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a b s t r a c t

Electricity consumption forecasting has been always playing a vital role in power system management
and planning. Inaccurate prediction may cause wastes of scarce energy resource or electricity shortages.
However, forecasting electricity consumption has proven to be a challenging task due to various unstable
factors. Especially, China is undergoing a period of economic transition, which highlights this difficulty.
This paper proposes a time-varying-weight combining method, i.e. High-order Markov chain based
Time-varying Weighted Average (HM-TWA) method to predict the monthly electricity consumption in
China. HM-TWA first calculates the in-sample time-varying combining weights by quadratic program-
ming for the individual forecasts. Then it predicts the out-of-sample time-varying adaptive weights
through extrapolating these in-sample weights using a high-order Markov chain model. Finally, the
combined forecasts can be obtained. In addition, to ensure that the sample data have the same properties
as the required forecasts, a reasonable multi-step-ahead forecasting scheme is designed for HM-TWA.
The out-of-sample forecasting performance evaluation shows that HM-TWA outperforms the component
models and traditional combining methods, and its effectiveness is further verified by comparing it with
some other existing models.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate prediction can help decision makers to develop an
optimal action program, which plays the leading effect of reducing
risk and then improves the economic and social benefits of
management [1]. Accordingly, forecasting applications abound in
management practice at both macro and micro levels, and fore-
casting methods are integral components of Management Science
models in many fields [2]. Specially, demand forecasting (con-
sumption forecasting) is a crucial area of management forecasting
because the most concerned issue of market participants is often
the market potentiality. Enterprises can make right decisions and
sound managerial planning for production, finance, personnel and
organization, only if accurate future demands are obtained [3,4].

Electricity is a product that is related to the national economy and
the people0s livelihood, and this relationship has been strengthened
continuously due to the people0s increasing dependence on the
electricity supply [5,6]. Like ordinary products, planning for the
production of electricity is also of crucial importance. Besides, elec-
tricity is hard to store so it is generally generated and then instantly

used without any kept in reserve. This increases even more the need
for power utilities to plan their electricity supply in a proactive
manner [5]. Moreover, a reliable anticipation of future electricity
consumption level is just the primary guideline for planning [6,7].

In contrary, inaccurate electricity consumption forecasts will be
counterproductive. An overestimation will waste scarce energy
resources, huge amounts of capital investment and lengthy con-
struction time [6]. An underestimation will lead to even more
negative outcomes such as electricity shortage. The severe 2004
China Electricity Shortage is an example which was mainly caused
by the lack of installed capacity [8]. Clearly, if early warning had
been effectively made in advance, derived from good forecasts,
this calamity might have been avoided by taking response mea-
sures. However, power systems along with the electricity market
are affected by various unstable factors including the natural and
social environment, law and policy, holidays, technical progress,
population growth and more [9]. Especially, China is undergoing a
period of economic transition. All these greatly increase the
uncertainty of electricity consumption series, which in turn makes
it very difficult to establish a valid and feasible electricity con-
sumption forecasting model [5].

To tackle this challenge, a wide variety of methods have been
proposed including: statistical and econometric models such as
multiple linear regression [10], autoregressive moving average
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models [11,12], functional nonparametric model and semi-
functional partial linear model [13]; nonlinear and artificial intel-
ligent (AI) models such as grey forecasting approach [6], abductive
network machine learning [14], fuzzy logic methodology [15],
radial basis function network [16], recurrent neural network [17],
support vector regression [18], genetic programming [19,20],
genetic algorithm [21,22] and the most mentioned backpropaga-
tion network [23–27]. These methods can generally provide good
forecasts, however, the statistical and econometric models have
the limitation of linear (or near linear) assumption, and the AI
models often suffer from over-fitting or the difficulty of parameter
selection [28,29]. To remedy these shortcomings, some hybrid
methods have been introduced and obtained even better reported
performances: Grey–Markov model [30], SARIMA model with
residual modification [9], backpropagation network based on
moving average [31], wavelet transform combined with machine
learning and time series models [32], neural networks based on
trend extraction [33] and weighted hybrid model where trend and
seasonal components are predicted by combined method and
SARIMA respectively [34].

In fact, it is rare that a single forecasting model is always best in
all cases. Each model has its own particular strengths and weak-
nesses [35]. When multiple forecasting models are available,
consideration can be given to the combining method which is
regarded as an outstanding approach to take advantage of
strengths of each model. Generally, finding the optimal combina-
tion is the traditional goal of this method, which minimizes the
in-sample sum of squared forecast errors to find the optimal
weights of each individual model [36]. However, the properties
of the individual forecast error may vary over time. For example,
Moghram and Rahman [37] reviewed five forecasting methods for
short-term load forecasting. They modeled the summer loads and
winter loads separately, and no one method was determined to be
superior. The transfer function model gave the best results over
the summer months, whereas it resulted in the second worst
accuracy over the winter months [38].

Electricity consumption forecasting may also suffer from the
above trouble, in which case the combining method using fixed
weights may perform poorly. Thus it is more appropriate to allow
the combining weights to change according to the time-varying
underlying process. This paper proposes a novel time-varying-
weight combining method, i.e. High-order Markov chain based
Time-varying Weighted Average (HM-TWA) method to predict the
monthly electricity consumption in China. The in-sample combin-
ing weights are first calculated through solving one optimization
problem for each time point. Then treating the combining weight
vector at each time point as a state probability distribution, the out-
of-sample combining weights can be predicted by the high-order
Markov chain model through extrapolating the in-sample weights.
Along with this step, the parameter estimation method of the high-
order Markov chain model has been modified, which generalizes its
application from the categorical data sequence to the common state
probability distribution sequence. Finally, the combined forecasts
are obtained using such out-of-sample predicted weights. In addi-
tion, considering that the properties of the sample data should be
the same as those of the required forecasts, a multi-step-ahead
forecasting scheme has been designed for combining methods
including HM-TWA. Specifically, this scheme utilizes the h-step-
ahead in-sample individual forecasts to predict the h-step-ahead
out-of-sample combined forecast. It can be applied for both the
constant-weight method and the time-varying-weight method.

The rest of this paper is organized as follows: Section 2
specifies two traditional types of combining methods, while the
high-order Markov chain model is described in Section 3. In
Section 4, the proposed time-varying-weight combining method
is shown and the experimental results along with a discussion of

them are displayed in Section 5. Finally, Section 6 concludes this
paper with the discussion on the contribution of this paper.

2. Combination forecasting methods

Let x̂j;t denote the unbiased out-of-sample forecast for xt, which
is obtained by the jth individual model. Then the combined output
at time t of the combining methods has the following weighted
average form [39,40]:

x̂c;t ¼ ∑
m

j ¼ 1
wjx̂j;t ; t ¼ 1;2;… ð1Þ

where x̂c;t is the combined output, m is the number of the
component models and wj is the weight on the jth component
model. These weights are all constrained to be 0–1 and have to
meet the following requirement to ensure that the combined
forecast is unbiased [41–43]:

∑
m

j ¼ 1
wj ¼ 1 ð2Þ

Clearly, to perform the combination forecasting, the key issue is to
estimate the weights wj; j¼ 1;2;…;m. The Simple Average (SA)
method and the Weighted Average (WA) method are the two most
popular approaches to tackle this problem. The way of SA is to simply
assign each x̂j;t ðj¼ 1;2;…;mÞ an equal weight wj ¼ 1=m [42].

The WA method is more general than the SA method. It can get
an even higher accuracy through considering the individual and
mutual characteristics of the individual forecasts [42]. Specifically,
let ej;t ¼ ðxt� x̂j;tÞ, t ¼ 1;2;…; T , denote the residual of the jth
individual model at time t, then the residual of the combined
output at time t is

ec;t ¼ xt� x̂c;t ¼ ∑
m

j ¼ 1
wjej;t ð3Þ

Accordingly, to obtain the optimal weights, WA minimizes the
in-sample sum of squared errors (SSE) of the combined output as
follows [44,45]:

min J ¼ ∑
T

t ¼ 1
e2c;t ¼ ∑

T

t ¼ 1
∑
m

j ¼ 1
∑
m

k ¼ 1
wjwkej;tek;t

subject to
∑
m

j ¼ 1
wj ¼ 1

wjZ0; j¼ 1;2;…;m

8><
>: ð4Þ

3. High-order Markov chain model

Given a categorical data sequence fyt ; t ¼ 1;2;…; Tg, where T is
the length of this sequence and ytADOMðAÞ (1rtrT). The
domain DOM(A) is finite and unordered, which has m elements
called categories or states. There is no harm in letting DOMðAÞ ¼
f1;2;…;mg. For modeling this type of sequence, it has been shown
that the high-order Markov chain model is a promising approach.
However, for a long time its large number of parameters discour-
aged people from using it directly [46]. Raftery [47] changed this
situation through reducing the number of independent para-
meters. However, his model involved solving a highly nonlinear
optimization problem (maximum log-likelihood problem) so that
it guaranteed neither convergence nor a global maximum. Ching
et al. [46] extended this model to a more general form, for which
they also developed an efficient parameter estimation method. Let
Yt denote the state probability distribution (column vector) at time
t, i.e., each of its entry is between 0 and 1 and the sum of all entries
is equal to 1. In particular, if yt ¼ j (t ¼ 1;2;…; T), which means that
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the system is in state j at time t, the following form is its
corresponding state probability distribution [48,49]:

Yt ¼ 0;…;0; 1|{z}
The jth entry

;0;…;0

0
B@

1
CA

0

m�1

ð5Þ

Thus, there is a vector-valued (multivariate) sequence
fYt ; t ¼ 1;2;…; Tg which is a sequence of state probability distribu-
tions and equivalent to the original categorical data sequence
fyt ; t ¼ 1;2;…; Tg, and we call it the state probability distribution
sequence. Define the ith-step transition probability from state k at
time t� iþ1 to state j at time tþ1 is

qðiÞjk ¼ Pðytþ1 ¼ jjyt� iþ1 ¼ kÞ; j; k¼ 1;2;…;m; i¼ 1;2;…;n ð6Þ

Let qðiÞj ¼ ðqðiÞj1 ; q
ðiÞ
j2 ;…; qðiÞjmÞ, then the conventional Markov chain

model clearly can be written as

Pðytþ1 ¼ jjYtÞ ¼ qð1Þj Yt ; j¼ 1;2;…;m ð7Þ

Specifically, if the kth entry of Yt is one, Pðytþ1 ¼ jjYtÞ is just
equal to qð1Þjk . This shows that the state probability distribution at
time tþ1 is only conditionally dependent on the state of the
sequence in the one preceding epoch, i.e. Yt.

The nth-order Markov chain model is more general. The
conditional probability of observing ytþ1 ¼ j given the past is a
linear combination of contributions from each of Yt, …, Yt�nþ1 as
follows [47–49]:

Pðytþ1 ¼ jjYt ;Yt�1;…;Yt�nþ1Þ ¼ ∑
n

i ¼ 1
λiq

ðiÞ
j Yt� iþ1 ð8Þ

where λi is non-negative and

∑
n

i ¼ 1
λi ¼ 1 ð9Þ

Accordingly, the state probability distribution at time tþ1 can
be predicted by

Ŷ tþ1 ¼

Pðytþ1 ¼ 1jYt ;Yt�1;…;Yt�nþ1Þ
Pðytþ1 ¼ 2jYt ;Yt�1;…;Yt�nþ1Þ

⋮
Pðytþ1 ¼mjYt ;Yt�1;…;Yt�nþ1Þ

0
BBBB@

1
CCCCA

¼ ∑
n

i ¼ 1
λiQ iYt� iþ1 ð10Þ

where Qi ¼ ½qðiÞjk �m�m, called the ith-step transition probability
matrix, which is a non-negative matrix with column sums equal
to 1 (∑m

j ¼ 1q
ðiÞ
jk ¼ 1). Here, Qi and λi can be estimated according to

the following two subsections.

3.1. Estimating Qi

For two values in fytg which are i epochs apart, if the former and
the latter ones are equal to k and j respectively, we say that there
is one ith-step transition from state k to state j. Let f ðiÞjk denote the
ith-step transition frequency from state k to state j, then it should be
naturally calculated by counting the number of those ith-step
transitions. Furthermore, the ith-step transition probabilities can be
estimated by [46]

q̂ðiÞ
jk ¼

f ðiÞjk

∑
m

j ¼ 1
f ðiÞjk

; ∑m
j ¼ 1f

ðiÞ
jk a0

0 otherwise

8>>>><
>>>>:

ð11Þ

Accordingly, the estimation of Qi is

Q̂ i ¼

q̂ðiÞ
11 ⋯ ⋯ q̂ðiÞ

1m

q̂ðiÞ
21 ⋯ ⋯ q̂ðiÞ

2m

⋮ ⋮ ⋮ ⋮
q̂ðiÞ
m1 ⋯ ⋯ q̂ðiÞ

mm

2
666664

3
777775 ð12Þ

3.2. Estimating λi

Let Y denote the stationary distribution to which Yt will
converge when t-1. It can be estimated by computing the
proportion of the occurrence of each state in the sequence as
follows [46]:

½Ŷ �k ¼
f k

∑m
j ¼ 1f j

; k¼ 1;2;…;m ð13Þ

where Ŷ is the estimation of Y , ½��k denotes the kth entry of the
vector and fj is the occurrence frequency of state j in fytg. Then one
would expect

∑
n

i ¼ 1
λiQ̂ iŶ � Ŷ ð14Þ

This supplies one way to estimate λi (i¼ 1;2;…;n). Specifically,
solving the following min–max optimization problem can obtain
their estimations:

min
λ

max
k

∑
n

i ¼ 1
λiQ̂ iŶ � Ŷ

" #
k

�����
�����

subject to
∑
n

i ¼ 1
λi ¼ 1

λiZ0; i¼ 1;2;…;n

8><
>: ð15Þ

where λ¼ ðλ1; λ2;…; λnÞ0. Clearly, the above optimization problem
can be transformed to the following linear programming problem:

min
λ

μ

subject to

C I

�C I

� � λ
μ

" #
Z

Ŷ

� Ŷ

" #
μZ0

∑
n

i ¼ 1
λi ¼ 1 and λiZ0; i¼ 1;2;…;n

8>>>>>>><
>>>>>>>:

ð16Þ

where C ¼ ½Q̂ 1Ŷ jQ̂ 2Ŷ j⋯jQ̂ nŶ �m�n, I ¼ ð1;1;…;1Þm�1 and μ is a
scalar quantity.

4. The proposed time-varying-weight combining method

As discussed earlier, the WA method can often attain more
accurate forecasts than the SA method through estimating con-
stant combining weights to reflect the different proportional
contribution of each individual model. However, properties of
the forecast error of each model may vary over time, and even
the accuracy of some excellent models is sometimes undesirable.
In this case, constant weights could not reflect the validity of each
forecasting model well, and WA may perform poorly [42,50].
Figlewski and Urich [51] and Kang [52] even pointed out that SA
is often preferable when the estimated weights are unstable [42].
For overcoming this instability problem, the combining weights
should be allowed to change over time. Accordingly, the combin-
ing model (1) could be transformed to the following formula:

x̂c;t ¼ ∑
m

j ¼ 1
wj;t x̂j;t ; t ¼ 1;2;… ð17Þ

W. Zhao et al. / Omega 45 (2014) 80–9182



where wj;t is the weight on the jth individual model at time t.
According to this time-varying formula, motivated by the afore-
mentioned high-order Markov chain model, we proposed a time-
varying-weight combining method in this section. The name of
this model is shortened as HM-TWA (High-order Markov chain
based Time-varying Weighted Average).

As we know, the individual forecasts are often one-step-ahead.
On this basis, combining models can also perform one-step-ahead
prediction. Suppose we have actual observations fxt ; t ¼ 1;2;…; Tg
and their one-step-ahead individual forecasts fx̂j;t ; t ¼ 1;2;…;

T ; Tþ1g (j¼ 1;2;…;m) computed at time t�1. HM-TWA can
acquire the combined one-step-ahead forecast at time Tþ1
through the following main algorithmic steps:

1. Calculate the in-sample time-varying combining weight vector
sequence fWt ; t ¼ 1;2;…; Tg (see Section 4.1), where Wt is a
column vector ðw1;t ;w2;t ;…;wm;tÞ0 called combining weight
vector.

2. Predict the out-of-sample combining weight vector Ŵ Tþ1

using the high-order Markov chain model (see Section 4.2).
Here, two key points need to be noted, which are modified
from the conventional high-order Markov chain model intro-
duced in Section 3:
(a) The ith-step transition probability matrix Qi is estimated

according to Section 4.2.1.
(b) The coefficient λi (i¼ 1;2;…;n) is estimated according to

Section 4.2.2.
3. Obtain the combined forecast at time Tþ1 as x̂c;Tþ1 ¼

∑m
j ¼ 1ŵj;Tþ1x̂j;Tþ1 according to (17), where ŵj;Tþ1 is the jth

entry of Ŵ Tþ1.

Besides, to perform multi-step-ahead forecasting, we have
designed a reasonable scheme for both WA and HM-TWA in
Section 4.3.

4.1. Calculating the in-sample combining weights

In-sample combining weights at time t (t ¼ 1;2;…; T) can be
calculated by addressing the following quadratic programming
problem:

min Jt ¼ e2c;t ¼ ∑
m

j ¼ 1
∑
m

k ¼ 1
wj;twk;tej;tek;t

subject to
∑
m

j ¼ 1
wj;t ¼ 1

wj;tZ0; j¼ 1;2;…;m

8><
>: ð18Þ

Let

Wt ¼ ðw1;t ;w2;t ;…;wm;tÞ0

Et ¼ ðe1;t ; e2;t ;…; em;tÞ0

R¼ ð1;1;…;1Þm�1

Then (18) can be rewritten in the following matrix form:

min Jt ¼W 0
tEtE

0
tWt

subject to
R0Wt ¼ 1
WtZ0

(
ð19Þ

In this case, when a new observation along with its m
individual forecasts is available, only a simple computation is
needed instead of recalculating all of the in-sample weights.
This is the reason why the optimization problem “min J ¼
∑T

t ¼ 1W
0
tEtE

0
tWt” is not used to replace the above one.

4.2. Extrapolating the time-varying weights

Clearly, for each epoch t (t ¼ 1;2;…; T), the above obtained
combining weight vector Wt ¼ ðw1;t ;w2;t ;…;wm;tÞ0 describes the
possession ratios of each individual forecast in the optimal
combined output x̂c;t . If define Markov state j is that x̂c;t is equal
to x̂j;t , wj;t can be naturally regarded as the probability with which
the system is in state j, and x̂c;t is the mathematical expectation of
m individual forecasts x̂j;t , j¼ 1;2;…;m.

Accordingly, the combining weight vector Wt is a state probability
distribution the sum of whose entries is one, and the sequence of
weight vectors fWt ; t ¼ 1;2;…; Tg, called the time-varying combining
weight vector sequence, can be regarded as a state probability
distribution sequence. Since, in Section 3, what is dealt with by the
high-order Markov chain model is the state probability distribution
sequence fYtg gained from the categorical data sequence, fWtg can
also be extrapolated to predict the out-of-sample weights by this
model. Like the formula (10), the weights at time tþ1 is predicted by

Ŵ tþ1 ¼ ∑
n

i ¼ 1
λiQ iWt� iþ1 ð20Þ

where the estimating methods of Qi and λi differ from those for the
categorical data sequence.

To estimate Qi and λi for fWtg, the number of occurrence of states
at each epoch t should be defined in advance. Let us review the case
of the categorical data sequence at first. As shown in (5), the state
probability distribution Yt that is equivalent to the categorical data
yt ¼ j is degenerate, i.e., the probability of state j is 1 and the others
are 0, which means that the system is in state j with probability 1.

Fig. 1. Cases of ith-step transition from state k to state j. (a) For categorical data
sequence, there is 1 transition, so f ðiÞjk should be increased by 1. (b) For time-varying
weight vector sequence, there is wk;t� iþ1wj;tþ1 ðr1Þ transition1, so f ðiÞjk should be
increased by wk;t� iþ1wj;tþ1.

1 Note that it has one and only one transition between two data which are i
epochs apart. For the categorical data sequence, besides the transition from state k
to state j, there are 0 other transitions, so the sum of the numbers of various
transitions is 1. However, for time-varying weight vector sequence, there are
additional transitions such as w1;t� iþ1wj;tþ1 transition from state 1 to state j and
wm;t� iþ1w1;tþ1 transition from state m to state 1, but the sum of the numbers of
these transitions is also 1 since ∑m

k ¼ 1∑
m
j ¼ 1wk;t� iþ1wj;tþ1 ¼ 1.

W. Zhao et al. / Omega 45 (2014) 80–91 83



Thus there is one occurrence of state j and no occurrence of other
states at time t, which accords the fact of the original categorical data.

However, Wt is not necessarily degenerate, and each of its
entries represents the probability with which the system is in one
state. Since the system is in state j (j¼ 1;2;…;m) with probability
wj;t , we consider that there is wj;t (r1) occurrence of state j at
time t. Clearly, if Wt obeys degenerate distribution and its jth entry
is 1, there is one occurrence of state j at time t, which is the
situation for the above categorical data.

Following this explanation with regard to occurrences of the
states, Qi and λi for the weight vector sequence fWtg are estimated
below through modifying and generalizing the methods of
Sections 3.1 and 3.2 respectively.

4.2.1. Modified estimation of Qi

In fact, the calculating method of the ith-step transition
frequency f ðiÞjk for categorical data sequence fytg introduced in
Sections 3.1 can be described by the following process. Let
f ðiÞjk ¼ 0 at first and then, for t ¼ i; iþ1;…; T�1, repeat this proce-
dure: if yt� iþ1 ¼ k and ytþ1 ¼ j which are i epochs apart, i.e., both
of the kth entry of Yt� iþ1 and the jth entry of Ytþ1 are 1
(represents there is one occurrence of state k at time t� iþ1 and
one occurrence of state j at time tþ1) and the other entries are 0
(represents there is no occurrence of other states at both time
t� iþ1 and time tþ1), then we say that there is 1k;t� iþ1 �
1j;tþ1 ð ¼ 1Þ ith-step transition from state k to state j, so f ðiÞjk should
be increased by 1. This is the case illustrated in Fig. 1(a) in which
bk;t represents the kth entry of Yt where b¼ f0;1g.

Likewise, for the time-varying combining weight vector
sequence fWtg, see Fig. 1(b), there is wk;t� iþ1 occurrence of state
k at time t� iþ1 and wj;tþ1 occurrence of state j at time tþ1, thus
there is wk;t� iþ1wj;tþ1 ðr1Þ ith-step transition from state k to
state j for each given t (t ¼ i; iþ1;…; T�1). Thus the ith-step
transition frequency from state k to state j can be calculated by
summing up the number of these ith-step transitions:

f ðiÞjk ¼ ∑
T�1

t ¼ i
wk;t� iþ1wj;tþ1 ð21Þ

Following this up, we can estimate Q̂ i according to (11) and
(12).

4.2.2. Modified estimation of λi
Since there is wj;t occurrence of state j (j¼ 1;2;…;m) at time t,

the occurrence frequency of state j is

f j ¼ ∑
T

t ¼ 1
wj;t ð22Þ

Thus, according to (13), the estimation of the stationary distribu-
tion Y is

Ŷ ¼ 1
T

∑
T

t ¼ 1
Wt ð23Þ

Then the estimation of λi can be gotten according to (15) and (16).

4.3. A multi-step-ahead forecasting scheme for combining methods

For the combining methods, it is a significant problem that how
to employ actual observations fxt ; t ¼ 1;2;…; Tg to acquire the
forecasts during the out-of-sample period ½Tþ1; TþH�. This is
related to a multi-step-ahead forecasting problem. As we all know,
to perform prediction with time series, the properties of the
sample data used to estimate predictive models should be the
same as those of the required forecasts. According to this require-
ment, a reasonable multi-step-ahead forecasting scheme for com-
bining methods is proposed below.

Let x̂hj;t denote an h-step-ahead forecast of xt, that is, the forecast
computed by the jth individual model using the observations up to
epoch t�h. Then Fig. 2 shows an instance of such scheme with three
individual models. In this case, to obtain the h-step-ahead
(h¼ 1;2;…;H) combined forecast x̂hc;Tþh, the h-step-ahead individual
forecasts are gotten hold of in advance, i.e. fx̂hj;t ; t ¼ 1;2;…; T ;…; Tþhg
(j¼ 1;2;3). Clearly, there are three h-step-ahead forecast series whose
lengths are Tþh, and the forecasts at epochs t ¼ Tþ1;…; Tþh are all
computed before/at time T. Depending on the individual forecasts
during the in-sample period ½1; T � and the original series, the in-
sample weights are calculated according to (4) for WA and (19) for HM-
TWA. Then based on these weights, the weights at time Tþh are just
the above in-sample ones for WA or can be extrapolated by the high-
order Markov chain model for HM-TWA. Finally, the h-step-ahead
combined forecast is obtained.

In particular, the way that HM-TWA obtains combined forecasts
during the out-of-sample period ½Tþ1; TþH� is shown in the
following steps, where variables with the superscript h are related
to the h-step-ahead forecast series:

1. Let h¼1.
2. Calculate the in-sample time-varying combining weight

vector sequence fWh
t ; t ¼ 1;2;…; Tg according to (19).

3. Estimate the ith-step transition probability matrix Qh
i and

coefficient λhi (i¼ 1;2;…;n) according to Sections 4.2.1 and
4.2.2 respectively.

4. Predict the combining weights Wh
t at time t ¼ Tþh

(i.e., Ŵ
h
Tþh) according to (20) along the following iterated

multi-step-ahead forecasting process successively until
Ŵ

h
Tþh has been attained:

Ŵ
h
Tþ1 ¼ λ̂

h

1Q̂
h
1W

h
T þ λ̂

h

2Q̂
h
2W

h
T�1þ⋯þ λ̂

h

nQ̂
h
nW

h
T�nþ1

Ŵ
h
tþ1 ¼ λ̂

h

1Q̂
h
1Ŵ

h
t þ⋯þ λ̂

h

t�T Q̂
h
t�TŴ

h
Tþ1þ λ̂

h

t�Tþ1Q̂
h
t�Tþ1

Wh
T þ⋯þ λ̂

h

nQ̂
h
nW

h
t�nþ1; TotoTþn

Ŵ
h
tþ1 ¼ λ̂

h

1Q̂
h
1Ŵ

h
t þ λ̂

h

2Q̂
h
2Ŵ

h
t�1þ⋯þ λ̂

h

nQ̂
h
nŴ

h
t�nþ1;

tZTþn

5. Obtain the combined forecast at time Tþh as x̂hc;Tþh ¼
∑m

j ¼ 1ŵ
h
j;Tþhx̂

h
j;Tþh according to (17), where ŵh

j;Tþh is the jth

entry of Ŵ
h
Tþh.

6. If h¼H, stop; otherwise, let h¼ hþ1 and return to Step 2.

Through above steps, forecasts of HM-TWA at epochs Tþ1, Tþ2,
…, TþH can be procured. They are fx̂1c;Tþ1; x̂

2
c;Tþ2;…; x̂Hc;TþHg. Here,

x̂hc;Tþh is the h-step-ahead combined forecast gotten on the basis of
the h-step-ahead forecasts computed by them individual models. For
viewing convenience, the method for determining the h-step-ahead
combined forecast of HM-TWA is shown in Fig. 3 in detail where Fjð�Þ
represents the jth individual model. Note that this multi-step-ahead
forecasting scheme is also used by the WA method in Section 5 for
impartial forecasting performance comparison.

5. Forecasting the monthly electricity consumption of China

5.1. Individual models

Since the monthly electricity consumption data series usually
exhibits strong month of the year seasonality, these three seasonal
data forecasting methods are used as the individual models for our
combination forecasting: predetermined seasonal term method
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(PSTM), predetermined trend term method (PTTM) and Holt–
Winters method (HWM). Given a time series fxt ; t ¼ 1;2;…;Ng
which shows trend and seasonality (periodicity) and has m cycles
whose length are s, how these three forecasting models obtain the
h-step-ahead forecast x̂Nþh is shown in Appendices A–C.

5.2. Data collection and problem description

CEInet Statistics Database has released the monthly generated
electricity of China up to May 2012. Considering the production
and instant use property of electricity, these data can be regarded
as the electricity consumption. However, these data cannot be
used directly due to the Chinese New Year which always lasts a
few days in either January or February. It is so important for the
Chinese people that almost all of the companies and factories stop
working. Accordingly, electricity consumption is abnormal some-
times in January and sometimes in February.

To avoid this problem, the average value of January and
February is regarded as the observation of a new month “1&2”
in each year, i.e., there are 11 monthly values every year and the
cycle length is 11. This study collects electricity consumption data

from the beginning of 1&2 2003 to the end of May 2012 in order to
remain relevant to the current situation of electricity develop-
ment. These original data are shown in Fig. 4.

In this section, these data will be employed to evaluate the
effectiveness of the proposed HM-TWA method both in one-step-
ahead and multi-step-ahead situations for the last 15 months
(from 1&2 2011 to May 2012). Furthermore, HM-TWA will be
compared with some existing models in the last year (from June
2011 to May 2012) to ensure its applicability in annual electricity
planning and policy-making.

5.3. Statistics measures of forecasting performance

In this paper, these three common criteria were used to
evaluate the forecasting performance: root mean square error
(RMSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE)

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

∑
T

t ¼ 1
ðxt� x̂tÞ2

s
ð24Þ

The 1-step-
ahead forecasts

1 2 T T+1 T+2 T+h T+H
t

The 2-step-
ahead forecasts

The h-step-
ahead forecasts

The H-step-
ahead forecasts

Model 1
Model 2
Model 3

Model 1
Model 2
Model 3

Model 1
Model 2
Model 3

Model 1
Model 2
Model 3

Sample period Forecast period

Combination
forecasting

Actual values The h-step-ahead forecasts 
obtained by individual models Combined forecasts

Fig. 2. The illustration for the multi-step-ahead forecasting scheme.

Start

End

Compute the h-step-ahead
forecasts of individual models

Calculate the in-sample 
combining weights

Predict the out-of-sample 
combining weights

Obtain the required h-step-
ahead combined forecast

Fig. 3. The flowchart for obtaining the h-step-ahead combined forecast for HM-TWA.
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MAE¼ 1
T

∑
T

t ¼ 1

��xt� x̂t
�� ð25Þ

MAPE¼ 1
T

∑
T

t ¼ 1

�����xt� x̂t
xt

������ 100% ð26Þ

where x̂t is the forecast of xt. Clearly, as three kinds of deviation
measure between the forecasts and the actual values, their smaller
values represent the higher accuracy.

5.4. Evaluation of the out-of-sample forecasting performance

To evaluate the out-of-sample forecasting performance of
HM-TWA for lead times up to H-step-ahead (H ¼ 1;2;…;11), 88
months (eight years) are elected to be used as the in-sample
period and H months for the out-of-sample forecast period.
As shown in Fig. 5 which illustrates this performance evaluation
process, firstly, monthly observations from 1&2 2003 through
December 2010 are used as in-sample data, then the combination
forecasting for the horizons up to H-step-ahead can be made for
the forecast period from 1&2 2011 through (December 2010)þH
that is the Hth month after December 2010. Secondly, 1&2 2003 is
dropped and 1&2 2011 is added in the in-sample period. Then the
in-sample period is from March 2003 through 1&2 2011 and the
out-of-sample forecast period is from March 2011 through (1&2
2011)þH. The last in-sample period is from (June 2004)-H through
(May 2012)-H, and the corresponding out-of-sample forecast
period is from (June 2012)-H through May 2012.

Two details should be noted: (1) as shown in Fig. 2, for each
H¼1, 2, …, 11, obtaining the combined forecasts at epochs from
Tþ1 to TþH depends on the 1-step-ahead through the H-step-
ahead individual forecasts. Here, we use eight-year CEInet

Statistics Database electricity consumption data to predict these
individual forecasts. Specifically, the h-step-ahead individual
forecasts (h¼ 1;2;…;H) at time t (i.e., x̂hj;t) are acquired using
the data at epochs from ðt�h�87Þ through ðt�hÞ. (2) Consider-
ing the month of the year seasonality of the consumption data,
the order of the high-order Markov chain model is set to n¼11
for the moment.

For prediction up to each step ahead, since there are several
experiments in the performance evaluation process, we compre-
hensively measure the performance of each step ahead forecasting
by “Avg RMSE (MAE, MAPE)” which represents the average of
RMSEs (MAEs, MAPEs) brought from these experiments. Note that
Avg RMSE is the same as Avg MAE for one-step-ahead forecasting.
These values of each models are all shown in Table 1.

From Table 1, three cases can be found:

� For all of the 11 forecast horizons: WA and HM-TWA both
outperform each individual model and SA.

� For horizons up to (1–7,11)-step-ahead2: HM-TWA performs
better than WA.

� For horizons up to (8–10)-step-ahead: the three errors of HM-
TWA are generally higher than WA. However, their differences
are small. Take Avg MAPE for example, the difference between
WA and HM-TWA is only reflected in the second or third
decimal place, and HM-TWA is even slightly better than WA
for horizons up to 10-step-ahead. Thus the performance of
HM-TWA is comparable to that of WA.
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Fig. 4. The monthly electricity consumption of China from 1&2 2003 to May 2012.

1&2 03 Mar 03 (Jun 04)-H Dec 10 1&2 11 Mar 11 (Jun 12)-H(May 12)-H (Dec 10)+H (1&2 11)+H May 12
t

In-sample Out-of-sample

Fig. 5. Evaluation for the forecasting performance at lead times up to H-step-ahead.

2 We denote “(1–7,11)-step-ahead” as “1-step-ahead” through “7-step-ahead”
along with “11-step-ahead” in this paper. Similarly, “(8–10)-step-ahead” represents
“8-step-ahead”, “9-step-ahead” and “10-step-ahead”.
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In summary, among these six investigated models (PSTM,
PTTM, HWM, SA, WA and HM-TWA), HM-TWA has the best
performance in eight evaluations, and is close to having the best
performance for the rest three evaluations. Thus the proposed
HM-TWA method is generally a more effective method compared
with the others.

Here, since there are a large number of estimated λ (i.e.
ðλ1; λ2;…; λ11Þ0) vectors, they are not shown in detail but described
in brief as follows: the first entries of all λ vectors are equal to
1 approximately; as for the second through eleventh entries of
these λ vectors, except one of which reaches 10�4 order of
magnitude, the order of magnitude is less than 10�6 for others
and even less than 10�8 for most of them. This means the weights
generally only depend on the weights in the one preceding epoch,
and the forecasting results will be the same when the order of the
high-order Markov chain model is set to n¼1. Accordingly, we can
use first-order Markov chain model hereinafter. Note that this is
just a model identification process for Chinese electricity con-
sumption and does not mean that the high-order model is
defeated by the first-order model because: (1) the first-order
model is a special case of the high-order one; (2) we actually
even cannot know whether directly using first-order model (i.e.
setting n¼1) from the outset is reasonable without the simulation

Table 1
The out-of-sample forecasting performance comparisons for horizons up to H-step-
ahead (H¼ 1;2;…;11).

Horizons up to PSTM PTTM HWM SA WA HM-TWA

One-step-ahead
Avg RMSE 29.322 12.179 10.620 14.017 10.511 9.180
Avg MAE 29.322 12.179 10.620 14.017 10.511 9.180
Avg MAPE (%) 7.597 3.158 2.818 3.633 2.789 2.420
Two-step-ahead
Avg RMSE 28.757 13.117 11.751 14.701 11.590 10.798
Avg MAE 28.142 12.734 11.053 14.309 10.956 10.313
Avg MAPE (%) 7.250 3.282 2.921 3.686 2.893 2.703
Three-step-ahead
Avg RMSE 28.070 13.294 11.963 14.633 11.755 10.958
Avg MAE 26.932 12.718 10.919 14.082 10.819 10.183
Avg MAPE (%) 6.916 3.263 2.878 3.614 2.848 2.660
Four-step-ahead
Avg RMSE 26.881 13.405 12.403 14.425 12.126 11.327
Avg MAE 25.456 12.594 11.188 13.690 10.990 10.435
Avg MAPE (%) 6.521 3.216 2.941 3.502 2.884 2.718
Five-step-ahead
Avg RMSE 25.840 13.591 12.751 14.410 12.367 11.639
Avg MAE 24.044 12.562 11.517 13.330 11.169 10.639
Avg MAPE (%) 6.135 3.191 3.015 3.395 2.918 2.763
Six-step-ahead
Avg RMSE 24.804 13.853 12.980 14.480 12.478 11.933
Avg MAE 22.510 12.619 11.778 12.981 11.305 10.768
Avg MAPE (%) 5.729 3.194 3.076 3.297 2.946 2.794
Seven-step-ahead
Avg RMSE 24.090 14.208 13.033 14.719 12.420 12.350
Avg MAE 21.209 12.762 11.836 12.841 11.258 11.148
Avg MAPE (%) 5.390 3.227 3.088 3.260 2.930 2.895
Eight-step-ahead
Avg RMSE 23.865 14.507 12.751 15.017 12.081 12.225
Avg MAE 20.236 12.860 11.477 12.799 10.824 10.934
Avg MAPE (%) 5.138 3.250 2.992 3.251 2.815 2.837
Nine-step-ahead
Avg RMSE 23.918 14.993 12.405 15.401 11.811 11.961
Avg MAE 19.609 13.094 11.003 12.887 10.411 10.462
Avg MAPE (%) 4.975 3.306 2.866 3.273 2.704 2.709
Ten-step-ahead
Avg RMSE 23.950 15.614 12.050 15.781 11.669 11.772
Avg MAE 19.224 13.532 10.547 13.033 10.179 10.206
Avg MAPE (%) 4.887 3.418 2.742 3.313 2.639 2.635
Eleven-step-ahead
Avg RMSE 23.928 16.043 11.810 16.090 11.749 11.711
Avg MAE 19.009 13.942 10.193 13.174 10.131 10.124
Avg MAPE (%) 4.857 3.531 2.646 3.360 2.622 2.607
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test of the 11th-order model. Thus the proposed model in this
paper still should be discussed in the high-order framework which
gives the proposed model more flexibility and conduces to its
generalization in other fields.

5.5. Forecasting the monthly electricity consumption up to one year
ahead

Since the effectiveness of HM-TWA has been evaluated, this
subsection will compare it with some existing models to ensure its
applicability for one-year-ahead electricity consumption forecast-
ing to support decision-making. Here, its forecasts for horizons up
to one-step-ahead and eleven-step-ahead from June 2011 through
May 2012 are specifically evaluated. Besides the three individual
models and the two traditional combining methods, three popular
models are also used as benchmark models, including BPN (back-
propagation network), [29] LSSVR (least squares support vector
regression) [53] and SARIMA (seasonal autoregressive integrated
moving average) [9,54]. They are established by the neural net-
work toolbox of Matlab, LS-SVMlab1.5 toolbox and Minitab 15
respectively. Their in-sample periods are also the eighty-eight
months before the forecast period. Inputs of both BPN and LSSVR
are the past 11 lags (one year) considering the periodicity of the
data. The parameter setting method of BPN is the same as that of
[29], specifically, BPN uses a 11� 23� 1 structure. In addition,
through model identification, parameters of SARIMA are
p¼ d¼ q¼ 1, P ¼ Q ¼ 0 and D¼1, i.e., the model is
ARIMAð1;1;1Þð0;1;0Þ11. Furthermore, the TSSE (time-varying sum
of squared error) method [42], an existing time-varying-weight
combining method, is also involved to compare with HM-TWA, but
it is only for the one-step-ahead forecasting.3

The one-step-ahead forecasting results during the period from
June 2011 to May 2012 are listed in Table 2. Note the difference
between the weights of WA and those of TSSE and HM-TWA: the
former ones are the same as the in-sample constant weights
which are estimated according to the historical performance
during the whole in-sample period, but the latter ones are given
by the formula shown in footnote 3 or extrapolated from the in-
sample time-varying weights by the high-order Markov
chain model.

With the above predetermined parameters for BPN, LSSVR and
SARIMA in this paper, Table 2 shows that there are noticeable
improvements for HM-TWA compared with BPN, LSSVR, SARIMA,
PSTM, PTTM, HWM, SA, WA and TSSE, and the MAPE has been
reduced by 76.98%, 68.87%, 18.77%, 71.24%, 23.01%, 25.91%, 28.47%,
24.55% and 16.62% respectively. Precisely, noting all of the weights

of WA on PSTM being 0, one can imagine that the historical
performance of PSTM during the in-sample period is inferior to the
other two individual models. This is because the constant weights
of WA can only reflect the overall in-sample performance and
neglect the detailed time-varying property of the individual
models. However, PSTM can be more accurate than others and
redounds to obtaining the more precise combined forecasts at
some special time points. This leads to the non-zero weights of
TSSE and HM-TWA during the out-of-sample period. These non-
zero weights lead PSTM to play a role to obtain more accurate
combined forecasts through using its advantage that compensate
for the shortage of the other component models, which proves the
superiority of time-varying weights.

To perform the forecasting for horizons up to eleven-step-
ahead, i.e., procure all of the one-year forecasts directly in May
2011, the individual forecasts should be first gotten as in Fig. 2.
Tables 3 and 4 show these forecasts in the forecast period from
June 2011 to May 2012. From these tables, the experimental
process can be clearly observed. There are three columns of h-
step-ahead (h¼ 1;2;…;11) individual forecasts. The number of h-
step-ahead individual forecasts is just h, and the shaded values are
the last forecasts. According to Fig. 2, after the corresponding
combining weights for the shaded values have been predicted by
the high-order Markov chain model, the h-step-ahead combined
forecast is just the inner product of the shaded values and these
weights. Table 5 shows these forecasting results. Since the WA also
uses the same multi-step-ahead forecasting scheme, there are
different weights for each forecasting horizon. This does not mean
that the weights are time-varying.

Table 5 shows that the MAPE of HM-TWA is 2.415%. Although this
accuracy is lower than the short-term forecasting (one-step-ahead
forecasting), it falls within the acceptable level and has different
degrees of improvement compared with other eight models. Further-
more, considering the importance of each horizon0s stability for
multi-step-ahead forecasting, Table 6 lists the minimum and max-
imum relative errors (R.E.) along with their months of occurrence, for
each model during the period from June 2011 through May 2012. By
observing the difference between the minimum and maximum
relative errors of each model, it can be seen that HM-TWA is the
most stable with a minimum difference (4.823%).

6. Conclusions

This paper proposes a novel monthly electricity consumption
combining forecasting model called HM-TWA. To overcome the
limitation of traditional combining methods that only consider the
overall in-sample performance and neglect the detailed time-
varying property of the individual models, HM-TWA makes the
combining weights change over time using a high-order Markov
chain model. This matches the instability, caused by various
uncertainties, of China0s electricity consumption. In addition, for
the sake of guaranteeing the forecast principle that the sample

Table 3
The (1–5)-step-ahead individual forecasts during the forecast period.

Month The 1-step-ahead forecast The 2-step ahead forecast The 3-step-ahead forecast The 4-step-ahead forecast The 5-step-ahead forecast

PSTM PTTM HWM PSTM PTTM HWM PSTM PTTM HWM PSTM PTTM HWM PSTM PTTM HWM

June-11 352.92 371.89 384.11 355.82 371.45 382.78 358.68 371.37 381.41 361.33 370.21 378.68 364.23 371.37 376.86
July-11 – – – 387.18 403.61 416.55 390.35 403.14 415.00 393.48 403.06 413.41 396.37 401.82 410.26
August-11 – – – – – – 394.69 407.15 423.23 397.94 406.69 421.55 401.14 406.61 419.83
September-11 – – – – – – – – – 367.67 375.25 389.77 370.70 374.83 388.12
October- 11 – – – – – – – – – – – – 361.21 364.98 378.86

3 The time-varying weights of TSSE is determined by wj;t ¼ ð1=s2
j;t Þ=

∑m
k ¼ 1ð1=s2

k;t Þ where s2
j;t depends on v (equal to 11 in this paper) previous forecast

errors, so it cannot perform multi-step-ahead forecasting. For instance, if we have
the original data up to epoch T, since we do not know the actual value at epoch
Tþ1, the forecast error at epoch Tþ1 is also unknown and the combined forecast at
epoch Tþ2 cannot be gotten.
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Table 4
The (6–11)-step-ahead individual forecasts during the forecast period.

Month The 6-step-ahead forecast The 7-step-ahead forecast The 8-step-ahead forecast The 9-step-ahead forecast The 10-step-ahead forecast The 11-step-ahead forecast

PSTM PTTM HWM PSTM PTTM HWM PSTM PTTM HWM PSTM PTTM HWM PSTM PTTM HWM PSTM PTTM HWM

June-11 367.47 370.02 376.52 370.70 369.92 376.69 374.32 370.20 378.24 377.67 369.45 378.42 380.96 366.85 375.83 384.45 364.53 374.66
July-11 399.54 403.05 408.47 403.09 401.61 408.79 406.61 401.51 408.70 410.58 401.80 410.47 414.25 401.00 410.69 417.85 398.22 407.76
August-11 404.10 405.40 416.05 407.34 406.60 413.15 410.97 405.19 413.45 414.58 405.09 413.35 418.65 405.37 415.25 422.38 404.59 415.49
September-11 373.69 374.76 386.30 376.43 373.65 383.23 379.46 374.75 381.05 382.86 373.47 381.35 386.23 373.37 381.27 390.03 373.63 383.11
October-11 364.23 364.58 377.62 367.20 364.51 376.91 369.93 363.44 373.52 372.94 364.50 371.30 376.34 363.26 371.62 379.71 363.17 371.54
November-11 368.65 368.79 385.46 371.75 368.39 384.39 374.81 368.32 382.62 377.63 367.27 379.01 380.74 368.32 376.66 384.24 367.09 377.01
December- 11 – – – 397.70 393.71 413.49 401.04 393.30 411.54 404.33 393.23 409.55 407.34 392.13 405.52 410.68 393.22 402.89
1&2–12 – – – – – – 357.45 350.26 367.64 360.43 349.90 365.83 363.37 349.84 363.98 366.06 348.88 360.24
March-12 – – – – – – – – – 399.95 387.95 407.09 403.24 387.57 404.99 406.49 387.50 402.85
April-12 – – – – – – – – – – – – 392.85 377.30 396.82 396.10 376.93 394.67
May-12 – – – – – – – – – – – – – – – 407.03 387.09 407.26

Table 5
The 11-step-ahead forecasting performance comparisons during the period from June 2011 to May 2012.

Month Actual value (TW h) Predicted value (TW h) of Weight of WA on Weight of HM-TWA on

BPN LSSVR SARIMA PSTM PTTM HWM SA WA HM-TWA PSTM PTTM HWM PSTM PTTM HWM

June-11 396.82 368.57 346.31 384.08 352.92 371.89 384.11 369.64 384.10 383.05 0.000000 0.000804 0.999200 0.006166 0.070731 0.923100
July-11 425.15 370.60 363.30 415.34 387.18 403.61 416.55 402.44 416.01 414.63 0.000000 0.041302 0.958700 0.028757 0.082664 0.888580
August-11 426.04 400.73 366.47 428.28 394.69 407.15 423.23 408.36 422.02 420.47 0.000000 0.075620 0.924380 0.049526 0.084120 0.866350
September-11 386.06 401.91 363.66 386.82 367.67 375.25 389.77 377.56 388.23 386.94 0.000000 0.105720 0.894280 0.050272 0.117910 0.831820
October-11 364.04 398.02 358.11 371.25 361.21 364.98 378.86 368.35 377.10 375.95 0.000000 0.126690 0.873310 0.064100 0.127930 0.807970
November-11 371.30 416.96 367.49 383.91 368.65 368.79 385.46 374.30 383.07 382.30 0.000000 0.143450 0.856550 0.073128 0.115860 0.811010
December-11 403.81 403.81 373.24 406.54 397.70 393.71 413.49 401.63 410.90 410.91 0.163870 0.000000 0.836130 0.091521 0.057450 0.851030
1&2–12 359.38 428.08 356.45 377.60 357.45 350.26 367.64 358.45 365.40 364.72 0.219980 0.000000 0.780020 0.177030 0.064486 0.758490
March-12 405.99 450.08 369.53 422.14 399.95 387.95 407.09 398.33 405.11 398.18 0.277610 0.000000 0.722390 0.536380 0.265740 0.197880
April-12 371.83 456.85 366.40 405.69 392.85 377.30 396.82 388.99 395.50 390.61 0.331190 0.000000 0.668810 0.410530 0.234690 0.354780
May- 12 389.86 470.60 374.92 417.03 407.03 387.09 407.26 400.46 407.17 400.12 0.378590 0.000000 0.621410 0.509150 0.348100 0.142750
RMSE 50.736 34.379 16.404 22.400 13.865 12.676 13.941 11.766 10.413
MAE 43.831 26.763 13.045 17.215 11.374 10.749 11.082 9.8057 9.3588
MAPE (%) 11.380 6.579 3.401 4.291 2.834 2.808 2.777 2.552 2.415
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data should have the same properties as the required forecasts, a
reasonable multi-step-ahead forecasting strategy is proposed in
which the out-of-sample combined forecast for one horizon is
predicted by using individual forecasts for the same horizon as the
sample data. Out-of-sample tests of forecasting accuracy show the
effectiveness of the proposed HM-TWA method to perform fore-
casting for one through eleven months (i.e., one year) ahead.
Furthermore, to ensure its applicability of one-year-ahead fore-
casting in annual electricity planning and policy-making, the
forecasting performance of HM-TWA has been compared with
eight models, including three common methods (BPN, LSSVR and
SARIMA), the individual models used in this paper (PSTM, PTTM
and HWM), two traditional combining models (SA and WA) and
one existing time-varying combining method (TSSE). According to
the three criteria (RMSE, MAE and MAPE), with the predetermined
parameters for BPN, LSSVR and SARIMA in this paper, HM-TWA
has different degrees of improvement compared with other
models for both one-month-ahead and one-year-ahead
forecasting.
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Appendix A. Predetermined seasonal term method

Denote fxt ; t ¼ 1;2;…;Ng as fx11; x12;…; x1s; x21; x22;…; x2s;…;
xm1; xm2;…; xmsg. Let xk ¼ ðxk1þxk2þ⋯þxksÞ=s ðk¼ 1;2;…;mÞ, then
the jth seasonal index is defined as follows [5,55]:

Ij ¼
I1jþ I2jþ⋯þ Imj

m
; j¼ 1;2;…; s ðA:1Þ

where Ikj ¼ xkj=xk ðk¼ 1;2;…;m; j¼ 1;2;…; sÞ. Then the seasonal
effect can be eliminated by

x0kj ¼
xkj
Ij
; k¼ 1;2;…;m; j¼ 1;2;…; s ðA:2Þ

The obtained series fx011; x012;…; x01s; x021; x
0
22;…; x02s;…;

x0m1; x
0
m2;…; x0msg can be rewritten as x0tðt ¼ 1;2;…;NÞ. After com-

puting its h-step-ahead forecast x̂ 0Nþh using linear regression or
two-order moving average, the h-step-ahead forecast of the

original series xt can be attained as follows:

x̂Nþh ¼ x̂ 0NþhIh� s⌊h� 1
s c ðA:3Þ

Appendix B. Predetermined trend term method

The predetermined trend term method (PTTM) is similar to the
above PFTM. They only differ in the consideration order for
seasonal and trend terms. PTTM first uses linear regression or
two-order moving average to model the original series xt and
acquires its trend series fxt ; t ¼ 1;2;…;Ng and the h-step-ahead
forecast xNþh. The trend series can be used to calculate the
seasonal index. Let pt ¼ xt=xt and I j ¼ 1=mðpjþpsþ jþ
p2sþ jþ⋯þpðm�1Þsþ jÞ (j¼ 1;2;…; s), then the seasonal index can
be gotten according to the following normalization process
[55,56]:

Ij ¼
sI j

I1þ I2þ⋯þ I s
ðB:1Þ

which guarantees I1þ I2þ⋯þ Is ¼ s. Finally, the h-step-ahead fore-
cast of the original series xt can be obtained as follows:

x̂Nþh ¼ xNþhIh� s⌊h� 1
s c ðB:2Þ

Appendix C. Holt–Winters method

The Holt–Winters method (HWM) (also known as the triple
exponential smoothing) takes into account both seasonal changes
and trends. Its h-step-ahead forecast is given by [57]

x̂Nþh ¼ ðSNþbNhÞIN� sþðh� s⌊h� 1
s cÞ ðC:1Þ

where SN and bN are the smoothed observation and trend factor at
time N respectively. The subscript N�sþðh�s⌊h�1

s cÞ of I means
forecasts of more than one full season beyond the end of the data
will reuse the last season0s seasonal indexes. These parameters can
be acquired by computing the following three equations at t¼1
through t¼N successively [58]:

St ¼ α
xt
It� s

þð1�αÞðSt�1þbt�1Þ
bt ¼ γðSt�St�1Þþð1�γÞbt�1

It ¼ β
xt
St
þð1�βÞIt� s ðC:2Þ

where α, β and γ are constants that are constrained to be 0–1.
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