic properties of the end prod-

uct. Expecting a casting and cooling process to repeat itself identically, so that the exact

properties of a previously manufactured material sample is replicated, is highly ambitious.

Further, fabricating tailored calibration blocks on each condition assessment undertaken

is undesired due to the cost, time and labor requirement constraints.

Usual practice followed by commercial PEC service providers to avoid the aforementioned

constraints is performing one off fabrication of sets of calibration blocks. Such a method is

reasonable for materials which can be guaranteed to have fairly precise intrinsic properties

and narrow margins of variation. In light of critical pipe materials however, that is not the

case. For critical pipe materials which include gray cast iron, ductile cast iron and mild

steel, electrical conductivity and magnetic permeability values can vary approximately

up to ±20% from the expected mean [15]. Reasons behind such a variation are the high

degree of inhomogeneity in the materials itself, and the nonlinearity attributed with intrin-

sic properties [15]. Therefore, electrical and magnetic properties of critical pipe material

specific calibration blocks could deviate within ±20% from those of pipes. Such discrep-

ancies between calibration and measurement adversely affect the measuring technique by
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offsetting interpreted geometric condition from reality.

Another issue related to the NDE techniques, especially the commercially provided ones,

is the requirement of time intensive manual labor to analyze signals individually to accom-

plish accurate interpretation. The lack of efficient algorithms to autonomously interpret

data negatively impact service providers by hampering their delivery speed of results.

Although ferromagnetic material specific PEC signal processing techniques have been pro-

posed [4, 13, 14], autonomous data interpretation frameworks which are readily usable

with commercial PEC tools to make them more efficient are not common.

Developing methods of taking into account measured electrical and magnetic properties of

materials and artificially generating NDE signals via computational means to eliminate the

requirement of calibration blocks are clearly warranted. Approaches which use calibration

data to learn relationships between signal features and material geometry are also necessary

to enable efficient and autonomous interpretation of signals.

1.3 Scope

The thesis specifically aims to develop PEC based advanced NDE approaches suitable for

critical pipe condition assessment. Developed approaches are intended to overcome the

issues related to calibration and requirement of manual data interpretation, in addition to

being able to accurately predict pipe condition with confidence bounds. Two approaches

are developed with the objective to learn functions which map PEC signal features to test

piece geometry and use the learned functions to interpret PEC data acquired from on site

measurements to predict geometric condition of in situ critical pipes.

It should be noted that designing a novel PEC sensor architecture to produce more accurate

measurement capabilities is beyond the scope of this research. The objective is to rather

use a standard PEC sensor architecture which is used by RSG, the commercial PEC service

provider partnering with this research, and to propose approaches to better interpret the

data. Therefore, the scope of this thesis is limited to the “detector coil” based PEC sensor

architecture, which is the one used by RSG. All Eddy Current (EC) and PEC sensors

operate by a coil (exciter coil) being excited by a time varying current which induces eddy
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currents in the test piece, and using a receiver/detector to capture the resultant time

varying magnetic field. Since the influence of eddy currents induced in the test piece are

contained in the resultant magnetic field, the signal induced by the detected field can be

used to characterize different properties of the test piece. Though all EC and PEC sensor

architectures have an exciter coil in common, the sensor architectures differ based on the

type of detector used [1].

The detector coil based PEC sensor architecture is known to have superior sensitivity to

geometric properties of conductive ferromagnetic materials over other architectures [1],

thereby making it the most suitable architecture for the target application. Subject to the

capabilities of the used architecture, pipe geometry is evaluated and presented in the form

of average wall thickness remaining under the detector coil. When a condition assessment

is done, the thickness estimates are presented as a 2.5D thickness map which uses pipe

axial and circumferential positions as x and y coordinates respectively to represent the

location of each thickness estimate. Hence the scope of assessed pipe condition is limited

to average wall thickness under the detector coil.

The target application of this thesis is critical pipe assessment, aged critical pipes are

found in either of the three critical pipe materials: gray cast iron, ductile cast iron or

mild steel [8, 9, 11]. Thus, all NDE related developments are experimented on in situ

pipes made of critical pipe materials. However, the proposed approaches generalize for

condition assessment of any electrically conductive and ferromagnetic material.

A novel PEC signal feature, the “detector coil voltage decay rate” is introduced in this

thesis. Existence of a functional behavior between the feature and conductive ferromag-

netic material thickness is theoretically proved and experimentally verified. Suitability of

the feature for critical pipe condition assessment is demonstrated.

The thesis presents two NDE approaches based on the “detector coil voltage decay rate”

signal feature. First, an analytical approach which requires experimental calibration and

secondly a probabilistic approach which uses numerically modeled data for learning. In

the first approach, calibration data are obtained from calibration blocks and a function

between thickness and a signal feature is analytically derived using calibration data. This
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function is eventually used to interpret NDE signals to predict thickness of in situ criti-

cal pipes. Accuracy of the pipe conditions interpreted by the approach is quantitatively

evaluated. The method requires the aid of calibration blocks, or alternatively as proposed

in this thesis, ultrasound measurements performed on pipe sections. Consequentially, the

requirement of the probabilistic approach based on numerical modeling is proposed to

eliminate the requirement of calibration and to capture nonlinearities. The second ap-

proach deals with experimentally measuring intrinsic electrical and magnetic properties of

pipe materials, using the measured properties to numerically simulate PEC signals using a

Finite Element Analysis (FEA) [16, 17] model and probabilistically learning the thickness-

feature function. Gaussian Process (GP) [18] is used as the probabilistic approach to learn

the nonlinear function since it yields the useful information of uncertainty for inferences

performed. The hence learned function is used for in situ critical pipe assessment, the

performance of the second approach is also evaluated.

Due to the fact that the PEC sensor architecture used for this work can measure only the

average thickness which generalizes to a region underneath the sensor, sensor resolution is

primarily limited by the sensor size. This limitation in resolution prevents identification

and quantification of fine defects, identified as an additional research challenge. In the view

of the constraints on altering the existing design, this thesis presents an FEA based study

on optimizing the PEC senor geometry to achieve better resolution while maintaining

penetration and measurement capabilities required for in situ critical pipe assessment.

In addition to increasing resolution, the thesis presents a framework applicable for 3D

profiling by means of concurrent inference of material thickness and lift-off, the vertical

distance between the sensor and the conducting material surface.

The thesis thus presents the theoretical fundamentals behind the detector coil voltage

decay rate signal feature, a numerical study focused on optimizing sensor geometry to

achieve better resolution facilitate 3D profiling capability and presents the critical pipe

NDE approaches implemented as frameworks so that they generalize to any detector coil

based PEC sensor.
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1.4 Contributions

The contributions of this thesis are:

1. Introduction of a novel PEC signal feature based on the detector coil voltage decay

rate as a feature capable of thickness discrimination of conductive ferromagnetic ma-

terials and the validation of the feature’s monotonic functional behavior with thick-

ness [19]. Fundamentals behind the feature’s behavior are analytically described and

experimentally validated, and suitability for critical pipe assessment is established.

2. An analytical approach to parametrically learn the thickness-feature function and use

it for PEC NDE of critical pipes [19]. Function parameters are estimated for critical

pipe materials via experiments performed on calibration blocks and the function’s

performance on in situ critical pipe assessment is evaluated. The practical diffi-

culty of obtaining calibration blocks which have properties matching those of critical

pipe materials substantiates the need for an alternative calibration method based on

two sensing modalities; a method of calibrating by means of PEC and ultrasound

measurements is proposed [19].

3. A critical pipe NDE approach which takes into account measured electrical and

magnetic properties of critical pipe materials to simulate PEC sensor responses using

FEA, and non-parametrically learns the thickness-feature function using the decay

rate feature extracted from simulated sensor responses. Simulation is done using

a validated FEA model [6] tailored to represent the commercial PEC sensor used

for this work. Measured electrical and magnetic properties of critical pipe materials

are incorporated with properties of the sensor, and the sensor’s interaction with the

material being tested is numerically modeled [6]. The modeling technique presented

generalizes to model any EC/PEC sensor’s interaction with a conductive material.

Learning the thickness-feature function is done probabilistically using GP and the

performance on in situ critical pipe assessment is evaluated against ground truth after

destructive testing. Non-parametric probabilistic learning demonstrates increased

accuracy over the analytical approach due to being able to learn and model local

nonlinearities present in the thickness-feature function.
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4. Low resolution associated with the commercial PEC sensor used for this work is

identified as an additional limitation. A simulation study is carried out to optimize

the sensor geometry with the objective of achieving better resolution while main-

taining the desired penetration capability suitable for critical pipe assessment. The

study also suggests a framework applicable for 3D profiling by quantifying material

thickness and sensor lift-off concurrently.

1.5 Publications

The following peer reviewed research papers were either published during candidature or

were being reviewed at the time of completion of this thesis. Some publications are not

directly related to the work of the thesis, however, techniques presented in such publica-

tions are adapted and incorporated within the thesis. Notations ’J’ and ’C’ refer to journal

articles and conference papers respectively.

1.5.1 Directly Related Publications

J1. Jaime Valls Miro, Jeya Rajalingam, Teresa Vidal-Calleja, Freek de Bruijn, Roger

Wood, Dammika Vitanage, Nalika Ulapane, Buddhi Wijerathna, and Daoblige Su,

“A live test-bed for the advancement of condition assessment and failure prediction

research on critical pipes,” Water Asset Management International, ISSN Print:

1814- 5434, ISSN Online: 1814-5442, 10(2):03-08, 2014.

J2. Nalika Ulapane, Alen Alempijevic, Jaime Valls Miro, Teresa Vidal Calleja, “Non-

destructive evaluation of ferromagnetic material thickness using Pulsed Eddy Cur-

rent sensor detector coil voltage decay rate,” NDT & E International, 2014, Under

Review.

C1. N. Ulapane, A. Alempijevic, T. Vidal-Calleja, J. V. Miro, J. Rudd, and M. Roubal,

“Gaussian process for interpreting pulsed eddy current signals for ferromagnetic pipe

profiling,” in Proceedings of the 9th IEEE International Conference on Industrial

Electronics & Applications (ICIEA), pp. 1762-1767, 2014.
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1.5.2 Indirectly Related Publications

J3. Nalika Ulapane, Sunil Abeyratne, Prabath Binduhewa, Chamari Dhanapala, Shyama

Wickramasinghe, Nimal Rathnayake, “A Simple Software Application for Simulat-

ing Commercially Available Solar Panels,” International Journal of Soft Computing

And Software Engineering (JSCSE), e-ISSN: 2251-7545, Vol.2,No.5, pp. 48-68, 2012

C2. Nalika N.B. Ulapane and Sunil G. Abeyratne, “Gaussian process for learning

solar panel maximum power point characteristics as functions of environmental con-

ditions,” in Proceedings of the 9th IEEE International Conference on Industrial Elec-

tronics & Applications (ICIEA), pp. 1756-1761, 2014.

C3. Daobilige Su, Nalika Ulapane and Buddhi Wijerathna, “An acoustic sensor based

novel method for 2D localization of a robot in a structured environment,” in Pro-

ceedings of the 10th IEEE International Conference on Industrial Electronics & Ap-

plications (ICIEA), 2015, in press.

1.6 Thesis Layout

The thesis is structured so the first two chapters outline the research and provide back-

ground for the thesis. Chapter 3 introduces the detector coil voltage decay rate as a PEC

signal feature suitable to evaluate conductive ferromagnetic material thickness and presents

the decay rate based analytical approach for NDE of critical pipes. The requirement of

accurate calibration in this approach leads to the realization why the numerical approach

proposed in Chapter 4 is required. Chapter 4 presents the decay rate based numerical sen-

sor modeling technique and the probabilistic thickness-feature function learning approach

for NDE of critical pipes. Chapter 5 presents the study on optimizing sensor geometry to

increase resolution and enable 3D profiling. Conclusions are presented in Chapter 6. The

detailed outline of each chapter follows:

Chapter 2 contains a review of related work in the field of PEC sensing. The chapter

presents PEC sensor operating principles, sensor architectures and applications. Further,

the chapter investigates PEC signal features used in practice and their applications. PEC
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sensor modeling techniques are subsequently investigated and the chapter concludes by re-

viewing already published knowledge on the influence of sensor geometry on measurement

capabilities.

Chapter 3 introduces the detector coil voltage decay rate as a PEC signal feature suitable

for conductive ferromagnetic material thickness discrimination. Analytical derivations

result in a parametric function which maps the feature value to thickness. The functional

behavior of the feature is demonstrated for pipe materials using experimental PEC signals

obtained from calibration blocks. Some important low dependencies associated with the

decay rate feature are hypothesized and experimentally validated. These low dependencies

on certain factors make the feature immune to some practical anomalies encountered

during performing in situ measurements. Since the target application is critical pipe

evaluation, and the fact that pipe walls are curved unlike calibration blocks, the effect

of test piece curvature on the feature is numerically studied using FEA determining a

curvature range which does not impact significantly on the feature. The decay rate based

analytical approach for NDE of critical pipes is also presented. Readings on calibration

blocks are used to estimate parameters of the thickness-feature function for different pipe

materials. The learned function is then used for wall thickness estimation of in situ critical

pipes and the accuracy of results is demonstrated. To avoid requirement of calibration, an

alternative method is introduced to estimate thickness by using ultrasound measurements

for scaling. The chapter concludes by characterizing sensor noise and identifying the

requirement of calibration as a practical difficulty which has to be adhered with when

executing the proposed approach in addition to the limitation of the approach not being

able to accurately model local nonlinearities present in the thickness-feature function.

Chapter 4 presents the numerical and probabilistic approach for NDE of critical pipes.

Methods followed for measuring electrical and magnetic properties of in situ critical pipe

materials are discussed. The development of the FEA model of the commercial PEC sensor

used for this work is presented. The model is validated by comparing the simulations

with experimental results obtained from a range of calibration blocks. Decay rate feature

values are extracted from simulated sensor signals and are used as training data to non-

parametrically learn the thickness-feature function using the probabilistic technique of

GP. The hence learned function is validated on wall thickness estimation of in situ critical
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pipes using feature values extracted from on site NDE measurements. This approach

proves a slight superiority over the analytical approach due to being able to learn local

nonlinearities in the thickness feature-function.

Chapter 5 identifies the low resolution associated with the commercial PEC sensor used

for this work as an additional limitation. An FEA based simulation study is carried out

to optimize the sensor geometry with the objective of achieving better resolution while

maintaining the penetration capability required for critical pipe assessment. The chapter

concludes by presenting a framework usable for 3D profiling by means of concurrently

inferring material thickness and sensor lift-off.

Chapter 6 summarizes the research work presented in this thesis followed by a discussion

on limitations of the decay rate feature, implemented NDE approaches and the sensor

optimization study. Conclusions are drawn with regards to this research and avenues for

future work are proposed.



Chapter 2

Review of Related Work

There are numerous challenges in developing an NDE approach which takes into ac-

count measured intrinsic properties of a material, models sensor signals to learn func-

tions between signal features and material geometry, and eventually use the function to

autonomously interpret signals acquired form on site NDE measurements to predict test

piece geometric condition. Since the target application is clearly defined to be critical

pipe wall thickness evaluation and the scope is limited to using PEC sensors, the main

research challenges involved are: (a) Identifying a suitable sensor architecture; (b) Sensor

modeling; and (c) Identifying thickness discriminative signal features.

PEC technique is a category of EC inspection techniques and the justification behind

selecting the PEC technique for the target application over other EC techniques has to be

clearly understood. This chapter therefore begins by reviewing the available EC inspection

techniques and their capabilities and limitations so that the reason behind choosing the

PEC technique is clarified.

Though there are a few different PEC sensor architectures, the detector coil based archi-

tecture is the one used for the work of this thesis. This architecture had to be incorporated

mainly due to the commercial sensor partnering with this work being based on it. However,

this architecture is also the most suitable and the most commonly used one for ferromag-

netic material thickness quantification. After reviewing EC inspection techniques, this

15
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chapter reviews the PEC sensor architectures to help understand the suitability of the

detector coil based architecture for the target application of this thesis.

Subsequently, existing work on PEC based ferromagnetic material thickness quantifica-

tion are reviewed. This mainly highlights application specific signal noise suppression and

thickness discriminative feature extraction techniques which have been previously pro-

posed. Suitable noise suppression techniques presented in literature are adapted and used

for signal processing in this thesis. However, the review on thickness discriminative features

helps to realize their characteristics which make them not ideal for the target application

of critical pipe evaluation. This brings to the realization about why the newly proposed

PEC signal feature in this thesis, the “detector coil voltage decay rate” is required.

Finally, the chapter reviews previous studies on the influence of sensor geometry on mea-

suring capabilities. This thesis eventually builds on that knowledge to study the possibility

of increasing PEC sensor resolution with respect to the target application. The chapter

concludes with a summary of findings so that the research gaps this thesis attempts to fill

become clear.

2.1 EC Inspection Techniques

EC inspection techniques can mainly be classified into (a) single frequency EC techniques

and (b) multi-frequency EC techniques [1]. The conventional EC techniques fall into the

single frequency EC class whereas PEC falls into the multi-frequency class [1]. However,

due to its quick excitation and small excitation time, the PEC technique stands out from

the class of multi-frequency techniques. Therefore, the single frequency EC technique, the

multi-frequency EC technique and the PEC technique are addressed separately in sub-

sections 2.1.2, 2.1.3 and 2.1.4 respectively. Remote Field Eddy Current Testing (RFT) is

another important derivative of EC inspection [1, 20]. RFT is very useful when inspecting

large test pieces such as water, oil and gas pipelines due to its sensor architecture and

the operating mechanism which enables it to examine large areas in a short space of time

[1, 20]. However, RFT is not considered as a separate EC technique in this review since
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its operating principle is based on single frequency and multi-frequency EC principles de-

spite the sensor architecture being different. Therefore, RFT technique is not addressed

in length in this review.

The operating principle of all EC techniques is the same and before elaborating on different

EC inspection techniques, EC sensor operating principles are briefly explained in subsec-

tion 2.1.1 while formula based detailed theoretical descriptions are provided in Chapters 3

and 4.

2.1.1 Principle of EC Inspection

The principle of eddy current inspection is based on the interaction between a magnetic

field source and a test material. This interaction induces eddy currents in the test piece

and the presence of cracks or other imperfections can be detected by monitoring changes

in the eddy current flow [21]. According to Ampere’s law, when a time varying current

passes through a conductor, a resulting time varying magnetic field is generated around it.

When such a conductor is placed adjacent to another conducting material, eddy currents

are induced in the conducting material in accordance with Faraday’s and Lenz’s laws.

The eddy currents propagate in circular paths and eddy current densities are sensitive

to properties of the conductive material in which the eddy currents are flowing. Some

examples of these properties are: material conductivity, material composition, magnetic

permeability, stress and strain, temperature, material volume and flaws in the material [1].

Thus, if the variations occurring in the induced eddy currents are sensed and quantified,

it is possible to estimate the aforesaid material properties [1].

2.1.2 Conventional (Single Frequency) EC Inspection

The single frequency conventional eddy current inspection technique is the most prelimi-

nary of all the EC techniques and was the first EC testing method to be evolved more than

half a century ago [1, 22]. When coil probes are used, this technique is usually operated as

per Fig. 2.1. A single exciter coil is placed above a test piece and the coil is excited by a

sinusoidal input with a certain frequency. The excited coil would have defined impedance
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when standing alone. However, when it is placed above a test piece, eddy currents are

induced in the test piece and this causes a change in the impedance of the coil due to mag-

netic field interaction. The impedance change is affected by the eddy currents inducing a

reverse electromotive force on the coil. This change in impedance can then be plotted on

a normalized impedance plane modeled to extract properties of the test piece [1, 22–25].

Figure 2.1: Basic setup of conventional EC inspection (Adapted from [1]).

A major drawback in the conventional EC inspection technique is the skin effect limitation

[1]. It is known that the depth of penetration of the eddy currents is inversely propor-

tional to the square roots of: (a) Electrical conductivity of the material; (b) Magnetic

permeability of the material; and (c) The frequency of the excitation voltage. Since criti-

cal pipe materials are conductive and ferromagnetic, they usually have high conductivity

and permeability values. Therefore, for a given frequency, eddy current penetration depth

in these materials will be lower than a nonmagnetic material having similar conductivity.

As a result, the conventional EC technique is typically used for crack/defect identifica-

tion in nonmagnetic materials [23–25], in applications such as aircraft inspection [23, 24].

Furthermore, it is known that despite this technique being capable of assessing geometric

condition of nonmagnetic materials, it does not have the same capability when assessing

ferromagnetic materials [1]. The reason for this is the sensor’s sensitivity to test piece

geometry being overshadowed by its sensitivity to material permeability due to the per-

meability of ferromagnetic materials being high. Therefore, the conventional EC technique

can be used to easily discriminate ferromagnetic materials from nonmagnetic materials [1]

and it can be effectively used for quantifying material properties such as magnetic perme-

ability as done in [26]. However, the sensor’s sensitivity to the geometry of ferromagnetic
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materials is minimal and as a result, the conventional EC technique is not suitable for the

target application of critical pipe assessment.

Multi-frequency techniques were developed to overcome the skin effect limitation associ-

ated with the conventional technique.

2.1.3 Multi-Frequency EC Inspection

Multi frequency techniques use a combination of several excitation signals with several

frequencies; different frequencies penetrate different depths and provide information about

different locations on the test piece [1]. Therefore, the multi-frequency technique can

handle the skin effect limitation better than the conventional technique while being able

to provide more information at different depths [1].

Given the inverse relationship between eddy current penetration depth and frequency, it

can be hypothesized that higher penetration depth can be achieved by exciting with lower

frequencies, and therefore, a multi-frequency technique can assess any depth of any mate-

rial including ones having ferromagnetic properties. Though achieving higher penetration

in such a way is fundamentally possible, a hence achieved penetration is hardly usable

for condition assessment due to the reason detailed henceforth. Nondestructive condition

assessment of electrically conductive materials when using electromagnetic sensors can be

done only by reading the magnetic field resulting from excitation fields interacting with

the test piece. Such a resultant magnetic field has the frequency of the excitation sig-

nal and the field can be read by measuring a current or a voltage induced by it. Since

induction follows Faraday’s law, the magnitude of induced fields are proportional to the

rate of change of magnetic flux, i.e., the frequency of the magnetic filed. Consequentially,

lower frequencies will result in lower induced fields which can be difficult to measure, de-

spite they cause eddy currents to penetrate deeper. As a result, using multiple excitation

frequencies, or simply using lower excitation frequencies is a not an ideal option for con-

ductive ferromagnetic material inspection. Therefore, multi-frequency techniques too are

generally used for assessing nonmagnetic materials [27–29]. Although the multi-frequency

technique too in its usual form is not suitable for geometric condition assessment of fer-

romagnetic materials, exploiting it in the form of the PEC variant produces some salient
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properties which are greatly advantageous and create the desired geometric sensitivity

when interacting with ferromagnetic materials.

2.1.4 PEC Inspection

The main difference of the PEC technique is the sensor being excited by a voltage or a

current pulse as opposed to being excited by a set of frequencies as in multi-frequency

techniques. This technique stands out as the most versatile and modern counterpart of

EC techniques at present [1].

PEC technique has proven itself to be able to easily overcome the skin effect and produce

detectable magnetic field variations at the same time due to the salient characteristics

of its pulsed excitation. It has therefore commonly been used for geometric condition

assessment of ferromagnetic materials in the recent past [2–4, 6, 13, 14, 19, 20, 30–33].

Rising and falling edges of the pulsed excitation can be theoretically described by a Heav-

iside step function. The Fourier transform of the Heaviside function is known to be

δ(f) +
1

i2πf
where i =

√
−1, f denotes frequency and δ(f) denotes the unit impulse

function of f . This result clearly suggests that the power of low frequencies can be very

high. A power of that magnitude may not be achievable by exciting with a single low

frequency due to the limitations of excitation circuitry. However, a pulse enables having

such desired high powers in the low frequency range while enabling a wide frequency spec-

trum to be contained within the magnetic field. The PEC technique can therefore achieve

admirable penetration capability. It can also produce reasonable magnitudes for the resul-

tant magnetic field since the power of low frequencies are very high, while high frequencies

too exist with low powers. As a result, this technique has significant versatility over the

other EC techniques and therefore is used for condition assessment of a wide variety of

materials including ones having ferromagnetic properties [1]. Consequentially, the PEC

technique can be identified as the most suitable EC technique for the target application

of this thesis, i.e., thickness estimation of critical pipe materials which are electrically

conductive and ferromagnetic. Commonly used PEC sensor architectures are described in

the following section.
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2.2 Commonly Used PEC Sensor Architectures

All EC/PEC sensor architectures have in common a solenoid exciter coil for excitation

[1]. However, PEC sensor architectures when taken collectively, use separate sensors to

detect the magnetic filed and therefore differ from the conventional EC sensor architecture

which uses the exciter coil alone (Fig. 2.1) to measure the impedance change. PEC sensor

architectures can be classified based on the type of detector used. Typically used detectors

are solenoid coils, superconducting quantum interference devices (SQUIDs) and Hall-effect

and magnetoresistive sensors [1]. With respect to the target application of conductive

ferromagnetic material inspection, this chapter classifies PEC sensor architectures into

the two categories: (a) Detector coil based architecture; and (b) Non-Detector coil based

architecture. The former category simply refers to sensors which use solenoid coils as

detectors to sense the magnetic field whereas the latter includes sensors which incorporate

the rest of the sensing devices, i.e., SQUIDs, Hall-effect sensors and magnetoresistive

sensors.

2.2.1 Detector Coil Based PEC Sensor Architecture

The detector coil based architecture simply uses a solenoid coil to detect the magnetic field

via sensing the induced voltage or current across the coil. This is easily the most commonly

used architecture for thickness estimation of ferromagnetic materials [2–4, 6, 14, 19, 30, 31].

Desirable thickness discriminative capability possessed by the signals produced by this

architecture is the major reason for the common use. This architecture can hence be

considered suitable for critical pipe assessment and this thesis deals explicitly with this

architecture due to the sensor partnering with this work (Fig. 1.1) is of the typical detector

coil based architecture. The cross-sectional view of the configuration of this architecture is

shown in Fig. 2.2. A limitation of this architecture is the low resolution since a coil which

has a considerable size is used as the detector. Therefore, this architecture has limited

sensitivity to fine and isolated defects, but can detect an averaged representation of the

material thickness or volume remaining under the footprint of the sensor [34].
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Figure 2.2: Cross-sectional view of the typical detector coil based PEC sensor architec-
ture used for ferromagnetic material thickness estimation.

This architecture has coils whose axis is perpendicular to the surface of the test piece.

These probes can be either air-core coils or ferrite-core coils. Ferrites have high permeabil-

ity and the initial coil impedance is higher than that of the air-core coils. Air-cored coils

are the ones typically used for ferromagnetic material assessment [2–4, 6, 14, 19, 30, 31, 35].

This architecture is generally suitable for evaluating flat surfaces [1], but this is also used

on large diameter pipes [6, 19, 31] as shown in Fig. 1.1 and 2.3 since curvature of large

pipes is low relative to the sensor size. Center axis of the cylindrical pipe shown in Fig. 2.3

is perpendicular to the page.

Coils are occasionally arranged in different configurations to obtain variations of this ar-

chitecture such as Encircling coil probes, Horseshoe-shaped coil probes, Double-function

probes, Separate-function probes, Absolute-Mode probes and Differential-Mode probes [1].

These variations are mostly used for nonmagnetic material inspection and RFT sensors

used for pipe inspection [20]. Therefore these variations are not of direct relevance to the

work of this thesis and are not discussed in detail.

It is known that this architecture is very sensitive to lift-off (vertical distance between

an EC/PEC sensor and the surface of the test piece) and tilt [1]. Therefore, it is ideally

suited to assess the thickness of flat surfaces by placing the sensor as parallel as possible

to the surface. However, when assessing critical pipes, such surface conditions cannot

be expected due to the nonmagnetic substances such as rust and graphite being present

between the sensor and the ferromagnetic material. As a result, using this architecture for
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Figure 2.3: Cross-sectional view of the typical detector coil based PEC sensor architec-
ture used for pipe thickness assessment (The figure is not drawn to scale).

critical pipe evaluation with the use of existing signal processing and feature extraction

techniques is not straightforward. To address the issue, this thesis proposes the “detector

coil voltage decay rate” as a signal feature relevant to this architecture since it exhibits

desirably reasonable insensitivity to lift-off as shown in the chapters to follow.

2.2.2 Non-Detector Coil Based PEC Sensor Architecture

The non-detector coil based architecture uses magnetic sensors such as SQUIDs, Hall-

effect sensors and magnetoresistive sensors to detect the magnetic field instead of the

detector coil in the previous architecture [1]. This architecture is not commonly used for

ferromagnetic material assessment, however, it has been used on a few occasions with

limited applicability [13, 32, 33]. Most commonly this architecture is used for thickness

estimation [36], defect detection [37] and achieving lift-off invariance [38, 39] in relation
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to nonmagnetic materials. An advantage of this architecture is the use of small magnetic

sensors instead of large detector coils enabling it to achieve higher resolution than the

detector coil based architecture.

Figure 2.4: Cross-sectional view of the typical non-detector coil based PEC sensor
architecture.

A magnetoresistive sensor has been used in [13] to assess carbon steel pipe wall thicknesses

up to 10 mm. Reference [33] has presented a way of using a Hall-effect sensor supported

by a ferrite core to evaluate stainless steel thicknesses up to 5 mm. Using magnetization

to improve the sensitivity of a sensor is proposed in [32] to detect and quantify subsurface

defects in ferromagnetic steels. It is hence evident that when this architecture is used to

assess ferromagnetic materials, it has been mostly applied on low thickness steels. The

objective of this thesis however, is not only to assess steels, but also to assess gray and

ductile cast irons having thicknesses up to 30 mm. Work which suggest the usability of

this architecture on nonlinear and inhomogeneous ferromagnetic materials such as cast

irons having high thicknesses is rare and consequentially this architecture is not preferred

for the work of this thesis.

2.3 PEC Based Ferromagnetic Material Thickness Quantifi-

cation

Since the rationale behind selecting the PEC inspection technique and the detector coil

based architecture for the target application of this thesis have been clarified , this section
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focuses on reviewing previous PEC related work in conductive ferromagnetic material

thickness estimation and highlighting application specific signal noise suppression and

thickness discriminative feature extraction techniques.

2.3.1 Application Specific Noise Suppression Techniques

PEC signals are time varying induced voltages or currents in the detector due to the

net magnetic field resulting from excitation and electromagnetic interaction with the test

piece. Signals resulting from excitations used in practice are usually small in magnitude

and do not exceed the millivolt scale irrespective of the type of detector. Given the small

magnitude of signals, they are highly susceptible to noise [40]. Therefore, appropriate

signal conditioning, noise suppression and amplification are essential to acquire signals in

the quality suitable for extracting discriminative features to perform condition assessment.

Signal conditioning done in hardware is no different from any standard signal acquisition

device as long as minimal distortion is introduced. Amplification and filtering are usually

done before sampling and storing the signals. Operational amplifier based amplification

[41] and active filtering [42] techniques are used as in any common low voltage electronic

system. The thesis [40] has presented the complete design and implementation steps of

a PEC system. In [40], a second order Sallen and Key [43] low pass filter is used and

amplification is done using an instrumentation amplifier [44] before digital sampling. The

hardware signal conditioning methods are not fixed by any means and there is freedom

to use any filtering [42] and amplification [41] mechanism depending on the desired signal

quality expected at the input of the sampling stage, however, minimal distortion is desired.

Digital sampling networks are known to introduce noises which are unique to the sam-

pling circuitry, and therefore software based signal noise suppression is required to further

cleanse the signals [40]. When it comes to software based noise suppression, there are a

few unique techniques which are used on PEC signals [40]. Some tailor made methods for

signals captured using detector coils have been researched and published as well [2, 3].

As in hardware filtering, the desired feature in software based filtering techniques used

on PEC signals is introducing minimal distortion since preserving the original shape of



26 Chapter 2. Review of Related Work

signals is essential to derive relationships between test piece geometry and signal features.

Therefore, software implemented counterparts of commonly used filtering techniques such

as Chebyshev, Butterworth and Bessel [45, 46], are not generally used due to their ten-

dency to introduce distortion. Instead, techniques such as acquiring multiple signals and

averaging, Mean filtering and Gaussian filtering are used [40].

Averaging multiple signals which are synchronized is a useful distortion free noise sup-

pression technique and is used in the digital signal processing stage of the commercial

PEC signal acquisition unit (Fig. 1.1) used in this thesis. Mean and Gaussian filters have

been examined only on signals acquired by means of magnetic sensors (e.g. Hall-effect) as

done in [40] and therefore not used for this work where signals are acquired by means of a

detector coil. On the contrary, the techniques proposed in [2] and [3] are applied explicitly

on detector coil based signals and are more relevant to this thesis.

Reference [2] introduces a noise suppression method which improves the signal to noise

ratio (SNR) up to about 40 dB. Improvement of signal discriminative capability resulted

by filtering can clearly be seen in Fig. 2.5. The signals have been acquired for different

thicknesses of steel using a step wedge Q235 steel plate at a constant lift-off of 20 mm.

Steps included in the noise suppression method are:

1. Recording multiple PEC signals and calculating the averaged PEC signal.

2. Performing double logarithmic transform of the averaged PEC signal (refers to ex-

pressing both signal voltage and time in logarithmic scale).

3. Processing the signal from step(2) by median filtering.

4. Performing an invert signal transformation to Cartesian domain (optional).

As mentioned before, signals of [2] are detector coil based and are very similar to the

signals worked with in this thesis, and recording multiple signals and averaging is done

in the digital signal processing stage of the PEC signal capturing unit used in this thesis.

However, averaging alone is insufficient to obtain desired signal quality. That is why [2]

has proposed using a median filter to further suppress the noise. As seen by the results,

median filtering can be considered to be very effective in suppressing detector coil based
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Figure 2.5: Detector coil based PEC signals processed in [2], acquired on Q235 steel:
(a) Signals before filtering; (b) Signals after filtering

PEC signal noise. However, median filters too may introduce distortion if the filter order

is not properly selected [47] and therefore is not employed for signal processing in this

thesis.
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Reference [3] introduces a distortion free noise suppression technique based on numerical

cumulative integration. Fig. 2.6 shows signals processed in [3] and the signals have been

acquired on different thicknesses of Q235 steel.

The time domain PEC signal (voltage induced in the detector coil) is integrated over time

and an analytical model is fitted by approximating the cumulative integration of noise (av-

erage over time) to zero. Certain estimated analytical model parameters exhibit functional

behavior usable to quantify thickness of ferromagnetic plates. This noise suppression tech-

nique is highly desirable for PEC signal processing since it does not introduce distortion

and therefore was considered incorporable for the work of this thesis. The approach of

approximating average of noise to zero is exploited in this thesis to fit a straight line to

the late stage of the induced detector coil voltage to extract the “detector coil voltage

decay rate” signal feature. Hence, the procedure followed in this thesis to extract the

proposed feature uses the fundamental of approximating average noise to zero as done in

[3]. Advantages and disadvantages of the noise suppression techniques in relation to the

target application of this thesis are summarized in Table 2.1.

2.3.2 Thickness Discriminative Feature Extraction Techniques

Traditional PEC signal features used for metal test piece property and defect quantification

can be classified as: time domain signal features [14, 39], frequency spectrum features

[33, 48, 49], principal components [50, 51] and integral features [52]. Among those works

related to traditional features, [14] is related to ferromagnetic materials and [33] and [48]

are related to evaluating stainless steel thicknesses up to 5 mm. The rest have all been

evaluated on non-ferromagnetic materials with non-detector coil based sensors, therefore,

they are not directly related to the this thesis.

References [33] and [48] use Hall-effect sensors to evaluate thickness of stainless steel by

using features of the power spectral density to discriminate thickness. However, thickness

sensitivity has been evaluated only up to 5 mm. Since the signals are acquired using

Hall-effect sensors and not detector coils, the feature extraction methods are not directly

incorporable with this thesis. Further, the features have not been evaluated on higher

thicknesses and other ferromagnetic magnetic materials such as gray and ductile cast



Chapter 2. Review of Related Work 29

Figure 2.6: Detector coil based PEC signals processed in [3], acquired on Q235 steel:
(a) Signals before processing; (b) Signals after processing
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Table 2.1: Summary of advantages and disadvantages of the application specific signal
noise suppression techniques in relation to the target application of this thesis.

Technique Advantages Disadvantages
Used in
this thesis?

Hardware
filtering
[40]

Useful as the first stage
of filtering.

Requires complex
hardware, likely to
introduce high
distortion if not
properly designed.

Yes
(Embedded
within the
commercial
kit)

Averaging
multiple
signals
[2, 40]

Digitally
implementable,
distortion free.

Requires
synchronization.

Yes
(Embedded
within the
commercial
kit)

Mean
filtering
[40]

Digitally
implementable.

Tested on non-detector
coil based signals, may
introduce distortion if
the window width is not
properly selected

No

Gaussian
filtering
[40]

Digitally
implementable.

Tested on non-detector
coil based signals, may
introduce distortion if
the window width is not
properly selected

No

Median
filtering [2]

Digitally
implementable.

May introduce distor-
tion if the filter order is
not properly selected

No

Analytical
model
fitting [3]

Digitally
implementable,
distortion free.

Minimal, requires de-
termining the analyt-
ical model which de-
scribes the underlying
noise free signal

Yes

irons, which are materials of interest for this thesis. Therefore, the feature extraction

methods proposed in [33] and [48] are not incorporated in this thesis.

The detector coil based architecture is used in [14] with the main purpose of finding an effi-

cient and easy-to-use signal feature for the assessment of ferromagnetic pipe wall thinning.

Analytical modeling for a detector coil based PEC probe placed over an insulated piping

system is performed and its result is verified by experimental test. Two commonly used

time-related features, the peak value and the time-to-peak, are found in the differential

signal obtained by subtracting the test signal from a reference signal. The time-to-peak

is found to be superior to the peak value due to its linear variation with wall thickness.
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Influences of various conditions in practical testing on the PEC signal are investigated. Re-

sults show that the time-to-peak is independent of the insulation thickness and the probe

lift-off. Robustness of time-to-peak to probe configuration is also validated by employ-

ing three probes of different dimensions and structures. To determine the linear range of

time-to-peak with amount of wall thinning, differential signals based on different reference

thicknesses are examined. However, results show that the time-to-peak only keeps linear

for relative wall thinning less than 60%, which is a drawback and therefore this feature

extraction technique is not used in this thesis. Despite that the technique could still be

useful for calibration purposes in periodical in-service inspection of insulated pipelines.

Publications [20] and [32] focus on defect identification in ferromagnetic materials. In [20],

a remote field eddy current sensor (RFT) has been energized by a PEC excitation to detect

axisymmetric surface slot defects on ferromagnetic tubes by examining the variations of

the induced detector coil voltage features. However, since the RFT sensing technique is

used and the fact that the focus is on defect detection, this work cannot be coupled with

this thesis. Using magnetization to improve the sensitivity of the time domain reference

subtracted PEC difference signal features was proposed in [32] to detect and quantify

subsurface defects in ferromagnetic steels. Although the features used in [20] and [32] are

effective on defects, their effectiveness on ferromagnetic material thickness quantification

has not been examined, as a result those feature extraction techniques are not incorporated

in this thesis.

Several analytical methods which are directly related to ferromagnetic material thickness

quantification have been proposed [4, 36, 53]. Such methods are the most closely related

ones to the focus of this thesis. References [36] and [53] follow similar approaches in

modeling Hall-effect sensor readings and PEC difference signals respectively, when used on

non-ferromagnetic materials. In the context of ferromagnetic materials however, sensitivity

of those sensing techniques to thickness have not been evaluated and consequently, those

techniques are not made use of in this thesis.

Recent work [3] and [4] have proposed methods of fitting analytical models for detector

coil based PEC sensor signals. Those publications exhibit the appreciable thickness sensi-

tivity of the induced detector coil voltage to ferromagnetic material thickness. Thickness
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sensitivity up to 25 to 30 mm have been achieved for steel. Having sensitivity up to about

30 mm is greatly desired for critical pipe evaluation. The gray cast iron pipes which are

evaluated in this thesis have maximum thicknesses up to 30 mm [9]. Therefore, the analyt-

ical model for PEC detector coil voltage used in [3] and [4] is exploited in this thesis. The

“detector coil voltage decay rate” signal feature proposed in this thesis is derived starting

from that analytical model.

In [4] where the analytical model was first published, a detector coil based PEC sensor

placed above a conductive ferromagnetic plate is modeled as an infinite set of mutually

coupled coils. That analysis yields an analytical model in the form of an infinite summation

of exponentials, to the induced detector coil voltage (PEC signal). This analytical model

is then fitted to experimentally captured PEC signals by estimating model parameters

[3, 4]. Some model parameters exhibit monotonic variation with thickness up to about 30

mm. It is suggested that such model parameters may be used for in situ ferromagnetic

material condition assessment purposes such as critical pipe assessment. However, [3] and

[4] have not developed and validated complete frameworks on in situ pipes. Therefore, the

objective of this thesis has not been accomplished in those works. This thesis hence builds

upon the theoretical models used in [3] and [4] to propose a novel PEC signal feature which

shows some low dependence to lift-off, sensor shape, and size; and use the feature to learn

a thickness-feature function, and use the learned function to estimate wall thickness of in

situ critical water pipes.

A similar analytical model for the detector coil based PEC architecture has been proposed

in [54] and it has been used to simultaneously quantify material properties and thickness of

carbon steel by fitting to PEC data and estimating model parameters [35]. However, that

model is defined for concentric circular sensors, hence cannot be used with non-circular sen-

sors; and that approach requires the lift-off to be accurately known. In critical pipe related

applications, pipe surfaces are not always clean and the healthy ferromagnetic material is

often covered by corrosion and graphitization layers. Therefore, knowing an accurate mea-

sure of lift-off is not always possible. Therefore, although the model parameter estimation

methods do perform well in thickness assessment of flat plates at constant and supposedly

known lift-offs, they do comprise vulnerabilities in relation to the particular application of

in situ critical pipe evaluation. That is why the “detector coil voltage decay rate” feature
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introduced in this thesis is required since it demonstrates low dependence on lift-off, and

some other factors which makes the feature immune to practical challenges encountered

during in situ critical pipe wall thickness assessment. Consequentially, this thesis brings

novelty by introducing a PEC signal feature having a significant lift-off invariance which is

suitable for in situ critical pipe assessment. Aspects associated with previously proposed

feature extraction techniques which limit their applicability for the work of this thesis are

summarized in Table 2.2.

Table 2.2: Aspects associated with previously proposed feature extraction techniques
which limit their applicability for the work of this thesis.

References Technique Limiting Aspects

[33, 48]
Power spectral density
features.

Analysis done only on
stainless steel, thickness
sensitivity reported up to 5
mm, study based on
Hall-effect sensors.

[14]
Features of the time domain
difference signal.

Limited applicability,
linearity observed for relative
wall thinning less than 60%.

[20, 32]
Features of the detector coil
voltage.

Focused on defect identifica-
tion, possibility of thickness
discrimination not reported.

[36, 53]
Analytical modeling of Hall
device readings and
difference signals.

Tested only on non-
ferromagnetic materials

[3, 4, 35, 54]
Analytical model parameter
estimation.

Lift-off insensitivity not
demonstrated, have not
been evaluated on in situ
ferromagnetic pipes.

2.4 Effect of PEC Sensor Geometry on Measurement Capa-

bilities

Resolution of the detector coil based PEC sensor architecture is limited by the size of

the detector coil, and in general, the size of the sensor. In simple terms, larger the

sensor, larger the region impacted by the magnetic field will be, and consequently, the

interpreted condition will be an averaged representation of a large region of the test piece

[34]. Though the resolution can be increased by reducing the size, that limits the spread
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of the magnetic field and results in not being able to assess thick material since the eddy

current penetration depth will be lower. Theoretically, it can be argued that increasing the

strength of excitation will compromise the reduction of magnetic field spread caused by

the reduction of size. But then again, the amount of increase allowable to the excitation

is limited by the available electronic circuitry and related hardware. Therefore, for a

given strength of excitation, achieving deep penetration can usually be done at the cost of

sacrificing resolution [40].

Studies on the effect of PEC sensor geometry on measurement capabilities are rare. The

doctoral thesis [40] presents a fairly comprehensive FEA based numerical study on the

influence of shielding, including and excluding a ferrite core and the size of the excitation

coil on eddy current penetration and lateral spread caused by a Hall-effect based PEC

sensor. There is no exact analytical technique to determine the most effective design and

sensor size [40]. The study has found that shielding has a tendency to increase penetration

depth while reducing the lateral spread, which are desirable characteristics. Including a

core has the tendency to further reduce the lateral spread which is desirable again, but

that will also reduce the penetration depth which is undesired. In addition, the influence

of the geometry of the excitation coil has also been studied. The findings are:

1. The larger the internal radius, the deeper the penetration and the larger the lateral

spread of eddy currents.

2. The larger the outer radius, the deeper the penetration and the larger the lateral

spread of eddy currents.

3. The smaller the height, the deeper the penetration and the larger the lateral spread

of eddy currents.

Though [40] has presented important knowledge on the effect of the excitation coil geom-

etry on the spread of eddy currents, the study is limited to non-ferromagnetic materials.

Further, the effect of sensor geometry on the sensitivity of thickness discriminative signal

features based on the detector coil architecture has not been studied.

Since a study on ferromagnetic materials has not been done in [40], this thesis brings forth

a detailed numerical study (using FEA) to aid understanding the influence of detector
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coil based sensor geometry on the thickness discriminative capability of the “detector coil

voltage decay rate” signal feature. The objective is to find how the sensor resolution can

be increased so that the detection of fine and isolated flaws on ferromagnetic materials

becomes viable.

2.5 Conclusions

This chapter reviewed the various EC inspection techniques and clarified the necessity

of the PEC technique for geometric condition assessment of conductive ferromagnetic

materials. Various PEC sensor architectures were then reviewed and the use of the detector

coil based architecture for the target application of this thesis was justified. Application

specific signal conditioning and noise suppression techniques were reviewed while discussing

the importance of distortion free signal processing. The distortion free noise suppression

methods of fitting analytical models to noisy signals by approximating the average noise

to be zero was identified as the method suitable for the target application of this thesis.

Existing ferromagnetic material thickness discriminative feature extraction techniques were

reviewed eventually. The fact that the influence of lift-off on proposed features not being

studied and quantified was identified as a limitation in the usability of the available feature

extraction techniques in complex scenarios like critical pipe evaluation. Therefore, the

requirement of the novel signal feature introduced in this thesis is warranted. Finally,

existing knowledge on the influence of sensor geometry on measurement capabilities was

reviewed. Previous studies were found to be limited to effects on eddy current penetration

depth and lateral flow in non-ferromagnetic materials. Therefore, room for analyzing

the impact on the sensitivity of thickness discriminative signal features for ferromagnetic

materials and the effect of sensor geometry on measurement was identified.





Chapter 3

Detector Coil Voltage Decay Rate

as a Thickness Discriminative

PEC Signal Feature

This chapter introduces the detector coil voltage decay rate as a thickness discriminative

PEC signal feature suitable for condition assessment of conductive ferromagnetic materials.

Analytical derivation of a parametric function which maps the feature value to thickness

is presented. Functional behavior between thickness and the feature is demonstrated for

pipe materials using decay rate values extracted from PEC signals experimentally obtained

using calibration blocks. Some unique low dependencies associated with the decay rate

feature are identified and experimentally verified. These low dependencies make the fea-

ture immune to certain practical challenges encountered during in situ application such as

having to investigate via non conducting and non magnetic coatings and undesired lift-off

being present in the form of irremovable dirt deposits on pipe surfaces. The low depen-

dencies are exploited in the work of Chapter 5. Since the target application is critical pipe

evaluation, and the fact that pipe walls are curved unlike calibration blocks, the effect of

test piece curvature on the decay rate feature is studied using FEA. The study presented

within this chapter is tailored for the PEC sensor used in this thesis and gray cast iron

as the material being tested. However, the analysis method generalizes and can be used

37
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to evaluate any PEC sensor architecture on any material by incorporating required sensor

and material properties. On confirming the feature’s validity on large diameter pipe struc-

tures, the analytically derived thickness-feature function is used to estimate wall thickness

of in situ critical pipes. Finally, performance of the decay rate feature when used for in

situ critical pipe NDE via the analytical approach is evaluated. Requirement of calibration

blocks is identified as a limitation in this NDE approach. Therefore, a method exploiting

ultrasounds is introduced to directly transform feature values to thickness without the use

of calibration blocks. The chapter concludes by discussing the performance, nonlinear-

ities and limitations associated with the analytical approach for critical pipe NDE and

characterizes sensor noise to be used in the following chapter.

3.1 Analytical Derivation of the Functional Behavior be-

tween Thickness and the Decay Rate Feature

A detector coil based PEC sensor placed above a conducting test piece, when not affected

by external sources of noise, can be modeled in circuit theory as a setup composed of

infinitely many mutually coupled coils [4]. Fig. 3.1 shows how [4] models a circular PEC

sensor placed above a conducting ferromagnetic plate as a set of mutually coupled coils.

Figure 3.1: Mutually coupled coil architecture for PEC sensor modeling: (a) Mutually
coupled coil model; (b) equivalent circuit model for pulsed eddy current testing system.

(adapted from [4]).

As done in [4], by applying Kirchhoff’s laws to every current carrying coil in the model

considering coil resistances (denoted by R terms), self inductances (denoted by L terms)
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Figure 3.2: Simultaneous differential equations governing the mutually coupled coil
model (adapted from [4]).

and mutual inductances (denoted by M terms), the set of simultaneously solvable differ-

ential equations shown in Fig.3.2 can be derived for a pulsed current excitation Au(t),

where A denotes amplitude and u(t) denotes the Heaviside step function. Solving the set

of equations yields an expression consisting of an infinite summation of exponents and an

infinite summation of sinusoidal oscillations for the induced detector coil voltage. Consid-

ering the practical circumstance where the signal is conditioned by amplifiers and filters,

the oscillations can be ignored and the analytical model in Eq. 3.1 which represents the

decaying part of a PEC induced detector coil voltage can be derived [4].

V (t) =
∞∑
i=1

bi exp (−cit) (3.1)

Terms bi and ci in Eq. 3.1 are constants which contain the properties of the sensor setup

and the test piece. The condition ci > 0 holds for all i [4]. By means of linear and

homogeneous representation of magnetic permeability µ and electrical conductivity σ, the

diffusion time constant of eddy currents induced in a ferromagnetic plate of thickness d is

defined as µσd2/π2 [30]. Steps for deriving this expression for the time constant is provided

in Appendix D. This is the largest time constant appearing in an exponential term within

the infinite summation of Eq. 3.1, in return the corresponding exponential term becomes

dominant in the late stage of the signal (the stage of the signal immediately before the

eddy currents decay towards zero) [30]. In this thesis, the dominant term is isolated and
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V (t) is rewritten as

V (t) = b1 exp

(
−π2t
µσd2

)
+
∞∑
i=2

bi exp(−cit). (3.2)

The intention is to obtain the time derivative of V (t) to express the decay rate. Before

differentiating, V (t) is expressed in natural logarithmic form in this thesis.

ln[V (t)] = ln

[
b1 exp

(
−π2t
µσd2

)
+
∞∑
i=2

bi exp(−cit)

]
(3.3)

This logarithmic representation is necessary to obtain a direct proportionality between the

thickness in the form of 1/d2 and the decay rate in addition to the exponential relationship

which already exists. The later stage of a noise free PEC signal in the form of V (t)

becomes a positive valued decreasing convex function of time which can be characterized

by a summation of exponential decays as Eq. 3.1 suggests. If the logarithm of this region

is considered, ln[V (t)] also becomes a decreasing function, typically a convex one. Though

decrease of ln[V (t)] is obvious, confirming convexity or concavity is not straightforward,

however to check that in theory the second derivative of lnV [t] should be considered. V ′(t)

and V ′′(t) denote the first and second time derivatives of V (t) respectively.

d2 ln[V (t)]

dt2
=
V (t)V ′′(t)− [V ′(t)]2

[V (t)]2
(3.4)

According to principles of convex functions [55–57], a positive second derivative confirms

convexity and a negative one ensures concavity. Therefore,

V (t)V ′′(t) > [V ′(t)]2 (3.5)

is the sole condition which needs to be satisfied for ln[V (t)] to be convex for a prescribed

period of time. Parameters of Eq. 3.1 can be estimated as done in [4] for a given PEC

signal and be used to check the condition in Eq. 3.5 to verify convexity. Alternatively, this

can easily be identified by studying signals plotted against time as in Fig. 3.5. ln[V (t)]

for materials considered in this paper are convex. Since this behavior is common to many
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ferromagnetic and non-ferromagnetic materials, convexity in the late stages of ln[V (t)]

is usually the norm. However, existence of concavity is not impossible although rare.

Differentiating Eq. 3.3 yields Eq. 3.6 which is a negative valued function since ln[V (t)] is

decreasing with time in its decaying part.

d ln[V (t)]

dt
= −

b1π
2

µσd2
exp

(
−π2t
µσd2

)
+

∞∑
i=2

bici exp(−cit)

b1 exp

(
−π2t
µσd2

)
+
∞∑
i=2

bi exp(−cit)
. (3.6)

By grouping exponential terms, the absolute value of the decay rate can be expressed as

∣∣∣∣d ln[V (t)]

dt

∣∣∣∣ =
π2

µσd2


1 +

∞∑
i=2

bi
b1

[
ci

π2/(µσd2)

]
exp

[(
π2

µσd2
− ci

)
t

]
1 +

∞∑
i=2

bi
b1

exp

[(
π2

µσd2
− ci

)
t

]
 . (3.7)

Since µσd2/π2 is the largest time constant and ci > π2/(µσd2) holds for all i, we express

the main relationship used for our work, the reciprocal of the absolute value of the decay

rate as

β(t) =

∣∣∣∣ dt

d ln[V (t)]

∣∣∣∣ =
µσd2

π2


1 +

∞∑
i=2

bi
b1

exp

[
−
(
ci −

π2

µσd2

)
t

]
1 +

∞∑
i=2

bi
b1

[
ci

π2/(µσd2)

]
exp

[
−
(
ci −

π2

µσd2

)
t

]
 . (3.8)

The absolute value of the decay rate thus characterizes the whole decaying part of a PEC

induced detector coil voltage in the absence of noise. Since the relationship in Eq. 3.8 is

composed of exponential terms, it is differentiable with respect to time. Given the typical

convex decrease of the noise free logarithmic PEC signal (Fig. 3.5 shows noisy experimental

signals), its derivative will be a negative valued increasing function of time. Therefore,

the absolute decay rate will be a positive valued decreasing function. This causes β(t),

the reciprocal of the absolute decay rate to be a positive valued monotonically increasing
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function of time. It can thus be concluded that for a given thickness d of a material having

properties µ and σ, the relationship for β(t) is a monotonically increasing function of time

which reaches a maximum of µσd2/π2 as t reaches infinity for materials producing convex

ln[V (t)] signals. If ln[V (t)] becomes a concave decreasing function by any chance for a rare

material, β(t) will be a monotonically decreasing function which will reach a minimum of

µσd2/π2. This is a useful attribute of the decay rate when used for thickness quantification

as demonstrated later in the chapter.

Monotonic increase for the case of this thesis suggests that β(∞) =
µσd2

π2
(by applying t→

∞ in Eq. 3.8), will be an ideal signal feature for thickness discrimination since it is directly

proportional to the square of thickness. Under practical circumstances t = ∞ cannot be

achieved since the signal will enter noise bounds of sensor sampling circuitry. Obtaining

decay rates at the late stage (just before the signals enter the noise bound) is possible in

practical applications. Therefore, the decay rate at late stages can be characterized by

the approximation β(t) ≈ µσd2

π2
. We therefore use βmax, the maximum achievable value

of β(t) of convex ln[V (t)] before the signals enter the noise margin as the discriminative

signal feature for thickness quantification. If a concave ln[V (t)] is encountered, the feature

will be the same, but should be defined as the minimum achievable value of β(t), i.e.,

βmin ≈
µσd2

π2
.

Since the derived relationship was in the form of βmax ≈
µσd2

π2
, in order to obtain direct

proportionality between lnβmax and ln d, it was opted to further model the relationship as

lnβmax ≈ 2 ln d + c where c ≈ ln
(µσ
π2

)
is a constant. This approach allows to generalize

the relationship by introducing a scalar offset c that encompasses the material properties

µ and σ. Thus, the decay rate feature and the linear form of the thickness-feature function

introduced in thesis can be expressed respectively as

βmax ≈
µσd2

π2
(3.9)

and

lnβmax ≈ 2 ln d+ c (3.10)
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where

c ≈ ln
(µσ
π2

)
. (3.11)

To apply the thickness-feature function to perform condition assessment in the form of

estimating thickness, c is the only parameter that requires to be estimated from material

specimens. The parameter c for a particular material can be in practice estimated in

several different ways. Firstly, particles of the specimen can be fed through SQUID or

PPMS devices to measure electrical and magnetic properties. Alternatively, c can be

estimated from a known thicknesses with a minimum of one calibration signal. Estimating

c is further discussed in the remainder of this chapter.

3.2 Experimental Validation of the Behavior of the Decay

Rate Feature

This section presents the experimental procedures followed and the validation of the linear

thickness-feature function and the monotonic variation of the decay rate with time.

3.2.1 PEC Sensing Unit Used in this Thesis

All experiments including on site NDE related to this thesis were performed using the

HSK 300 commercial PEC signal capturing unit provided by Rock Solid Group c©. Fig. 3.3

shows the unit and available sensors.

PEC sensors from different sizes are available as shown in Fig. 3.3 (b). However, under

obligatory requirements the 50 mm PEC sensor marked in Fig. 3.3 (b) was incorporated

with this research. The 50 mm sensor is composed of a single exciter coil and a single

detector coil. The exciter coil is rectangular in shape with a width of 50 mm and the de-

tector coil takes the shape of a square whose side length is 50 mm. Coils are concentric, air

cored and are made of copper. Subject to a nondisclosure agreement, publishing sensitive

information about the sensor such as number of coil turns, wire radius and impedances is

not possible. Such information is not critically important for this work and the technical
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contributions of this thesis is general for the detector coil based PEC sensor architecture

irrespective of fine details.

Sensor excitation and capturing detected signals is done by the signal capturing unit.

The sensor is excited by a periodic voltage pulse. Pulses generally take the shape of a

Heaviside step function and it was agreed to not to publicize sensitive information such as

pulse amplitude, rise time, duty ratio and frequency. All rising and falling edges of pulses

induce time varying detector coil signals making the operating principle of this system

no different from that of any other PEC setup. Detector coil signals are amplified and

interfaced with a digital sampling network. Multiple signals are captured by the sampling

network and are averaged to reduce noise. Averaged signals are sent to a PC via a USB

interface to be visualized and saved. The typical shape of an averaged signal (detector coil

voltage) produced by the unit is shown in Fig. 3.4.

3.2.2 Obtaining PEC Signals from Calibration Blocks made of Critical

Pipe Materials

Experimental validation was initially done on calibration blocks made of ferromagnetic

pipe materials where the signal acquisition was done in a laboratory setting. Calibration

blocks are simply cuboid shapes manufactured to a fixed length and width but different

Figure 3.3: PEC sensing unit used for the work of this thesis: (a) HSK 300 commercial
PEC signal capturing unit; (b) 50 mm sensor used for this work (adapted from [5]).
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heights (thicknesses). It was found through numerical simulations that edge effect asso-

ciated with PEC measurements [1] can be minimized by placing the sensor at the center

of calibration blocks which are significantly larger than the sensor. With respect to the

particular sensor used in this work, simulations showed minimal edge effect when calibra-

tion block length and width were made equal to three times the sensor length and width

respectively. Though calibration data from a single ferromagnetic material is sufficient

to model the thickness-feature relationship, for completeness and to validate the general-

ization of the model, calibration data were obtained on gray cast iron, ductile cast iron

and mild steel calibration blocks. The detailed thickness breakdown of all the blocks from

which calibration data were acquired is provided in Table 3.1. Despite perfect linearity

suggested by theory in Section 3.1, it should be noted that linearity is lost at very low

and very high thicknesses due to practical limitations associated with the penetration ca-

pability of the sensor. Reasons for these nonlinearities are described later in Section. 3.6.

Due to theses nonlinearities, only the thicknesses indicated in black in Table 3.1 are used

to model the linear thickness-feature function while the low and high thicknesses marked

in red are avoided. Three raw PEC measurements were taken on each block to capture

system noise. Commonly encountered critical pipe wall thicknesses are available [58–60].

Figure 3.4: Typical shape of a PEC signal produced by the HSK 300 unit (Captured
on a 30 mm thick gray cast iron calibration block).
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Table 3.1: Ferromagnetic material calibration block thicknesses.

Material Thicknesses (mm)

Mild Steel 1, 2, 3, 4, ..., 12, 13, 14, 15

Ductile Cast Iron 1, 2, 3, 5, 6, 8, ..., 18, 20, 22, 24, 27

Gray Cast Iron 1, 2, 3, 4, ..., 10, 12, ..., 22, 25, 30, 35

Figure 3.5: Decaying part of raw PEC signals for Mild Steel

Fig. 3.5 shows the set of PEC signals obtained for mild steel with the considered noise

margin of V (t) = 1 mV marked. The y-axis of Fig. 3.5 represents lnV (t) instead of V (t)

as in Fig. 3.4 since the decay rate feature proposed in this chapter is incorporated with

the logarithmic scale.

3.2.3 Experimental Validation of β(t) Monotonicity

Presented in Fig. 3.6 is the time variation of mild steel related β(t) computed using the

signals in Fig. 3.5. Since the signals are sampled for a period within the millisecond range

and the sampling interval of the signal acquisition setup is 10 µs, there are a few thousand

samples for a signal. Time variation of β(t) for each signal was calculated by fitting a

straight line to a moving window containing 100 samples centered at each sample of the

signal before entering the noise margin. Least square fitting of straight lines was performed

since it encompasses the effective noise suppression technique of zero approximation of

noise which was discussed in Subsection 2.3.1 and in [3]. It is evident in Fig. 3.6, that
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computing decay rates has been stopped at different times for different thicknesses. These

stopping times correspond to the instances in Fig. 3.5 at which the signals cross the noise

margin.

Theoretical observations made in Section 3.1 regarding the behavior of β(t) through Eq. 3.8

can be summarized into two main properties.

• β(t) monotonically increases with t for a given d of a particular material and asymp-

totically reaches a maximum as t tends towards ∞.

• though t = ∞ is not achievable, β(t) at later stages will be sensitive to d and will

monotonically increase with d2 for a given material ( β(t) ≈ µσd2

π2
).

Curves in Fig. 3.6 can be considered as experimental evidence which support the valid-

ity of the above properties. The monotonic increase of β(t) with time is evident for all

the thicknesses (prior to entering the noise region at late stages of signal). The behavior

suggests that the derivative of β(t) is positive and is decreasing over time which indicates

that β(t) tends to an asymptotic maximum as t becomes large. These experimental ob-

servations are in agreement with the theoretically identified property of the relationship.

Fig. 3.6 also shows that βmax, the feature used for thickness characterization in this work,

Figure 3.6: Behavior of decay rate β against time for different thicknesses of Mild Steel.



48
Chapter 3. Detector Coil Voltage Decay Rate as a Thickness Discriminative PEC Signal

Feature

is monotonically increasing with d. This validates the second property, βmax directly rep-

resents β(t) at late stages. Behaviors that are quantitatively different, but qualitatively

identical to those of Fig. 3.5 and 3.6 were observed for ductile and gray cast irons as well.

3.2.4 Extracting βmax from Experimental PEC Signals

Derivations in Section 3.1 introduced the thickness discriminative PEC signal feature

lim
t→∞

β(t) = βmax ≈ µσd2

π2
. Hence, β(t) which represents the gradient of ln[V (t)], becomes

time invariant as t becomes large. Consequentially, ln[V (t)] should behave as a straight

line. This behavior can be seen in Fig. 3.5 with the presence of noise when ln[V (t)] is less

than about 2 for the whole mild steel thickness range. A similar behavior was observed for

the other two critical pipe materials gray and ductile cast iron as well as shown in Fig. 3.7

and 3.8. Theoretically, this behavior should prevail until t becomes very large (i.e., ∞).

However, in practice, as the signals enter the noise margin of the sampling circuitry, the

time within which a signal remains sensible is limited.

Figure 3.7: Decaying part of raw PEC signals for Ductile Cast Iron.

It can be observed from Fig. 3.5 that the noise contamination increases significantly when

ln[V (t)] < 0. That lured to the selection of ln[V (t)] = 0 as the noise margin threshold

for the sensor used in this work given the behavior was common for all three critical pipe
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Figure 3.8: Decaying part of raw PEC signals for Gray Cast Iron.

materials. Therefore, extraction of the βmax feature for all critical pipe materials was done

in this thesis by making use of the linear region 0 < ln[V (t)] < 2 which was common to

all pipe materials. When coming to practical application, it is infeasible to theoretically

impose a global quantitative fixation on the region adequate to extract the feature. In

practice, this region will vary for different materials and sensors, and should be identified

by studying experimentally captured or numerically simulated signals. For the particular

sensor used in this thesis, 0 < ln[V (t)] < 2 is a reasonable region for critical pipe materials.

Although the region 0 < ln[V (t)] < 2 is selected for this work as an effective range for

feature extraction, selecting ln[V (t)] = 0 and ln[V (t)] = 2 as the noisy and upper margins

is by no means compulsory; signals can be visually inspected and a linear region where β(t)

remains fairly constant as in Fig. 3.9 for the whole, or a great extent of the full thickness

range that will be measured, can be selected. In quantitative sense with respect to this

work, a region of two units in the log voltage axis having a minimal absolute mean of the

second derivative can be used as an appropriate region. A range of two units in the log

voltage scale is selected to encompass an adequate amount of data points to fit a straight

line. The reduction of β(t) very late in the signals in both Fig. 3.6 and 3.9 after remaining

constant is due to noise as signals enter the noisy region. A slight variation in gradient

that could occur as a signal enters the noise margin is shown in Fig. 3.10.

Since V (t) expressed in Section 3.1 is the PEC signal in the absence of noise, an experi-

mentally captured signal Ve(t) should be expressed as V (t) + n(t) where n(t) is the time

varying noise. To extract the decay rate feature (β(t) =

∣∣∣∣
dt

d ln[V (t)]

∣∣∣∣) from experimental
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Figure 3.9: Behavior of β(t) against ln[V (t)] of Mild Steel thicknesses from 1 mm to 12
mm, linearity observable between ln[V (t)] = 0 and ln[V (t)] = 2.

Figure 3.10: Slight change in gradient as a signal enters the noise margin.

signals, the ln[V (t)] component should be isolated. This can be done as shown below,

Ve(t) = V (t) + n(t)

ln [Ve(t)] = ln [V (t) + n(t)]

ln [Ve(t)] = ln [V (t)] + ln

[
1 +

n(t)

V (t)

]

ln [Ve(t)] = ln [V (t)] + εn(t), (3.12)
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where εn(t) = ln

[
1 +

n(t)

V (t)

]
≈ 0 since n(t) << V (t) before the experimental signal enters

the noise margin (i.e., ln[Ve(t)] = 0).

As mentioned before, ln[V (t)] varies as a straight line for the region of interest 0 <

ln[V (t)] < 2 for PEC signals captured on a pipe material. The fundamental reason for this

can be recalled as β(t) =

∣∣∣∣ dt

d ln[V (t)]

∣∣∣∣ ≈ µσd2

π2
being constant, or time invariant at later

stages of the signal (i.e., t becomes large) for a given thickness of a particular material,

and hence the signal taken in the form of ln[V (t)] behaving as a straight line. There-

fore, the ln[V (t)] component of an experimental signal can be expressed as a linear model

ln[V (t)] = mt + k where m is the gradient and k is the intercept. The required βmax

feature is contained in m since βmax is a representation of the gradient of ln[V (t)] at later

stages (i.e., just before signals enter the noise margin). By estimating m, βmax can be

computed as βmax = − 1

|m|
.

Estimating m can be done by expressing ln[Ve(t)] with the aid of the linear model as

ln[Ve(t)] = mt+ k + εn(t) and applying the principle followed for noise suppression in [3].

As discussed in Subsection 2.3.1, [3] suggests that a distortion free noiseless signal can be

obtained from noisy experimental signals by approximating the average of noise to zero.

If this fundamental is applied to the noisy model ln[Ve(t)] = mt+ k+ εn(t) to estimate m

and k by minimizing the power of noise, that simply becomes a case of fitting a straight

line to noisy data using linear least squares. Therefore, m for an experimental signal can

be estimated using the matrix M = (ATA)−1ATV [61] where,

M =
[
m k

]T
V =

[
ln[Ve(t1)] ln[Ve(t2)] . . . ln[Ve(tn)]

]T
and

A =

t1 t2 . . . tn

1 1 . . . 1

T

for n being the number of samples captured by the sampling network within the range

0 < ln[Ve(t)] < 2. A linear model fitted to the range 0 < ln[Ve(t)] < 2 of a noisy signal
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captured on gray cast iron (thickness = 14 mm) is shown in Fig. 3.11. Corresponding

feature value is βmax = 1/374.42 = 0.00267.

Figure 3.11: A fitted linear model to a noisy signal captured on gray cast iron.

3.2.5 Experimental Validation of the Existence of the Linear Thickness-

Feature Function

Existence of the thickness-feature function was experimentally validated after capturing

PEC signals on calibration block thicknesses given in Table 3.1 and extracting the βmax

feature following the method presented in Subsection 3.2.4. To achieve linearity, the

function was modeled in the form of lnβmax = 2 ln d + c where c = ln
µσ

π2
as elaborated

in Section 3.1. Fig. 3.12 resulted when lnβmax values were plotted against ln d values for

all measurements taken on all three pipe materials. Three readings were obtained on each

thickness of each material to characterize sensor noise and lnβmax from all those readings

are shown in Fig. 3.12. Noise in this case is partially caused by manual errors resulting

from unintentional sensor movement including lift-off and tilt occurring while scanning. In

addition to that, the whole sensor setup does not have electromagnetic shielding making

the signal susceptible to noise induced by external electromagnetic sources including power

lines. Random noise including quantization errors is also introduced by the signal sampling

circuitry. Due to the logarithmic scale, the noise appears to be minimal in Fig. 3.12.
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However, noise is more visible if βmax itself is considered and a noise characterization for

gray cast iron is done in Section 3.7 in order to be used in Chapter 4 for numerical sensor

modeling.

Figure 3.12: Linear relationship between lnβmax and ln d for different ferromagnetic
materials.

Linearity is observable in Fig. 3.12 for all three critical pipe materials. Hence this can be

taken as experimental evidence of the thickness-feature relationship derived in Section 3.1.

Once calibration signals are available, c is the sole parameter which is required to be

estimated to use the lnβmax = 2 ln d + c model to estimate unknown thicknesses. c for a

particular material can simply be estimated by taking the mean of lnβmax − 2 ln d values

resulting from known calibration thicknesses. Availability of multiple calibration signals

will help in capturing effects of noise, but estimation may be done with a minimum of

one calibration signal taken on a known thickness. The procedure followed for model

estimation in this chapter is explained in Subsection 3.4.1.

Table 3.2 shows the estimated c values for all three pipe materials along with Root Mean

Square (RMS) errors of the fitted straight lines. Estimation of c provides the additional

capability of estimating the µσ multiplication of a material. This can be considered ad-

vantageous since a limited but useful indication of electromagnetic properties of a material

can be derived in the form of µσ from this method. It can be seen that µσ values increase

in the respective order of gray cast iron, ductile cast iron and mild steel. This observation

aligns with the fact that the iron content of those materials increasing sequentially [15].
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Therefore, useful conclusions such as the conductivity and permeability of those materials

increasing sequentially can be made. Further, capability of estimating µσ will be helpful

when the requirement for material identification prevails. For instance, if there are two

aged pipes laid nearly a century ago and their materials are unknown, simply quantify-

ing c values of the two pipes with the aid of calibration signals performed on machined

test sections having known thickness, will enable verifying their materials. The proposed

thickness-feature relationship is thus useful for both thickness quantification and material

property identification.

Table 3.2: Parameters of fitted straight lines for lnβmax vs ln d variation of different
materials.

Material c RMS Error µσ

Gray Cast Iron 2.7473 0.1109 153.973

Ductile Cast Iron 3.7143 0.09819 404.940

Mild Steel 4.6330 0.1324 1014.829

3.2.6 Sensitivity Analysis of βmax

Since the βmax ≈
µσd2

π2
approximation for the feature is only dependent on thickness

and material properties, the low dependencies listed below can be hypothesized given

sufficient penetration capability prevails. In theory, if βmax is obtained at t = ∞, these

low dependencies could be considered as independences since lim
t→∞

β(t) =
µσd2

π2
according

to Eq. 3.8. However, achieving t = ∞ is not possible in practice and βmax is obtained

at a finite time where β(t) exhibits a constant gradient. It could be observed through

numerical simulations that the variation of the gradient is minimal at the time period

succeeding the interval where βmax is captured from experimental signals. Therefore,

the value captured from the constant gradient region of experimental signals before they

enter the noise margin can be considered as a close approximation to the theoretical value

occurring at t =∞. For example, values in Table 5.2 appearing later in the thesis can be

considered as evidence supporting the above statement since they result from an exercise

which compares simulated βmax values captured at a finite time against theoretical values

(calculated as βmax =
µσd2

π2
) occurring at t =∞. Considering the practical case however,
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theoretical independences occurring at t =∞ are considered as practical low dependencies

(i.e., variation of 15% or less with respect to a reference value of βmax acquired at 0 mm

lift-off) in this subsection and are listed below.

1. When there is sufficient penetration capability, βmax is lowly dependent on sensor

lift-off.

2. When there is sufficient penetration capability, βmax is lowly dependent on sensor

size.

3. When there is sufficient penetration capability, βmax is lowly dependent on sensor

shape.

Low dependence on lift-off and sensor size were experimentally verified using available

rectangular sensors. Low dependence on shape was verified numerically and is discussed

in Chapter 5. These low dependencies proved to be useful for the work of Chapter 5 and

are exploited in a framework proposed to concurrently infer thickness and lift-off.

3.2.6.1 Low Dependence on Sensor Lift-off

According to the approximation βmax ≈
µσd2

π2
, the feature exhibiting low dependence

(low sensitivity) to sensor lift-off was hypothesized given the prevalence of sufficient pen-

etration capability. This hypothesis was experimentally tested by capturing βmax values

on calibration blocks using the rectangular sensor by varying lift-off by increments of 2

mm. The result in Fig. 3.13 was observed and the zoomed views of low (5 to 12 mm) and

high (14 to 25 mm) thicknesses are provided in Fig. 3.14 and 3.15 respectively. As per

the many quantified pipe wall thickness maps provided in Appendices A and B, it can be

concluded that encountering thicknesses of 30 mm or more on aged in situ gray cast iron

critical pipe walls is extremely rare. The mean of maximum estimated thickness values

across all gray cast iron pipe segments examined within this thesis was approximately 26

mm. Therefore the effect of lift-off was not tested beyond the thickness of 25 mm from

available calibration blocks.
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Figure 3.13: Low dependence on sensor lift-off.

Figure 3.14: Low dependence on sensor lift-off (Low Thicknesses).
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Figure 3.15: Low dependence on sensor lift-off (High Thicknesses).

A considerable degree of low sensitivity to lift-off can be observed in Fig. 3.13. Low

sensitivity in this case is quantitatively defined to be less than 15% variation of βmax with

respect to the value at 0 mm lift-off for a particular thickness. According to Fig. 3.14,

a great degree of invariance (i.e., less that 5% variation) can be observed for thicknesses

8 mm and less. Slight variation (i.e., 5 to 15% variation) can be observed for 9 mm

to 12 mm at higher lift-offs. Lift-off dependence is greater (i.e., variation greater than

15%) for higher thicknesses as can be seen from Fig. 3.15 and for a selected thickness,

the dependence increases with lift-off. These observations can be explained with the

light of eddy current penetration capability. For a given excitation, a PEC sensor should

have a fixed eddy current penetration depth for a given material at 0 mm lift-off. Since

the excitation magnetic fields remain constant depending on the fixed excitation, the

field strengths reaching into the material should decrease as the lift-off increases causing

reduction in eddy current penetration depth withing the material. If the sensor is designed

to marginally achieve maximum penetration depth at 0 mm lift-off for higher thicknesses,

effect of lift-off will impact high thickness βmax values since the reduction of penetration

depth due to lift-off in those thicknesses is obvious. On the contrary, feature values from
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lower thicknesses do not have such a significant effect since magnetic fields may still be

sufficient despite lift-off to achieve full penetration into the low thickness which results in

almost perfect lift-off invariance for a larger lift-off range.

Observations from the above experiment confirm that βmax is lowly dependent on lift-

off given the prevalence of sufficient penetration capability. However, if the excitation

marginally achieves full penetration in higher thicknesses at 0 mm lift-off, the lift-off effect

on high thickness βmax values will be more prominent since lift-off directly reduces the

distance which the excitation field can penetrate into thick material substrates. If a certain

PEC sensor’s excitation strength is fixed, similar to the case encountered in this work, the

excitation’s penetration capability can easily be tested through simulations similar to those

done in Chapters 4 and 5. Alternatively, enabling a variable excitation in hardware is a

greatly acceptable practical solution to achieve greater penetration capability and lift-off

invariance.

Though the βmax feature experiences low dependence on lift-off, the actual PEC signal

for a fixed thickness varies with lift-off as shown in Fig. 3.16. Decaying part of the signal

exhibits a leftward shift with lift-off increase implicating a signal attenuation attributed

to reduction of excitation magnetic field strength penetrating the material caused by the

increase of distance between the sensor and the material in the form of lift-off. This

signal shift which occurs while βmax variation remains low is exploited in Section 5.6 for

concurrent inference of thickness and lift-off to enable 3D profiling. Since this subsection

elaborated the low dependence of βmax thus far, Fig. 3.17 exhibits how the low dependence

propagates to lnβmax as well in the same manner.

3.2.6.2 Low Dependence on Sensor Size

As per the approximation βmax ≈
µσd2

π2
, the feature exhibiting low dependence to sensor

size can be hypothesized given the prevalence of sufficient penetration capability. This

hypothesis was experimentally tested by exciting the larger and smaller PEC sensors shown

in Fig. 3.18 with identical excitation voltages (varying the excitation was not possible with

the electronics of the excitation circuit provided by the manufacturer), and evaluating the

βmax values obtained on gray cast iron calibration blocks. The result in Fig. 3.19 could
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Figure 3.16: Impact of lift-off on the PEC signal for a fixed material thickness (Captured
on a gray cast iron calibration block, 16 mm thickness).

Figure 3.17: Low dependence on sensor lift-off when the feature is considered in the
form of lnβmax.
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be observed for the variation of lnβmax against ln d and Fig. 3.20 shows the absolute

differences in the feature values produced by the two sensors against ln d.

Figure 3.18: The two different PEC sensor sizes used for the experiment.

According to Fig. 3.19 and 3.20 it can be seen that the two sensor sizes produce almost

identical feature values for low to moderate thicknesses, and the smaller sensor loses thick-

ness sensitivity in the higher thickness region and produces nearly constant feature values

for different thicknesses in that region. This observation confirms the feature shows low

sensitivity to sensor size as expected. Further, the smaller sensor should have lower pen-

etration capability than the larger sensor for a fixed excitation as per the findings of [40]

and that explains the loss of sensitivity in the higher thickness region. The small sensor

producing almost the same feature value for different thicknesses in that region can be

linked to the induced eddy currents penetrating to a constant depth despite thickness

increase.

Shown in Fig. 3.21 are two PEC signals obtained on the same calibration block (gray

cast iron, 10 mm thickness), from the two sensor sizes to visualize how the actual signals

look. Signals from the smaller sensor always exhibit a leftward shift for all thicknesses
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Figure 3.19: Variation of lnβmax values of two PEC sensor sizes against ln d for different
thicknesses of gray cast iron.

Figure 3.20: Variation of absolute difference of feature values produced by the two
sensor sizes against ln d.

implying an amplitude decrease in the induced detector coil voltage. This is attributed to

the potential divider effect applying to the constant excitation voltage since the source has
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a finite output impedance while the smaller sensor has a lower excitation coil wire length

resulting in lower resistance than in the larger sensor.

Figure 3.21: Two sample curves produced by the two sensor sizes on a 10 mm gray cast
iron calibration block.

Based on the observations of Fig. 3.19, 3.20 and 3.21, it can be concluded that the βmax

feature shows low sensitivity to sensor size when there is sufficient penetration capability.

The observations also confirm that for a fixed excitation, a smaller sensor size will have a

lower penetration capability, resulting in loss of thickness sensitivity for higher thicknesses.

3.3 FEA Validation of Invariance of βmax for Cylindrical

Structures

Though the relationship for β(t) was derived for conducting plates for simplicity, the

intention was to use the decay rate as a signal feature for thickness quantification of

cylindrical structures, large diameter in-situ pipes. It could be hypothesized that the

plate approximation is reasonable given the pipes investigated are of radius R greater

than 250 mm while the sensor width used w is 50 mm in the direction perpendicular to

the pipe axis, thus the surfaces would exhibit low curvature.

Verification of this hypothesis was performed through finite element analysis (FEA) on a

gray cast iron specimen extracted from one of the pipe segments considered in this work.
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The FEA model was developed using COMSOL MultiphysicsR© [62] and it takes the sensor

properties (physical dimensions, inherent properties and excitation signal characteristics)

and test piece properties (physical dimensions, electrical and magnetic properties) as inputs

and solves the magnetic vector potential equation to produce the sensor response. Devel-

opment of the sensor model is discussed in detail in Chapter 4. For accurate simulation of

material being tested, high precision magnetization curves and electrical conductivity were

obtained using a Quantum Design Physical Property Measurement System (PPMS-9T)

[63, 64]. The 3D simulation model and FEA results against measurements obtained using

the PEC sensor are shown in Figures 3.22 and 3.23 and were also reported as a part of [6].

Figure 3.22: Numerical PEC sensor simulation model: (a) 3D model of the sensor and
pipe, (b) Cross-section showing induced fields.

In order to validate the invariance of the sensor signal to curvature of the cylindrical

structure, the hypothesis tested is that for a given PEC sensor width w perpendicular to

the pipe axis, there exists a range w/R < k where k ∈ R+, such that the variation of βmax

due to the curvature of the test piece remains insignificant. It was noted that k depends on

electromagnetic properties of the material being tested, sensor architecture and excitation

signal characteristics. For practical quantification, the range of interest was defined to be

where the curvature dependent variation of βmax for any thickness of interest is less that

1% from the flat plate reference. From the analysis reported in Fig. 3.24, the pipe radii

which satisfy w/R < 0.25 produce βmax variations less than 1% for the used sensor. Given

the minimum radius of the pipes scanned in this work was 250 mm, the maximum w/R

value encountered was 0.2 (w = 50 mm and R = 250 mm), thus the approximation of

large diameter pipe surfaces as flat plates holds for practical purposes. Therefore, it can
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Figure 3.23: Simulated sensor responses against unfiltered experimental signals for a
range of gray cast iron thicknesses.

be concluded that the βmax feature is useful for quantifying thickness of large diameter

critical pipes under the flat plate approximation given the sensor is of appropriate size.

Figure 3.24: Effect of curvature on βmax for different thicknesses of gray cast iron.

Depending on the target application of the thesis, the study presented within this section

is tailored for the PEC sensor used for this work and gray cast iron as the material

being tested. However, the analysis method is generic and can be used to evaluate any
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PEC sensor architecture on any material by incorporating required sensor and material

properties.

3.4 Analytical NDE Framework Based On Experimentally

captured Calibration Signals

The framework consists of the two steps of analytical model estimation (Fig. 3.25) and

the model being used for critical pipe NDE (Fig. 3.26), each step is elaborated in turn.

3.4.1 Analytical Model Estimation

Model estimation procedure is depicted in Fig. 3.25. As presented in Section 3.2, given

the availability, signals should be acquired on calibration blocks having matching electrical

and magnetic properties to those of the pipe to be evaluated. Feature extraction proce-

dure should be carried out to extract βmax values corresponding to available calibration

thicknesses. Once features are extracted, they should exhibit the characteristic of varying

linearly with ln d as shown in Fig. 3.25. Model estimation can be achieved by computing

the y-axis intercept c of the line lnβmax = 2 ln d + c fitted to the linear scatter. c is the

sole parameter which describes the whole model and by estimating c, the model can be

used to estimate unknown thicknesses as explained in Subsection 3.4.2.

As mentioned is Subsection 3.2.5, three signals were captured on each calibration block

to characterize noise and all data were used for parameter estimation. The minimum

thickness used for all materials for parameter estimation was 4 mm. Though data for

1, 2 and 3 mm thicknesses were available, they were not used for parameter estimation

partially due to the nonlinearity observed in that thickness region, and due to the chances

of such low thicknesses prevailing on functioning in situ pipes being highly unlikely. Similar

to the low thickness end, a nonlinearity was observed in the very high thickness end as

well (above 30 mm for gray cast iron, above 16 mm for ductile cast iron and above 12

mm for mild steel). Therefore, the linear thickness-feature function for each material was

estimated only by considering the linear range (shown in Fig. 3.12) while excluding the



66
Chapter 3. Detector Coil Voltage Decay Rate as a Thickness Discriminative PEC Signal

Feature

nonlinear regions observed in the very low and very high thickness ranges. The reasons

behind these local nonlinearities are explained in Section 3.6 and the method of capturing

those nonlinearities is explained in Chapter 4.

3.4.2 Using the Analytical Model for Critical Pipe NDE

Steps included in using the estimated model to quantify critical pipe wall thickness is

pictorially described in Fig. 3.26. First, signals should be acquired by scanning the pipe

wall exterior. For the work of this thesis, the full circumference of 1 m long pipe segments

were scanned. Sensor positioning was done with the aid of a thin plastic grid having

50 mm × 50 mm squares marked upon wrapped around the pipe as shown in Fig. 1.1.

Aligning the center of the PEC sensor with the centers of the squares was done to achieve

precise positioning. Appendix C provides further details about the on site pipe scanning

protocol followed during experiments and how the produce 2.5D thickness maps relate to

Figure 3.25: Analytical model estimation.
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the actual locality of pipes. Since βmax ≈
µσd2

π2
is used for thickness quantification, the

process is immune to many practical obstacles present during in situ scanning such as lift-

off caused by the thickness of the paper grid (a few micrometers), dirt deposits on the pipe

surface, rust and graphitization; and unintentional sensor tilt. Following signal acquisition,

βmax feature values should be extracted by following the usual feature extraction method.

Once feature values are computed, unknown thickness values (d) of each sensor location

can be calculated using the expression d = exp

(
lnβmax − c

2

)
. Inferred thickness values

of a pipe segment are presented as a 2.5D thickness map as shown in Fig. 3.26. x-axis

of the thickness map provides the axial position in mm while the y-axis provides the

circumferential position in degrees. Color bar on the right of the map can be used as a

legend to visually identify wall condition. Since the detector coil is a square with a 50

mm side length, the thickness map contains values at the center of every 50 mm × 50 mm

square. As detector coil based PEC sensors produce domain measurements and not point

measurements, the thickness value in each square should be considered as the average of

pipe wall thickness corresponding to the area covered by the square.

3.4.3 Validation

Validation of the analytical NDE approach was done by comparing produced pipe wall

thickness maps against the actual amount of ferromagnetic material remaining in evaluated

pipe walls. The actual thickness of ferromagnetic material remaining in pipe walls is

henceforth known as the ground truth (GT). Procedure followed to obtain the GT is

elaborated in Fig. 3.27. After performing PEC scanning, pipe segments were exhumed

and grit blasted to remove rust and graphitization. The cleaned pipes were scanned with

a 3D laser scanner to obtain high resolution 3D point clouds. A tailored ray tracing

algorithm [65] was executed on the pint clouds to extract high resolution (0.8 mm) 2.5D

thickness maps. These high resolution maps were down sampled via averaging to obtain

GT maps having a resolution which match that of the PEC sensor. Validation was done

by quantitatively comparing the thickness maps produced by the NDE approach against

the aligned GT maps. Results of the quantitative comparison and remarks are presented

in Subsection 3.4.4.
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Figure 3.26: Analytical model being used for critical pipe NDE.
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Figure 3.27: Obtaining ground truth (GT).

3.4.4 Results

Data from in-situ pipes were obtained by scanning full circumference of several in situ

gray and ductile cast iron pipe segments in collaboration with Sydney Water, the local

water utility [9]. Steel pipes were not available to be scanned at the time of experiments.

Fig. 3.28 and 3.29 show the interpreted pipe wall thickness maps of two 1 m long gray cast

iron pipe segments along with their ground truth (GT). The level of agreement between

the interpretations and GT is graphically exhibited in Fig. 3.30, an ideal curve taking the

form of y = x is noted and the interpretation against GT appears as scatter. The scatter

follows the trend of the graph with quantifiable deviations. These deviations are errors

in the interpretations and their absolute values can be considered as a representation of

accuracy. Several statistical parameters of the absolute errors were therefore quantified

and are presented in Table 3.3. A mean percentage accuracy of over 90% was observed for

gray cast iron. Similarly, a 1 m long ductile cast iron pipe segment was tested and results

are presented in Fig. 3.31 and 3.32 while the statistical error analysis results are given in
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Figure 3.28: Interpreted thickness map and GT for the first Gray Cast Iron pipe seg-
ment.

Table 3.4. Achieved mean percentage accuracy was over 94%. Since all interpreted thick-

nesses showed the property |Interpretation−GT| < GT, the mean percentage accuracies

in Tables 3.3 and 3.4 were obtained by computing

(
1− |Interpretation−GT|

GT

)
× 100%

for each individual interpretation and then calculating their mean.

3.4.5 Limitations of the Analytical NDE Approach

The main limitation of the analytical approach is the requirement of proper calibration

and the possibility of calibration errors due to material property mismatches leading to

Table 3.3: Statistics of absolute error between interpreted pipe wall thickness maps and
ground truth for Gray Cast Iron pipe segments.

Statistical Parameter Value

RMS Error 2.42 mm

Mean Absolute Error 2.00 mm

Standard Deviation of Absolute Error 1.37 mm

Maximum Absolute Error 7.06 mm

Mean Percentage Accuracy 90.3%
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Figure 3.29: Interpreted thickness map and GT for the second Gray Cast Iron pipe
segment.

Figure 3.30: Variation of interpretations along with GT for the Gray Cast Iron pipe
segments.

errors in interpreted thicknesses. In addition, fabricating calibration blocks is costly and

time consuming. If the models are learned from a certain set of calibration blocks, the

material properties embedded within c will be unique to pipes having similar properties.

In reality, even in pipes made of the same material (say gray cast iron for instance),
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Figure 3.31: Interpreted thickness map and GT for the Ductile Cast Iron pipe segment.

Figure 3.32: Variation of interpretations along with GT for the Ductile Cast Iron pipe
segment.

material properties may change from one pipe to another depending on the way they

were manufactured and previous electromagnetic interactions they have been subjected

to. In such instances, a model learned from one set of calibration blocks may not be

sufficiently universal for thickness quantification of all pipes of the same material. This

challenge may be tackled by calibrating the c value using c = (lnβmax−2 ln d) when desired
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Table 3.4: Statistics of absolute error between interpreted pipe wall thickness map and
ground truth for the Ductile Cast Iron pipe segment.

Statistical Parameter Value

RMS Error 0.755 mm

Mean Absolute Error 0.616 mm

Standard Deviation of Absolute Error 0.438 mm

Maximum Absolute Error 2.359 mm

Mean Percentage Accuracy 94.93%

using one or a few known thicknesses on a pipe. Performing destructive testing to obtain

calibrations thicknesses on in situ pipes by cutting out samples large enough for the PEC

sensor is not feasible. However, using techniques such as ultrasounds is a feasible option

after cleaning the pipe surface on suitable locations to expose healthy metal and achieve

sufficient connectivity as shown in Fig. 3.33. Alternatively, extracting tiny samples and

using SQUID or PPMS devices to precisely measure electrical and magnetic properties

and numerically simulating the decay rates as per Section 3.3 for calibration is viable. To

overcome the limitation of calibration errors, Section 3.5 presents a practically applicable

method of scaling based on ultrasound measurements.

3.5 Scaling Based Alternative Thickness Quantification Method

for Critical Pipe NDE

The possibility of using ultrasound measurements to calculate c and estimate the full thick-

ness map of a 1 m long gray cast iron pipe segment was examined in this work. Accuracy

of ultrasound measurements too are subjective to calibration, however sound velocities in

different materials are available in literature (e.g., http://www.olympus-ims.com/en/ndt-

tutorials/thickness-gage/appendices-velocities/). More accurate calibration can be per-

formed on small specimens having known thickness extracted from the material to be

evaluated.

Since lnβmax is linearly related to thickness expressed in the form of ln d as per the result

lnβmax = 2 ln d + c, the lnβmax values corresponding to a pipe segment were plotted as
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per Fig. 3.34 and a region containing high lnβmax values was identified. The size of the

identified high feature value region was set to 10 cm×10 cm. 16 ultrasound measurements

were performed in the region using a direct contact ultrasound probe whose diameter

was 2.5 cm. The square was cleaned well before performing ultrasound measurements to

achieve good connectivity. Each ultrasound based thicknesses was estimated using the

kernel fitting method proposed in [66], and an average thickness was calculated for the

square. Similarly, an average lnβmax value was also calculated for the square using the

PEC signals. The average thickness and average lnβmax values were 25.1301 mm and

-4.688 respectively. c for the evaluated pipe segment was obtained using c = lnβmax −

2 ln d. The c value was found to be 2.6794. The hence calculated c was then used in

the transformation d = exp

(
lnβmax − c

2

)
to estimate the full thickness map. Results

are shown in Fig. 3.35 and Fig. 3.36. Table 3.5 shows the error statistics, the percentage

accuracy was over 94%, which was slightly better than 92% for the same pipe section when

thickness was estimated using c = 2.7473, which is the value resulting from calibration

blocks. Therefore, the approach can be considered a practically effective method to reduce

the errors caused by material property discrepancies between calibration and testing.

Figure 3.33: Measuring pipe wall thickness using ultrasounds after cleaning the surface:
(a) Ultrasound probe on pipe, (b) An ultrasound waveform.

3.6 Local Nonlinearities Present in the Thickness-Feature

Function

Though the thickness-feature function considered in this work (lnβmax = 2 ln d + c) sug-

gests linearity for all thicknesses in theory, due to practical limitations, the linearity is
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Figure 3.34: Plot of lnβmax values for data obtained on a gray cast iron pipe segment.

Figure 3.35: Interpreted thickness map (by estimating c using ultrasounds) and GT for
a Gray Cast Iron pipe segment.

Table 3.5: Statistics of absolute error between interpreted pipe wall thickness map (by
estimating c using ultrasounds) and ground truth for a Gray Cast Iron pipe segment.

Statistical Parameter Value

RMS Error 1.62 mm

Mean Absolute Error 1.25 mm

Standard Deviation of Absolute Error 1.02 mm

Maximum Absolute Error 7.41 mm

Mean Percentage Accuracy 94.39%
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Figure 3.36: Variation of interpretations (by estimating c using ultrasounds) along with
GT for a Gray Cast Iron pipe segment.

lost at very low and very high thickness ends as mentioned in Subsection 3.4.1. Fig. 3.37

elaborates the loss of linearity for the material of gray cast iron. Similar nonlinearity was

observed on other pipe materials too and this behavior is general to ferromagnetic materi-

als, but the nonlinear regions are specific for a given PEC sensor. The figure shows noisy

readings, i.e., 3 repeated readings on each thickness, for calibration blocks of thickness 1,

2, ..., 10, 12, ..., 22, 25, 30 and 35 mm. The linear region can be identified to be from 4

mm to 30 mm. Feature values for 1, 2 and 3 mm, and the feature value for 35 mm seem to

exist beyond the linear range. More precisely, linear or nonlinear regions can be identified

by plotting c values for each individual measurement against ln d and identifying a region

where c exhibits an insignificant variation as shown in Fig. 3.38. In quantitative sense, this

can be considered as a region where there is more than 0.95 correlation between lnβmax

and ln d. Loss of linearity occurs purely due to practical limitations prevailing in the mea-

surement system, and the linear thickness-feature function is incapable of capturing this

nonlinearity and therefore, this is a limitation which has to be adhered when executing.

Loss of linearity at the high thickness end is not greatly visible in the figure but was

observed more vividly with a smaller sensor in Fig. 3.20. This is attributed to the sensor

not having a strong enough excitation to penetrate a 35 mm gray cast iron thickness, or

any large enough thickness of any other ferromagnetic material. This limitation is to be

expected in any practical sensor and this can be avoided to an extent by increasing the
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Figure 3.37: Nonlinearity in the thickness-feature function in the low and high thickness
ends for gray cast iron.

Figure 3.38: Variation of c of each measurement against ln d for gray cast iron.

excitation strength. It can thus be concluded that the linearity prevails only within the

thickness range which the excitation is strong enough to penetrate, and the linearity is

lost when the thickness is beyond the sensor’s penetration capability.
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Nonlinearity in the low thickness end is attributed to the signal entering the noise margin

before it attains its constant gradient. This practical limitation forces the βmax feature

to be extracted at an undesired time and consequentially the extracted value is not in

accordance with the βmax ≈
µσd2

π2
approximation.

In the light of the critical pipe specific target application of this thesis, the role played

by these nonlinearities is not very significant since for instance when assessing gray cast

iron pipes, the maximum expected thickness is around 30 mm, and the chances of having

thicknesses less than say 5 mm, is highly unlikely. Therefore, the analytical approach is

still suitable for the target application, however, a method having the capability to model

these nonlinearities will be an additional asset.

With the observations thus far, it is evident that these nonlinearities are specific to ma-

terials, sensor geometry and excitation strength. Therefore, redesigning sensors to suit

different thickness ranges may be an option to avoid the nonlinearities and enable using

the linear thickness-feature function to assess all desired thicknesses. Alternatively, the

complexity and cost of having to redesign the sensor can be avoided by using alterna-

tive methods to learn the thickness-feature function while capturing nonlinearity. That is

where GP based machine learning adds value and it is used in Chapter 4 since it can learn

the nonlinear thickness-feature function along with uncertainty.

The logarithmic thickness-feature function consists of both linear and nonlinear regions

as can be seen in Fig. 3.37. However, if the function between d and βmax is considered,

the function is by default nonlinear and becomes much smoother as shown in Fig. 3.39.

The function between d and βmax is considered as the nonlinear form of the thickness-

feature function in this thesis. Noise is more visible in this case due to the absence

of attenuation caused by the logarithmic scale. Given the smoothness and functional

behavior, the function between d and βmax shown in Fig. 3.39 is learned non-parametrically

using GP in Chapter 4 by using numerically simulated feature values as training data,

and the learned function is used for critical pipe NDE. Sensor noise quantification to aid

numerical modeling in Chapter 4 is done in Section 3.7.
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Figure 3.39: Nonlinear variation of d against βmax.

3.7 Sensor Noise Characterization

For a numerical sensor model to be realistic, the noise characteristic prevailing in the actual

measurement setup should be incorporated. Chapter 4 numerically models the rectangular

PEC sensor’s interaction with gray cast iron. To aid that modeling exercise, this section

characterizes the noise levels of the sensor for different gray cast iron thicknesses with the

aid of calibration blocks.

As mentioned earlier in this chapter, three measurements were performed on each cali-

bration block of each material. Noise characterization for gray cast iron was done with

measurements obtained on 1, 2, ..., 10, 12, ..., 22, 25, 30 and 35 mm thicknesses. Charac-

terization was done by calculating βmax for each measurement and computing the mean

and standard deviation of βmax for each thickness. Assuming the noise is Gaussian, the

±2×standard deviation bound of βmax for each thickness is considered as the noise mar-

gin of the sensor. Table. 3.6 provides the results and Fig. 3.40 graphically depicts the

noise characteristic. This noise characterization method can be generalized to any PEC
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Table 3.6: Noise characteristic of the PEC sensor used for in situ applications when
used on gray cast iron.

Thickness (mm) Mean of βmax ±2×standard deviation of βmax
1 0.000216 2.81× 10−5

2 0.000236 3.12× 10−5

3 0.000265 1.64× 10−5

4 0.000356 2.84× 10−5

5 0.000486 5.11× 10−5

6 0.000685 4.45× 10−5

7 0.000911 1.03× 10−4

8 0.001088 1.03× 10−4

9 0.001314 1.56× 10−4

10 0.001601 4.08× 10−5

12 0.002369 2.88× 10−4

14 0.003176 4.07× 10−4

16 0.004212 2.56× 10−4

18 0.005052 3.37× 10−4

20 0.006632 5.50× 10−4

22 0.008321 1.19× 10−3

25 0.011654 1.03× 10−3

30 0.017055 6.82× 10−4

35 0.019989 9.18× 10−4

sensor and material in relation to the βmax feature. The characterized noise bounds are

incorporated in Chapter 4 for numerical sensor modeling.

3.8 Conclusions

The main objective of this chapter was to introduce the detector coil voltage decay rate as

a ferromagnetic material specific thickness discriminative PEC signal feature. Analytical

derivation of an expression for the decay rate β(t) was presented. Hence a simplistic

approximation for the feature in the form of βmax ≈
µσd2

π2
was obtained and by using it,

a parametric linear relationship between thickness and the feature value in the form of

lnβmax = 2 ln d + c where c =
µσ

π2
was derived. The relationship behaves as a function

which maps feature values to thickness and the parameter c fully specifies the specificness

of the function towards a particular material and therefore, the function can be used for

NDE in the form of thickness estimation when c has already been estimated.
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Figure 3.40: Graphical depiction of sensor noise characteristic when used on gray cast
iron.

Two methods are proposed in the chapter to estimate c where the first method uses cal-

ibration blocks and the second uses ultrasound measurements. Once calibration signals

are captured and the feature values are obtained, they can be used to fit a straight line

through which the parameter c is estimated as the y-axis intercept. The main limitation

in this approach is its susceptibility to calibration errors caused by material property dis-

crepancies. In addition to fabricating calibration blocks being costly and time consuming,

producing blocks which have material properties which precisely match those of pipe ma-

terials is practically infeasible. Therefore, the incidence of material property mismatches

between calibration and testing is likely and such discrepancies result in errors in thickness

estimates. To overcome the challenge with material properties, an alternative method of

scaling the feature values using ultrasound measurements to directly produce thickness

is proposed. Although this method is practically applicable, requirement of identifying

smooth regions suitable for ultrasound measurements and cleaning the pipe surface to

obtain sufficient coupling is challenging to perform in situ. Thus, despite the analytical

approach proposed in this chapter being effective on in situ critical pipe NDE, the approach
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encompasses the aforementioned challenges and limitations. Nevertheless, applicability of

the framework on in situ critical pipe assessment is justified by the percentage accuracy of

over 90% when comparing interpreted results with reality. In addition to results provided

within this chapter, this claim is supported further by the analytical approach based thick-

ness maps and error statistics for a number of gray cast iron pipes evaluated throughout

the course of this research, provided in Appendix A.

Fitting a straight line to estimate c in order to specify the thickness-feature function can

be done by avoiding the very low and very high thicknesses. Due to practical limitations

of the sensor, nonlinearities are observed in the low and high thickness ends and the ana-

lytical approach is limited by not being able to model those nonlinearities without making

alterations to the sensor itself. Nonlinearity in the high thickness end is caused due to the

excitation not being strong enough to penetrate the high thicknesses while the nonlinearity

in the low thickness end is caused due to the signal entering the noise margin before it

attains constant gradient. When considering the challenges associated with the analytical

approach in terms of calibration and nonlinearities, a more effective approach to overcome

those challenges would be to measure precise electrical and magnetic properties of pipe

materials and learn nonlinear thickness-feature functions based on numerically modeled

sensor responses which incorporate measured material properties. An NDE approach op-

erating hence is proposed in Chapter 4 and a sensor noise characterization was done at the

end of this chapter to aid the numerical sensor modeling approach proposed in Chapter 4.



Chapter 4

Approach for Numerical and

Probabilistic Sensor Modeling

This chapter introduces a numerical and probabilistic sensor modeling approach for critical

pipe NDE via inferencing pipe wall thickness. The objective of the proposed approach is

to overcome the calibration requirements and the practical difficulties associated with exe-

cuting the analytical approach presented in Chapter 3. Elimination of calibration require-

ments is accomplished by measuring electrical and magnetic properties of pipe materials

and incorporating them in a numerical sensor simulation model to produce calibration

signals as opposed to using calibration blocks as done in the analytical approach.

The detector coil voltage decay rate is used as the thickness discriminative signal feature

in this approach as well, however, the learning process of the thickness-feature function is

probabilistic unlike in the previous approach where the parametric function was analyt-

ically derived and a model was fitted through parameter estimation. Decay rate values

extracted from simulated sensor signals are used to non-parametrically learn the thickness-

feature function using Gaussian Process (GP) based probabilistic machine learning. The

hence learned function is used to probabilistically infer pipe wall thickness using feature

values extracted from signals captured through in situ measurements. Unlike in the an-

alytical approach, since the function is learned non-parametrically, subtle variations and

local nonlinearities are captured through this approach. This aspect is an advantage over

83
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the analytical approach and consequentially, an improvement in the accuracy of inferred

results is demonstrated in the chapter.

Two different forms of the eddy current problem, i.e., the forward problem [67–69] and

the inverse problem [70–72] are solved in practice. Solving the forward problem can be

described as the process of computing the sensor signal when the test piece properties

are known whereas the solving the inverse problem is the process of computing test piece

properties when the signal is known. Technically, it is the inverse problem which has to be

solved to accomplish condition assessment since the requirement is to predict the geometry

of the test piece through a set of measured signals. However, solving the inverse problem is

not straightforward in many cases, especially in scenarios similar to the target application

of this thesis due to ill conditions of the inverse problem. This chapter therefore adapts the

approach of numerically solving the forward problem using Finite Element Analysis (FEA)

to predict signals in order to learn the thickness-feature function, and probabilistically

solving the inverse problem using measured signals. The learned function is exploited to

probabilistically infer the test piece property of pipe wall thickness by taking βmax feature

values extracted from in situ measurements as inputs and hence, the inverse problem is

solved.

In this chapter, the approach is broken down into the four sections: (a) Measuring electri-

cal and magnetic properties of pipe materials; (b) Numerically modeling the PEC sensor;

(c) Non-parametric learning of the thickness-feature function using GP; and (d) Proba-

bilistic inference of pipe wall thickness. The chapter unfolds by sequentially describing the

four sections. Conclusion of the chapter includes a discussion about the implications of

results along with a comparison of accuracies produced by the analytical and probabilistic

thickness estimation methods.

4.1 Measuring Electrical and Magnetic Properties of Pipe

Materials

The procedure for measuring electrical and magnetic properties of critical pipe materials

is presented in Fig. 4.1. When done in situ, high thickness regions are required to be
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Figure 4.1: Steps for measuring electrical and magnetic properties of critical pipe ma-
terials. (Images adapted from http://www.diytrade.com/ and http://www.qdusa.com/)

qualitatively identified first since that enables extracting samples from those regions while

causing minimal physical destruction to the structural integrity of pipes. This can be done

by performing PEC scans first and visualizing the βmax values since they are proportional

to the thickness of remaining ferromagnetic material. Usual mechanical cutting tools can

be used for this process and extracting relatively large samples is necessary in order to

avoid heating the interior of samples from which specimens of size 3 mm × 2 mm × 2

mm are eventually cut using an Electric Discharge Machining (EDM) wire cutter [73, 74].

The key when wire cutting specimens is to pay strict consideration towards minimizing
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heating by using cooling liquids since heat may adversely affect electrical and magnetic

properties which are intended to be measured. Alternatively, filing the specimens too is an

option with the capability of controlling heating given a significant availability of time and

manual labor. A machine cut sample obtained from a gray cast iron pipe along with two

wire cut test specimens of different sizes extracted from that sample are shown in Fig. 4.2.

The original sample in this experimental case was deliberately made to have about 10 cm

× 10 cm surface area as can be seen in Fig. 4.2 to enable extracting multiple specimens

if required. Obtaining samples of such size causes significant partial destruction to in situ

pipe walls, in actual practice therefore, the original sample can be much smaller if only one

specimen is intended to be extracted as long as adequate cooling liquid is used to avoid

over heating while machine cutting.

To model the PEC sensor interaction with pipe materials, it is required to measure: (a)

Electrical conductivity (σ) in S/m; and (b) Magnetization curve (B-H loop) at a desired

temperature (measurements done in room temperature were suitable for the work of this

thesis). As done in this research, the state of the art mechanism for measuring such intrinsic

physical properties is using a Physical Property Measurement System (PPMS) [75, 76].

Cutting specimens of size 3 mm × 2 mm × 2 mm was necessary to allow optimal fitting

into the specimen holders and performing accurate measurements. Using powder particles

Figure 4.2: Extracted specimens for testing material properties.
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instead of solid specimens is also possible with a PPMS to measure magnetization curves

although not recommended due to the chances of powder being contaminated by foreign

materials as a result of the process of extraction. Since such contaminations are likely

to affect the accuracy of measurements, best practices were followed during this research

by performing measurements on solid specimens. A magnetization curve measured in the

form of magnetic flux density variation against magnetic field intensity from a specimen

extracted from a gray cast iron pipe segment is shown in Fig. 4.3. Measuring up to a

magnetic field intensity as high as the value shown in the figure is usually not necessary

for PEC sensor modeling in the absence of externally applied strong magnetic fields, since

field values resulting from PEC sensors alone are relatively low. Getting an idea about

the produced field magnitudes and measuring only the low magnetic field range at a high

sampling rate best suits the purpose.

Figure 4.3: A magnetization curve measured from a specimen taken from a gray cast
iron pipe segment.

Four Probe Method [77, 78] is used by the PPMS to perform resistivity measurements. An

alternative method based on X-ray fluorescence (XRF) devices was experimented as well to

calculate a range for electrical conductivity of pipe materials. State of the art portable XRF

devices [79, 80] are available for in situ applications at present as shown in Fig. 4.4 and these

devices can be used to analyze emission characteristics of materials to nondestructively

determine a material’s composition. Despite subtle variations, all examined pipe materials

were composed of about 93 % Fe, 3 % C, 2 % Si in mass percentages and the rest included
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elements such as P, Mn, S, Ti and Cr. Pipe surfaces require to be cleaned to remove

rust and graphitization in order to expose ferromagnetic material to enable X-rays to

make contact to determine correct composition. Physical properties including electrical

conductivity of elements and certain composite materials are known and are available

in standard texts [15, 81] and online resources (http://www.periodictable.com/), these

properties were used to apply the rule of mixtures [82, 83] to calculate a range for effective

electrical conductivity of the composite material. Since this method allows only gaining

a basic idea through a range for conductivity, the four probe facility available with the

PPMS was used to measure the actual value.

An advantage prevails with the PPMS since the temperature dependence of conductivity

can easily be characterized. Conductivity of gray cast iron pipe material was measured

against temperature and the variation is plotted in Fig. 4.5. Since pipes exist in natural

environment and are not subject to drastic temperature variations while in operation,

temperature was not incorporated for numerical modeling. Therefore, σ = 5.9× 105 S/m,

was used for modeling since it is the conductivity observed at a temperature of 300 K, i.e.,

a close value to room temperature. However, the temperature coefficient ασ = −643.956

S/(m.K) of the pipe material’s conductivity could be calculated through the experiment

and the equation to model the conductivity σT in A/m, at a given temperature T in

K, in terms of ασ and conductivity σ273 = 6.04358675 × 105 S/m at absolute zero (i.e.,

T273 ≈ 273 K), can be given as

σT ≈ σ273 + ασ(T − T273). (4.1)

In the light of the target application of condition assessment of critical pipes, it should be

noted that at times the exact material of aged in situ pipes may not be on record with

water utilities. For instance, a utility will be certain that a particular pipe is made of some

type of cast iron, but they may be unaware about the exact type (i.e., whether a pipe is

made of gray cast iron, or ductile cast iron for example). In such instances, the process

of extracting specimens done in this work can aid to easily identify the type of cast iron

through microscopic inspection since accurate discrimination via on site visual inspection

or composition checks is difficult. Since some pipes were encountered within this research
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Figure 4.4: In situ application of an XRF device for material analysis. (Image from
http://www.electronicproducts.com/)

Figure 4.5: Temperature variation of electrical conductivity of gray cast iron pipe ma-
terial (measured using Four Probe Method (PPMS)).
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where the water utilities were not aware about the exact type of cast iron, specimens were

extracted and microscopically examined. The difference in the grain structure between

gray and ductile cast irons could easily be observed through this process as evident in

Fig. 4.6 and this can be identified as a secondary advantage of extracting specimens since

it enables confirmation of material, given that information is important for both water

utilities and NDE service providers.

Figure 4.6: Microscopic view of micro-structures of cast irons: (a) Gray cast iron; (b)
Nodular or Ductile cast iron.

Once the required electrical and magnetic properties are measured, it is possible to model

the PEC sensor’s interaction with pipe materials as explained in Section 4.2. Measured

conductivity and magnetization curve of gray cast iron were used in the numerical model.

4.2 Numerically Modeling the PEC Sensor

Numerical modeling in this section refers to numerically solving the mathematical model

of the PEC sensor setup derived using Maxwell’s equations. The procedure followed to

numerically model sensor responses for gray cast iron is shown in Fig. 4.7. Modeling

was done using Finite Element Analysis (FEA) [16, 17] and the commercial FEA package

COMSOL MultiphysicsR© [62, 84]. Measured electrical and magnetic properties of pipe

materials and the geometric and physical properties of the PEC sensor are taken as inputs

by the model and numerically solves the magnetic vector potential [85–87] based equations

via time stepping FEA [88, 89] to calculate the time varying PEC signal. Governing

equations of the underlying physics are derived in the subsequent section.
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Figure 4.7: Procedure followed to numerically simulate sensor signals.

4.2.1 Governing Equations of the Numerical Model

Maxwell’s equations [90–92] which describe the relationships between electric and magnetic

fields can be identified as the series of laws which govern electromagnetic phenomena.

Equations describe Ampere’s, Faraday’s and Gauss’s laws in both differential and integral

forms [92, 93].

Ampere’s law in differential form is given in Eq. 4.2 and it states that a circulating magnetic

field �H is produced by an electric current density �J . The notation (∇×) is the curl operator

and �D denotes the displacement current.

∇× �H = �J +
∂ �D

∂t
(4.2)

Integral form of Ampere’s law expressed in Eq. 4.3 states that a current flowing through

a surface produces a circulating magnetic field �H around that surface.
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∮
c

~H.dl =

∫
s

(
~J +

∂ ~D

∂t

)
.ds (4.3)

For the quasi-static case where σ >> ωε0, ω = 2πf for frequency f and ε0 = 8.854×10−12

F/m is the permittivity of free space, the displacement current ~D is neglected. Therefore

Ampere’s law can be simplified to ∇× ~H = ~J and

∮
c

~H.dl =

∫
s

~J.ds.

Differential form of Faraday’s law shown in Eq. 4.4 states that a changing magnetic flux

density ~B produces a circulating electric field intensity ~E.

∇× ~E = −∂
~B

∂t
(4.4)

Integral form of Faraday’s law in Eq. 4.5 states that a changing magnetic flux density

through a surface induces a circulating electromotive force (emf) on the boundary of that

surface. Currents induced by a changing magnetic flux oppose the change in flux according

to Lenz’s law [94, 95] and is signified by the negative sign.

∮
c

~E.dl = − ∂

∂t

∫
s

~B.ds (4.5)

Gauss’s law for magnetic fields when expressed in differential form as shown in Eq. 4.6

states that the divergence of the magnetic flux density ~B at any point is zero.

∇. ~B = 0 (4.6)

Integral form of Gauss’s law shown in Eq. 4.7 states that the net magnetic flux density

passing out of a surface is zero.

∫
s

~B.ds = 0 (4.7)
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In addition to Maxwell’s equations, the following constitutive relationships are also used

for modeling. Terms µ0, µr and σ are permeability of free space (i.e., µ0 = 4π × 10−7

H/m), relative permeability and electrical conductivity respectively.

~B = µ0µr ~H = µ ~H (4.8)

~J = σ ~E (4.9)

Since Eq. 4.8 and 4.9 are used, measuring electrical and magnetic and properties become

critically important for numerical modeling. µr is constant for linear materials, but it is

nonlinear for most ferromagnetic materials like those of critical pipes and permeability

becomes a function of magnetic field as shown in Eq. 4.10. The importance of measuring

the B-H curve which is a function in the form of || ~B|| = f(|| ~H||) can hence be realized.

µ(|| ~H||) =
∂|| ~B||
∂|| ~H||

. (4.10)

It is also known that the magnetic flux density ~B can be expressed in terms of magnetic

vector potential ~A as in

~B = ∇× ~A. (4.11)

Substituting the result in Eq. 4.11 in Eq. 4.4 yields

∇× ~E = − ∂

∂t
∇× ~A = −∇× ∂ ~A

∂t
. (4.12)

Solving Eq. 4.12 expresses ~E as

~E = −∂
~A

∂t
−∇Φ (4.13)
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where Φ is the applied magnetic scalar potential [96–98] since the curl of the gradient of

any scaler field is always the zero vector (i.e., ∇× (∇Φ) = ~0) [99–101]. Multiplying both

sides of Eq. 4.13 by σ yields

σ ~E = −σ∂
~A

∂t
− σ∇Φ. (4.14)

Here, ~Js = −σ∇Φ can be considered as an externally applied source current and hence

Eq. 4.14 can be rewritten as

σ ~E = −σ∂
~A

∂t
+ ~Js. (4.15)

Right hand side of Eq. 4.15 expresses the total current density ~J = ~Jind + ~Js where

~Jind = −σ∂
~A

∂t
is the induced current density. Consequentially, Eq. 4.15 becomes the same

as Eq. 4.9 and this enables combining Eq. 4.15 and Eq. 4.2 for the quasi-static case by

eliminating the common ~J . This results in

∇× ~H = −σ∂
~A

∂t
+ ~Js. (4.16)

By substituting for ~H in Eq. 4.16 using Eq. 4.8, and expressing ~B in terms of magnetic

vector potential as in Eq. 4.11, Eq. 4.16 can be rewritten as

∇× ~B = ∇× (∇× ~A) = −µσ∂
~A

∂t
+ µ~Js. (4.17)

Since curl of a curl of any vector can be expressed as ∇ × (∇ × ~A) = ∇(∇. ~A) − ∇2 ~A

[99–101], Eq. 4.17 can be expanded as

∇(∇. ~A)−∇2 ~A = −µσ∂
~A

∂t
+ µ~Js. (4.18)

By using the Coulomb gauge, ∇. ~A = 0, on Eq. 4.18 and manipulating we get
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∇2 ~A− µσ∂
~A

∂t
= −µ~Js. (4.19)

Eq. 4.19 is the expression for the magnetic vector potential for a location within the

modeled domain and thus it becomes the numerically solvable governing equation for the

PEC setup considered in this thesis. Subsection 4.2.2 details the development of the model.

4.2.2 Developing the Numerical Model

Finite Element Analysis (FEA) [16, 17, 102] is commonly used for solving many multi-

physics problems including ones involving electromagnetic phenomena such as the eddy

current problem [86, 103, 104]. In this chapter, the model is developed using the com-

mercially available COMSOL Multiphysics R©[62, 84, 105] FEA simulation package. Other

software packages such as ANSYS [106–108] and CIVA [109–111] have also been used in

literature to solve eddy current related problems. Since this chapter proposes an approach

of numerically solving the forward problem to predict signals and probabilistically solv-

ing the inverse problem with the aid of predicted and measured signals to infer pipe wall

thickness, the purpose of the developed numerical model is to cater the requirement of

solving the forward problem by taking into account actual physical properties of critical

pipe materials. Since the formulated problem does not yield closed form solutions and is

governed by the nonlinear form of Eq. 4.19, solving requires to be done numerically which

is why the versatile technique of FEA is used in this work.

The numerical model takes electrical and magnetic properties of the test piece, geometry

of the test piece, geometric and physical properties of the PEC sensor and excitation

signal characteristics as inputs, and produces the time varying sensor signal for a given

test piece as the output. In COMSOL, the model can be geometrically constructed and

the governing equations of each domain can be defined. Once the model is constructed,

meshing requires to be done before solving since FEA is used. Meshing is the process of

spatial segmentation of the model to provide discrete nodes at which FEA will calculate

fields in order to compute the necessary solution. The ground rule is, the finer the mesh,

the more accurate the solution will be. However, a fine mesh also increases the computation
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time. Therefore, since the required signal is the voltage induced in the detector coil, a

finer mesh was set to the detector coil and the adjacent region while the regions further

away from the sensor were left coarse. Several trial and error simulations were run to

ensure mesh independence and convergence of the solution. Fig. 4.8, 4.9 and 4.10 show

the developed geometric model, meshed geometry and induced fields respectively.

Figure 4.8: Developed FEA model: (a) Complete model; (b) Zoomed view of the sensor.

Figure 4.9: Meshed FEA model: (a) Complete model; (b) Fine mesh of the sensor.

To describe the model as a function which produces PEC signals as the output, it is

important to explicitly identify the variables required for modeling. Numerical values of

the input variables are not provided in this thesis to prevent revealing sensitive information

which remain as the intellectual property of the PEC service provider. However, a symbolic

representation of the model as a function relating the input variables to the PEC signal is

provided.

The output of the FEA model is the time varying PEC signal lnV (t) itself and the flex-

ibility of obtaining it in the form of lnV (t) or V (t) is prevalent. Assuming the output is
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Figure 4.10: Cross-sectional view of the numerical model showing the eddy current
induction phenomenon (Adapted from [6]).

obtained in the form of lnV (t), the output is expressed as S = lnV (t) in this section for

notational simplicity.

One of the important sets of input variables is the set of test piece properties. The

test piece in this case is the pipe and therefore the required input variables in terms of

geometry are pipe radius r and wall thickness d. In terms of intrinsic material properties,

measured electrical conductivity σ and magnetic permeability µ are required. But since

pipe materials are ferromagnetic and consist nonlinear magnetic properties, obtaining a

constant µ is not possible and as a result, the measured magnetization curve (B-H curve)

in the form of || ~B|| = f(|| ~H||) is required.

The sensor excitation voltage essentially takes the shape of a Heaviside step function

since PEC technique is employed. Due to the decay rate signal feature used for thickness

quantification appearing in the later stages of the signal, capturing the excitation signal’s

influence on the early stages of the detector signal is not of critical importance for this

work. An ideal step function is therefore used to excite the simulated sensor since the

rise time of the excitation signal has no significant impact of the predominantly thickness

dependent decay rate feature βmax ≈
µσd2

π2
. Excitation parameters required for modeling
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are the output impedance of the source Zso, pulse amplitude Vamp, pulse frequency fp and

the duty ratio D%.

Required geometric properties of the exciter and detector coils are shown in Fig. 4.11

and 4.12, and apart from them, the following parameters are required for modeling: (a)

number of excitation coil turns ne; (b) number of detector coil turns nd; (c) electrical

conductivity of the exciter coil σe; (d) electrical conductivity of the detector coil σd; (e)

magnetic permeability of the exciter coil µe; (f) magnetic permeability of the detector

coil µd; and (g) load impedance connected to the detector coil Zdl. Both exciter and

detector coils were made of copper and the standard conductivity and permeability values

of copper [112, 113] were used. The impedance Zdl is the load which the detector coil

signal is measured across and this impedance can be measured. Finally, the geometric

properties of the sensor shown in Fig. 4.11 and 4.12 are required. Quadrilaterals in the

plan view of Fig. 4.11 are rectangular while those of the plan view of Fig. 4.12 are square.

Table 4.1 provides a summary of the parameters required for modeling.

Figure 4.11: Geometric properties of the excitation coil: (a) Plan view; (b) Side view.

The numerical model can thus be expressed as a function fnum which maps the parameters

required to the output logarithmic PEC signal S as shown in
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Figure 4.12: Geometric properties of the detector coil: (a) Plan view; (b) Side view.

S = fnum(r, d, σ, µ, Zso, Vamp, fp, D%, ne, nd, σe, σd, µe, µd, Zdl, weo, wei, leo, lei, we,

he, wdo, wdi, wd, hd, t). (4.20)

where t denotes time. Extraction of the βmax feature from a signal S produced by the

numerical model for learning the thickness-feature function is done by capturing the max-

imum as shown in Eq. 4.21 before the signal enters the noise margin.

βmax = max

(∣∣∣∣
∂S

∂t

∣∣∣∣
−1

)
(4.21)

4.2.3 Results Produced by the Numerical Model

Shown in Fig. 4.13 are some simulated sensor signals and corresponding experimental

signals for gray cast iron. The default model produces signals with only numerical noise and

no experimental noise unless added artificially. Noise characterization done in Section 3.7

shows an average standard deviation of 1.645 × 10−4 for βmax for gray cast iron when

considering all thicknesses. The default model with no added noise shows appreciable
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Table 4.1: Parameters required for simulation.

Symbol Description

r Pipe radius

d Pipe wall thickness

σ Electrical conductivity of pipe material

µ Nonlinear magnetic permeability of pipe material

Zso Output impedance of the source

Vamp Excitation voltage pulse amplitude

fp Excitation pulse frequency

D% Duty ratio of the excitation pulse

ne Number of excitation coil turns

nd Number of detector coil turns

σe Electrical conductivity of the exciter coil

σd Electrical conductivity of the detector coil

µe Magnetic permeability of the exciter coil

µd Magnetic permeability of the detector coil

Zdl Load impedance connected to the detector coil

weo External width of the exciter coil

wei Internal width of the exciter coil

leo External length of the exciter coil

lei Internal length of the exciter coil

we Exciter coil domain width

he Exciter coil domain height

wdo External width of the detector coil

wdi Internal width of the detector coil

wd Detector coil domain width

hd Detector coil domain height

convergence and solution repeatability by exhibiting an average noise of less than 10−8

for βmax on gray cast iron when tested with multiple simulations of the same calibration

block thicknesses used for noise characterization in Section 3.7. Therefore, the mean

value of experimental βmax for each thickness of gray cast iron was compared with mean

of simulated βmax for each thickness and the agreement in Fig. 4.14 was observed. As

Fig. 4.15 indicates, the level of agreement between the numerical model and experiments

could be quantified in terms of a correlation coefficient [114–116] of R = 0.999437. The

mathematical formula used to calculate the correlation coefficient is given in Eq. 4.22

where u and v signify two data vectors of which the correlation is computed. ui and vi

denote the i th element of the vectors u and v respectively, and n is the number of elements
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Figure 4.13: Numerically simulated PEC signals along with experiments (gray cast
iron).

Figure 4.14: Feature values (βmax) vs thickness (d), agreement between simulation and
experiments.

contained in each vector.
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Figure 4.15: Correlation between the numerical simulation model and experiments.

Figure 4.16: Error between model and experiments against thickness.

Ru,v =

n
n∑

i=1

uivi −
n∑

i=1

ui

n∑
i=1

vi

√√√√√

n

n∑
i=1

u2i −

(
n∑

i=1

ui

)2



n

n∑
i=1

v2i −

(
n∑

i=1

vi

)2



(4.22)
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A significant pattern in the error, i.e., the difference between experimental βmax and

simulated βmax could not be observed as shown in Fig. 4.16 which shows the variation

of error against gray cast iron thickness in mm, therefore, the error between simulation

and experiments can be concluded to be arbitrary. The correlation coefficient R taking a

value very close to one (i.e., R = 0.999437) implies strong correlation between simulated

signals and reality. According to these observations, the validity of the numerical model

was sufficiently conclusive and therefore, βmax values extracted from numerically simulated

signals were used to probabilistically learn the thickness-feature function as explained in

Section 4.3.

It should be noted that the thickness-feature function is learned between d and βmax in

this chapter to capture nonlinearities, therefore the comparison of βmax values is sufficient.

However, for the sake of completeness, Fig. 4.17 shows the agreement between lnβmax

values as well. A correlation coefficient of R = 0.999597 was evident for lnβmax values as

shown in Fig. 4.18. This value is slightly greater than what was achieved for βmax and

this increase could be attributed to the logarithmic scale transformation. Similar to βmax

values, errors between experimental and simulated lnβmax values was random as well as

shown in Fig. 4.19.

Figure 4.17: Feature values (lnβmax) vs thickness (ln d), agreement between simulation
and experiments.
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Figure 4.18: Correlation between the numerical simulation model and experiments in
terms of means of lnβmax.

Figure 4.19: Error between model and experiments against thickness for lnβmax.

4.3 Non-Parametric Learning of the Thickness-Feature Func-

tion Using GP

The proposed methodology to non-parametrically learn the thickness-feature function us-

ing GP is presented in Fig. 4.20.
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Figure 4.20: Non-parametric learning of the thickness-feature function using GP.

Estimating thickness d from PEC sensor signal features βmax can be formulated as a

non-linear regression problem. Gaussian Process models are a powerful tool to solve such

regression problems. GPs [18, 117, 118] can be thought of as a Gaussian prior over the

function space mapping inputs x and outputs f(x). It is completely specified by its mean

function µm = E[f(x)] and the covariance function Σ = E[(f(x)− µm)(f(x)T − µT
m)] [18].

In the light of this thesis, let [X Y ] be the training data set drawn by the noisy process

d(i) = f(β
(i)
max)+ε

(i)
noise, whereX = [β

(1)
max, β

(2)
max, ..., β

(i)
max, ..., β

(n)
max]T be the vector of training

inputs which in particular to the thesis correspond to the features extracted from the nu-

merically simulated PEC signals and Y = [d(1), d(2), ..., d(i), ..., d(n)]T be the vector of train-

ing labels, which are the corresponding cast iron thicknesses in mm. A Gaussian Process

estimates posterior distributions over functions f from the training data [X Y ]. Although

the functions are infinitely dimensional, the GP model is used to infer, or predict, function

values at a finite testing set of prediction points X∗ = [β
∗(1)
max, β

∗(2)
max, ..., β

∗(i)
max, ..., β

∗(n1)
max ]T .

To apply a GP framework to this regression problem, one must first select a kernelK(X,X)

whose elements are given by ki,j = k(xi, xj). This specifies the kind of functions that are

expected, before any data have been seen. Technically, the kernel places a prior likelihood

on all possible functions. After evaluating a number of commonly used kernels, the squared

exponential kernel was chosen for this work. It is defined as
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k(xi, xj) = α2 exp

[
−||xi − xj ||

2

2l2

]
, (4.23)

where α and l represent its hyper-parameters and together with sensor noise variance σn

are learned from the training data [X,Y ]. Since any given xi dealt in this work takes the

form xi = β
(i)
max ∈ <+, the vector norm appearing withing the exponential term of Eq.4.23

can be simplified to yield the form given in Eq. 4.24 [119], consequentially, the form in

Eq. 4.24 was used in this work.

k(xi, xj) = α2 exp

[
−(xi − xj)2

2l2

]
(4.24)

The GP model was trained by minimizing the negative log marginal likelihood in Eq. 4.25

with respect to θ = [α, l, σn]T .

− logP (Y |X, θ) =
1

2
Y TΣ−1Y +

1

2
log |Σ|+ n

2
log(2π) (4.25)

The covariance function Σ is given by

Σ = K(X,X) + σ2nI . (4.26)

where I is the corresponding identity matrix.

Minimization was done using conjugate gradients [120–122] and since Σ is a symmetric,

positive definite matrix, inversion and calculating the determinant was done using Cholesky

decomposition [122–124] to achieve computational efficiency. To maintain consistency with

calibration blocks and noise characterization of Chapter 3, training data were produced

through FEA simulation of thicknesses 1, 2, ..., 10, 12, ..., 22, 25, 30 and 35 mm for gray

cast iron. This resulted in 19 training data points, i.e., one βmax value for one thickness.

However, the training data is intended to be used to learn the nonlinear function between

d in mm and βmax and the purpose of this is to infer critical pipe wall thickness (d∗) from
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β∗max values extracted from experimentally captured PEC signals on in situ pipes. Exper-

imental PEC measurement setup encompasses noise, and since a GP prediction produces

uncertainty associated with each inference, it is important that the function learned from

simulated data captures realistic noise. However, since the numerical model is ideal, the

19 simulated signals do not carry noise which is matchable with reality. Therefore, if the

thickness-feature function is learned only with βmax values corresponding to those 19 sig-

nals, the function would not learn the noise existing in reality. This may result in errors in

prediction in addition to producing unrealistic uncertainties associated with predictions.

To avoid this, the ±2× standard deviation noise margins of βmax on each available gray

cast iron thickness, which were quantified in Section 3.7, were introduced to the simulated

βmax values. Thus, the number of training βmax values was tripled from 19 to 57. Out

of 57, 19 were simulated βmax values coming directly from the numerical model. Another

19 were created by subtracting the 2× standard deviation margin from the simulated set.

Similarly, the last 19 were created by adding the 2×Standard Deviation margin to the

vector of simulated βmax values. By doing so, three βmax values were created for each

training thickness. Fig. 4.21 shows the full set of training data (simulated βmax values

with added noise) and the figure also shows the shape of the nonlinear thickness-feature

function which is intended to be learned. Moreover, the figure shows how the artificially

introduced noise on simulated βmax values manages to envelope the experimental βmax

values.

As a result of conjugate gradients being used to minimize the negative log marginal like-

lihood, in theory, reaching the global minimum is not guaranteed since different initial

values may lead to different solutions depending on existent local minimums. Therefore,

following many trial and error tests, a solution stable for a considerable span of initial

conditions was found for the training data set shown in Fig. 4.21. The solution was

θ(sol) = argmin
θ
{− log[P (Y |X, θ)]} = [39.2, 0.0112, 0.9631]T , (4.27)

where
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Figure 4.21: Nonlinear thickness-feature function, i.e., d vs βmax intended to be learned
using GP, as described by simulated training data and experimental data.

− log[P (Y |X, θ(sol))] = 41.08864..., (4.28)

which results from initial values θ(ini) = [α(ini), l(ini), σ
(ini)
n ]T roughly spanned by

∀α(ini) ∈ {α(ini) : 0.1 ≤ α(ini) ≤ 50}

∀l(ini) ∈ {l(ini) : 0.01 ≤ l(ini) ≤ 3}

∀σ(ini)
n ∈ {σ(ini)

n : 0.1 ≤ σ(ini)
n ≤ 3}

.
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There is no guarantee of this being the global minimum, but less superiority was observed

in solutions resulting from a large number of initial value combinations chosen from outside

the spanning limits. Therefore, θ(sol) was selected as the optimum set of hyper-parameters

for the GP model. A convergence plot of the negative log marginal likelihood obtained

while optimizing hyper-parameters is shown in Fig. 4.22. Initial condition used for this

case was θ(ini) = [50, 0.7, 2]T which is within the aforementioned span. The solution was

obtained in 21 iterations and 58 function evaluations. The trend shown in Fig. 4.22 was

common to tested combinations of initial values chosen from within the span though the

number of iterations and function evaluations varied.

Figure 4.22: Variation of negative log marginal likelihood against iteration number
while optimizing GP model hyper-parameters starting from the initial condition θ(ini) =

[50, 0.7, 2]T .

Once the hyper-parameters of the GP model are learned from the training set [X,Y ], they

can be used to infer unknown thickness from a testing dataset X∗ = [β
∗(1)
max, β

∗(2)
max, ..., β

∗(i)
max,

..., β
∗(n1)
max ]T as explained in Section 4.4.
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4.4 Probabilistic Inference of Pipe Wall Thickness

The combination of the training data and the kernel induces not only the most likely state,

but also a full posterior probability distribution. The basic GP regression equations are

given by

µ∗m = K(X∗, X){K(X,X) + σ2nI}−1Y (4.29)

Σ∗un = K(X∗, X∗) + σ2nI −K(X∗, X){K(X,X) + σ2nI}−1K(X,X∗) (4.30)

where I is the corresponding identity matrix.

The expected pipe wall thicknesses (d∗) for the testing input vector X∗ (i.e., β∗max values

extracted from in situ measurements) will therefore be given by the mean of the poste-

rior distribution µ∗m and the associated uncertainty will be given by the covariance Σ∗un.

Fig. 4.23 graphically elaborates the procedure for using the GP model for critical pipe wall

thickness inference.

Before using the learned function for condition assessment of critical pipes, the function’s

performance was visualized to verify how the nonlinearities are captured. Inferred thick-

nesses were plotted with uncertainty with the aid of a continuous vector of testing inputs

β∗max as shown in Fig. 4.24 and 4.25. The figures also display the training data and experi-

mental data corresponding to the training targets. Fig. 4.24 exhibits a reasonable capture

of the nonlinearity in the low thickness range, i.e., d ≤ 5 mm, while Fig. 4.25 shows how

higher thicknesses are modeled. Since the figures elaborate reasonable learning of local

nonlinearities and shows reasonable uncertainty bounds which encapsulate experimental

data, the GP model was deemed suitable for the critical pipe NDE. β∗max values extracted

from signals captured on in situ gray cast iron pipes were fed into the learned model

and pipe wall thicknesses and uncertainties were estimated using Eq. 4.29 and Eq. 4.30

respectively.
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Figure 4.23: GP model being used for critical pipe NDE.

Two plots comparing GP inferred thickness maps against the GT are given in Fig. 4.26

and 4.27. For the ease of comparison the same pipe sections shown in Fig. 3.28 and 3.29



112 Chapter 4. Approach for Numerical and Probabilistic Sensor Modeling

Figure 4.24: The GP model: Capturing nonlinearity in the low thickness range (d ≤ 5
mm).

Figure 4.25: The GP model: Capturing nonlinearity for higher thicknesses (d > 5 mm)

in Chapter 3 were selected. The figures qualitatively suggest that the GP inferences are

very similar in value to the analytically calculated values. Fig. 4.28 provides the GT as

a scatter plot along with the inference and 2 × standard deviation uncertainties plotted
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Figure 4.26: GP interpreted thickness map and GT for the first Gray Cast Iron pipe
segment.

Figure 4.27: GP interpreted thickness map and GT for the second Gray Cast Iron pipe
segment.

as lines when the results for the two pipe segments are considered collectively. It can be

seen that the inference is fairly centered within the GT and the majority of the deviations

between inference and GT are less than or equal to the uncertainty, which is a desirable

property. Collective error statistics for the two pipe segments are presented in Table 4.2.
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Figure 4.28: Variation of GP interpretations and uncertainty along with GT for the
Gray Cast Iron pipe segments.

The average 2 × standard deviation uncertainty for the inferred thicknesses was 3.23 mm

with a low variance of 0.00157 mm2.
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Table 4.2: Statistics of absolute error between interpreted pipe wall thickness and
ground truth for Gray Cast Iron pipe segments.

Statistical Parameter Value

RMS Error 2.049 mm

Mean Absolute Error 1.608 mm

Standard Deviation of Absolute Error 1.270 mm

Maximum Absolute Error 7.901 mm

Mean Percentage Accuracy 91.96%

4.5 Comparison of GP Interpreted Results with the Ana-

lytical Approach

Error statistics shown in Table 4.3 and 4.4 between interpreted thicknesses and GT were

calculated for both analytical and numerical approaches and compared. It was evident

from this comparison that the numerical simulation and probabilistic inference based ap-

proach increased the accuracy of inferred thicknesses when comparing with the analytical

approach. The capability of capturing and modeling actual material properties and non-

linearities in the thicknesses-feature function can be identified as the possible causes for

this improvement. With respect to the two gray cast iron pipe segments considered in

both Chapter 3 and 4, the improvement can be quantitatively expressed via error statis-

tics presented in Table 4.3. An increment of overall percentage accuracy up to almost 92%

from 90% was achieved by using the numerical approach along with reductions in RMS

and mean absolute errors.

Table 4.3: Comparison of absolute error statistics between analytical and numerical
approaches.

Statistical Parameter Analytical Approach Numerical Approach

RMS Error 2.42 mm 2.05 mm

Mean Absolute Error 2.00 mm 1.61 mm

Standard Deviation of Absolute Error 1.37 mm 1.27 mm

Maximum Absolute Error 7.06 mm 7.90 mm

Mean Percentage Accuracy 90.3% 91.96 %
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In addition to the two pipe segments discussed above, thickness maps and error statistics

of all evaluated gray cast iron pipe segments are presented in Appendices A (analytical ap-

proach) and B (numerical approach). Considering all the evaluated sections, improvement

in accuracy associated with the numerical approach can be confirmed further as shown

in Table 4.4. As can be seen in that table, the overall percentage accuracy was observed

to increase from approximately 90% to 92% while the RMS and mean absolute errors de-

creased. It can therefore be concluded that the probabilistic inference based on numerical

simulations has a small, but noticeable positive impact on the accuracy of interpreted

thicknesses over the analytical approach. Since the additional information of uncertainty

is given along with thickness through GP inference, the probabilistic method is more ad-

vantageous over the analytical method for sensor fusion purposes to achieve even higher

accuracy. For example, a method of improving the thickness estimates by fusing results

produced by the proposed approach with localized defect information captured by another

sensor is proposed in [125]. The numerical NDE approach presented in this chapter can

thus be concluded to be suitable for condition assessment of critical pipes and suitable

for sensor fusion applications. Though the approach has been evaluated on gray cast iron

with the use of a rectangular PEC sensor due to the industrial requirements associated

with this research, the sensor modeling and thickness inference methods are generic to any

PEC sensor architecture and material, as long as sensor and material properties are given.

Table 4.4: Comparison of absolute error statistics between analytical and numerical
approaches (using all evaluated pipe segments).

Statistical Parameter Analytical Approach Numerical Approach

RMS Error 2.69 mm 2.05 mm

Mean Absolute Error 2.14 mm 1.62 mm

Standard Deviation of Absolute Error 1.52 mm 1.197 mm

Maximum Absolute Error 10.65 mm 8.66 mm

Mean Percentage Accuracy 89.8% 92.4 %
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4.6 Conclusions

This chapter introduced a critical pipe NDE approach based on numerical PEC sensor

modeling and probabilistic inference of pipe wall thickness. The objective of the pro-

posed approach was to overcome the experimental calibration requirement and the prac-

tical difficulties associated with executing the analytical approach presented in Chapter

3. Elimination of experimental calibration was accomplished by measuring electrical and

magnetic properties of pipe materials and incorporating them in a numerical sensor sim-

ulation model to produce calibration signals as opposed to performing measurements on

calibration blocks as done in the analytical approach.

Electrical conductivity and magnetization curve are the material properties required for

numerical modeling and the procedure followed for measuring them was extracting spec-

imens and using them in a PPMS. The alternative method for estimating a range for

electrical conductivity by finding material composition with the aid of an XRF device and

applying rule of mixtures was experimented. However, since the XRF method produces a

range while the PPMS can measure the exact value, the XRF measurement based method

becomes redundant in this application although it may still be useful in instances where

only nondestructive approximation of conductivity is required, or for a case where a PPMS

or a four probe conductivity measurement apparatus is unavailable.

Once electrical and magnetic properties are measured, they can be incorporated to nu-

merically model the PEC sensor interaction with materials. The objective of numerical

simulation was to simulate PEC signals given an arbitrary PEC senor architecture and

facilitate a mechanism of replacing the procedure of experimentally obtaining calibration

data using calibration blocks. Intended operation of the model was to produce PEC signals

as the output when sensor and material properties are provided as inputs. As the first step

of developing the model, the equation governing the EC phenomenon was derived start-

ing from Maxwell’s equations. Since analytically deriving a closed form solution for the

PEC signal from the magnetic vector potential based governing equation is complicated,

an FEA numerical simulation model was developed using COMSOL Multiphysics R© com-

mercial software package to obtain the solution numerically. Outputs of the FEA model
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corresponding to the rectangular sensor addressed in this thesis showed acceptable agree-

ment with experimental signals as shown in this chapter. Therefore, the numerical model

was chosen as a convenient option to replace calibration blocks and a generic method which

has flexibility to model given sensor architectures and materials having different intrinsic

properties.

The numerical model was used to simulate calibration signals for gray cast iron and the gra-

dient feature values (βmax) were extracted to learn the thickness-feature function. Unlike

modeling the function as a straight line as done in Chapter 3, it was intended to non-

parametrically learn the function in order to capture any plausible nonlinearities which

could exist in reality, with the objective of achieving higher accuracy for pipe wall thickness

estimates than in the analytical NDE approach. Before learning the function, agreement

between simulated βmax values and experimental values was evaluated in this chapter. On

observing reasonable agreement, the thickness-feature function was learned using GP with

simulated βmax values used for training. Optimization based learning process was detailed

and the resulting hyper-parameters were presented.

Applying the GP model for critical pipe NDE was done by probabilistically inferring

pipe wall thickness using PEC signals captured by scanning in situ pipes. An extended

evaluation of results was done using all scanned pipe sections (results presented in Ap-

pendices A and B) and an overall percentage accuracy of over 92% was observed when

comparing against ground truth. This implicated a 2% increase in accuracy when compar-

ing with the analytical approach along with reduction in RMS and mean absolute errors.

Therefore, the probabilistic thickness inference method can be concluded to have an im-

provement in accuracy than the analytical approach. A main reason for the increase in

accuracy can be identified as the possibility of the GP method to learn local nonlinearities

of the thickness-feature function as apposed to the analytical method which models the

function as a perfect straight line. A second cause for increased accuracy can be attributed

to numerical sensor modeling, as it uses pipe material properties which enables reducing

calibration errors caused by material property mismatches which generally occur when

using calibration blocks.

In addition to increased accuracy, the capability of providing uncertainty information for
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inferred thicknesses is a significant advantage in GP inference. This information assists

sensor fusion applications as done in [125] in relation to the sensor addressed in this thesis,

to obtain more accurate interpretations of pipe condition. Therefore, the NDE approach

proposed in this chapter which numerically solves the forward eddy current problem and

probabilistically solves the inverse eddy current problem can be concluded to be an effective

tool for critical pipe health monitoring.





Chapter 5

Towards 3D Profiling in Critical

Pipe NDE

For a given PEC excitation strength and a number of coil turns, it is known that the max-

imum achievable eddy current penetration depth in a material being tested is proportional

to the size of the exciter coil [40]. With respect to rectangular coils, size can be specified

by internal and external lengths and widths of coil domains while for circular sensors, size

can be specified by internal and external radii of the same. Hence the relationship between

exciter coil size and penetration depth is monotonic, i.e., larger the exciter coil, deeper

the penetration. As a result, since penetrating up to 30 mm in ferromagnetic materials

is required for critical pipe NDE at the focus of this thesis, the PEC sensor being used

inevitably requires to be sufficiently large for a finite excitation strength. However, when

the sensor is large, the lateral spread of the magnetic field also increases which results in

the lateral domain of influence of the sensor being large. Consequentially, PEC sensors

suitable for critical pipe evaluation are generally low in resolution for practically man-

ageable excitations and the detector is perceiving an averaged effect of the actuality of

remaining material within the domain of influence [34]. Therefore, when using commercial

PEC sensors capable of critical pipe assessment [5, 34], it is difficult to detect anomalies

such as pitting which are localized to areas smaller than the sensor footprint. This limita-

tion existing in current practice highlights the need for research aimed towards increasing

PEC sensor resolution for the applications of PEC in general.

121
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The objective of this chapter is to investigate the capability of increasing PEC sensor

resolution while maintaining adequate penetration depth to suit the application of critical

pipe NDE. Reducing the sensor size is the obvious method of increasing resolution and

it is also the focus of this chapter. As discussed in Chapter 2, a previous study [40]

which investigates the effect of the geometry of a circular PEC sensor on the penetration

capability in non-ferromagnetic materials has identified several aspects on the nature of

eddy currents induced in the material being tested.

1. The larger the internal radius of the excitation coil, the deeper the penetration and

the larger the lateral spread.

2. The larger the outer radius of the excitation coil, the deeper the penetration and the

larger the lateral spread.

3. The smaller the height of the excitation coil, the deeper the penetration and the

larger the lateral spread.

Based on the above findings, it can be ascertained that though increased resolution can be

achieved through a smaller sensor, that limits the spread of the magnetic field and results

in not being able to assess thick material since the eddy current penetration depth will

be lower [40]. However, it may be possible to compensate the reduction of magnetic field

spread by increasing the excitation strength. However, the amount of increase allowable

to the excitation is limited by the available electronic circuitry and related hardware.

Therefore, this chapter investigates the possibility of increasing resolution by reducing

sensor size and compromising the magnetic field spread by increasing excitation strength

within constrained limits.

Similar to the non-ferromagnetic material and non detector coil based PEC sensor related

study in [40], this chapter brings forth a ferromagnetic material specific numerical study

(using FEA) to aid understanding the influence of the geometry and properties of the

detector coil based PEC sensor architecture on the thickness discriminative capability of

the decay rate (βmax) signal feature throughout a thickness range adequate from critical

pipe assessment. As this chapter investigates general improvements to the sensor design,
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a circular sensor model is selected for simplicity. Findings about size and properties of the

sensor generalize to both rectangular and circular sensors while modeling circular sensors

is much simpler. To derive association with the application of critical pipe assessment,

gray cast iron is used as the material being tested within this study.

Subsection 3.2.6 hypothesized an important low dependence of βmax on sensor shape,

a validation of this hypothesis is performed in simulation. Low dependencies on lift-off

and sensor size identified in Subsection 3.2.6 are exploited in this chapter to propose

a framework usable for 3D profiling of ferromagnetic materials by means of concurrent

inference of thickness and lift-off and the performance of the framework is demonstrated

using FEA simulation.

5.1 FEA Model Used for the Study

For computational efficiency and simplicity of analysis, a 2D axisymmetric model of a

circular PEC sensor was developed and used for the study. Since this thesis focuses on

detector coil based sensor architecture, same scope was mandated for this study and the

model was made to be detector coil based. Gray cast iron is used as the ferromagnetic pipe

material in this model, and the study, to draw relationship to critical pipe assessment, or

to ferromagnetic materials in general.

5.1.1 Developing the Model

Fig. 5.1 shows the 2D axisymmetric sensor model developed using COMSOL Multiphysics

R© while Table 5.1 provides the input parameters required for modeling. Unlike the numer-

ical model of Chapter 4 which uses a voltage pulse for excitation, this model uses a current

pulse in the form of a perfect Heaviside step function. It was noted in this exercise that a

current excitation enables faster simulation than a voltage excitation in COMSOL. In the

practical scenario, the excitation coil current has a non zero rise time. However, that is

not the case in this study since the current is a perfect step function. Though one might

therefore argue that this analysis is unrealistic with respect to the practical circumstance,

it should be noted that this study is interested only in the late stage of the signal. Since
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the effect of the rising edge dies down after several time constants [30], the rising edge

does not have any significant impact on the βmax signal feature focused in this study,

as it is extracted from the very late stages of the signal just before entering the noise

margin. Therefore, using a step current excitation is a valid exercise when considering

computational efficiency. To coincide with feature extraction from experimental signals,

Figure 5.1: 2D Axisymmetric FEA model developed for the study: (a) 2D axisymmetric
model; (b) Meshed model.

Table 5.1: Parameters required for simulation.

Symbol Description

rdi Inner radius of detector coil domain

rdo Outer radius of detector coil domain

hd Height of detector coil domain

lod Vertical offset of the detector coil

nd Number of detector coil turns

σd Electrical conductivity of the detector coil

µd Magnetic permeability of the detector coil

rei Inner radius of exciter coil

reo Outer radius of exciter coil

he Height of exciter coil domain

loe Vertical offset of the exciter coil

ne Number of excitation coil turns

σe Electrical conductivity of the exciter coil

µe Magnetic permeability of the exciter coil

d Plate thickness

σ Electrical conductivity of pipe material

µ Nonlinear magnetic permeability of pipe material

Ie Amplitude or the excitation current pulse

Zdl Load impedance connected to the detector coil
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lnV [t] = 0 and 0 < lnV (t) < 2 are considered as the noise margin and the region for cap-

turing βmax respectively as shown in Fig. 5.5. Thickness of flat plates is modeled in this

study since simulating curved surfaces like pipes in an axisymmetric environment does not

replicate desired reality. If developing circular sensors for pipe evaluation by incorporating

knowledge gained from this study, the method described in Section 3.3 can be followed to

confirm the test piece curvature range for which the flat plate approximation is valid.

Similar to the model in Chapter 4, this model takes the inputs described in Table 5.1 and

outputs the time domain logarithmic PEC signal S2D as expressed in Eq. 5.1. The usual

βmax signal feature is extracted for analysis as shown in Eq. 5.2 before the signal enters

the noise margin.

S2D = fnum2D(rdi, rdo, hd, lod, nd, σd, µd, rei, reo, he, loe, ne, σe, µe, d, µ, σ, Zdl, Ie, t) (5.1)

βmax = max

(∣∣∣∣∂S2D∂t
∣∣∣∣−1
)

(5.2)

5.1.2 Theoretical Verification of the Model

To enable numerical study, the developed model was initially theoretically validated. The

parameters of the base model described in Section 5.2 were used for verification by in-

corporating a hypothetical material having a relative permeability of 50 and an elec-

trical conductivity of 1.5 × 106 S/m. Based on the assumed conductivity and perme-

ability values, theoretical βmax values can be calculated using βmax ≈
µσd2

π2
for dif-

ferent thicknesses. Theoretical βmax values were calculated for thickness 5, 10, 15, 20

and 25 mm and those thicknesses were simulated using the numerical model to obtain

time domain signals. βmax values were obtained from the simulated signals as well

and were compared with the theoretical values to check the model validity. Results

are shown in Table 5.2 and Fig. 5.2, and reasonable agreement was observed with an

RMS error of 0.0271 and a mean percentage accuracy of 99.6%. Mean percentage ac-

curacy in this instance was calculated by quantifying the percentage accuracy for each
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thickness using

(
1− |theoretical lnβmax − numerical lnβmax|

|theoretical lnβmax|

)
× 100 since the condition

|theoretical lnβmax−numerical lnβmax| < |theoretical lnβmax| prevailed for all thicknesses,

and averaging them. Fig. 5.3 shows the low magnitude of the error between simulation

and theory for each thickness value taken in mm. Fig. 5.4 shows the plot between sim-

ulated and theoretical lnβmax values and it produces a correlation coefficient of 0.99983

calculated using Eq. 4.22, which implies a highly significant agreement between theory

and the model. Fig. 5.5 shows the simulated signals for all the thicknesses while Fig. 5.6

shows the spread of induced eddy current at a particular time instance inside a plate of

25 mm thickness.

The results thus exhibit acceptable agreement with theory and suggests sufficient model

validity and accuracy to be incorporated in a numerical study. Section 5.2 formulates the

problem which is intended to be solved through the numerical study in order to identify

how sensor resolution can be increased.

Table 5.2: Agreement between the 2D axisymmetric model and theory, theoretical and
simulated lnβmax values for different thicknesses.

Thickness Theoretical lnβmax Simulated lnβmax
5 mm -8.340 -8.337

10 mm -6.954 -6.971

15 mm -6.143 -6.135

20 mm -5.568 -5.512

25 mm -5.121 -5.108

5.2 Problem Formulation for Increasing Sensor Resolution

The problem of increasing sensor resolution is solved using the base model described in

Subsection 5.2.1.

5.2.1 The Base Model

The base model is the FEA simulation model shown in Fig. 5.1 designed with model

parameter values provided in Table 5.3. It represents a circular PEC sensor with concentric
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Figure 5.2: Feature values (lnβmax) vs thickness (ln d), agreement between simulation
and theory.

Figure 5.3: Error between simulation and theory against thickness.

coils.

Though the study is specific to gray cast iron to draw connection with critical pipe assess-

ment, the study generalizes and can be repeated for any material by providing necessary

electrical and magnetic properties. Coils of the sensor were assumed to be wound of copper
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Figure 5.4: Correlation between the numerical simulation model and theory.

Figure 5.5: Numerically simulated signals by the 2D axisymmetric model for different
thicknesses.

wires and therefore standard electrical conductivity and relative permeability of copper

were used. The exciter coil was assumed to be wound of an AWG 32 wire while the de-

tector coil was wound of an AWG 40 wire. Radii and heights of coil domains were set to

be sufficient to accommodate the turn numbers specified in the table. As evident in the

table, the assumed excitation was an ideal current pulse (Heaviside step) having a 50 mA
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Figure 5.6: Induced eddy current density in a 25 mm thick plate displayed by the 2D
axisymmetric model at a certain time instance.

Table 5.3: Parameters required for simulation.

Parameter Value

rdi 30 mm

rdo 34 mm

hd 0.1 mm

lod 4 mm

nd 50

σd 5.998× 107 S/m (Copper)

µd µ0 (Copper)

rei 60 mm

reo 65.1 mm

he 5.1 mm

loe 5 mm

ne 625

σe 5.998× 107 S/m (Copper)

µe µ0 (Copper)

d 30 mm

σ 5.9× 105 S/m (Gray Cast Iron)

µ BH Curve (Gray Cast Iron, Fig. 4.3)

Ie 50 mA

Zdl 50 Ω
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amplitude. Assuming an ideal current pulse for excitation is reasonable since the rising

edge does not impact the βmax feature considered for this study since the signal feature

is extracted well after the signal rise is completed. Subsection 5.2.2 describes the problem

intended to be solved.

5.2.2 Procedure for Increasing Resolution

A PEC sensor usually has a domain of influence larger than its footprint. The domain of

influence is the region in which eddy currents are induced due to the excitation field and

Fig. 5.6 is an example which shows the domain of influence of the circular PEC sensor

considered in this chapter. When the domain of influence is large, the thickness detected by

the sensor usually becomes an averaged result of the actuality of the ferromagnetic material

remaining within the domain of influence [34]. This in return reduces the resolution of a

PEC sensor since the sensor becomes sensitive to a large volume domain impacted by eddy

currents. Therefore, the target is to investigate how the sensor resolution can be increased,

or more specifically, how the domain of influence can be reduced, by using the base model

as the guide. During the process of increasing resolution, the low dependence of βmax on

sensor shape, hypothesized in Subsection 3.2.6 is verified. Validating this hypothesis is

important to establish generality of the knowledge gained from the circular sensor model

in this chapter. The other low dependencies are used to propose a framework to perform

3D profiling by concurrently inferring thickness and lift-off.

The steps required to be followed in chronological order to solve the problem of achieving

increased resolution and facilitating 3D profiling are listed below.

1. Validate the hypothesis of βmax being lowly dependent on sensor shape given the

prevalence of sufficient penetration capability.

2. Quantify the domain of influence of the base model.

3. Perform a two fold study of reducing sensor size and increasing excitation to achieve

reduced lateral domain of influence while maintaining sufficient thickness detection

capability.
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4. Propose a framework for 3D profiling of the material being testing by concurrently

inferring thickness and lift-off by exploiting the verified low dependencies of βmax.

Section 5.3 investigates and confirms the low dependence exhibited by βmax on sensor

shape while assessing ferromagnetic materials.

5.3 Low Dependence of βmax on Sensor Shape

Similar to the previously validated low dependence on lift-off and sensor size, low de-

pendence on sensor shape was hypothesized for the condition that sufficient penetration

capability remains despite sensor shape, and this hypothesis is tested in simulation in this

section.

Previous chapters investigated a commercial rectangular PEC sensor and a 3D numerical

model for the sensor was developed and validated in Chapter 4. The parameters of the

base model discussed in this chapter, despite being circular provide a penetration capa-

bility nor less than that of the rectangular sensor. Therefore, given the prevalence of

sufficient penetration capability, the hypothesis states that βmax values should exhibit low

dependence to sensor shape, examined in the scope of this subsection as rectangular and

circular shapes. This hypothesis was tested by comparing βmax values produced by the

base model for gray cast iron against experimental values produced by the rectangular

sensor. Fig. 5.7 shows an example how the base model impacts the signal when compar-

ing with the signal from the rectangular sensor and Table 5.4 provides lnβmax values for

different thicknesses obtained from both shapes.

Table 5.4: Shape dependence of lnβmax values.

Thickness Rectangular Sensor (lnβmax) Base Model lnβmax
5 mm -7.722 -7.735

10 mm -6.553 -6.615

15 mm -5.930 -6.002

20 mm -5.254 -5.304

25 mm -4.801 -4.871
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Figure 5.7: Example for the impact of circular shape on the signal when comparing with
the signal captured from the rectangular sensor (captured on a gray cast iron calibration

block, 16 mm thickness).

According to the results of Fig. 5.7 and Table 5.4, it can be concluded that the βmax

feature is lowly dependent on sensor shape when there is sufficient penetration capability.

However, the actual signal may vary differently for different sensor shapes and sensor prop-

erties such as excitation strength and number of coil turns. An example signal variation

caused by the difference in shape and properties between the rectangular sensor and the

base model is exhibited in Fig. 5.7.

5.4 Finding the Domain of Influence of the Base Model

Finding the domain of influence was done in two steps: (a) Verifying penetration capability;

(b) Finding lateral (horizontal) domain of influence.

5.4.1 Verifying Penetration Capability

Desired penetration capability for this exercise is 30 mm on gray cast iron. To check

the penetration capability of the base model, simulations were run by varying material
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thickness (d) while keeping all other parameters fixed at the values provided in Table 5.3.

d was varied from 5 mm to 55 mm in steps of 5 mm and Fig. 5.8 shows the extent to which

lnβmax remains linear with ln d. From the figure, it can be seen that the base model shows

the linear characteristic up to 30 mm and exhibits the nonlinear characteristic beyond.

Lower thickness range is not paid attention to here since the objective of this chapter is to

have sufficiently large enough penetration depth while increasing sensor resolution. The

behavior shown in Fig. 5.8 is attributed to the 50 mA excitation current not being strong

enough to induce eddy currents of sufficient intensity to show linearity in gray cast iron

depths greater than 30 mm. It can thus be concluded that the base model just achieves the

desired penetration capability of 30 mm on gray cast iron, but experiences loss of linearity

thereafter. This implicates that the vertical domain of influence of the base model in terms

of penetration depth exhibiting linear characteristic is about 30 mm.

Figure 5.8: Vertical domain of influence (penetration depth) of the base model.
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5.4.2 Finding Lateral (Horizontal) Domain of Influence

The modified base model shown in Fig. 5.9 was used to find the lateral domain of influence.

For a fixed d, w was increased from 10 mm until βmax exhibited significant independence

on w. When βmax becomes independent of w, that confirms that w has exceeded the

lateral domain of influence of the sensor incorporated in the base model. Dependence of

βmax on w was checked for d values: 5, 10, 15, 20, 25 and 30 mm and the result is shown

in Fig. 5.10.

Figure 5.9: Simulation model to investigate lateral domain of influence.

After recording an array of βmax values for a single thickness, the array was divided by the

maximum of the array in order to scale βmax values to have a maximum of 1 for ease of

comparison. Lowest scaled βmax values for all thicknesses can be seen when w is minimal.

That is attributed to having little metal volume under the sensor and it can be seen how

βmax values increase with the increase of metal in proportion to w. At higher w values, it

can be seen that βmax variation is insignificant. Therefore, the lateral domain of influence

of the sensor was identified as the region where w contributes in a scaled βmax reduction

of over 1% from maximum. This quantification suggested a lateral domain of influence

of w < 120 mm. The effect of this margin is fairly visible in the figure and the domain

of influence remained the same for all thicknesses. Inner and outer radii of the excitation

coil is 60 and 65.1 mm respectively, and it was observed that the domain of influence
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Figure 5.10: Lateral domain of influence.

was almost double the inner radius. This indicates the sensor footprint creates space for

improving resolution as done in Section 5.5.

5.5 Increasing Sensor Resolution (Reducing the Domain of

Influence)

To increase resolution, the study performs an iterative decrease of sensor size and an

increase of excitation strength. As mentioned in Subsection 5.2.2, the inner radii of both

exciter and detector coils were reduced by 50% to make the sensor smaller. Coil domain

widths and heights were kept constant in order to accommodate same number of turns

of AWG 32 and AWG 40 wires as specified in the base model. Intention of reducing size

was to reduce the lateral domain of influence and achieve increased resolution in return.

However, measurement capability up to d = 30 mm was desired. Simulations were run

by increasing d from 5 mm to 35 mm with reduced coil radii while other base model

parameters were kept constant. Due to reduction of wire length as a result of reduced coil

size, excitation coil resistance decreased to 67 Ω in the small sensor from the original value
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of 128 Ω which existed in the base model. Observed result is shown in Fig. 5.11 in blue,

the straight line in red is the linear behavior observed with the original base model.

The behavior of eddy current spread decreasing with reduction in excitation coil size

reported in [40] was observed in this simulation as well in the form of loss of linearity

from 20 mm as opposed to 30 mm in the original base model. With the intention of

increasing sensitivity for higher thicknesses, a second experiment was run by bringing the

detector coil back to its original size (i.e., inner radius = 30 mm). The detector coil does

not affect the domain of influence impacted by the exciter. But making the detector coil

larger enables it to capture more magnetic flux and in return, the induced voltages will be

larger making the sensor more sensitive to higher thicknesses. Increased sensitivity in the

higher thickness region achieved by making the detector coil larger is shown in Fig. 5.11

in maroon ’x’.

Since reduction of excitation coil size resulted in reducing the overall excitation coil resis-

tance from 128 Ω to 67 Ω, the option of increasing the excitation current was considered as

another mechanism to increase thickness sensitivity. Given that fusing currents of exciter

and detector coil wire gages were in the ampere range, the excitation current was doubled

by increasing to 100 mA from the original base model value of 50 mA. That resulted in

further increasing thickness sensitivity as shown in black in Fig. 5.11. As can be seen from

the figure, perfect linearity could not be achieved even after doubling the excitation cur-

rent due to the effect of the reduced coil size. However in theory, it should be possible to

achieve a linearity similar to the base model by increasing the excitation. Due to hardware

limitations encountered in practice, increasing the excitation is not a practical solution.

However, perfect linearity is not a necessity since a nonlinear thickness-feature function

can be learned using GP as proposed in Chapter 4. Despite nonlinearity being prevalent,

if βmax exhibits functional behavior with thickness, a GP approach is able to characterize

the thickness-feature function. Therefore, slight increase in thickness sensitivity achieved

in the higher thickness region through increasing detector coil size and excitation does suit

the purpose since thickness discrimination is possible despite loss of linearity.

It was now necessary to check whether the lateral domain of influence had been reduced

due to the reduction of excitation coil size. Since Subsection 5.4.2 showed that the lateral
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Figure 5.11: Results from experiments done to increase sensor resolution.

domain of influence is fairly uniform for all test piece thicknesses, the impact on lateral

domain of influence was checked in this section using a 15 mm thick plate. The usual

exercise of increasing w from 10 mm was carried out and the result is shown in Fig. 5.12.

The test was run with the smaller sensor with the increased detector coil size and excitation

current, despite the increase in excitation to 100 mA, a reduced domain of influence of

about w < 70 mm was achieved. This is almost a 42% reduction of the domain of influence

which was 120 mm in the original base model.

From the above observations, it can be concluded that the lateral domain of influence of

a given sensor architecture can be reduced simply by reducing the size of the exciter coil.

The disadvantage of losing thickness sensitivity for higher thicknesses will be experienced

as a result. However, this loss of sensitivity can be counteracted by increasing detector

coil size and excitation current. Linearity observed in the original base model was never

reattained through the experiments done in this section, increase in thickness sensitivity

was observed by increasing detector coil size and excitation current nevertheless. Since

learning nonlinear thickness-feature functions through GP is possible, achieving increased

sensitivity is sufficient although perfect linearity is nonexistent. Though it may be intu-

itively reasoned that increasing the excitation current may increase the lateral domain of
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Figure 5.12: Domain of influence of the small sensor with larger detector coil and
increased excitation.

influence, the observations suggest that reduction of sensor size is more dominantly im-

pactive than the increase in excitation. Based on this knowledge, the sensor size may be

reduced further to achieve any desired resolution. However, this will cause loss of sensitiv-

ity for higher thicknesses. Since low dependence of βmax on sensor shape was established,

this knowledge generalizes to different sensor shapes.

Taking 100 mA as a design constraint for maximum allowable excitation current assuming

hardware limitations, an optimum sensor size could be achieved by further reducing the

exciter coil radius. The solution yielded a detector coil radius (rdi) of 30 mm and an exciter

coil radius (rei) of 15 mm which is one fourth of the initial exciter coil radius of 60 mm

found in the base model (Table 5.3). Other parameters remain the same as in Table 5.3.

The thickness-feature function resulting from the optimized sensor is shown in Fig. 5.13.

5.6 Towards 3D Profiling

In contrast to the 2.5D representation of test piece condition completed in previous chap-

ters, whereby the thickness of remaining ferromagnetic material is determined at discrete
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Figure 5.13: Thickness-feature function of the optimized sensor.

locations, this section proposes a framework to represent the pipe condition in 3D. The

framework simultaneously estimates the thickness of the ferromagnetic material and the

vertical distance between the PEC sensor and the top surface of the ferromagnetic sub-

strate at discrete locations. The problems associated with 3D profiling are elaborated in

the following subsection.

5.6.1 Effects of Corrosion and Graphitization Process on PEC NDE

A critical pipe wall at its original state is entirely composed of a ferromagnetic material

(such as gray cast iron, ductile cast iron or mild steel) and with age, the pipe walls

tend to corrode and graphitize [8, 11]. The usual pattern for corrosion or graphitization

to develop, is for the phenomena to begin manifestation at the surface (both internal

and external) and subsequently spread towards the center of the wall. As a result, the

formed rust and graphite remain as layers close to the internal and external surfaces, and

the remaining original ferromagnetic material exists as a layer trapped between them.

Intention of condition assessment is to infer the thickness of the hence trapped healthy

material layer.
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If surface corrosion and graphitization exist, the sensor will not have physical contact

with the healthy material layer. In previous chapters, only the thickness of the healthy

material layer was inferred. Existence of layers of rust and graphite between the healthy

material and the sensor did not pose a significant challenge due to the low dependence

of the βmax feature on lift-off. If the ferromagnetic material thickness is solely inferred,

the pipe condition can only be estimated in 2.5D. In contrast, if the thickness of the

healthy material layer can be estimated in conjunction with the thickness of the rust or

graphite layer remaining between the healthy layer and the sensor, the pipe condition can

be presented as a 3D profile.

To investigate the capability of inferring thickness of both the healthy layer, and the layer

between the sensor and the healthy layer, solving the problem of finding both l and d

in the modified base model setup shown in Fig. 5.14 (rei = 30 mm, rdi = 30 mm and

100 mA excitation current) is attempted in the remainder of this chapter. µt and µb

are the relative permeability of the top and bottom layer respectively, whereas σt and

σb are corresponding electrical conductivities. Experiments done with strong magnets on

chipped particles of graphite and rust layers present on critical pipes showed neutrality to

magnets and therefore µt = µb = 1 was set when modelling. µ and σ have usual meanings

associated with the base model.

Figure 5.14: FEA model used for solving the problem of inferring thickness of both the
healthy material layer and the top layer.
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The electrical conductivity and magnetic nature of rust and graphite layers are significantly

less than those of the ferromagnetic layer in the middle, as indicated in Fig. 5.14.

5.6.2 Effect of σt and σb on the PEC signal

Before attempting to solve the problem, it was important to identify the impact of σt

and σb on the PEC signal. A model was parameterized with d = 15 mm, l = 15 mm,

and simulations were run by varying σt from 0 to 105 S/m., the maximum possible value

for both σt and σb given the conductivity of graphite is generally at most in the order of

104 (https://www.entegris.com/resources/assets/6205-7329-0513.pdf). Observed results

presented in Fig. 5.15 suggested there is no significant impact on the signal (less that 1%

variation in signal between 0 S/m and 105 S/m conductivity) and feature βmax (variation

less than 1%) since µtµ0 << µ as µt = 1 and σt < σ. It should be noted that the

signal shift from the reference observed in this case is attributed to the effect of lift-off

observed in Chapter 3 since the healthy ferromagnetic layer is 15 mm away from the

sensor. Thereafter, simulations validate that the impact caused by σt on the signal and

its gradient is minimal.

Figure 5.15: Influence on the signal caused by σt.

Similarly, to identify the influence of σb on the PEC signal, the model was parameterized

as d = 15 mm and d0 − d− l = 15 mm, and simulations undertaken with σb in the range
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0 to 105 S/m. Results in Fig. 5.16 suggest there is no significant impact (less than 1%

variation) on the signal and βmaxx since µbµ0 << µ as µb = 1 and σb < σ. For the sake

of completeness, simulations were run for the two cases by making σt = σb = 106 S/m to

verify the hypothesis that such high conductivity would invariably impact the signal, given

the conductivity has reached the order of gray cast iron. A clear influence was observed

as expected, but still in moderation since µt = µb = 1 held. Significantly higher values of

µt and µb usually do not exist in graphitized and rusted layers [126].

Figure 5.16: Influence on the signal caused by σb.

The observation of the impact on the signal being minimal for conductivities less than 105

S/m, typically maximum conductivity values of cast iron, validated the practicality of a

framework for jointly inferring thickness of both the top and middle layers presented in

the following section.

5.6.3 The 3D Profiling Framework

The fundamental of the framework is inferring thickness of the ferromagnetic layer using

βmax, since βmax is not significantly influenced by lift-off caused by the top layer, the

conductivity of the top layer within the considered range, and inferring the thickness of

the top layer as liftoff using a threshold crossing time as a signal feature. Therefore, after
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the thickness-feature function has been learned, as done in Chapter 4, the procedure to

infer both thickness and lift-off from a captured PEC signal can be summarized as:

1. Infer d using the learned thickness-feature function demonstrated in Chapter 4.

2. Given an inferred thickness d∗ mm, using the model presented in Fig. 5.14, numeri-

cally simulate the cases where l takes the value k(d0− d∗) mm, k takes the values 0,

0.25, 0.5, 0.75 and 1.0 with σt = σb = 0 S/m and µt = µb = 1. The intention behind

selecting k values was generating five training data points corresponding to equally

spaced lift-offs.

3. Extract feature tth from the simulated signals, where t = tth is the time ln[V (t)]

intersects a horizontal threshold hth. For convenience, hth = 0 is taken as the

threshold in this chapter.

4. Learn the l-tth function using GP as done in Chapter 4 with the aid of simulated

values.

5. Infer l∗ from the learned l-tth function using the tth feature extracted from the

captured signal.

By following the above procedure, the thickness of both the ferromagnetic layer and the

top layer can be inferred, enabling presentation of pipe wall condition in 3D.

5.6.4 Results

The learned thickness-feature function for the circular sensor (rei = rdi = 30 mm and 100

mA excitation current) is shown in Fig. 5.17. Training was purely based on simulation

with no added experimental noise, as the focus of this chapter was on fundamental study,

designing and fabricating a new sensor was not an objective of the project. No work was

therefore carried out to design a circular sensor and experimentally characterize sensor

noise to incorporate in the model at this stage. In the case of practical developments

however, experimental noise can be characterized as done in Section 3.7 and added to the

model.
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Figure 5.17: Thickness-feature function learned for the optimized circular sensor.

In the same way of the thickness-feature function was modeled, different lift-offs can be

simulated for a known thickness and the l-tth function can be learned by assuming σt =

σb = 0 S/m and µt = µb = 1. A hence learned l-tth function for d = 10 mm is shown in

Fig. 5.18. Since the function between lift-off and threshold crossing time can be learned

for any thickness, it is fundamentally possible to infer the thickness of the top layer when

thickness of the ferromagnetic layer is known, enabling 3D profiling.

The 3D profiling capability on gray cast iron was tested for several cases and Table 5.5

shows results for 3D inferences for a test case where σt = 1000 S/m, σb = 1500 S/m,

µt = µb = 1 and d0 = 30 mm were assumed to generate testing data through simulation.

Since thickness and lift-off are estimated using GP, the estimations in the table are provided

with the two standard deviation uncertainty.

5.7 Conclusions

This chapter investigated via FEA simulation, the process for increasing the resolution

of a detector coil based PEC sensor allowing 3D profiling of ferromagnetic materials by

jointly inferring thickness of the remaining healthy material and the vertical separation
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Figure 5.18: Learned function between lift-off and zero crossing time for d = 10 mm.

Table 5.5: 3D profiling capability on gray cast iron: Results.

Thickness (d) Lift-off (l) Estimated Thickness (d∗) Estimated Lift-off (l∗)

7 mm 17 mm 6.66 (±0.856) mm 16.997 (±0.583) mm

12 mm 10 mm 11.7 (±0.852) mm 9.939 (±0.255) mm

17 mm 8 mm 17.1 (±0.863) mm 7.901 (±0.188) mm

22 mm 4 mm 21.8 (±0.879) mm 4.190 (±0.401) mm

27 mm 2 mm 26.1 (±0.952) mm 1.99993 (±0.0248) mm

between the sensor and the surface of the ferromagnetic material. In regard to increasing

resolution, it was evident that reducing the sensor size indeed reduces the lateral domain

of influence resulting in increase of resolution. However, vertical penetration depth also

decreases with size reduction of the exciter coil and the effect can be mitigated by increas-

ing excitation strength. Exciter coil size was observed to be the dominant factor affecting

the lateral spread and not the excitation strength when the size was reduced to a half and

the excitation was doubled. Based on the observed behavior, it could be concluded that

the sensor resolution may be increased to a desired limit as long as available hardware

has the capability of delivering and withstanding the required excitation strength. When

considering thickness sensitivity, nonlinearities caused by loss of sensitivity resulting from
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increasing resolution is not a significant challenge as long as functional behavior is pre-

served in the thickness-feature function since nonlinearities can be learned using GP. Some

other options that were not investigated in this chapter in relation to resolution increase

were the number of coil turns and coil cross-section area. Both those parameters directly

influence coil resistance, increasing the number of turns demands high excitation power

and creates more magnetic field making the domain of influence larger. Increasing wire

cross-section area makes the sensor physically larger, impacting the domain of influence,

but reduces the demand for excitation power. When coming to practical developments

through sensor design, incorporating those factors as well will be useful to produce an

optimum and economical sensor.

The chapter also verified the large invariance to sensor shape property for the βmax feature.

This further validates the theoretical approximation βmax ≈
µσd2

π2
at the core of this work.

Finally the chapter presented a framework which fundamentally enabled 3D representation

of pipe wall. For this framework, the test piece in divided into three horizontal layers where

the top and bottom layers represent rust/graphitization layers and the middle layer con-

tains the ferromagnetic material. The rust graphite layers were found to be nonmagnetic

through experimental validation of neutrality to magnets. However, there is no guarantee

the rust graphite layers are non-conductive. Simulations suggested that the conductivity

of top and bottom layers did not noticeably influence the signal until they became very

large. Since it is known that rust and graphite layers cannot have high conductivities,

and moderate conductivities do not significantly influence the signals, it was reasonable

to model them as layers having a relative permeability of 1 and a conductivity of zero.

Thus, it is possible to infer the thickness using βmax and infer the thickness of the top

layer as lift-off. Inferring the thickness of the top layer was done by means of learning a

function between a threshold crossing time and lift-off. Since the function between lift-off

and threshold crossing time can be learned for any thickness, it is fundamentally possible

to infer the thickness of the top layer when thickness of the ferromagnetic layer can be

estimated, enabling 3D profiling.



Chapter 6

Conclusions

This thesis introduced a novel PEC signal feature based on the detector coil voltage decay

rate and exploited it for estimating ferromagnetic material volume remaining in critical

pipes via NDE. Behavior of the feature was analytically described and subsequently exper-

imentally validated on a range of ferromagnetic materials. Two approaches; an analytical

and a semi-parametric numerical approach were proposed to exploit the novel feature. The

performance of the developed approaches was evaluated on in situ critical pipes managed

by a commercial water utility. Both approaches predict pipe condition by means of a

learned function which maps the signal feature to the average thickness of ferromagnetic

material generalized to a region under the sensor. The analytical approach parametrically

learned the function using measurements performed on calibration blocks. The numerical

approach learned the function non-parametrically using GP with the aid of signal features

numerically simulated by taking into account measured electrical and magnetic properties

of pipe materials. The feature was found to exhibit significant invariance (low dependence)

to lift-off, sensor shape and size. Low dependence on sensor shape and size were further nu-

merically investigated to propose a method for achieving increased sensor resolution while

maintaining a desired penetration capability. Finally, the significant invariance to lift-off

was utilized to propose a framework which enables 3D inference of test piece condition.

147
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6.1 Summary of Contributions

6.1.1 A Novel PEC Signal Feature for Thickness Quantification

Analyzing the detector coil based PEC signal in the form of the decay rate of the time

domain signal’s natural logarithm is unconventional and the introduced signal feature can

be considered novel. Analytically describing the feature’s behavior is possible by using

the analytical model which represents the signal as a sum of exponentials. The feature

exhibits clear functional relationship to ferromagnetic material thickness which makes the

feature desirable for thickness quantification. Modeling this relationship forms the base of

this thesis and the relationship can be modeled as a linear function as well as a nonlinear

function. Due to practical limitations of the sensor, experimental data do not maintain

linearity beyond certain thickness limits and such thicknesses cannot be modeled with the

linear functional representation. However, theoretically existent nonlinearity as well as

practically introduced nonlinearities can be modeled by probabilistically learning relation-

ship as a nonlinear function. Further, a salience of the feature is its significant invariance

on sensor shape, size and lift-off, which makes the feature immune to many practical chal-

lenges encountered during in situ applications. It was verified that the observed feature

invariance enables advancements to the sensor such as increasing resolution and enabling

3D profiling.

6.1.2 An Analytical NDE Approach

The proposed analytical approach involved experimentally obtaining calibration signals

and learning the linear form of the thickness-feature function by means of parameter esti-

mation on linear regions of the sensor data. Despite removal of nonlinear regions, results

showed that such an approach was able to estimate pipe wall thickness up to an accuracy

of 90%. Since the linear function carries direct proportionality between the feature and

the thickness, an alternative method of calibration based on ultrasounds was proposed

to overcome the requirement of calibration blocks. That method involved qualitatively

identifying high thickness regions of the pipe through values of the novel feature, and per-

forming ultrasound measurements on those locations to obtain a reasonable corresponding
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thickness estimate. Due to the existence of proportionality, the rest of the thicknesses

could be scaled with respect to the ultrasound measurement. This proved to be an effec-

tive method of scaling to support accurate PEC measurements without the requirement of

calibration blocks. However, as long as the linear thickness-feature function was assumed

for this approach, accounting for the nonlinearities introduced by limitations of the sensor

was not possible.

6.1.3 A Numerical NDE Approach

The numerical approach proposed involved measuring electrical and magnetic properties

of pipe materials and using them to simulate PEC sensor interaction with the material to

produce signals using FEA. Subsequently the simulated signals were processed to extract

feature values, and they were used to non-parametrically learn the nonlinear form of

the thickness-feature function using GP. Precise electrical and magnetic properties of the

material examined were measured by extracting samples and using them in a PPMS.

Alternatively, XRF measurements and microscopic inspection can be done to broadly

identify the material type to correlate approximate electrical and magnetic properties for

material types available in literature. By using GP, theoretical nonlinearity existing in the

nonlinear thickness-feature function as well as nonlinearities caused due to limitations of

the sensor can be learned. Consequentially, an improvement of the accuracy of estimated

wall thickness was observed over the analytical approach. In addition, the capability of

providing uncertainty through GP is an added advantage to facilitate thickness estimates

being used in sensor fusion applications.

6.1.4 A Numerical Study to Investigate the Possibility of Increasing

PEC Sensor Resolution

The significant invariance of the signal feature to sensor shape and size were demonstrated

in the thesis. These were exploited to numerically investigate increasing resolution of a cir-

cular sensor model. The interrelationship between sensor size and penetration capability

was compensated by increasing excitation strength. It was demonstrated that despite an
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excitation increase, size was the dominant factor which influenced lateral domain of influ-

ence, thereby increased resolution could be achieved without significant loss of penetration

capability.

Low dependence on lift-off was exploited to propose a framework to enable 3D profiling.

The test piece was hypothetically divided into three horizontal layers of which the top

and the bottom layers were considered to be rust/graphite layers and the middle layer

was considered to be of healthy ferromagnetic material. Due to low dependence on lift-

off, the feature still could be used to estimate thickness irrespective of foreign materials

being present on top and bottom as long as they were nonmagnetic and considerably less

conductive than the ferromagnetic layer. Since lift-off causes a signal attenuation which

also appears on the time axis as a leftward signal shift, a horizontal threshold crossing time

feature was used to infer the thickness of the top layer as a lift-off. Inferred thicknesses

being lowly influenced by the top and bottom layers and the capability of learning a

function which maps a threshold crossing time to lift-off for a given ferromagnetic material

thickness suggests usability of the framework for 3D profiling.

6.2 Discussion of Limitations

The main limitation in the proposed NDE approaches is their calibration requiring ei-

ther fabricating calibration blocks or following material property measurement procedures

which cause minor destruction to pipes in the form of specimen extraction. Fabricat-

ing calibration blocks is time consuming and costly. Further, casting calibration blocks to

have material properties matching those of critical pipes is extremely challenging. Current

industry practice involves fabricating calibration blocks from standard materials and as-

suming their generalization over critical pipe materials; or else performing a measurement

on a known thickness and estimating material properties. Though assuming generaliza-

tion is reasonable in most cases, there are occasions where thickness interpretations are

significantly divergent from the actuality due to material property mismatches.
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An alternative mechanism of calibration was proposed in the thesis by using ultrasound

measured thicknesses to scale PEC readings. The method though effective, requires clean-

ing the pipe surface to achieve a high degree of coupling required to perform an accurate

ultrasound measurement.

Properties of pipe materials can be measured using a PPMS and incorporated to simulate

PEC signals. This requires extracting small but solid samples and hence the procedure

causes minor destruction to pipes. However, PEC signals can be used to qualitatively

identify high thickness regions so that extracting samples from such regions will minimize

impact on structural integrity. To reduce destruction even further, powder particles may

be obtained to measure the magnetization curve, although not recommended as a best

practice. The risk in doing so is the chance of powder particles being contaminated by

foreign materials during the process of extraction. Furthermore, the powder particles may

not optimally fit in the PPMS sample holder which may result in erroneous measure-

ments. Measuring conductivity using powder particles is not recommended. Therefore,

XRF measurements may be performed to broadly identify the type of material through

composition, and approximate electrical properties, and even magnetic properties can be

ascertained through literature studies. However, there is no guarantee that the published

properties will satisfactorily match those of the particular test piece of interest. Therefore,

directly measuring the properties precisely will yield optimal results and all other methods

are ways of approximating.

Limitation in PEC sensor resolution is a challenge concerning quantification of isolated

pitting. Detector coil based PEC sensors always predict an average which generalizes to a

region under the sensor. The thesis therefore investigated the capability of increasing the

resolution. Making the sensor smaller was observed to be an effective method; nevertheless

the lateral domain of influence remains larger than the sensor footprint irrespective of

sensor size. Theoretically, if the sensor is infinitesimally small, it will enable measuring

fine defects. However, this is not practically possible as the required excitation energy

will be infinitely large to achieve the desired penetration depth. Therefore in practice,

resolution of a PEC sensor will be limited by the sensor size.

Though theory suggests perfect linearity in the linear thickness-feature function, in practice
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this is not achieved. Nonlinearity is observed in either side of the thickness estimation

spectrum, very low and considerably high thicknesses, the exact ranges in question depend

on the sensor configuration and the material being tested. In the low thickness region,

signals enter the noise margin of the sampling circuitry before attaining constant gradient.

Similarly, linearity is lost in the high thickness end due to the limitation of the sensor’s

penetration capability. Experiments done in the thesis suggested that linearity in the high

thickness region can be reinstated by increasing excitation strength. That is a viable option

to increase penetration capability and achieve linearity, however upgrading hardware to

deliver and withstand required power is a challenge. A more economical option is to

probabilistically model the nonlinear regions where functional behavior can be achieved

with a prevailing excitation strength.

6.3 Future Work

Future work should extend towards simultaneous determination of material properties

(µσ) and thickness without reliance on calibration measurements or measured material

properties. Simultaneous measurement of µσ and thickness has been accomplished on

carbon steel by fitting an analytical model to measured data [35, 54]. However, the model

has been specified for coaxial circular sensors and requires precise knowledge about lift-

off and coil dimensions. Results have demonstrated some reasonable accuracy in general,

however inaccuracies exist in estimating low thicknesses [35]. Despite limitations, a similar

approach for solving the critical pipe condition assessment problem could be pursued.

To adopt such an approach to solve the specifics addressed in this thesis, either a similar

analytical model has to be derived for rectangular sensors, or a model which is indepen-

dent of sensor shape needs to be derived; or the rectangular architecture employed has to

be replaced with the circular architecture to be able to use the already published model.

Alternatively, since analytical and numerical modeling of PEC sensors is possible as at-

tempted in this thesis, developing an optimization framework to simultaneously estimate

properties and thickness by minimizing errors between experimental and modeled signals

may prevail. That will be an effective method of solving the inverse eddy current problem,

the challenge however is to define the problem to lead to a unique solution.
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In terms of practical developments, increase of speed and efficiency of the measurement

process was beyond the scope of this thesis. This thesis worked with an external condition

assessment tool and therefore, exposing the wall exterior of buried pipes was necessary.

Measurements were done manually as the current practice enforce it to be done so, thus the

process was time consuming and inefficient. Therefore, there is space for developing accu-

rate internal tools which can enter water pipes and autonomously perform measurements

and record data. Research aimed towards such developments could be highly attractive

for the future of the water industry.





Appendix A

Analytical Approach: Interpreted

Pipe Wall Thickness Maps and

Error Statistics

Figure A.1: Analytical approach; Section 1; interpreted thickness and GT maps.
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Statistics

Figure A.2: Analytical approach; Section 1; variation of interpreted thickness along
with GT.

Table A.1: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 1.

Statistical Parameter Value

RMS Error 1.92 mm

Mean Absolute Error 1.62 mm

Standard Deviation of Absolute Error 1.04 mm

Maximum Absolute Error 4.67 mm

Mean Percentage Accuracy 92.49%

Figure A.3: Analytical approach; Section 2; interpreted thickness and GT maps.



AppendixA. Analytical Approach: Interpreted Pipe Wall Thickness Maps and Error
Statistics 157

Figure A.4: Analytical approach; Section 2; variation of interpreted thickness along
with GT.

Table A.2: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 2.

Statistical Parameter Value

RMS Error 3.16 mm

Mean Absolute Error 2.64 mm

Standard Deviation of Absolute Error 1.73 mm

Maximum Absolute Error 10.08 mm

Mean Percentage Accuracy 85.37%

Figure A.5: Analytical approach; Section 3; interpreted thickness and GT maps.
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Statistics

Figure A.6: Analytical approach; Section 3; variation of interpreted thickness along
with GT.

Table A.3: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 3.

Statistical Parameter Value

RMS Error 3.24 mm

Mean Absolute Error 2.498 mm

Standard Deviation of Absolute Error 2.07 mm

Maximum Absolute Error 10.65 mm

Mean Percentage Accuracy 89.06%

Figure A.7: Analytical approach; Section 4; interpreted thickness and GT maps.
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Figure A.8: Analytical approach; Section 4; variation of interpreted thickness along
with GT.

Table A.4: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 4.

Statistical Parameter Value

RMS Error 2.93 mm

Mean Absolute Error 2.46 mm

Standard Deviation of Absolute Error 1.59 mm

Maximum Absolute Error 7.47 mm

Mean Percentage Accuracy 89.59%

Figure A.9: Analytical approach; Section 5; interpreted thickness and GT maps.
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Statistics

Figure A.10: Analytical approach; Section 5; variation of interpreted thickness along
with GT.

Table A.5: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 5.

Statistical Parameter Value

RMS Error 2.21 mm

Mean Absolute Error 1.897 mm

Standard Deviation of Absolute Error 1.14 mm

Maximum Absolute Error 6.47 mm

Mean Percentage Accuracy 91.04%

Figure A.11: Analytical approach; Section 6; interpreted thickness and GT maps.
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Figure A.12: Analytical approach; Section 6; variation of interpreted thickness along
with GT.

Table A.6: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 6.

Statistical Parameter Value

RMS Error 1.48 mm

Mean Absolute Error 1.11 mm

Standard Deviation of Absolute Error 0.986 mm

Maximum Absolute Error 5.7093 mm

Mean Percentage Accuracy 95.42%
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Figure A.13: Analytical approach; Section 7; interpreted thickness and GT maps.

Figure A.14: Analytical approach; Section 7; variation of interpreted thickness along
with GT.
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Table A.7: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 7.

Statistical Parameter Value

RMS Error 2.62 mm

Mean Absolute Error 2.103 mm

Standard Deviation of Absolute Error 1.56 mm

Maximum Absolute Error 7.06 mm

Mean Percentage Accuracy 89.53%

Figure A.15: Analytical approach; Section 8; interpreted thickness and GT maps.

Figure A.16: Analytical approach; Section 8; variation of interpreted thickness along
with GT.
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Table A.8: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 8.

Statistical Parameter Value

RMS Error 2.38 mm

Mean Absolute Error 1.89 mm

Standard Deviation of Absolute Error 1.45 mm

Maximum Absolute Error 6.92 mm

Mean Percentage Accuracy 90.75%

Figure A.17: Analytical approach; Section 9; interpreted thickness and GT maps.

Figure A.18: Analytical approach; Section 9; variation of interpreted thickness along
with GT.
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Table A.9: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 9.

Statistical Parameter Value

RMS Error 3.546 mm

Mean Absolute Error 3.08 mm

Standard Deviation of Absolute Error 1.75 mm

Maximum Absolute Error 7.64 mm

Mean Percentage Accuracy 84.86%





Appendix B

Numerical and Probabilistic

Approach: Interpreted Pipe Wall

Thickness Maps and Error

Statistics

Figure B.1: Numerical and probabilistic approach; Section 1; interpreted thickness and
GT maps.
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Maps and Error Statistics

Figure B.2: Numerical and probabilistic approach; Section 1; variation of interpreted
thickness along with GT.

Table B.1: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 1.

Statistical Parameter Value

RMS Error 1.11 mm

Mean Absolute Error 0.924 mm

Standard Deviation of Absolute Error 0.618 mm

Maximum Absolute Error 6.58 mm

Mean Percentage Accuracy 95.7%

Figure B.3: Numerical and probabilistic approach; Section 2; interpreted thickness and
GT maps.
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Figure B.4: Numerical and probabilistic approach; Section 2; variation of interpreted
thickness along with GT.

Table B.2: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 2.

Statistical Parameter Value

RMS Error 1.796 mm

Mean Absolute Error 1.41 mm

Standard Deviation of Absolute Error 1.11 mm

Maximum Absolute Error 8.21 mm

Mean Percentage Accuracy 92.1%

Figure B.5: Numerical and probabilistic approach; Section 3; interpreted thickness and
GT maps.
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Maps and Error Statistics

Figure B.6: Numerical and probabilistic approach; Section 3; variation of interpreted
thickness along with GT.

Table B.3: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 3.

Statistical Parameter Value

RMS Error 2.64 mm

Mean Absolute Error 2.08 mm

Standard Deviation of Absolute Error 1.63 mm

Maximum Absolute Error 8.66 mm

Mean Percentage Accuracy 90.9%

Figure B.7: Numerical and probabilistic approach; Section 4; interpreted thickness and
GT maps.
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Figure B.8: Numerical and probabilistic approach; Section 4; variation of interpreted
thickness along with GT.

Table B.4: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 4.

Statistical Parameter Value

RMS Error 2.25 mm

Mean Absolute Error 1.84 mm

Standard Deviation of Absolute Error 1.28 mm

Maximum Absolute Error 5.97 mm

Mean Percentage Accuracy 92.4%

Figure B.9: Numerical and probabilistic approach; Section 5; interpreted thickness and
GT maps.
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Maps and Error Statistics

Figure B.10: Numerical and probabilistic approach; Section 5; variation of interpreted
thickness along with GT.

Table B.5: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 5.

Statistical Parameter Value

RMS Error 1.59 mm

Mean Absolute Error 1.27 mm

Standard Deviation of Absolute Error 0.957 mm

Maximum Absolute Error 4.65 mm

Mean Percentage Accuracy 93.9%

Figure B.11: Numerical and probabilistic approach; Section 6; interpreted thickness
and GT maps.
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Figure B.12: Numerical and probabilistic approach; Section 6; variation of interpreted
thickness along with GT.

Table B.6: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 6.

Statistical Parameter Value

RMS Error 1.51 mm

Mean Absolute Error 1.23 mm

Standard Deviation of Absolute Error 0.873 mm

Maximum Absolute Error 6.38 mm

Mean Percentage Accuracy 95.1%
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Figure B.13: Numerical and probabilistic approach; Section 7; interpreted thickness
and GT maps.

Figure B.14: Numerical and probabilistic approach; Section 7; variation of interpreted
thickness along with GT.
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Table B.7: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 7.

Statistical Parameter Value

RMS Error 2.42 mm

Mean Absolute Error 1.94 mm

Standard Deviation of Absolute Error 1.45 mm

Maximum Absolute Error 7.90 mm

Mean Percentage Accuracy 89.98%

Figure B.15: Numerical and probabilistic approach; Section 8; interpreted thickness
and GT maps.

Figure B.16: Numerical and probabilistic approach; Section 8; variation of interpreted
thickness along with GT.
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Maps and Error Statistics

Table B.8: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 8.

Statistical Parameter Value

RMS Error 2.42 mm

Mean Absolute Error 1.99 mm

Standard Deviation of Absolute Error 1.38 mm

Maximum Absolute Error 6.53 mm

Mean Percentage Accuracy 90.8%

Figure B.17: Numerical and probabilistic approach; Section 9; interpreted thickness
and GT maps.

Figure B.18: Numerical and probabilistic approach; Section 9; variation of interpreted
thickness along with GT.
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Table B.9: Statistics of absolute error between interpreted pipe wall thickness and GT
for Section 9.

Statistical Parameter Value

RMS Error 2.22 mm

Mean Absolute Error 1.91 mm

Standard Deviation of Absolute Error 1.14 mm

Maximum Absolute Error 6.07 mm

Mean Percentage Accuracy 90.8%





Appendix C

On Site Pipe Scanning Protocol

Fig C.1 shows how the plastic grid is wrapped around the pipe and how the sensor is

aligned. The grid is wrapped in such a way that the squares are aligned with the axis of

the pipe and the sensor is placed in such a way that the long sides are parallel to the pipe

axis.

Figure C.1: Placement of the grid and the sensor: (a) Grid wrapped around the pipe;
(b) Sensor alignment.

Fig. C.2 shows how the axial (denoted as x-axis in Fig. C.2) and circumferential (denoted

as y-axis in Fig. C.2) directions of 2.5D thickness maps are located on a pipe.

Scanning procedure: First the gird and the sensor are aligned on the pipe as shown in

Fig. C.1. Scans are performed by coinciding the sensor’s center with the centers of grid

squares, i.e., two adjacent scans are parted by a distance of 50 mm. Distance along the

axial direction (x ) is marked in mm on the 2.5D thickness map whereas the distance along

179



180 AppendixD. On Site Pipe Scanning Protocol

Figure C.2: How axial and circumferential directions of 2.5D thickness maps are located
on a pipe: (a) Directions denoted on a 2.5D thickness map; (b) A rolled thickness map
resembling a pipe; (c) How axial (x ) and circumferential (y) directions appear on a pipe.

the circumferential direction (y) is marked as an angle θ in degrees given by θ =
dy
πr

×1800

where dy is a distance along the circumferential direction measured from a reference and

r is the radius of the pipe. The units of both dy and r should be the same.

Aligning PEC scans with the ground truth for validation was done with the aid of manually

drilled calibration pits which have fixed dimensions, and relative locations with respect to

the origin (0, 0).



Appendix D

Steps for Deriving the Eddy

Current Diffusion Time Constant

Starting from Ampere’s law for the quasi-static case we have

∇× ~H = ~J (D.1)

in usual notation. By performing the vector operation ∇× (∇× ~H) = ∇(∇. ~H)−∇2 ~H on

Eq. D.1 and applying the Coulomb gauge ∇. ~H = 0 we get

∇2 ~H = −∇× ~J. (D.2)

By substituting the constitutive relationship ~J = σ ~E and Faraday’s law ∇ × ~E = −∂
~B

∂t
in Eq. D.2; and subsequently substituting the constitutive relationship ~B = µ ~H in the

resulting equation we get the Magnetic field Diffusion equation:

∇2 ~H = µσ
∂ ~H

∂t
. (D.3)

Solving Eq. D.3 withing a large flat conducting ferromagnetic plate associated with the

PEC sensor setup dealt with in this thesis (excited with a step function, i.e., pulsed
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excitation) yields ~H withing the plate and eddy currents can hence be calculated using

Ampere’s law.

After performing much work to solve Eq. D.3 for a conducting half-space and by extending

the solution to a plate of finite thickness d as done in [127], the solution for ~H at any point

within the plate becomes an infinite summation of exponential decays of time whose time

constants τn are given by

τn =
µσd2

n2π2
(D.4)

where n ∈ Z+, n may take odd integer values only depending on boundary conditions.

From Eq. D.4, we can easily understand that τn decreases with increasing n and the

dominant time constant will therefore be τ1 given by

τ1 =
µσd2

π2
. (D.5)

Therefore, c1 in Chapter 3 is equal to
π2

µσd2
since ci =

1

τ1
.
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[17] B. A. Szabo and I. Babuška, Finite element analysis. John Wiley & Sons, 1991.



Bibliography 185

[18] C. E. Rasmussen and C. K. I. Williams, “Gaussian processes for machine learning,”

The MIT Press, 2006, ISBN: 0-262-18253-X, 2006.

[19] N. Ulapane, A. Alempijevic, and V.-C. T. Miro, Jaime Valls, “Nondestructive evalu-

ation of ferromagnetic material thickness using pulsed eddy current sensor detector

coil voltage decay rate,” NDT & E International, 2015. Under Review.

[20] D. Vasic, V. Bilas, and D. Ambrus, “Pulsed eddy-current nondestructive testing of

ferromagnetic tubes,” Instrumentation and Measurement, IEEE Transactions on,

vol. 53, no. 4, pp. 1289–1294, 2004.

[21] H. Hashizume, Y. Yamada, K. Miya, S. Toda, K. Morimoto, Y. Araki, K. Satake,

and N. Shimizu, “Numerical and experimental analysis of eddy current testing for a

tube with cracks,” Magnetics, IEEE Transactions on, vol. 28, no. 2, pp. 1469–1472,

1992.

[22] C. V. Dodd and W. E. Deeds, “Analytical solutions to eddy-current probe-coil prob-

lems,” Journal of applied physics, vol. 39, no. 6, pp. 2829–2838, 1968.

[23] S. Sharma, “Application of finite element models to eddy current probe design for

aircraft inspection,” 1998. Doctoral Thesis, Digital Repository, Iowa State Univer-

sity, http://lib. dr. iastate. edu/.

[24] F. Thollon, B. Lebrun, N. Burais, and Y. Jayet, “Numerical and experimental study

of eddy current probes in ndt of structures with deep flaws,” NDT & E International,

vol. 28, no. 2, pp. 97–102, 1995.

[25] J. R. Bowler, Y. Yoshida, and N. Harfield, “Vector-potential boundary-integral eval-

uation of eddy-current interaction with a crack,” Magnetics, IEEE Transactions on,

vol. 33, no. 5, pp. 4287–4294, 1997.

[26] J. H. Rose, E. Uzal, and J. C. Moulder, “Magnetic permeability and eddy-current

measurements,” in Review of progress in quantitative nondestructive evaluation,

pp. 315–322, Springer, 1995.



186 Bibliography

[27] A. Pirani, M. Ricci, R. Specogna, A. Tamburrino, and F. Trevisan, “Multi-frequency

identification of defects in conducting media,” Inverse Problems, vol. 24, no. 3,

p. 035011, 2008.

[28] W. Yin and A. J. Peyton, “Thickness measurement of non-magnetic plates using

multi-frequency eddy current sensors,” NDT & E International, vol. 40, no. 1, pp. 43–

48, 2007.

[29] Y. Le Diraison, P.-Y. Joubert, and D. Placko, “Characterization of subsurface defects

in aeronautical riveted lap-joints using multi-frequency eddy current imaging,” NDT

& E International, vol. 42, no. 2, pp. 133–140, 2009.

[30] X. Chen and Y. Lei, “Excitation current waveform for eddy current testing on the

thickness of ferromagnetic plates,” NDT & E International, vol. 66, pp. 28–33, 2014.

[31] X. Chen and Y. Lei, “Time-domain analytical solutions to pulsed eddy current field

excited by a probe coil outside a conducting ferromagnetic pipe,” NDT & E Inter-

national, 2014, 2014.

[32] A. Sophian, G. Y. Tian, D. Taylor, and J. Rudlin, “Flaw detection and quantification

for ferromagnetic steels using pulsed eddy current techniques and magnetization,”

Transactions on Engineering Sciences, vol. 44, pp. 381–390, 2003.

[33] D. G. Park, C. S. Angani, G. D. Kim, C. G. Kim, and Y. M. Cheong, “Evaluation of

pulsed eddy current response and detection of the thickness variation in the stainless

steel,” Magnetics, IEEE Transactions on, vol. 45, no. 10, pp. 3893–3896, 2009.

[34] C. Waters, “Rdt-incotest R© for the detection of corrosion under insulation,” NON

DESTRUCTIVE TESTING AUSTRALIA, vol. 36, no. 5, pp. 124–129, 1999.

[35] V. O. De Haan and P. J. de Jong, “Simultaneous measurement of material proper-

ties and thickness of carbon steel plates using pulsed eddy currents,” in 16th Word

Conference on Non-Destructive Testing in Montreal, 2004.

[36] Y. Li, G. Y. Tian, and A. Simm, “Fast analytical modelling for pulsed eddy current

evaluation,” NDT & E International, vol. 41, no. 6, pp. 477–483, 2008.



Bibliography 187

[37] A. Sophian, G. Y. Tian, D. Taylor, and J. Rudlin, “Design of a pulsed eddy cur-

rent sensor for detection of defects in aircraft lap-joints,” Sensors and Actuators A:

Physical, vol. 101, no. 1, pp. 92–98, 2002.

[38] G. Y. Tian and A. Sophian, “Reduction of lift-off effects for pulsed eddy current

ndt,” NDT & E International, vol. 38, no. 4, pp. 319–324, 2005.

[39] G. Y. Tian, Y. Li, and C. Mandache, “Study of lift-off invariance for pulsed eddy-

current signals,” Magnetics, IEEE Transactions on, vol. 45, no. 1, pp. 184–191,

2009.

[40] A. Sophian, “Characterisation of surface and sub-surface discontinuities in metals

using pulsed eddy current sensors,” 2003. Doctoral thesis, University of Huddersfield,

http://eprints.hud.ac.uk/6916/.

[41] J. Huijsing, Operational amplifiers: theory and design. Springer Science & Business

Media, 2011.

[42] T. Kugesstadt, “Active filter design techniques. texas instruments.”

[43] S. Niewiadomski, Filter handbook: a practical design guide. Newnes, 1989.

[44] C. Kitchin and L. Counts, A designer’s guide to instrumentation amplifiers. Analog

Devices, 2006.

[45] T. Deliyannis, Y. Sun, and J. K. Fidler, Continuous-time active filter design. Crc

Press, 2010.
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