

_der ivat ions and the Performer-Developer:

Co-Evolving Digital Artefacts and Human-

Machine Performance Practices

Benjamin Carey

University of Technology, Sydney

Submitted to the Faculty of Arts and Social Sciences in Partial Fulfilment of

the Requirements for the Degree of Doctor of Philosophy

 2016

Certificate of Original Authorship

I certify that the work in this thesis has not previously been submitted for a degree nor

has it been submitted as part of requirements for a degree except as fully acknowledged

within the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

Signature of Student:

Date: 9th of October, 2015

Production Note:

Signature removed prior to publication.

 i

Acknowledgements

I have been humbled by the support, encouragement and enthusiasm shown by many

people throughout the life of this project. Thanks to my co-supervisors Dr. Andrew

Johnston and Dr. Jon Drummond for their guidance and encouragement, and most

importantly for getting me over the finish line. My thanks also go to Dr. Kirsty Beilharz

for her patience and guidance during the formative stages of my candidature. Thank you,

Kirsty, for your timely advice, long discussions and for your trust in my abilities.

 Thank you to all of the musicians who I have worked with throughout the project.

Special thanks to my dear friend Joshua Hyde, for your continued enthusiasm and

advocacy of the _derivations project, and your tireless encouragement of everything I do.

Thanks also to Alana Blackburn, the first performer to take a step into the unknown with

this project. Thanks for your friendship, enthusiasm and beautiful playing. Thanks to

musicians Zubin Kanga, Antoine Läng, Evan Dorrian, Zane Banks, and Alexander

Berne, all of whom I have had the good fortune of hearing improvise with _derivations.

To the many people who have downloaded and performed with the _derivations software,

my sincere thanks. It’s humbling to have received comments, questions and links to

performances and recordings made with _derivations from far-flung places across the

globe.

 To my many friends and colleagues who have helped keep me sane throughout the

duration of this degree, my warmest thanks. A special thanks to Aengus Martin, Oliver

Bown and Roger Mills for the many great discussions, jam sessions, gigs and hack-a-

thons had over the life of this project. Thanks also to friends Lachlan, Jemima, Tristan,

Mark, Smiddy and Tobias for your support and encouragement over these past few years.

 To my beautiful family who I love dearly, thank you. Thanks to Mum and Dad for all

the love, support, advice and encouragement. To my twin brother Nick, thanks for

always being there, for keeping me sane, and for letting me vent from time to time. To

Libby, thank you for being such a great listener and a ball of good energy. Thanks to

Jenny, Roger and Lesley for your love and support. And lastly, to Zoé, who has endured

all the ups and downs of this rollercoaster ride with me, thank you for always believing in

me. I couldn’t have done this without you.

 ii

Contents

Acknowledgements ... i

Contents ... ii

List of Figures ... vi

Abstract ... ix

Introduction .. 1Chapter 1.

1.1 Introduction ... 1

1.2 The __der iva t ions software .. 2

1.3 Performer-developer context ... 2

1.4 Background and context for the research ... 4

1.5 Self-reflective practice .. 7

1.6 Structure of the thesis .. 9

Literature Review - Interactive Music Systems 13Chapter 2.

2.1 Introduction ... 13

2.2 Definitions, models and metaphors .. 14

2.3 Design strategies – key concepts and approaches .. 20

Relationship between input analysis and generation ... 202.3.1

Timbral awareness ... 232.3.2

Sonic and algorithmic derivation .. 252.3.3

Live algorithms and musical autonomy ... 332.3.4

Rehearsal and performance practice ... 372.3.5

2.4 Conclusion ... 40

Methodology .. 41Chapter 3.

3.1 Practice-based and creative-production research projects 41

Practice-based research ... 423.1.1

Creative-production vs. problem-solving research projects ... 443.1.2

The reflective practitioner .. 483.1.3

3.2 Reflective practice as research methodology .. 51

3.3 Introducing the mangle of practice ... 52

The mangle and reflective practice ... 553.3.1

Connecting the mangle to creative arts research .. 573.3.2

3.4 Bricolage programming and reflective practice .. 60

3.5 Bricolage programming and the mangle of practice .. 63

 iii

3.6 Data Collection .. 64

Research memos .. 643.6.1

Max patches .. 653.6.2

Audio recordings ... 673.6.3

Data excluded from the research .. 683.6.4

3.7 Conclusion ... 68

Wayfinding Part 1: Formative Software ... 71Chapter 4.

4.1 Introduction ... 71

4.2 Formative development approaches ... 71

Input analysis and segmentation ... 734.2.1

Temporal pattern recognition ... 764.2.2

Data sampling techniques .. 874.2.3

Probabilistic Methods ... 934.2.4

4.3 Reflections ... 105

Reconciling analysis with generation .. 1054.3.1

Balancing control, influence and derivation in interactive systems 1064.3.2

Hearing vs. Listening .. 1074.3.3

4.4 Conclusion ... 108

Wayfinding – Part 2: Synthesis and sampling 110Chapter 5.

5.1 Introduction .. 110

5.2 Synthesis and processing methods .. 111

Four buffer phase vocoder .. 1125.2.1

Pitch Models .. 1155.2.2

5.3 Towards integrated systems ... 121

Live-processing-1 .. 1225.3.1

Phrase Player .. 1295.3.2

5.4 Reflections ... 137

Co-evolving systems with practices .. 1375.4.1

Connections between data and generativity .. 1385.4.2

5.5 Conclusion ... 139

Wayfinding – Part 3: _dder ivat ions ... 141Chapter 6.

6.1 Introduction .. 141

6.2 The phrase database .. 143

6.3 Upgrading and expanding output modules .. 145

6.4 Phrase triggering and selection ... 146

6.5 Phrase matching in _derivations ... 149

 iv

Multi-descriptor phrase matching using analyzer~ .. 1516.5.1

The common match algorithm ... 1546.5.2

Limitations of the multi-descriptor and common match approaches 1556.5.3

User-defined descriptor weighting .. 1586.5.4

User-defined descriptor filtering ... 1596.5.5

Automatic similarity metric .. 1606.5.6

Evaluating multi-descriptor phrase matching ... 1616.5.7

MFCCs in _derivations ... 1636.5.8

6.6 Self-referencing .. 166

6.7 Evaluating live sampling and generation in __der iva t ions 172

6.8 Session databases .. 175

Cumulative databases .. 1786.8.1

Merged databases .. 1796.8.2

Phrase disabling ... 1796.8.3

Performing with multi-session databases .. 1816.8.4

6.9 Reflections ... 183

Evaluating session databases ... 1836.9.1

Performing with a stabilised artefact .. 1856.9.2

6.10 Conclusion ... 187

Findings: Reflections of a performer-developer 190Chapter 7.

7.1 Introduction ... 190

7.2 Artefact scripts and the performer-developer .. 191

Artefacts as instruments of sociotechnical knowledge .. 1937.2.1

Performer-developer context .. 1957.2.2

An artefact’s ‘episteme’ ... 1977.2.3

Stabilised and non-stabilised artefacts .. 2017.2.4

Attributing agency ... 2047.2.5

Models of ‘invisibilisation’ ... 2057.2.6

Conclusion .. 2077.2.7

7.3 Interpretation in improvised human-machine performance 209

Free-improvisation and interpretative performance .. 2107.3.1

Freedom and constraint ... 2127.3.2

Extra-musical constraint .. 2147.3.3

Interactive systems and improvisational performance .. 2167.3.4

Development as sociotechnical curation ... 2187.3.5

Software as musical text ... 2227.3.6

Conclusion .. 2237.3.7

 v

7.4 Symbiosis in human-machine performance ... 224

Metaphors for interactivity .. 2267.4.1

Symbiosis in art and technology ... 2287.4.2

Defining symbiotic musical interaction ... 2337.4.3

Symbiosis and _derivations .. 2357.4.4

Template for the design of a musical symbiont ... 2397.4.5

7.5 Conclusion ... 240

Conclusions, Ongoing and Future Work ... 243Chapter 8.

8.1 Contributions of the research .. 243

8.2 Performances, collaborations and releases ... 248

8.3 Software distribution and communication .. 249

8.4 Ongoing and Future Work .. 250

8.5 Final thoughts .. 251

Appendix A - _derivations software .. 253

Appendix B - Musical releases ... 257

Appendix C - Performance documentation .. 259

Appendix D - Website ... 262

Appendix E - _derivations Video Documentation ... 264

Appendix F - Event and Patch Timelines .. 267

Appendix G - Formative Software .. 278

Appendix H - Third-party produced releases .. 280

Appendix I - Online content ... 281

Appendix J - Video Documentation Transcripts .. 286

Appendix K - Publications .. 304

Bibliography ... 306

 vi

List of Figures

Figure 1: The Bricolage Programming cycle of action and reaction (McLean & Wiggins 2010, p. 2)

 ... 61
Figure 2: The Bricolage Programming cycle of action and reaction annotated with the

components of the Creative Systems Framework (McLean & Wiggins 2010, p. 6) 63
Figure 3: tthresho ldp i t ch subpatcher from newaudio tracking .maxpat .. 74
Figure 4: Impulses forming an absolute deceleration gesture ... 78
Figure 5: Inside the acc e lde t e c t thresho ld abstraction .. 79
Figure 6: Using accel/decel lists to generate rhythmic gestures ... 81
Figure 7: Example rhythmic sequence in f indthatrhy thm2.maxpat ... 82
Figure 8: Inside the f indthatrhty thm2.maxpat abstraction .. 84
Figure 9: Performance score algorithm from f indthatrhy thm2.maxpat .. 85
Figure 10: e las t i c i t y s torage .maxpat .. 88
Figure 11: dataat in t erva l s .maxpat graphical user interface .. 90
Figure 12: Amplitude curves sampled from the tenor recorder using dataat in t erva l s .maxpat 91
Figure 13: Durat iona lProb Max patcher ... 93
Figure 14: The Tripar t i t e Markovia graphical interface .. 95
Figure 15: The pi t ch_markov subpatcher contained within Player 1 . The anal object is responsible

for building a histogram of incoming MIDI notes, whilst the prob object is used to build the

necessary transition matrix from this data .. 98
Figure 16: The probabi l i t yp layer1 subpatch from Tripar t i t e Markovia . In red, individual markov

chain algorithms per parameter; in blue, the synchronisation algorithm. 100
Figure 17: The syncedwinput subpatch from Player 1 . See Figure 16 above for context. 102
Figure 18: Scored excerpt of a performance using Tripar t i t e Markovia – rhythmic values

quantised to the nearest 32nd note value. .. 103
Figure 19: Sound File Mix GUI element in 4-buf f -pvoc - t e s t .mapat – displayed at two separate

positions .. 114
Figure 20: s tor emode l s supatcher from pi t chmode l s .maxpat . Incoming frequency-amplitude pairs

are parsed into lists of ten partials in the [p peaks] subpatchers, grouped together into a

single list using cascading zl . j o in objects and stored in the [coll sin-lists] data collection for

later output. ... 117
Figure 21: The IOI lookup table in pi t chmode l s .maxpat .. 119
Figure 22: Visual representation of the partial scrambling algorithm used in pi t chmode l s .maxpat .

Figure 22a shows the amplitude distribution of a static sinusoidal model, whilst Figure 22b

displays the results of the model after the ‘scrambling’ process. In Figure 4b the amplitude

of the fundamental frequency has been replaced with the original amplitude of partial three;

the amplitude of partial four is replaced with that of the fifth partial, etc. 121
Figure 23: Screenshot of a performance with Live-proc e s s ing -1 . The left hand side of the figure

features pi t ch mode l s many output parameters, whilst the audio buffers in the centre

represent the sampled and analysed material used in 4-buf f -pvoc . .. 125

 vii

Figure 24: A screenshot of the presets and associated parameter values within ppi t ch mode l s . The

current interpolation value of this algorithm is 4.8, as visually represented in this figure by

the relative shading of columns four and five. ... 126
Figure 25: s tor e cues subpatcher from phrasep layer -GUI.maxpat .. 133
Figure 26: ampl i s t s subpatcher from phrase -p layer -GUI.maxpat ... 134
Figure 27: ampstr eam-output1 subpatcher inside the ampl i s t s subpatcher 135
Figure 28: Phrase Database module within the _der iva t ions system .. 144
Figure 29: Granulator processing module included in the _der iva t ions system 145
Figure 30: Parsing phrase point data in the granula tor . The floating window displays the data

contained within the [coll phrase-points 1] object. Each indexed list refers to the position of

an individual phrase as it appears in the internal audio buffer. Values for each index take the

following format: <phrase s tar t><phrase end><phrase l eng th>. The named s end objects in

the left of the figure send this data to the granulator before processing. 147
Figure 31: Building a phrase vector ... 152
Figure 32: Querying the phrase database – pi t ch comparison .. 153
Figure 33: Comparing descriptor matches – the common match algorithm 155
Figure 34: User-defined descriptor weighting ... 159
Figure 35: User-defined descriptor filtering .. 160
Figure 36: Creating MFCC features from an audio signal (Logan 2000) .. 165
Figure 37: Collating MFCC phrase vector statistics .. 166
Figure 38: _der iva t ions ’ original phrase storage and triggering logic. The beginning of a phrase

boundary sends the previously matched phrase index to an available output module. 168
Figure 39: _der iva t ions ’ s e l f - r e f e r enc ing algorithm. This figure displays a cycle of output triggering

and phrase comparison that occurs from input provided by an improvising musician. 171
Figure 40: The s e l f - r e f e r enc ing algorithm can continue generating material without continued

input from the performer. ... 171
Figure 41: Inside the [p save/load-rehearsals] subpatcher in the phrase database module 177
Figure 42: Example multi-session database on disk containing three ‘rehearsals’ or ‘sessions’ ... 179
Figure 43: Rehearsa l In fo splashscreen that appears after loading a session. The above database

contains three ‘rehearsals’ or ‘sessions’ containing a total of 394 phrases. Three of these

phrases have also been ‘disabled’ from use by the phrase match ing algorithm 180
Figure 44: The audition window. The first drop down menu allows the user to audition individual

phrase indexes, and enable/disable their use in phrase match ing . The Rehearsals dropdown

menu allows for per-rehearsal enabling/disabling of phrase indexes. 181
Figure 45: A simple algorithm in the granula tor for determining which source to access for its

audio content .. 182
Figure 46: Painting Robots Orchestra (PRO) – PRO021113 – Leonel Moura (2013). ‘PRO is

constituted by a series of robots able to detect sound. Each robot is receptive to a different

frequency that activates a painting device.’ .. 230
Figure 47: Mutual i s t i c Re la t ionsh ips No. 5 (Symbios i s Sta te) – Amber Stucke (2013) 232
Figure 48: Screenshot of _derivations’ graphical user interface (v1.08) ... 254

 viii

Figure 49: Screenshot of _derivations ‘standalone’ disk image (v1.07) .. 256
Figure 50: dder iva t ions | human-machine improv i sa t ions cover art .. 257
Figure 51 Joshua Hyde – Berio, Sotelo, Quislant, Parra, Carey cover art 258
Figure 52: Screenshot from ‘_derivations | Ben Carey | MuMe 2013’ .. 259
Figure 53: Screenshot from ‘Piano-computer dance: Zubin Kanga & Ben Carey's _derivations’ 260
Figure 54: Screenshot of ‘Joshua Hyde and _derivations | IRCAM Live @ La Gaité Lyrique’ 261
Figure 55: Screenshot of derivations.net landing page featuring Alana Blackburn in rehearsal ... 262
Figure 56: Google Analytics report for derivations.net in the period June 28th, 2013 – June 7th, 2015

 ... 263

 ix

Abstract

This thesis concerns the development and use of interactive performance systems

designed for improvised musical performance. Written from the perspective of a

performer-developer, the research traces the development of personal approaches to

designing for musical interactivity in human-machine performance, culminating in the

development of the _derivations interactive performance system and related creative

outcomes.

 The contributions and outcomes of this research project are as follows:

 The development of novel computer music techniques for use in interactive

musical performance;

 A novel self-reflective study of the development and use of interactive musical

performance systems from the perspective of a performer-developer;

 Theoretical perspectives on the design and use of interactive musical

performance systems.

In addition to the published thesis, this research has generated significant creative

outcomes in the form of software, studio recordings, documentation of live

performances, video documentation and a publicly available website dedicated to the

_derivations system. These creative outcomes are also presented as significant

contributions of this research.

 The creative practice underpinning this research is presented as a narrative of

development, tracing advancements in the author’s practice towards the stabilisation of

the _derivations system and its accompanying performance practice. Designed for use by

instrumental improvisers, _derivations uses live-sampling and timbral matching techniques

to generate autonomous responses to the live performance of an improvising musician,

engaging the performer in a playful, improvised musical dialogue. This thesis outlines

both formative programming experiments and stabilised software artefacts, tracing the

 x

author’s creative practice to reveal the iterative and cyclical patterns of development

engaged in throughout this research.

 Employing a practice-based research approach, this project uses the creative practices

of software programming and interactive musical performance to surface issues,

concerns and interests concerning human-machine performance practice. A self-

reflective methodology is employed to engage with emergent research themes arising

throughout the development of my creative artefacts. The thesis concludes with three

extended reflections-on-action that interrogate theoretical concerns relevant to the

interactive computer music community. The first of these reflections addresses the

relationship between human and material agencies in the practice of the performer-

developer, whilst the second reflection interrogates the concept of musical interpretation

in the context of human-machine performance. The final reflection proposes symbiosis as

a novel interactive metaphor in the development of interactive musical systems.

 1

 Introduction Chapter 1.

1.1 Introduction

This thesis concerns the development and use of interactive performance systems

designed for improvised musical performance. The research traces the development of

personal approaches to designing for musical interactivity in improvised human-machine

performance, culminating in the _derivations interactive performance system and related

creative outcomes. Employing a self-reflective, practice-based methodology, this research

situates creative programming practice and interactive musical performance as sites for

investigating issues, concerns and interests related to improvised human-machine

performance practice. By tracing the development of my creative practice, the research

has sought to understand the design and use of such systems from a practitioner’s

perspective. Reflection-in-practice and bricolage programming methods have enabled the

advancement of idiosyncratic interactive software and musical performances, while

reflection-on-practice is used to uncover and examine theoretical issues surrounding these

interrelated creative practices that are relevant to the wider research community.

 The contributions and outcomes of this research project are as follows:

 The development of novel computer music techniques for use in interactive

musical performance;

 A novel self-reflective study of the development and use of interactive musical

performance systems from the perspective of a performer-developer;

 Theoretical perspectives on the design and use of interactive musical

performance systems.

In addition to the findings outlined in this document, this practice-based research project

has generated significant creative outcomes in the form of software, studio recordings,

documentation of live performances, video documentation and a publicly available

website. Accordingly, the discussion and analysis contained within this thesis should be

 2

understood with respect to these creative outcomes. These outcomes are detailed in

Appendices A – E and have been provided in digital form as part of the submission

materials alongside this thesis.

1.2 The _derivations software

The focus of the creative practice outlined in this thesis concerns the development of the

_derivations interactive performance system, a software program designed for use by

instrumental improvisers in human-machine performance. The software uses live-

sampling and timbral matching techniques in order to generate autonomous responses to

the live performance of an improvising musician, engaging the performer in a playful,

improvised musical dialogue. The development of this software system extends my

personal interest in investigating musical interactivity in human-machine performance

practice. The software is therefore embedded with my musical inclinations as an

improvising saxophonist and electro-acoustic musician. The result of an iterative and

emergent process of creative programming, this software was made freely available

online in June 2013. Since this time, the system has been downloaded and used by

numerous musicians worldwide and has appeared on several musical releases, including

two releases that form part of the submission materials for this thesis (see Appendix B).

1.3 Performer-developer context

“In the future, there should be more individuals in computer music who possess both high-level

musicianship and technological skills. […] Naturally, performers are trained to handle their instruments

very intimately, making them seem like extensions of their own bodies; mastering the craft of performing

and handling the instrument seems difficult to achieve otherwise. As real-time computer music systems are

closely connected with performance, I think that trained performers will be at an advantage in this field.”

(Kimura 1996)

Owing to the maturity and ubiquity of computer music environments such as Max1,

SuperCollider2, Pure Data3, ChucK4 and others, performers seeking to expand their

1 https://cycling74.com/products/max/

2 http://supercollider.github.io/
3 https://Pure Data.info/

 3

practice to encompass digital technologies have a wide array of sophisticated tools and

techniques at their disposal. Research and creative works presented to international fora

such as the International Computer Music Conference, the Sound and Music Computing

Conference and the Conference on New Interfaces for Musical Expression display the

breadth of research in the computer music community, and highlight the inherently

interdisciplinary nature of the field. In this area, practitioner-researchers are common and

are often multi-skilled in areas such as musical composition, software development,

interaction design and musical performance.

 As articulated by violinist and computer musician Mari Kimura, the unique skillset and

perspective possessed by instrumental performers can be a great advantage in the field of

computer music. Given the inherently technical nature of computer music research and

practice, musical performers seeking to engage with this field often extend their skillset

to include creative software programming. Many performers have taken to augmenting

their musical practices with the aid of flexible computer music environments, exploring

personal methods of musical interactivity in both composed and improvised contexts.

The immediacy of computer music tools such as Max make the environment ideally

suited for use by performers seeking to develop their own performance systems and

tools. In addition, such real-time environments make the process of programming,

testing and refining personal software tools a liberating and autonomous process for the

musician.

 Whilst Kimura’s perspective hinges on the benefits skilled performers can bring to the

computer music community, in this thesis I consider the combined identity of the

performer-developer as an integral part of advancing understandings of the new practices that

are evolving in this field. In this research the notion of the performer-developer is used to

describe my dual role as an instrumental performer and developer of interactive musical

software. The unique relationship that develops between a performer and their emerging

software makes this creative practice truly interactive. In this context, developers are

themselves the ideal ‘end-users’ of the software being designed. As a result, the

development process is cast as one of navigation and exploration over one of planning,

design and execution. During the development process the decisions made by

4 http://chuck.cs.princeton.edu/

 4

performer-developers are not only inherently situated within the practical domain of

their instrumental performance practice, but also with the emergent and cumulative

interactive experiences gained through developing personal, idiosyncratic methods for

interactive performance.

1.4 Background and context for the research

In 2006 I began developing a personal approach to electro-acoustic performance,

extending my practice as a classically trained saxophonist with interests in experimental

music. As an experienced interpreter of contemporary music, I developed an interest in

so-called ‘mixed music’ works for instrument and tape, as well as the use of live

electronics in contemporary musical performance. During 2006/07 I began to immerse

myself in Sydney’s improvised music scene, and it was here that I became intrigued by

the highly unique and personal methods of musicians integrating live electronics into

their performances. The work of local performers Jim Denley, Robbie Avenaim, Gail

Priest, Peter Blamey, Dale Gorfinkel and Kusum Normoyle, as well as visiting musicians

such as John Butcher, Oren Ambarchi and Kim Myhr inspired me to begin developing

my own performance practice in this area.

 Beginning with concepts of live sampling, looping and processing, I made use of

Ableton Live with attached MIDI controllers (pedals, fader boxes, etc.) to sample,

manipulate and structure recordings of my saxophone performance in real-time. These

experiments culminated in solo-improvised performances for saxophone and laptop

computer in which I played both the role of an instrumentalist and laptop musician

simultaneously. While heightening my interest in developing an electro-acoustic

performance practice, these initial explorations highlighted some practical and aesthetic

challenges of solo improvised performance with live electronics. In these early

performances a major issue was one of multi-tasking in performance, as I tried to

maintain control over both my acoustic and digital performance simultaneously. Often I

would play the saxophone solely in order to sample my sound for later manipulation,

necessitating an alternation between playing the saxophone and physically manipulating

recorded samples by hand. Aesthetically, these physical limitations restricted the

structural variety of these improvisations and, from a performance point of view I found

that playing two roles at once limited my potential for spontaneous improvisation.

 5

 In parallel with these experiments I also explored the phenomenon of saxophone-

controlled audio feedback, inspired by the work of John Butcher as heard on the releases

Invisible Ear (Butcher 2003) and Cavern with Nightlife (Butcher & Nakamura 2004). Using

the tenor saxophone as a resonant chamber, I explored controlling the pitch and

intensity of an audio feedback loop through the careful positioning of the instrument in

proximity to a microphone, as well as through experimentation with unconventional

fingering patterns. By using my instrument in this way, I developed an interest in the

interactive possibilities of using an acoustic instrument to control and shape electronic

sounds. Although limited in its ability to generate complex sonic results, the technique

was satisfying due to the natural physicality of using the saxophone as an interface, and

the emergent and surprising interactions set up by the delicate nature of audio feedback.

 Given the unpredictability of a feedback loop, absolute control over the resultant

electronic sounds was not always possible. This aspect became a large part of the

performative focus in my improvisations using this technique, enabling a unique

exploratory approach to interacting with electronically generated sound. My focus was

less on complete control over the resultant sounds, but in navigating and exploring the

delicate and emergent relationships between the instrument, microphone, fingering

patterns and the unpredictable effects of room acoustics. My experiments in this area

made use of both live and pre-programmed musical structures. In the semi-improvised

work m18d06 (2006) I made use of pre-programmed, timeline-based software automation

to alter the input level of the microphone, as well as to control live sampling and

triggered processing of the saxophone signal.5 In contrast to the live sampling based

approach described above, this approach mitigated the need for juggling between

instrumental and laptop performance. However, the flexibility gained in performance

was tempered by a rigid, timeline-based approach to structuring electronic signal

processing in performance.

 In the years 2007-2009 I gained experience presenting scored works for instrument

and electronics. These ‘mixed’ works varied in the complexity of their integration of the

performer with computer generated sound, ranging from traditional ‘instrument and

tape’ compositions to more sophisticated works involving score-following and a variety

5 A performance of this work can be streamed at the following URL:

https://soundcloud.com/emeidos/m18d06

 6

of fixed and live processed musical materials. As I soon discovered, this area of

performance also comes with great logistical and aesthetic challenges with respect to

synchronisation, room acoustics and musical interactivity.6 From the perspective of my

burgeoning electro-acoustic performance practice, I was particularly attuned to specific

issues encountered in interpreting such works. For me, the reliance on a technical

assistant (usually the composer) to present works in part diminished the autonomy of the

performer in presenting the work in concert. I also became interested in the fine balance

that existed between performer control and influence over electronic processes, and I

began to look further towards surpassing the triggering and synchronisation issues

encountered in my experience with mixed music works.

 After reflecting on these previous experiences, I identified a number of important

considerations that I sought to address in my electro-acoustic performance practice:

 ensuring physical performative freedom for the improvising instrumentalist

 relinquishing control over aspects of the performance to software systems

 enabling explorative interaction with electronic sounds

 maintaining variety in the timbral qualities of electronic sounds

In the trajectory of my creative practice outlined in this thesis, these initial themes guided

my approach towards developing methods for engaging with the computer in

improvised, human-machine performances. Identified through self-reflection, these

themes represent the core critical, concerns and interests guiding the initial stages of the

creative practice pursued throughout this project. Given my experience with managing

both instrumental and electro-acoustic performance simultaneously, I sought to explore

creative methods that could ensure a degree of freedom for myself as an improviser

working with live electronics. Although ill defined at this early stage, the freedom I

sought in my own practice was influenced by a preference for methods that avoided

supplementing instrumental performance with external controller devices. In order to do

this, I envisaged the development of forms of ‘shared control’ (Chadabe 1984) over

electronic systems by implementing autonomous, algorithmic processes to control

6 The unique challenges faced by performers interpreting ‘mixed’ electro-acoustic works have been

described in depth by professional violinist and composer Mari Kimura (1996, 2004)

,critical,issues

 7

various levels of synthesis and processing in live performance. Such algorithmic

processes may be guided by live performance, but also have the ability to influence the

musician’s performance in unpredictable ways. Similar to my previous experience with

temperamental and often unpredictable feedback systems, I sought to develop software

systems that could engage a musician in a dialogue with electronically produced sounds

and structures. Such a playful, interactive relationship with a software system would

encourage improvisation and dialogue between both human and machine in

performance. Finally, in my practice I sought to explore these concerns through

developing novel approaches to computer synthesis and processing in real-time systems.

In the development of algorithms that could contribute autonomously to an improvised

performance, I envisaged imbuing my systems with rich and complex timbral identities,

as well as the ability to coherently integrate with an acoustic instrumentalist in

performance.

 Seeking to expand upon my nascent electro-acoustic methods, I began programming

my own interactive software to explore novel ways of engaging with the computer in

performance. Through developing these personal methods, I began to expand my

understandings of interactive performance. However, whilst I began programming with a

series of defined aims and goals, I soon discovered that the process of creative

programming was much more than the implementation of pre-planned creative ideas.

The programming of interactive musical systems is an emergent and iterative process. It

relies upon creative decision making in response to challenges and opportunities that

arise during programming and testing of interactive software artefacts. In the research

presented in this thesis, this creative space became the site for engaging in self-reflective

practice, posing questions about interactive musical performance and human-machine

improvisation. Throughout this process, the above discussed concerns and interests

surfaced broader issues surrounding my developing creative practice. Addressing these

issues through practice and reflection both fed back into the practice itself, and also

aided in the development of deeper theoretical contributions to the field at large.

1.5 Self-reflective practice

Given the tightly bound relationship between development and performance in this

creative context, research that seeks to shed light on interactive musical performance

 8

benefits from the tacit knowledge only accessible from inside the practical domain. In

these practices, novel computer music techniques, modes of interactivity and

understandings of practice are the result of specific artistic projects emergent technical

and aesthetic concerns. For the performer-developer, programming and performing with

interactive musical systems is an idea generating process, and a space for interrogating

assumptions about performance practice and software development. Throughout these

interdependent creative practices a complex relationship develops between personal

aesthetics and theoretical concepts, and their encoding and refinement through software

development and musical performance. While creative practices may be seen as primarily

concerned with the creation and dissemination of artistic works, it is equally true that the

process of artefact creation may in itself be considered a unique site for engaging in

research. Therefore, this creative practice is ideal for enabling depth of insight into

theoretical understandings of practice in the field of interactive computer music.

 My unique position as a performer-developer working in this space is harnessed in this

research to explore emergent research themes that have arisen throughout the

development of the _derivations interactive performance system. This project has sought

to examine researchable problems encountered in the plane of practice, relating emergent

understandings of the practical domain to theory relevant to the computer music

community at large. Although computer music practice is often associated with highly

technical, software-driven research, I argue that the practice of developing novel

computer music systems is above all a creative endeavour. The unique space in which

these systems are developed, tested, refined and distributed provides rich and multi-

layered knowledge about the state of the art in such burgeoning artistic practices. By

examining software design and development as a creative practice engaged in by the

digital arts practitioner, the complexity and novelty of finalised artefacts may therefore be

understood as the result of an ongoing process of entanglement between theoretical

concepts, material agency and musical performance practice. Through consideration of

the trajectory of a developmental project, this thesis uncovers the entangled nature of

software development, musical performance and theoretical understandings in this space.

 Although the development of the _derivations software began within the context of my

creative practice, the software is also envisaged for use by other instrumental

improvisers. This aspect of the _derivations system evolved over time and affected certain

 9

decisions during the software development process. As the software was distributed for

use by third parties, considerable thought was put into interface design and

documentation (see Appendix E). Facilitating meaningful interactions between

instrumental musicians and software in computer music performance has been one of

the driving forces behind my focus upon clear graphical user interface design, and

various forms of documentation and communication related to the software. However,

evaluating the usability and generalisability of this software was not the aim of this

research. Instead, it was the complex and iterative process of design, testing and

refinement of my personal interactive methods that focused my attention as an artist-

researcher developing interactive software. Through a considered process of action and

reflection, the development and use of my software artefacts has been used to uncover

and examine researchable problems relevant to the field at large.

1.6 Structure of the thesis

Chapter 2 surveys the field of interactive music, outlining and critiquing key techniques

and theoretical approaches. This chapter begins by examining some of the prevailing

models and metaphors of interactive musical system design, as well as some more recent

critiques and expansions of the notion of interactivity in human-machine performance

practice. The chapter continues with a survey of specific design strategies, drawing upon

examples from notable musical systems. Input analysis and segmentation approaches are

outlined, and various generative strategies are discussed. Drawing from a number of

examples of musical systems, the concept of sonic and algorithmic derivation is outlined as

it applies to generative and interactive strategies of systems in the field. The notion of

musical autonomy is then examined in relation to the concept of Live Algorithms, and

appraised in the context of interactivity and mutual influence between humans and

computer music systems. Finally, the relationship between rehearsal and performance is

discussed in the context of human-machine performance, a comparatively under-

researched concept in the field. Here I propose further consideration of this area in the

design of interactive musical systems.

 Chapter 3 outlines and justifies the methodological approach taken in the research.

The chapter begins by outlining the significance of practice-based methods in the

creative arts, positioning this project within recent methodological approaches to

 10

research in this area. Scrivener’s distinction between problem-solving and creative-production

research projects is outlined, and Schön’s notion of reflective practice is discussed to justify

the self-reflective methods employed in this research. Turning to Andrew Pickering’s

mangle of practice, I consider the entangled relationship between human and material

agencies as a core methodological consideration in the context of digital arts practice.

Pickering’s mangle is dissected and re-cast as a useful model for research in the creative

arts, while McLean and Wiggin’s concept of bricolage programming is outlined to situate the

entanglement between human and material agency in the development of interactive

software. The chapter concludes with an outline of the various data collection methods

used throughout this practice-based research project.

 Chapters 4, 5 and 6 detail the chronological development of the creative practice

engaged in throughout the research. Titled Wayfinding: Parts 1, 2 and 3, these chapters

outline the twists and turns of my creative trajectory, detailing technical achievements of

developed software whilst outlining emergent issues, concerns and interests uncovered

through reflection-on-practice. In Chapter 4 I outline formative approaches to designing for

musical interactivity in my practice. Beginning with input segmentation and MIDI

representation, the chapter outlines subsequent efforts at developing event-based

methods musical interactivity and generativity, most notably with respect to Markov-

based generative techniques. Alongside examples of successful software, this chapter also

details tangential and ultimately unsuccessful lines of enquiry that served to solidify the

creative trajectory of my subsequent programming practice.

 In Chapter 5 I detail the shift in my programming practice towards live sampling based

approaches to musical generativity, and the development of significant analysis/re-

synthesis modules intended for use in interactive performance. The bottom-up

development approach detailed in this chapter illustrates the emergent nature of my

bricolage approach, culminating in the development of integrated systems built from

existing components.

 Emerging from the experiments discussed in the previous chapter, in Chapter 6 I

detail the iterative development of the _derivations system. Throughout this chapter,

increasingly specific programming challenges are encountered and reflected upon,

uncovering the particularly emergent process of interactive stabilisation inherent in the

 11

development of performer-developer devised software artefacts. The innovation of the

core phrase matching algorithm of this system is discussed, alongside subsequent

advancements in autonomous generativity (the self-referencing algorithm) and database

management (session databases). The chapter concludes with reflections upon the use of

the _derivations software in performance, and the evolution of this artefact from a

personal performance environment to freely available and open-source end-user

software.

 Chapter 7 presents three sustained reflections upon issues, concerns and interests that

have emerged from the development and use of human-machine performance systems.

These reflections are presented as theoretical and analytical findings of the reflection-on-

action undertaken in this research. The chapter engages critically and analytically with

themes emerging from the process of reflection-in-action present in the iterative cycles of

development, testing and performance outlined in Chapters 4, 5 and 6. The first

reflection considers the complex and entangled notions of material agency and

authorship in performer-developer devised creative artefacts. The development and use

of such systems is considered in relation to concepts derived from actor-network theory,

examining the complex relationship that exists between design and use of these artefacts.

The second reflection interrogates the notion of musical interpretation as it concerns the

context of improvised human-machine performance. Reflecting upon various modes of

musical interpretation in performance, this section positions improvised human-machine

performance as a mediated practice connecting developer, performer and software in an

entangled relationship. With reference to the _derivations interactive performance system,

the final reflection presents symbiotic musical interaction as a useful metaphor in the field

of improvised human-machine performance. Considering mutual dependence as a

desirable trait in the development of interactive musical systems, symbiosis is outlined as a

speculative metaphor for musical interactivity in such burgeoning practices.

 Finally, Chapter 8 summarises the theoretical and creative contributions of the

research with reference to the contributions outlined in this chapter. Performances,

collaborations and musical releases are also outlined, and the dissemination and ongoing

use of the _derivations software is discussed with reference to submission materials

detailed in Appendices A - E. To conclude, ongoing and future creative and research

work is presented.

 12

 13

 Literature Review - Interactive Music Systems Chapter 2.

2.1 Introduction

The creative practice pursued throughout this research is situated in the field of

interactive computer music. This diverse field of research and practice concerns the

development and use of bespoke musical systems used in live musical performance, with

specific emphasis on the responsiveness, interactivity and generativity of such systems.

This research is specifically concerned with the development of novel approaches to

integrating interactive computer music software with improvised instrumental

performance. These systems often contribute to live performances through a

combination of advanced machine listening algorithms, sophisticated generative

grammars and real-time sound synthesis and processing methods. In the field of

computer music, interactive and generative systems have been approached from a variety

of artistic and technical perspectives, and have emanated from an array of professional

practices. Composers of electronic music make use of interactive approaches in the

context of scored musical works, researchers develop autonomous improvising agents

from models of improvised performance, and performers expand their practices by

designing their own algorithms for interactive performance. Due to the nature of such

real-time technologies, the boundaries between composers, researchers and performers

are by now firmly blurred.

 As noted in Section 1.3, it is the position of the performer-developer that frames the

creative practice of this research. For such practitioners, software development is an

integral part of the creative process. Designing bespoke software for one’s own musical

needs is a liberating ability for the performer working with live electronics in

performance, and many performer-developers have taken to developing software that

enables an interactive dialogue to develop between themselves and their computer music

systems. In the following chapter I survey and critique key theories, techniques and

approaches to designing for musical interactivity discussed in the literature on interactive

music, with an emphasis on improvised human-machine performance. Throughout this

chapter I also seek to highlight the unique and innovative work of work of performer-

developers in this space.

 14

2.2 Definitions, models and metaphors

Practitioners and theorists working in the area of interactive music have sought to define

interactivity in musical software systems in various ways. A pioneer of interactive

composition and performance, Joel Chadabe has described interactive composition as a

two-step process involving first the programming and performance an interactive system.

For Chadabe, the performance process is in itself a form of composition, as the

composer/performer directs what he terms an ‘intelligent musical instrument’ (Chadabe

1984). Such instruments respond to a performer in ways that are complex and

unpredictable, but are also grounded in the musical gestures provided by the performer

interacting with the system. In Chadabe’s work the process of developing interactive

musical systems is also linked to the development of novel musical interfaces, such as the

proximity sensitive antennas used in his seminal work Solo (1978).

 In describing the diversity of approaches available to the interactive composer,

Chadabe has provided some useful metaphors:

sailing a boat on a windy day and through stormy seas

the net complexity or the conversational model

a powerful gesture expander

(Chadabe 2005)

Without referencing traditional compositional and performance practices, Chadabe’s

metaphors emphasise the contrasts inherent in the various approaches to interactive

musical composition. In the first metaphor, the author defines an interactive context in

which the unpredictable and uncontrollable contributions of a musical system engage the

performing in ‘weathering’ its atmospheric conditions. The system is untameable, and the

performer must work with its idiosyncrasies in order to chart a course through dangerous

waters. In the second metaphor, Chadabe defines an interactive model in which a two-

way conversation between participant and system defines the musical interaction. This

metaphor recognises an important middle ground between the a system’s responsiveness,

and its ability to instigate musical trajectories that remain largely unpredictable to a

human performer. In the final metaphor, the author describes a type of system that seeks

to expand the performed gestures of the human performer. This model acknowledges a

 15

mode of interactive performance in which unidirectional control over the system’s

response characterises the interactive relationship between human and machine.

 Other definitions and models of musical interactivity with computers have relied more

specifically upon metaphors derived from traditional instrumental musical practices. In

Composing Interactive Music, Winkler characterises interactive music as “…a music

composition or improvisation where software interprets a live performance to affect

music generated or modified by computers.” (Winkler 2001, p. 4) Rowe has published

widely over the past two decades on interactive music systems, and has defined such

systems as “…those whose behaviour changes in response to musical input. Such

responsiveness allows these systems to participate in live performance of both notated

and improvised music.” (Rowe 1992, p. 1)

 In characterising the main features of interactive music systems, both Rowe and

Winkler focus their attention on the ability of a system to analyse and respond to

‘musical input’ received from a performer. Various classifications and models are

proposed by both authors to describe the way in which such systems interact with the

performer via the analysis of this input. Rowe characterises systems as either score-driven

or performance-driven, displaying transformative, generative or sequenced response types, and the

author draws a distinction between systems that exhibit behaviour that either extends the

performer’s instrumental gestures (the instrument paradigm) or acts more like a virtual

player (the player paradigm). (Rowe 1992, pp. 6-7) Winkler’s interactive models attempt to

draw links between the types of interaction afforded by such systems and the levels of

control and influence inherent in established musical contexts. The models described are

of the classical orchestra, the string quartet, the jazz combo and the free improvisation

ensemble (Winkler 2001, pp. 21-8).

 Trombonist, composer and programmer George Lewis’s Voyager program embodies

the composer’s conceptual ideas about improvisation and musical interactivity into a

system which describes as a ‘virtual improvising orchestra’ (Lewis 2000, p. 33).

According to Lewis, a performer cannot directly control Voyager but may influence its

contribution to a performance through their performance dynamics. The software acts of

its own accord by using analyses of the musician’s improvised performance to affect a

series of complex internal algorithms controlling some sixty-four “asynchronously

 16

operating” music-generating players (Lewis 2000, p. 34). The composer describes the

performative effect of this interactive environment thus:

I conceive a performance of Voyager as multiple parallel streams of music generation, emanating from both

the computers and the humans—a non-hierarchical, improvisational, subject-subject model of discourse,

rather than a stimulus-response setup.

(Lewis 2000, p. 34)

Regarding the internal dynamics of his generative approach, Lewis cites the Javanese

gamelan ensemble as a useful model for non-hierarchical and independent musical

organisation in a large group environment. To Lewis, the capacities of his virtual

orchestra to both analyse and generate are what drive such complex forms of

interactivity. The composer explains that in this collective context, the success of such

large-scale musical interaction “can be seen to depend not only upon the performative

skill of the players, but on their real-time analytic capabilities.” (Lewis 2000)

 Of course, early examples and classifications of interactive music systems must be

evaluated in terms of their technological context. Interactive music systems of the 1980s

and early 1990s relied almost exclusively on the MIDI standard for the analysis,

processing and output of musical information. Drummond considers early constraints in

a recent survey of the field, noting that the analysis and synthesis of sonic material in

these systems was restricted due to the computing power and speed of this period, cost

of hardware, and the inherent constraints of the MIDI standard (Drummond 2009). In

considering Rowe and Winkler’s definitions of interactive music, Drummond draws

attention to the limitation of sensory input in both approaches to event-based musical

parameters afforded by the MIDI standard (notes, dynamics, articulations, etc.). The

author is critical of the limitation of these approaches to the input of event-based musical

material, and in making the case for gestural interaction with synthesis parameters he

notes that “The morphology of the sound in a MIDI system is largely fixed and so the

musical constraints are inherited from instrumental music.” (Drummond 2009, p. 126)

 Paine is similarly critical of both Rowe and Winkler’s definitions and models of

musical interaction, arguing that models based on existing musical practice may be

 17

insufficient to describe the potential of interactive music systems to enable new ways of

making music:

In a situation where the system is designed to accompany or improvise with a musician, the construction

of the responses within an agreed musical aesthetic makes sense; however, this approach does nothing to

further our exploration of the inherent qualities of an interactive music system, it simply squeezes

interaction into a known template.

(Paine 2002, p. 297).

For Paine, a richer and more flexible model for musical interactivity than those inherited

from instrumental music practice is that of human conversation. For the purposes of his

model of interaction, Paine defines a conversation as:

unique and personal to those individuals

unique to that moment of interaction, varying in accordance with the unfolding dialogue, but is;

maintained within a common paradigm (both parties speak the same language, and address the same topic)

(Paine 2002, p. 297)

Paine’s model is therefore more concerned with the design of mutual influence within an

interactive context, and the uniqueness of the relationship between the individual’s

interaction with the system and how this can be reflected in system design. Interestingly,

the author argues that these conditions of interactivity are most often met in responsive

sound installations or immersive environments in which the public interacts with the

system (Paine 2002).

 Also seeking classifications of musical interactivity that extend beyond existing musical

metaphors, Bongers has provided an expanded classification structure that considers the

‘who’ in an interactive musical context – that is, exactly who are such systems designed

to be interacting with. Bongers’ categories are performer with system, system with audience and

system with performer with audience (Bongers 2000). Although such classifications do not take

into account the specific types of musical interaction achievable within each category,

they prove useful in defining the overall context in which interaction with a performance

system is envisaged to take place.

 18

 Eldridge is also critical of traditional metaphors in classifying the possibilities afforded

by interactive music systems, focusing attention upon the levels and direction of control

and influence within such systems. The author asserts that much of what is described in

interactive music discourse as ‘interactive’ is essentially a one-way form of interaction,

with little attention paid to the ability of software to autonomously influence a

performer: “…in many instances of published research, there is little evidence of ‘mutual

influence’: traffic down Winkler’s street is essentially one-way.” (Eldridge 2008, p. 34)

Eldridge’s creative work is concerned primarily with addressing this imbalance,

incorporating generative algorithms such as neural oscillator networks and dynamical

systems into her interactive systems (Eldridge 2005, 2008).

 Also concerned with issues of mutual influence are Tim Blackwell and Michael Young,

who have coined the term Live Algorithm in the context of improvised computer music

performance. According to Young, a Live Algorithm is “the function of an ideal

autonomous system able to engage in performance with abilities analogous, if not

identical, to a human musician.” (Young 2008, p. 337) Blackwell and Young differentiate

between what they term ‘strong’ and ‘weak’ interactivity by the level of autonomy such a

system displays in a performance context. A weakly interactive system responds directly

to instrumental input, with surprising or unpredictable behaviour often organised by

stochastically designed processes. In other words, although the system may surprise and

provoke certain courses of action in their human interlocutors, these systems are not

necessarily cognisant of the performative context of the interaction when developing

novel musical material.

 According to the authors, a strongly interactive system would by contrast not only

respond to a given performance situation, it may also instigate musical trajectories and

genuinely surprise a human partner in a musically intelligent fashion. Such ideals would

therefore enhance the ability of the system to participate in a mutually influential

exchange with a human performer (Blackwell & Young 2005). The authors suggest that

the ideal of strong interactivity is found in the human practice of free improvisation, a

practice that eschews top-down organisation, instead displaying emergent forms of

musical structuring that are contingent on the ‘comprehensible’ contributions of the

players involved in the performance dynamic.

 19

 Bown, Eldridge & McCormack have labeled traditional models and metaphors of

musical interaction as being representative of an acoustic paradigm (Bown, Eldridge &

McCormack 2009). The authors argue that although traditional distinctions between

instrument, composition and performer are commonly used to describe aspects of

contemporary computer music practice, those working in the field are continually

redefining the relations between these in their creative practice. In the field of

experimental and improvised computer music performance, “…software developers

commonly play an active part in the development of the musical concepts and the

production of the music itself, and artist-programmers are common.” (Bown, Eldridge &

McCormack 2009) In looking towards a digital paradigm, the authors’ discussion also

highlights the interactive role that a software artefact itself can play in the broader

context of musical culture, drawing a distinction between an artefact’s capacity to

facilitate interactive exchanges through performative agency (in performance time) and

memetic agency (out of performance time).

 The various authors discussed above highlight perceived limitations of early

approaches to defining and classifying aspects of interactive music systems, with many

critiques focused upon the incompatibility of metaphors descended from instrumental

musical practice to adequately explain the types of interaction afforded by the diversity of

current approaches. These authors also expand the scope in which musical interactivity

can be defined by highlighting the flexible and malleable nature of contemporary

computer music practice, including the different interactive contexts possible within the

field as well as the interactive role that software artefacts themselves can play in musical

culture out of performance time.

 However, as Bongers’ broad categories highlight, it may prove useful to focus

attention upon the interactive context intended for the specific music system in question

when applying or rejecting classification methods in the field. In defining these contexts,

Bongers’ three classifications importantly delineate the roles of each of the possible

actors present in any interactive musical experience; namely those of the performer, system

and the audience. Whilst Paine’s proposed conversational model of interaction is perhaps

more flexible in encompassing a wide variety of interactive experiences, the implication

that the conditions of this model are most often met within a public installation context

appears limiting. Paine’s model is concerned with the nature of mutual influence between

 20

human and system, and the uniqueness of the interactive relationship between the

individual and the system in any interactive context. Although this author shares Paine’s

criticism of traditional ‘note-based’ approaches, this does not necessarily preclude the

performer with system paradigm as a relevant avenue for exploration in the field of

interactive music. Indeed, in recent years there have been a variety of approaches that

favour the analysis and use of timbral informational from the instrumental signal rather

than discrete pitch events. These systems strive to move away from event-based

approaches, however they remain inherently connected to an instrumental performance

paradigm, as evident in the work Cuifo (2005) Hsu (2005, 2006, 2008; 2010), Young

(2008, 2009; 2003), Bown (2011; 2006), Bown and Lexer (2006) and others.

2.3 Design strategies – key concepts and approaches

Given the context of this research project, issues related to human-computer interaction

in improvised musical performance are of great relevance. To return to Bongers’

classification structure, in this thesis we are therefore concerned with issues surrounding

interactive systems working within a performer with system interactive context. As outlined

in the following survey of recent interactive systems, the issue of interactive context (i.e.

who is interacting with the system) is crucial to the design strategies of system designers,

in addition to the musical and aesthetic context envisaged for the interaction itself.

 Relationship between input analysis and generation 2.3.1

Machine listening in interactive musical systems – the ability of a system to ‘make sense’

of the audio stream presented to it during performance – are of upmost importance in

the design of interactive musical systems. Appropriately, the choice of a particular

analysis and/or segmentation method is often tightly bound to the musical and

interactive context envisaged for the system being designed. As discussed previously,

canonical musical systems relied heavily upon the MIDI representation of acoustic input

signals. As many practitioners have noted, such a method has unsurprisingly resulted in

approaches to system design that privilege traditional methods of musical generation

aligned to this standard. In addition, symbolic musical representations provided by MIDI

have the added problem of quantising or omitting certain musical features, particularly

with relation to timbre. Although drawing criticism from those seeking to expand

 21

definitions of musical interactivity, some recent approaches to the design of interactive

systems have made inventive use of event-based parameters in their generative designs.

The appropriateness of these methods is naturally dependent on the musical and

interactive context in which such performance data is to be used.

 In the Omax project, the authors present an interactive improvisation system which

models musical improvisation through the analysis of event-based performance data

from an instrumental signal (Assayag, Bloch & Chemillier 2006; Assayag et al. 2006). In

this system, fundamental frequency analysis achieved via the Yin algorithm (De

Cheveigné & Kawahara 2002) drives a pitch-to-MIDI conversion system that parses

acoustic instrumental signals into a MIDI representation of the live performance of an

instrumental improviser. This MIDI data is then further modelled using sophisticated

machine-learning methods. A virtual improvisation kernel is informed by this data,

developing improvisational responses (via either MIDI output, or more recently via

analysed and time-stamped recordings of the performance) enabling instrumentalists to

interact with a virtual ‘clone’ of himself or herself (Assayag, Bloch & Chemillier 2006). In

this instance, event-based analysis of performance gesture is vital to the system’s

response, as the system aims to statistically model an improvisation upon the analysis

received in real-time from the performer.

 Collins’ work is heavily concerned with event onset detection in the analysis of human

performers, a machine listening approach that serves to detect musical onsets from a live

audio stream. The author’s DrumTrack software is designed to track both the tempo and

phase of a human drummer from live audio alone via beat induction methods (Collins

2005). This approach informed the design of an algorithmic improvisation system based

upon this input analysis method. As Collins has noted, aesthetic considerations

pertaining to the algorithmic generation process were considered in the development of

the beat induction algorithm itself, informing its design:

Certain decisions taken in the programming of the beat induction algorithm betray compositional

decisions, such as the 90-190 tempo range without mid biased tempo prior that supports drum and bass

style 160bpm+ drumming. Assumptions of 4/4 eased the pattern matching task, and the handling

characteristics at phase transitions were revised to fit feedback from the performer.

(Collins 2005)

 22

Similarly, Gifford and Brown’s work makes use of stochastic onset detection (SOD)

techniques to derive onsets from musical audio signals, and specifically non-pitched

percussion instruments (Gifford & Brown 2008, 2009). The authors describe a system

that detects musical patterns from a live musician by analysing salient musical features

such as pulse, metre and downbeats, further using this accumulated information to drive

generative algorithms that perform alongside the musical performer. As the two previous

approaches demonstrate, the use of event-based methods for analysis, prediction and

generation of musical materials is relevant to the context of percussive performance.

These musical scenarios are dependent upon rhythmic and metric accuracy in the analysis

process in order to drive their generative responses to live input.

 Other event-based methods can be found in the work of Hsu and Ciufo, whose

systems used silence thresholding methods to track the appearance of musical ‘phrases’

from a live input stream (Ciufo 2005; Hsu 2006). In such methods, the amplitude of the

live input is used to determine when the musician is playing, and when the signal has

fallen silent. In both cases, a simple time threshold is used to report once the signal has

fallen silent for an amount of time specified by the silence threshold mechanism. The

crossing of these time thresholds are then used to report the end of a ‘phrase’ from the

input. Both authors use such high-level event-based methods in order to segment

analyses of a live performer into larger chunks from which to derive statistics on the

musician’s current performance state. These statistics are then used to affect the

generative processes of their algorithmic improvisational systems. High-level analyses

such as phrase segmentation help the system designer compartmentalise an input stream

into manageable chunks of analysis data. Whilst still reducing the musical input into a

series of symbolic representations, both authors use such segmentation measures in

order to manage a large array of streamed sound descriptors, rather than to objectively

analyse the musical input for perceptual phrase boundaries.

 In contrast to such event-based methods, in working with the Korean flute daegeum

Dobrian sought a nuanced approach to the use of the instrumental signal in interactive

performance (Dobrian 2004). A method the author dubbed ‘stealing expressivity’,

Dobrian sought a natural form of expressivity in his computer-synthesised material

through continuous pitch and amplitude tracking of the flute signal. According to the

author, such an approach was necessitated by the difficulty in employing event-based

 23

analysis methods to this particular instrument due to specific sonic characteristics such as

its wide vibrato (Dobrian 2004). Taking continuous amplitude and pitch data from the

audio input stream, Dobrian outlines techniques for capturing and making direct use of

this idiosyncrasy of the daegeum’s performance. Thus, the analysis method is informed

by instrumental characteristics, which in turn affects the approach to musical generation

by the computer music system.

 Timbral awareness 2.3.2

Many recent interactive musical systems have moved beyond event-based methods in

both analysis and generation. Often these systems are concerned with the role of musical

timbre in driving their generative output. Due to the increasing availability of high quality

real-time spectral analysis tools in computer music environments, the real-time task of

analysing the timbral characteristics of live musical performance has become a relatively

trivial task. Systems making use of such tools are unsurprisingly concerned with musical

contexts in which timbre is considered an integral part of the musical idiom itself, such as

in the context of free or non-idiomatic improvisational practices (Bailey 1993). In

addition, the wide variety of methods for analysing musical timbre via sound descriptor

analysis has ensured an equally wide variety of approaches to using such analysis tools in

interactive musical systems.

 Hsu’s improvisation systems make use of sound descriptors analysed from a live

improviser to track salient perceptual features of the improvising musician, as well as to

directly affect the material of improvising software agents (Hsu 2005, 2006, 2008; Hsu

2010). In earlier systems, the author has used sound descriptors in order to automate and

control a series of virtual improvising agents. These improvising agents make use of

gestural curves analysed and stored throughout a performance to automate their various

synthesis and processing parameters (Hsu 2006). In a more recent system the author

describes his approach to using timbral analysis as inspired by the idiosyncratic timbral

techniques of saxophonist John Butcher, a free improviser well-known for his innovative

use of timbre (Hsu 2010). In addition to tracking loudness and tempo of the improviser,

Hsu’s system tracks auditory roughness, a sound descriptor pertaining to the interference

between various partials present in a complex signal. This measure was chosen due its

 24

correlation to the musical concepts of tension/release and consonance/dissonance (Hsu

2010).

 Young and Lexer (2003) discuss the use of Fast Fourier Transform (FFT) analysis as a

creative tool in freely improvised electroacoustic performance. In this work, the authors

suggest that visualising the audio spectrum of a live performer can aid the computer

musician in developing responses to the acoustic performance of the improviser. In

addition, the authors propose a method for using FFT analysis for providing real-time

controls for synthesis parameters. Such an ‘audio as controller’ approach is justified by

the authors as an improvement upon pitch tracking and amplitude following methods

that favour a reductive approach to musical material (Young & Lexer 2003).

 Johnston’s work makes use of sinusoidal decomposition in his approach to the design

of audiovisual virtual instruments based on physical models (Johnston 2009; Johnston,

Marks & Edmonds 2005). In this work, traditional pitch tracking is combined with

sinusoidal decomposition techniques using the well-known fiddle~ external for Pure Data

and MSP (Puckette, Apel & Zicarelli 1998). The work maps both analysed pitches and

the amplitudes of the first three partials of the performer’s audio spectrum to control a

series of visual spheres on screen. The amplitude of the various partials has a direct affect

on the brightness and colour of these spheres. Although directly controlling individual

spheres via audio analysis, Johnston’s work engages the musician in a dialogue with his

audiovisual instruments as the activation of these engages a mass-spring model

controlling both audio and visual responses to the musician’s actions.

 Other interactive systems enable system awareness of the current and past timbral

context within an improvisational performance to drive algorithmic responses to

instrumental performance. Ciufo’s system Beginner’s Mind uses real-time descriptor

analysis to dynamically build a measure of the ‘perceptual identity’ of segmented phrases

analysed from the live input over the duration of a performance. Ciufo’s approach uses

silence-thresholding techniques to segment the analysis of a live audio stream into phrase

boundaries. The author uses Jehan’s analyzer~ external for Max (Jehan & Schoner 2001)

to track various elements of the live performance including brightness, noisiness,

amplitude and pitch information, using this information to relate the current

performance state of the human improviser with data analysed previously in the same

 25

performance. This approach enables the system to consult a growing list of pre-analysed

material siphoned from the performer during an improvised session (Ciufo 2005).

 As the previous projects demonstrate, the choice of analysis and system response

methods in any given interactive music system is dependent upon the musical and

aesthetic context in which this system is operating. This context can include the specific

sonic characteristics of the acoustic instrument being analysed and invariably includes the

type of interaction desired between performer and system.

 Sonic and algorithmic derivation 2.3.3

As discussed previously, an important aspect of early discourse on interactive music is

the level and direction of control and influence present in an interactive system.

Balancing levels of control and influence within an interactive music system becomes an

important aspect of the design of such systems, and is once more dependent on the type

of interaction desired in performance. As has been noted by Blackwell and Young, for

interactive systems to be considered strongly interactive, they must also be able to

influence music performed by an instrumentalist in a non-trivial way (Blackwell & Young

2005). Describing interaction as mutual influence, Pressing has defined an ‘interactive

instrument’ as one “…that directly and variably influences the production of music by a

performer.” (Pressing 1990, p. 20) Bongers has referred to this process as feedback, both

within the system itself and between the system and the performer (Bongers 2000).

 Expanding on the concept of influence in such performance contexts, an interesting

and unique feature of electronic music performance is the degree to which a system’s

sonic vocabulary and/or generative grammar is directly derived from the input from a

live performer. Paine’s observation that “a perceivable relationship between the gestural

input and the system output, is a central issue in the design of interactive systems” (Paine

2002, p. 298) becomes relevant here when we consider the means by which such systems

develop their sonic responses to live performance input. Many designers of interactive

systems make use of the sonic input of instrumental performers as a basis for both the

sonic vocabulary and generative grammars of their system designs. This is an important

factor considered by many system designers in their work. Here I define such approaches

 26

as employing a form of sonic or algorithmic derivation, a term referring to how a system’s

sonic or algorithmic responses are directly appropriated from its external input(s).

2.3.3.1 Sonic derivation

Sonic derivation is an approach common in much contemporary electronic music

practice, filtering into a broad range of performance modalities. Broadly speaking, in

such approaches the live audio of one or more performers is used as the primary source

material for improvised, pre-programmed or deterministic processing, sampling and

manipulation in performance. The practice of ‘live-sampling’ – the recording,

overdubbing and manipulation of sonic material performed live – has a long history in

live-electronic performance, and is the primary means by which sonic derivation has

been explored in much contemporary computer music performance. Live looping is a

simple yet effective example of sonic derivation, in which material performed by a live

performer is recorded and used to perform additive musical structuring during

performance. Live looping of instrumental performance is an approach that became

popular in the mid-1970s with guitarist Robert Fripp’s Frippertronics tape-loop system,

developed in collaboration with Brian Eno (Fricke 1979). Originating in the studio

compositions of composers such as Karlheinz Stockhausen, Koenig and others, the use

of tape loops in composition and performance was explored in the 1960s by composers

such as Pauline Oliveiros, Terry Riley and Steve Reich (Collins & Escrivan Rincón 2007).

However, Fripp’s live performance system became widely known through his solo

performances and the album No Pussyfooting (1973), which he recorded in the studio of

the pioneer of ambient music, Brian Eno.

 The practice enables a performer to construct musical structures based upon recorded

and ‘looped’ segments of their own live performance. As a structural approach, this form

of sonic derivation relies upon connecting current musical ideas with those that have

been performed previously. Such approaches are often presented in a ‘one person band’

context, a form of performance practice in which the process of musical structuring is

presented as a key performative element. Crucially, the instrumental or vocal performer

maintains direct control over the live structuring of their looped materials. The

contemporary practice of live looping is extremely broad in scope, and due to the

availability of dedicated looping pedals and software the practice is widespread in popular

 27

musical performance7. Contemporary musicians such as Zoë Keating, Camille Dalmais

and Imogen Heap make use of live looping technology to build traditional song

structures from sampled and repeated materials.8

 As a form of process music, live looping is a conceptually direct form of electro-

acoustic performance. However, despite the musical ingenuity of those engaged in the

practice, the approach does not lend itself well to more complex forms of musical

structuring. Musical material recorded during a performance, although divorced from its

original context, is often presented largely unchanged, as the structuring of the recorded

materials forms the conceptual interest of the approach. In addition, the linear and

additive nature of the musical structuring process ensures that more complex methods of

musical generation remain largely out of reach of the practice. Despite its limitations, the

conceptual directness of the live looping approach remains broadly appealing. Indeed,

for computer musicians engaged in the development of automated, interactive and

generative systems, the act of recording and re-organising material siphoned from a live

performer continues to remain a core creative focus for a number of practitioners.

 Although not exclusively, live sampling is often employed by performer-developers

seeking to expand their live performance practice. For instrumentalists working with

music technology, the ability to sample, loop and manipulate one’s own sound in real-

time is an enticing extension to traditional instrumental performance practice. Such

approaches range from the straightforward live looping approaches discussed above, to

more complex, algorithmically controlled sampling processes. This approach to

performance practice is very widespread amongst a variety of musical genres. Given the

diversity of this field, a survey of such a broad variety of artists is outside the scope of

this paper, however a number of approaches to sonic derivation and interactive

performance are noted here.9

7 Websites such as the long-running ‘Looper’s Delight’ have contributed to disseminating information

about the history, techniques and contemporary craft of live looping (LaFosse 1996).
8 Artist websites can be accessed at http://zoekeating.com/, http://www.camille-music.com and

http://imogenheap.com/

9 Other notable performer-developers working with live sampling in their practice include Richard Barrett

Karlheinz Essl, Christian Fennesz, Robin Fox and Pamela Z.

 28

 Kaffe Matthews makes use of live sampling in the context of solo improvised

performance, using the sampler as a means of augmenting and extending both

performative action and resonant spaces. Matthews, originally a violinist, makes use of

the software LiSa10 (developed at STEIM) for live sampling-based solo performances.

The artist develops textural compositions by sampling sounds from the performance

space via strategically placed microphones, and transforming them in quadrophonic

surround sound. In her performances, the artist is interested in the site-specific nature of

sound, using the blank space of the sampler to capture and transform sounds from the

venue into in situ compositions. The immediacy of sampling as a compositional tool is

an important part of Matthews’ work: “What immediately thrilled me was that the

sampler allowed you to make music without having to labor over it for hours every day,

which was what I’d been used to doing.” (Huberman 2004) In addition, Matthews views

the process of working with computer music tools as a ‘collaboration’ with the machine,

as she states “The computer often had good ideas.” (Huberman 2004)

 In Fond Punctions, performer-developer Alice Eldridge presents a generative

performance environment for cello and computer in which levels of control and

influence between player and system components are clearly defined. In this system, two

generative algorithms (a homeostatic network and a physics simulator) are used to create

dynamic and evolving textures based upon live samples of the instrumentalist’s playing.

In this example, performer control over the system is limited to the recording of the

samples themselves (triggered via foot switch), as two generative processes subsequently

control a granular synthesis engine that processes these samples during performance

(Eldridge 2005). In Fond Punctions, the influence of one algorithm upon another

determines the sonic output of the computer music system in its entirety. There is no

further control over this process by the performer.

 Eldridge has noted that the underlying practical motivation behind the development of

the system was the desire for a ‘hands free’ mode of live-electronic performance

(Eldridge 2005). However, as all raw sonic material is directly appropriated from the

performer’s input, and the decision as to which musical material is to be recorded is

afforded to the performer, the performer has direct control over the overall sonic texture

10 http://steim.org/2012/01/lisa-x-v1-25/

 29

through both their playing and carefully chosen samples to record. In addition, the

emergent nature of the generative processes further influences the performance of the

instrumentalist in their subsequent performance. Although the performer has no direct

control over the algorithmic processes at work within the system (unlike in a live looping

performance) a balance between control, sonic derivation and influence has been

achieved in this interactive performance environment.

 Performer-developer Rodrigo Costanzo is an improviser and computer musician

working with live electronics in the context of free improvisational performance. A

trained classical instrumentalist, Costanzo’s recent software systems, The Party Van11 and

Cut Glove12 are complex, yet intuitive live-sampling based software tools that allow the

user to improvise with materials sampled in real-time from a live instrumentalist.

Costanzo makes use of these systems in both solo and group improvisatory contexts, and

his systems have been shared and documented freely online. In addition to real-time

performer control using hardware controllers13, Costanzo’s systems also make use of

input analysis and algorithmic control in order to drive various parameters in his systems.

A balance between direct and algorithmic control over low-level variables in his systems

enables a degree of abstraction for the user from the complex process of sampling and

manipulation.

 Returning to Ciufo’s work discussed previously, the author describes a live-sampling

method in which a recording module captures the entire audio stream of an improviser

during performance. In conjunction with a variety of statistics collected from sound

descriptors analysed from the input, his system is able to relate the current performance

state of the musician to live-sampled material collected throughout an improvisation

(Ciufo 2005). In Ciufo’s work, statistics are captured on various time scales of the

performance, enabling the system to make decisions upon which material to process

based upon numerous measures of musical historicity. A less direct example of sonic

derivation can also be found in Dobrian’s approach to expressive computer synthesis

described previously. Although the algorithmic processes at work in his systems are

unclear, the performer’s influence over the system’s sonic outcome through directly

11 http://www.rodrigoconstanzo.com/the-party-van/

12 http://www.rodrigoconstanzo.com/2015/06/cut-glove/
13 http://monome.org/

 30

deriving control parameters from the live flute signal is clear in his design approach.

Hsu’s (2006) approach to deriving synthesis parameters from the live signal of an

instrumental performance may also be seen as a form of indirect sonic derivation. The

author’s use of gestural curves taken from sound descriptor analyses are used to create

synthetic gestures derived directly from the performer.

 In Sebastian Lexer’s piano+ system, the author describes an interactive environment in

which distributed layers of direct and indirect control are used to capture and process

live sampled material from his acoustic performance (Lexer 2010). Working in the

context of freely improvised performance, the performer-developer’s system participates

in freely improvised performance through a combination of algorithmic processes

(neural networks, stochastic algorithms), audio and sensor analysis and hardware

controls. The interaction between these various layers of control enable the performer to

improvise with an emergent computational system of great complexity, with the acoustic

origin of the piano forming the basis of the system’s sonic and algorithmic processes.

 Sonic derivation is also found in the previously-described Omax project; however, in

contrast to the previous artists works, this project requires both a live instrumentalist and

a computer music performer to pilot the interactive software. In this project, the process

of sonic derivation is continuous as opposed to momentary, with the system continually

sampling the musician’s live performance into a large audio buffer in memory. In

contrast to live looping and the momentary live sampling approaches exemplified by

Eldridge’s work, the musical structuring process in Omax is automated through the use

of low-level analyses on a continually recorded audio stream, stitching together a musical

‘clone’ of the performer from time-stamped segments of the recorded performance. A

human Omax ‘player’ operating the software is then tasked with navigating an algorithm

built from these analyses, effectively giving high-level control over the musical patterning

process to another musician. The Omax system is discussed in more depth in the

following section.

2.3.3.2 Algorithmic derivation

In addition to the derivation of sonic materials from a live improviser, numerous

approaches to the design of interactive systems also make use of analysed patterns from

 31

a live input in order to structure the computer’s generative musical output. Such

approaches effectively model an improviser’s performance in real-time, enabling these

systems to derive their algorithmic and generative responses directly from detailed

analyses of a live performer. , these methods build spaces of generative potential

interactively from the performer, enabling efficient search algorithms to extrapolate from

recognised patterns in the recorded data.

 Such modelling processes are at work in Pachet’s Continuator system, a real-time

application of Markov-modelling intended to model the stylistic characteristics of jazz

improvisations (Pachet 2002). Pachet introduces his system as a bridge between two

seemingly incompatible domains of computer music practice, namely interactive musical

performance and musical imitation. The author’s system makes use of variable order

Markov models (VMMs) in order to efficiently and convincingly model musical

sequences derived from a live performer. Such models are then used interactively to

‘extend’ the musical performance of an improviser with real-time continuations of their

melodic material.

 In the Omax project discussed previously, the authors also engage in a form of

modelling, with the system acting as a real-time, interactive instantiation of a pattern

recognition process (Assayag, Bloch & Chemillier 2006). This derivation process relies

upon the factor oracle algorithm, an algorithm that recognises patterns arising in a string of

characters (Allauzen 1999). Pitch tracking of the instrumental signal is used to build the

oracle during a real-time performance, enabling the human operator to navigate a

constantly expanding model of the performer’s history in the generation of one or more

clones of the improviser. This process has been recently extended to encompass models

of the spectral content of an improviser’s sound (Bloch, Dubnov & Assayag 2008), in

order to autonomously generate clones based upon the connections between timbral

materials captured from the improviser. A recent version of the software WoMax also

incorporates an interactive visualisation of the factor oracle algorithm for the computer

operator to navigate in performance (Lévy 2013).

 An approach that blends both sonic and algorithmic derivation is found in the

soundspotting technique developed by Michael Casey (2009). Soundspotting is a technique

for generating streams of audio data by using content-based music information retrieval

 32

methods (Casey et al. 2008). In a soundspotting system, a target signal (often a live

instrumental signal) is used to query a large database of pre-analysed audio segments. The

system uses the target signal to find the closest matching segments from within its

database, using these segments to create a concurrent musical stream of concatenated

database elements. Extending previous non real-time approaches such as Zils and

Pachet’s musaicing (musical mosaicing) (Zils & Pachet 2001) and Casey’s own previous

non real-time soundspotting system (Casey 2009), the approach uses the target signal to

create musical output through the use of Mel Frequency Cepstral Coefficient (MFCC)

feature extraction on the live input.

 In Casey’s description of the process, the result of the real-time soundspotting creates

a hybrid musical instrument, an approach that favours controllable and ‘learnable’ results

by an instrumental performer (Casey 2009). This type of system may therefore be

considered closely aligned to Rowe’s instrumental paradigm. However, Casey has also

discussed the possibility of the system being used in numerous interactive ways, including

using the live target signal to query a growing corpus of its own history, creating what he

describes as an ‘associative memory canon’:

It is clear that method of feeding the target through a selfreferencing memory process produces a

deterministic output, and it is this process that generates the ensuing canon without further intervention

from a composer. Careful composition or selection of target materials leads to the construction of a

counterpoint that is relational at each time instant to the history of a performance.

(Casey 2009, p. 426)

Casey’s approach to real-time content-based music information retrieval is an interesting

example of both indirect sonic and algorithmic derivation. Here the sound of the live

performer is recreated in real-time by stitching together returned segments of a large

corpus of pre-analysed materials. In addition, the method by which these materials are

concatenated is determined entirely by comparisons made between the data analysed

from the performer.

 Another approach to musical modelling and algorithmic derivation is found in

Martin’s Agent Designer Toolkit (ADTK) (Martin 2014; Martin et al. 2012). The ADTK

is a toolkit for designing the behaviour of musical agents and is implemented as a

 33

Max4Live device in the Ableton Live software environment. The aim of the software is

to enable the design of autonomous agents that automate elements of a musical

performance in the Live environment, in collaboration with a human user. In Martin’s

work, human performances using Ableton Live are analysed using machine-learning

algorithms in order to present the user with models of a musician’s interaction with the

software. This approach is achieved by performing variable order Markov modelling on

the various parameters used by a performer in a Live set. In addition, association rule

learning algorithms are used to search for patterns and dependencies amongst the

various parameters modelled by the markov modelling process. Martin’s approach is

unique due to its focus upon user interaction in the algorithmic derivation process. The

user is presented with a list of parameters that have been modelled during one or more

training performances. This user interaction process is then further used to determine the

various rules that can be applied to the musical agents designed to automate musical

performances.

 Live algorithms and musical autonomy 2.3.4

Several authors discussed previously have sought to define approaches to interactive

musical improvisation with regard to musical autonomy, self-organisation and emergent

processes. These authors are often concerned with the study and simulation of artistic

creativity and are closely aligned with the cross-disciplinary field of computational

creativity.14 Central to Young and Blackwell’s concept of the live algorithm is the

employment of generative algorithms that in most cases require no human intervention

or modelling in order to drive their internal processes. These algorithmic approaches are

based upon algorithms such as neural networks, genetic algorithms, search and sort

algorithms and swarm dynamics in order to achieve autonomy in the generation of

musical materials in performance.

 As discussed previously, the employment of live algorithms in musical performance

are primarily concerned with enabling strong interactivity in an improvised musical

context (Blackwell & Young 2005). A large part of what enables such a strong form of

interactivity to occur is the software’s ability to instigate musical trajectories in a plausible

14 http://computationalcreativity.net/

 34

yet unpredictable manner. Central to the concept of live algorithms is the high-level

breakdown of system components into analysis, and synthesis elements, with a hidden

patterning process between the two. This otherwise simple outline of an autonomous

musical system rests upon the functional characteristics of the patterning mechanism

itself, which has been characterised as an abstract ‘behavioural’ system (Bown 2011).

Importantly, the interface between the patterning mechanism and the analysis and

synthesis layers is not specified, meaning that the design of live algorithms rests upon

finding suitable relationships between the inherent dynamics of autonomous systems to

suit the musical context envisaged by the designer.

 Young’s work employs a feed-forward neural network as the patterning component of

the live algorithms used in the improvisatory works piano_prosthesis, au(or)a and

cello_prosthetis (Young 2008). The feed-forward network is trained from audio analysis fed

to it from the performance of a live instrumentalist, the output of which is mapped to

real-time synthesis and processing parameters. As the author explains, this type of

algorithm is well suited for use in improvisatory contexts due to its capacity for

generalisation and tolerance for unpredictable input (Young 2008). Feed-forward neural

networks usually require a training phase before generating output, however in Young’s

implementation of the algorithm the training phase occurs during a musical performance.

Given the ability of the neural network to learn and adapt to its audio environment

through training, the implementation of such learning algorithms can also be considered

a form of algorithmic derivation. This is due to the inherent means by which the

organisation of the patterning mechanism is directly contingent upon the input fed to it

throughout performance.

 Neural networks are a popular choice of algorithm for digital arts practitioners. Other

approaches making use of neural networks in interactive musical systems are Beliharz et

al.’s hyper-shakuhachi project employing neural oscillator networks (Beilharz, Jakovich &

Ferguson 2006), Bown and Lexer’s use of continuous-time recurrent neural networks

(CTRNNs) to control a spectral filter (Bown & Lexer 2006) and Bown’s use of CTRNNs

as a behavioural module to control a composed generative algorithms controlling sample

playback and synthesis parameters (Bown 2011).

 35

 Eldridge’s work discussed previously is also concerned with musical autonomy in the

generative process. Although Fond Punctions is not concerned with audio analysis of a live

performer, the use of a homeostatic network and physics simulation places her work

within the realm of autonomous musical generation in interactive performance. Similarly,

Blackwell is concerned with the autonomous interaction between components of a

generative system as a core element of the design of interactive systems. Blackwell’s work

has focused upon the simulation of swarm dynamics as well as the biological process of

stigmergy observable in natural systems (Blackwell & Young 2004). Such biological systems

are used to control granular synthesis algorithms and other synthesis parameters in his

systems.

 In Bown’s work, the development and use of live algorithms is intimately connected to

issues of collectivity and sharing in creative programming practices, as well as the ability

for modularity and extensibility in the design of musical software systems (Bown 2011;

Bown, Eldridge & McCormack 2009). Discussing modular design approaches in the

development of live algorithms, the author outlines the use of binary decision trees

(DTs) as a useful approach to enabling autonomous musical interaction with a live

performer (Bown 2011). The DT is a form of classification algorithm used to analyse and

classify data in a similar way to neural networks. The DT algorithm combines a hidden,

randomly determined internal state with sound descriptor analysis streamed from a live

performer. The algorithm uses both its internal state and the incoming audio data to

carve up a multi-dimensional space based upon a series of decisions made by the

algorithm. The output of this dynamical process is then used to trigger generative audio

events programmed and arranged by the user.

 These events are conceived as occupying the compositional part of the system, and

may be reconfigured on the fly easily in response to the output of the dynamical system.

The approach taken by Bown in this instance demonstrates the possibilities inherent in

using such modular design methods. Such a methodology eschews integrated approaches

to connecting analysis and synthesis parameters in an interactive system. Instead, the

designer is free to ‘mix and match’ various hand-coded generative modules to suit the

dynamical patterning behaviour of the output of the DT in relation to its reaction to the

 36

live performer. Hence there is a considered separation between analysis, patterning (f)

and synthesis elements of the system.15

 Despite the conceptual and practical benefits of autonomous algorithms, in the

context of human-machine musical performance the notion of machine autonomy must

always be balanced with other considerations inherent to collective musical performance,

and especially improvisatory practices. According to Bown and Martin, a musical system

may be deemed autonomous if its future state is more likely predicted by analysing its

own past states, and not those of its environment (Bown & Martin 2012). However,

according to the authors, to the extent that musical autonomy means the capacity for

such systems to display self-determination, “the autonomy that we seek in autonomous

music systems is not something that should be maximised to the point of freedom from

influence.” (Bown & Martin 2012) In Young’s writings, musical autonomy is considered

as part of a conceptual scheme that also includes adaptability and musical intimacy

(Young 2009). To Young, intimacy in such performance contexts refers to the degree to

which computers and humans might both adapt and learn from one another in

performance (Young 2009). The musical ideals of adaptability and intimacy must

therefore be balanced against the abilities of such systems to display characteristics of

self-determination. Concerned with stigmergic behaviours, Young proposes that

adaptability in human-computer improvisation is a process in which two entities

acclimatise to their environments, without direct concern for responsiveness, causality or

intentionality. The musical environment is shared, and humans and computers adapt to

this through shared exchange with the environment, not each other directly.

 Young suggests that this conception of human-machine improvisation ‘avoids the

pitfalls of anthropomorphism’, as concerns for human-machine interactivity and

influence are no longer the main concern in the design of live algorithms (Young 2009,

p. 2). Concurrently, the author proposes the concept of intimacy in these scenarios as an

important element in social interaction. With improvisation conceived of as a social

process, intimacy is proposed as metaphor for human-computer improvisational

15 I have had the pleasure of performing with Bown’s system in performance on numerous occasions. An

album titled Ben + Zamyatin was released in 2013 on the Not Applicable label documenting three tenor

saxophone improvisations between myself and Bown’s software: http://www.not-

applicable.org/?page_id=2023

 37

exchange. This concept includes the ability of social entities to engage in self-disclosure

and validation through a partner’s response (Young 2009, p. 4), acknowledging the need

for mutual influence and learning to occur between the two entities.

 Rehearsal and performance practice 2.3.5

One aspect of interactive computer music discussed little in the literature is the role of

rehearsal in the context of interactive musical performance. Although the relationship

between rehearsal and performance differs depending on the performance practice

context in question, it may be surmised that the process of rehearsal is integral to all

performing arts, and especially so in musical performance. In discussing his model of

conversational interaction, Paine notes that a true interactive relationship between

interactor and system can only exist if a system is capable of changing and evolving.

According to Paine, systems of this type would reflect the ‘cumulative experience of

interrelationship’ present in human interactive contexts (Paine 2002, p. 298). Dynamic

change and evolution is inherent in a human conversational context, not only in through

the interactions between people at one given time and place, but also over longer

timescales. Such a process is also naturally present in the rehearsal process in musical

performance.

 In the work of Bastien and Hostager (1992), the authors discuss the cumulative

building of interpersonally shared histories between musicians over consecutive rehearsal

sessions. Investigating the context of collective jazz performance, the authors note that

performance-time interactions between musicians depend upon ‘suprapersonal’ common

histories of individual participants. These histories are based upon individual players’

cumulative interactive experiences with other musicians over several rehearsals and

performance. In the context of ‘free’ or ‘non-idiomatic improvisation’ musical

improvisation (Bailey 1993), the question of rehearsal becomes problematic, as this form

of musical performance emphasises emergent properties and spontaneous actions unique

to interaction in performance, without reference to a pre-defined musical score.

However, the collective experiences of the individuals involved in freely improvised

music do form part of what is an important attribute of any creative rehearsal process,

that of dynamic change and evolution of ideas and actions through continued practice in

the given artistic context.

 38

 The rehearsal process has been demonstrated to form an integral part of the design

process itself in the field of interactive music. Johnston, Marks & Edmonds describe the

process of developing an interactive artwork as a type of collaborative ‘sketching’

between software designer and performer, and highlight the use of tools such as Pure

Data and Max/MSP in facilitating this type of experimentation in the design process

(Johnston, Marks & Edmonds 2005). Hsu and Sosnick have discussed the process of

rehearsal as being an integral part of an evaluative framework for comparing two

separate interactive music systems (Hsu & Sosnick 2009). The two improvising musicians

chosen for the study are involved in two rehearsal sessions per system studied (one short

and one long), with the intention of these rehearsals being to familiarise the improvising

musicians with the functionality of two separate systems in order to gather feedback in

the form of a questionnaire for their evaluation.

 Regarding system modularity and flexibility, some systems have been shown to allow

the user to choose from a space of possible control strategies that may affect the way the

program interacts during a live performance. Rowe’s Cypher programme enables the user

to define the interactive mappings that determine the way in which the system responds

to musical input, allowing for experimentation in the rehearsal process of an interactive

work using this system (Rowe 1992). As a violinist-composer-programmer, Kimura has

explored performance practice issues in the presentation of music for instrumentalist and

electronics. Making specific mention of how sound and room acoustics can affect the

performance of works in this medium, the author proposes flexible programming

strategies to allow for adjustments in the rehearsal process, particularly with respect to

dynamic curves (Kimura 2004). Bown’s system described above also makes the rehearsal

process an integral part of the design of his live algorithm. In Bown’s system, a grid of

cells is presented to the user to choose which particular generative events are available

for triggering by the decision tree’s output. The DT itself is also helpfully visualised in

graphical form for the user to aid in this process. The configurations of this grid can be

changed at will during a rehearsal or performance, and then saved as preset files for recall

in future performances (Bown 2011).

 From the examples above it is clear that the rehearsal process can form an integral part

of both the initial design and further evaluative phases of interactive music system

design. In the work of Johnston et al., rehearsal sessions with a professional

 39

performer/composer were demonstrated to have advanced prototype versions of the

software artefact through the ability to test and refine aspects of the system in real-time.

Hsu et al.’s work uses the rehearsal process to collect experiential feedback from two

professional improvisers in order to compare between two already operational interactive

music systems. As exemplified by the work of Rowe, Kimura and Bown, it is also clear

that the parameters of some interactive music systems, although designed within the

particular aesthetics of the system designer, have been left open to change by a

performer during the rehearsal process. This is especially useful in the case of performer-

programmers, who are in a unique position to make meaningful changes to a system’s

behaviour in order to satisfy their desired mode of performance, and often leave open

these possibilities in the design of their performance interfaces.

 However, if interactivity is synonymous with what Pressing has described as ‘mutual

influence’ (Pressing 1990), perhaps discussion of the role of rehearsal should not be

limited to its ability to enable the creation, evaluation or controlled manipulation of

interactive music systems out of performance time. To take the role of rehearsal further in

the design of interactive music systems, it would be of additional interest that designers

design to enable and reflect the ‘cumulative experience of interrelationship’ that real-

world rehearsal scenarios present. This view is inclusive of the effect that numerous

performance time interactions can have on future interactions between a performer and

the interactive system, but also the effect that these cumulative interactions can have on

the evolution of the system’s responses over a longer period of time.

 In discussing creative engagement in interactive art contexts, Edmonds et al. have

identified three main categories in which engagement with interactive artworks can

occur, namely: attractors (attributes of an artwork that attract an audience’s attention),

sustainers (attributes that keep an audience engaged past the initial encounter with the

work) and relaters (attributes that help a continuing relationship to grow between audience and

system) (Edmonds, Muller & Connell 2006). Although the authors have developed their

ideas in the context of audience participation in interactive art, the final two of these

concepts also prove relevant to the design of interactive systems designed for use by

expert musical performers. Given that the process of rehearsal is an integral part of all

performance practices, the final category identified by the authors, relaters, is especially

relevant to consider in the design of interactive musical systems. The rehearsal process,

 40

in the context of musical performance, is where artistic ideas form and evolve over time

in the context of performance practice. In the context of musical system design, a

consideration of rehearsal in the design process as complimentary to designing for

performance recognises the uniqueness of the rehearsal context as a creative space in

musical performance. This also has the potential to open new avenues for musical

interactivity based upon the ability of such systems to actively engage instrumentalists

over several rehearsal sessions.

2.4 Conclusion

In this chapter I have surveyed key theories, techniques and approaches to designing for

musical interactivity as discussed in the literature. In surveying recent system designs, I

have highlighted recent trends towards timbral analysis in interactive human-machine

performance, and its specific connection to freely improvised musical performance. In

addition, the concept derivation has been proposed to describe the way in which some

musical systems derive both sonic and algorithmic materials and processes from a live

performer. Finally, through a consideration of interaction as a ‘cumulative experience of

interrelationship’, rehearsal has been proposed as a valuable area of concern in the

development interactive musical systems.

 41

 Methodology Chapter 3.

This practice-based research project is concerned with the development and use of

interactive performance systems in improvised musical performance. The aim of the

research is to understand the emergent creative practice of interactive system design

from a practitioner’s perspective, and to open up the process of design, development and

use of these systems using a self-reflective approach. Through considered reflection-on-

action, this research has sought to uncover researchable problems in the area interactive

musical software development and performance. The interdependent creative practices

of interactive software development and human-machine performance have provoked

detailed reflection upon issues, concerns and interests relevant to the field at large. The

twists and turns of the creative process are articulated in the form of a narrative of

development, explicating the development trajectory of a major creative software artefact,

and highlighting salient research themes that are further addressed through critical

analysis in Chapter 7 of this thesis.

 The present chapter outlines the self-reflective methodological approach taken in the

research, contextualising and justifying this approach with respect to the relevant

theoretical perspectives that underpin the enquiry. By engaging with interdisciplinary

perspectives on epistemology, practice-based research and reflective practice in the

creative arts, this chapter argues for the novel methodological contributions of this

research to the field of practice-based research in the creative arts.

3.1 Practice-based and creative-production research projects

As a practice-based research project, the principle means by which this research

contributes to new knowledge is through both the process and outcomes of the

interdependent creative practices of interactive musical software development and

improvised human-machine musical performance. In the following section the research

is situated in the context of both practice-based research and creative-production research

projects in the creative arts. Schön’s notion of the reflective practitioner is then examined as

it concerns practice-based research in the creative arts.

 42

 Practice-based research 3.1.1

According to Candy (2006), a research project is to be considered practice-based if its

contribution to new knowledge is demonstrated partly through practice and the

outcomes of that practice. Practice-based research projects provide original contributions

to new knowledge through both the presentation of artefacts/outcomes developed

through practice, and substantial textual contextualisations of these outcomes in the

form of doctoral theses or other published materials. Although the significance of the

outcomes of the research project must be described in such written documents, “a full

understanding can only be obtained with reference to the artefact.” (Candy 2006)

 Central to the notion of practice-based research is the role of the ‘practitioner-

researcher’ in carrying out the research project. As defined by Robson, a practitioner-

researcher is someone who works as a practitioner in a professional setting whilst

simultaneously undertaking a ‘systematic inquiry’ that is of direct relevance to their work

(Robson 2002). In art and design contexts, practitioner-researchers hail from a variety of

professions including practitioners from visual arts, design, music, dance, creative writing

and other backgrounds. Gray (1998) has examined the emergence of practice-led and

practice-based research in art and design over the past two decades, and has helped to

define the role of practitioner-researchers and the specific approaches to research that

occur in art and design contexts. For Gray, the practitioner-researcher identifies

“researchable problems raised in practice, and responds through practice,” and often

plays a multi-dimensional role of that of a creator of research materials (art/design

works), observer of self and others and as collaborator in collaborative work contexts

(Gray 1998).

 Considering the above, it is important to note the reflexive relationship between the

practitioner-researcher and the overall context of the specific research inquiry. Due to

the central role played by the researcher’s practice in the generation of new knowledge,

practitioner-researchers are obliged to acknowledge their personal ‘stake’ in the research,

and therefore acknowledge that knowledge in such contexts is subjective and a result of

personal construction (Gray 1998). Although practice-based research may be situated

within collaborative settings (and may therefore involve the analysis of data collected

from third parties), practitioner-researchers must acknowledge their role as active and

 43

influential members of the environment in which their research takes place. This requires

an acknowledgement of the subjective nature of the research enquiry, the relationship

between the researcher’s goals and intentions and the developed research materials

(artefacts/outcomes) as well as the relationship between the researcher and any third

parties involved in the study.

 In a practice-based research project the scope, methodological approach and specific

methods of the research inquiry are determined by the close relationship between the

practitioner-researcher and their specific domain of practice. In art and design contexts,

Gray and Malins suggest that a central characteristic of an ‘artistic’ methodology is one

that embraces a pluralistic approach to the choice of research methodologies and

associated methods, and a reflexive approach to research inquiry as a practitioner-

researcher. In addition, adaptations and hybrid methodological approaches are common,

as practitioner-researchers search for research designs that reflect the unique nature of

the specific research inquiry in question (Gray & Malins 2004).

 Common to many practice-based projects however is an acknowledgement that

practice itself remains the primary tool for knowledge generation, and as such it

maintains a central place within the chosen methodology. Practitioner-researchers may

use their practice to examine latent research themes, explore developing ideas about

practice itself or undertake experiments related to a central topic of interest (Scrivener

2000). Such explorations are carried out in the plane of practice directed towards the

generation of artefacts. Although artefacts developed through practice-based research

may embody knowledge generated throughout the research process, they must be

analysed and evaluated in light of the unique practical context in which they were

developed. As cited in Candy (2006), the artist Ross Gibson has articulated the view that

the textual component of a practice-based research project should not be focused upon

explaining the artefact, but rather work towards illuminating and understanding the process

that gave rise to it. For Gibson, the text is rather:

…an explicit, word-specific representation of processes that occur during the iterative art-making routine,

processes of gradual, cyclical speculation, realisation or revelation leading to momentary, contingent

degrees of understanding.

(Candy 2006, p. 9)

 44

Practice-based research projects can therefore be understood as both process and action-

oriented with respect to both the generation and application of new knowledge through

practice. As a result, throughout the research process research questions and themes may

only reveal themselves as a consequence of moves within practice, making the practical

domain a space for both generating and responding to research questions.

 Creative-production vs. problem-solving research projects 3.1.2

The role of practice as method in practice-based research highlights some fundamental

issues of research method and the communication of knowledge within creative arts

research. Stephen Scrivener has suggested that although practice-based research centres

upon the creation of artefacts, there exist fundamental differences between those

artefacts that are developed as a response to justified and well-defined research problems,

and those projects focused upon creative production that use practice as a vehicle for

exploring complex research themes (Scrivener 2000). For Scrivener, this distinction is

essential to understanding what kind of knowledge claims can be made by practice-based

research projects in art and design. He advocates that in such contexts, due to the focus

upon process and the entanglement between artefact development and emergent

research interests, self-reflexive practice provides the most suitable means by which

researchers in this area might make their research contributions.

 Discussing research methodology in doctoral projects in art and design, Scrivener has

outlined the differences between traditionally understood problem-solving research projects

and what he terms creative-production projects typical of practice-based research in creative

practice contexts. According to Scrivener, artefacts developed in problem-solving research

projects are presented as either novel artefacts posited to solve well-defined problems, or

as improvements upon already existing artefacts (Scrivener 2000). By contrast, creative-

production research projects are concerned with the generation of artefacts as a means to

investigate, explore and define research problems as well as to solve them. Problems

arise through the practice of artefact creation, and research themes are developed and

explored through subsequent moves in practice. Therefore, the development of artefacts

themselves remains the main research focus, and the explication of the process of design

and development therefore forms an integral part of the project’s contribution to new

knowledge (Scrivener 2000).

 45

 Although ‘technological’ research projects are typically more likely to fall within

Scrivener’s definition of problem-solving projects, elsewhere Holmes has argued that the

technologically focused creative practices of new media art and other creative software

approaches should be understood with respect to Scrivener’s notion of creative-production

research (Holmes 2006). The author argues that much new media art research exists in

the form of ‘hybrid’ projects; projects displaying aspects of both problem-solving

(technological) and creative-production projects (Holmes 2006). As Scrivener’s definition of

the ‘technological’ remains somewhat ill-defined, here I argue that the practice of

software programming in the creative arts can clearly be characterised as a creative-

production project, insofar as the creative practice of software development is presented as

a core method of the research methodology.

 Drawing a distinction between problem-solving and creative-production approaches,

Scrivener outlines some criteria that are generally considered when judging the

contribution of artefacts developed as a part of a problem-solving research project:

 artefact is produced

 artefact is new or improved

 artefact is the solution to a known problem

 the problem is recognised as such by others

 artefact (solution) is useful

 knowledge reified in artefact can be described

 this knowledge is widely applicable and widely transferable

 knowledge reified in the artefact is more important than the artefact

(Scrivener 2000, p. 4)

The criteria above outline the transferability of the knowledge reified in the artefact, and

the expectation that the artefact itself is ‘useful’. The artefact that is developed is said to

embody a certain ‘know-how’ of the problem domain, with the knowledge reified within

intended to be generalisable and reusable (Scrivener 2000). The artefact itself must be

new or an improved version of a previous artefact, and most importantly it must be the

solution to a problem that can be recognised and understood by others. Central to this

notion is the assumption that the researcher has defined and justified a research problem

that the artefact is posited to solve. A central concern of problem-solving practice-based

research projects therefore involves the careful framing and justification of this problem.

 46

This is by no means a trivial part of the research process, as researchers spend a

significant portion of the early part of the project finding and justifying the existence of

the problem. Inevitably, this process involves a good deal of trial and error, false starts

and wrong turns along the way towards the eventual problem as outlined in the written

document. The researcher’s initial understandings and expectations of the problem

domain may change after encountering unexpected ‘back-talk’ of the situation during

practice, leading them to re-evaluate the initial understandings that gave rise to the

problem (Schön 1983).

However, as Scrivener explains, in problem-solving research projects this ‘finding phase’

is decidedly not explicated in the written documentation. The problem is usually

presented as a fait accompli, justified through reasoned argument leaving the problem-

setting process out of the spotlight. According to Scrivener, in such contexts:

…the student is expected to justify the existence of the problem rather than to explain how it was found.

Hence, the problem is usually presented as if it were the natural consequence of rational analysis of past

work in the field.

(Scrivener 2000, p. 8)

By contrast, in a creative-production research project the production process is often at the

centre of the knowledge-making agenda. In these contexts, the artefact is often generated

in order to ask questions about a particular topic of interest, to problematise aspects of

the domain of practice or to clarify and refine blurry problems and that are in a continual

state of definition through engagement in practice. The artefacts themselves might

therefore be considered as the end result of a search for clarity and understanding

through practice the complex process of practical engagement that gave rise to them. In

addition, Scrivener suggests that the personal motivations and past experiences of

practitioner-researchers are more likely to determine the trajectory and scope of a creative-

production project than the ability of their outcomes to solve well-defined research

problems. Artefacts and outcomes of such projects are also not motivated explicitly by

the need to be the first of their kind, or to prove themselves as improvements upon

already existing artefacts (Scrivener 2000).

 47

 In light of these observations, Scrivener maintains that in creative-production contexts

the artefact itself cannot be correctly judged by the same criteria as those developed

through problem-solving projects (Scrivener 2000). The author maintains that the

process of artefact creation in creative-production must be foregrounded, and that the

practitioner-researcher should articulate the multiple issues, concerns and interests that

have given rise to the developed artefacts. Scrivener acknowledges that issues, concerns

and interests in such projects are themselves emergent, and that the process of artefact

creation (as articulated through practice) embodies the push and pull between problem-

setting and problem-solving that is the hallmark of a process of reflective practice

(Scrivener 2000). As such, there is a need for practitioner-researchers engaged in creative-

production projects to clearly articulate and document the process of production, and the

moments of reflection in and on action that occur throughout a creative-production project.

Doing so enables the practitioner-researcher to articulate the emergence of “researchable

problems raised in practice” (Gray 1998), and to explain and analyse through reflection-

on-action how these problems were addressed in practice. In Scrivener’s words:

The relationship between issues, concerns and interests and outcomes in a creative-production project is

one that changes throughout the entire process. Thus, unlike a problem-solving project, where we can

largely ignore the actual problem setting and solution processes, I am of the view that description of the

creative-production process should be the principle means by which students demonstrate that they are

self-conscious, systematic and reflective creators.

(Scrivener 2000, p. 9)

In order to account for the process-oriented approach typical of creative-production

projects, Scrivener outlines alternative criteria with which to judge their contribution to

new knowledge:

 artefacts are produced

 artefacts are original in a cultural context

 artefacts are a response to issues, concerns or interests

 artefacts manifest these issues, concerns and interests

 the issues, concerns and interests reflect cultural preoccupations

 artefacts contribute to human experience

 artefacts are more important than any knowledge embodied in them

(Scrivener 2000, p. 6)

 48

Instead of insisting that artefacts created be solutions to well-defined problems, Scrivener

places weight on an artefact’s role as a contribution to human experience. Artefacts may make

claims of originality, but rather than having to justify their novelty against criteria of

utility or generalisability of knowledge they embody, they may be demonstrated as

original within a clearly defined cultural context. Furthermore, the artefacts must be

developed in response to issues, concerns and interests that reflect cultural

preoccupations, and these issues, concerns and interests must be manifest in the artefact

itself. Finally, in direct contrast to artefacts developed in problem-solving projects,

Scrivener suggests that artefacts themselves remain more important than any knowledge

embodied in them (Scrivener 2000).

 The reflective practitioner 3.1.3

As Scrivener has outlined, where practice is used as a core method for knowledge-

generation, self-reflection both in and on practice becomes an indispensible tool for both

improving practice and communicating the unique insights gained from these reflections

to wider audiences. What separates practitioners from those practitioners engaging in

practice-based research (practitioner-researchers) is the rigour with which such self-

reflection is undertaken. To the practitioner-researcher, self-reflection becomes a core

research method that enables the reader to enter into the complex cycles of action

present during practice that have culminated in the developed artefact. Practice-based

researchers therefore make implicit or tacit knowledge communicable through self-

reflexivity, and in doing so reveal insights into creative process and point towards larger

research themes beyond the self.

 Self-reflexivity is a central concern of Donald Schön’s theory of reflective practice (Schön

1983). Schön’s notion of the ‘reflective practitioner’ is an often-cited framework for

understanding what is knowable by practitioners in various domains, and how this

knowledge base is harnessed and enhanced through self-reflexivity inside and outside the

plane of practice. Schön has defined two important and complimentary types of

reflection that form part of reflective practice; that of reflecting-in-action, and that of

reflecting-on-action (Schön 1983). The former, reflection-in-action, is characterised as the

reflection of practitioners during the actual act of practice, describing the kind of on-the-

spot decision making informed by both the situation at hand and the practitioner’s body

 49

of knowledge and experience in the practical domain. By contrast, reflection-on-action is

characterised as being further removed in time from the act of practice itself. As a

theoretical and analytical appraisal of the practical situation, reflection-on-action is

considered a critical skill for professional development and practice-based research that is

related to the act of review, evaluation and analysis (Gray & Malins 2004).

 For Schön, reflection-in-action is the complex interactive cycle of action and reflection

that occurs in everyday practice. Schön places importance on the practitioner’s tacit

professional know-how – their ‘knowing-in-action’ – and the interplay between problem

setting and problem solving that occurs within plane of practice. Reflection-in-action occurs

when a practitioner simultaneously makes moves (changes) in the domain of practice,

assesses the implications of these moves on the current task, evaluates and appreciates

new situations or problems that arise and takes further actions that either confirm or

deny the validity of their past history of actions (Schön 1983, p. 94). This iterative

process is fundamentally directed towards transforming a situation from its present state

into something better, and forms an integral part of how professionals advance in their

everyday practice. Understanding the outcomes of practice therefore requires an

understanding of the on-the-spot decisions made by practitioners, and therefore the

process of reflection-in-action. This process is however generally unspoken and may be

unremarkable to the practitioner during the act of practice, as it consists of personal and

context-bound responses to a problem domain. For practitioners, reflecting-in-action is

at once an expression of know-how in the domain influenced by past experiences, and also

a function of the specific circumstances of the particular creative task or situation. The

practitioner is at once posing problems, testing their applicability through action,

evaluating the implications of these actions and appreciating new understandings of the

domain of practice in light of the changed context.

 According to Schön, when a practitioner reflects-in-action they engage in a “reflective

conversation with the situation” (Schön 1983, p. 76). Such conversations take place when

practitioners make changes to the situation, evaluate the effects and implications of these

actions provided by the situation’s ‘back-talk’, and subsequently respond to the situation

anew having appreciated the implications of their past actions upon future decisions.

Responding to this ‘back-talk’ the practitioner “reflects-in-action on the construction of

the problem, the strategies of action, or the model of the phenomena, which has been

 50

implicit in his moves.” (Schön 1983, p. 79) The moves made by practitioners in the act of

practice are founded upon tacit knowledge; models and appreciations of a situation that

have accumulated from past experiences in the practical domain. In addition, these

inherently subjective models and appreciations are further expanded and re-evaluated in

direct response to unexpected problems encountered in practice. Schön’s ‘reflective

conversation’ metaphor therefore acknowledges the importance of action to the

knowledge-making agenda, and the entangled nature of action and reflection in the

process of practice.

 Schön’s conception of professional ‘know-how’ exercised and expanded through

reflection-in-action emphasises its essentially tacit nature; considering appropriate courses

of action in the moment the practitioner makes decisions ‘on-the-fly’, without sustained

critical insight. The practitioner relies upon both their personal experience and the

specific problems posed by the present situation in order to determine the next course of

action. Reflection-on-action, by contrast, is a type of retrospective appreciation,

evaluation and understanding of decisions made through critical reflection on past

practice. When a practitioner reflects-on-action, they do so by evaluating decisions made

in practice and the implications of those decisions on the future shape of the creative

task, and potentially on their methods of practice in general. Reflecting-on-action requires

a thorough understanding of the reasons for making decisions during practice, and of the

specific context in which such decisions were made. According to Scrivener (2000),

reflection-on-action is driven by a desire to learn from experience, in contrast to

reflection-in-action which is driven by a need to deal with unexpected and unintended

consequences of action within a practical context. When a practitioner reflects-on-action

they: “reflect on knowledge and ways of working automated over an extended period”

(Scrivener 2000, p. 9). In other words, reflection-on-action requires the practitioner to

reflect upon and understand the process of reflection-in-action itself.

 Fundamental to the notion of reflective practice therefore is an acknowledgement that

knowledge generation in practice-based research is entangled with action, and that

professional knowledge emerges through engagement in and critical reflection on

practice itself. The process of reflecting-on-action requires the practitioner-researcher to

appreciate past practice as a cumulative history of on-the-spot decisions made in

response to the specific circumstances of the creative task. Importantly, in reflective

 51

practice the practitioner-researcher’s role as both a problem-setter and problem-solver is

acknowledged. Reflection-in-action is foregrounded as the means by which practitioners

deal with uncertainty in the act of practice. Part of this process involves the practitioner

reframing his or her understandings of a problem in response to the situation’s back talk.

Such reframings often also include redefining the problem itself.

 For Schön, the reality of professional practice is at odds with traditional notions of

technical rationality that contend that practice is a form of “instrumental problem solving

made rigorous by the application of scientific theory and technique’ (Schön 1983, p. 21).

Through an analysis of various examples of professional practice Schön argues for an

understanding of practice as responsive, interactive and in a constant state of flux. His

analysis points towards a recognition that practitioners are actively making sense of their

own actions in response to circumstances that cannot have been predicted outside of

real-time practice. Although learned theory and technique inform a practitioner’s models

and appreciations of the practical domain, these models are subject to modification in

the face of uncertainty, and it is through reflective practice that practitioners expand their

understandings of the domain, set new problems and ultimately address and develop

elements of professional theory and technique.

3.2 Reflective practice as research methodology

As outlined in the previous sections, practice-based research in the creative arts places a

great deal of emphasis on the process of practice itself, and how it can access and reveal

research themes and questions that could not have been easily defined or posed from the

outset of a research project. From this perspective, Schön’s conception of knowing-in-

action is integral to a practitioner’s ability to guide and shape a creative task, as well as

their ability to identify and reflect upon relevant lines of enquiry through practice. Taking

Scrivener’s lead, I have articulated how reflective practice may be used as the principle

means by which practitioners might analyse, synthesise and communicate the complexity

of research themes emerging from practice in such research contexts.

 For the artist-researcher, reflective practice is the means by which research themes can

be made communicable to a wider community. Concerns, issues and interests identified

through practice are engaged with by the practitioner-researcher, and explicated in a

 52

written research document. In this thesis, self-reflective practice is used to highlight

research themes that have surfaced through the development of a significant

computational artefact and its use. Through the narrative of development, certain themes are

identified and demonstrated as being acted upon in order to advance practice. However,

the interdependent creative practices of software development and human-machine

performance have also surfaced more fundamental themes surrounding the design and

use of interactive musical systems. These themes are the emergent result of both direct

engagement in the practical domain, but also through sustained and critical reflection

upon further literature in the field. Chapter 7 is presented as the culmination of these

sustained critical reflections.

 This sustained form of reflective practice represents the reflection-on-action engaged in

throughout this research. In the following sections of this chapter I contextualise the

reflection-in-action engaged in throughout my creative practice in some depth. With

reference to the work of Andrew Pickering, here I argue that technologically focused

creative practice research should be understood as part of a temporally emergent

negotiation between human and non-human agencies. Pickering’s mangle of practice is

introduced to highlight the unique position of technological creative practice in

advancing new knowledge, and the situated nature of such knowledge generation.

Although Pickering’s ideas were developed in the context of empirical scientific practice,

his concepts relate well to Schön’s conception of practice as a ‘reflective conversation

with the situation’. It is the emphasis on the agency of the material in Pickering’s work

that is the most relevant to technologically focused creative work. Following discussion

of Pickering, the chapter concludes with a consideration of McLean and Wiggins’ notion

of bricolage programming in the creative arts. As an embodied conception of artistic

programming practice, bricolage programming highlights both the exploratory and emergent

nature of artistic software programming.

3.3 Introducing the mangle of practice

With its roots in the Sociology of Scientific Knowledge (SSK), Andrew Pickering’s

Mangle of Practice: Time, Agency and Science (Pickering 1995) is a performative understanding

of scientific practice that acknowledges the entangled nature of human and material

agency in the real-time production of scientific knowledge. His work provides a

 53

thorough understanding of how researchers engaged in ‘goal-oriented practice’ converse

with their materials, arguing that scientific knowledge generated from empirical research

should be understood as the result of the push and pull between the researcher, their

machines, and the material world under investigation. The importance of this theoretical

perspective is that it treats empirical scientific practice as temporally emergent and

situated in its specific practical context. Pickering describes this view of scientific

knowledge as a shift towards what he calls the performative idiom, where the temporality of

practice in all its complexity is foregrounded. To Pickering, this perspective stands in

contrast to the dominant view of scientific culture as representational, where science is cast

as ‘an activity that maps, mirrors, or corresponds to how the world really is.’ (Pickering

1995, p. 5)

 This shift to the performative places scientific outcomes, theoretical understandings

and developed artefacts as direct consequences of the interplay between human and

machine agencies in practice, a process that Pickering defines as the mangle of practice.

What the mangle suggests is that through the entanglement between human and the

material, new questions are continually posed as new understandings of the problem

domain arise through practice, as surfaced through material agency. This view is founded

upon Pickering’s argument that the world “is not, in the first instance, [filled] with facts

and observations, but with agency”. To Pickering, understanding scientific discoveries

entails an appreciation of the complex interactions between both human and non-human

agencies, thereby situating knowledge production as an interactive process that happens

in and through time. For Pickering, “the world is constantly doing things, things that bear

upon us not as observation statements upon disembodied intellects but as forces upon

material beings” (Pickering 1995, p. 6), and scientific practice must therefore be

understood in relation to this field of influences. As a theoretical perspective, Pickering’s

mangle of practice therefore problematises the notion of objectivity and closure in empirical

scientific practice, situating scientific results within a temporally emergent process of give

and take between humans and the material world.

 Appropriating Pickering’s ideas from the field of Sociology of Scientific Knowledge

(SSK) to creative practice, the mangle of practice suggests that artworks (as with scientific

facts) represent the end-point of a search for knowledge that is characterised by a

negotiation between human and material agency in the plane of practice. From this

 54

perspective the most suitable course of action is to open up practice itself to explicitly

reveal the cycles of resistance and accommodation from which arise artistic practices,

theoretical concepts and artistic outcomes. From the perspective of self-reflective

practice-based research, Pickering’s ideas point directly towards methods that get inside

this process and allow a faithful explication of the mangle as it happened. As Jefferies has

suggested, self-reflective methodologies are well-poised to provide an insider perspective

of the messy nature of creative practice, giving the reader insight into the processes of

mangling that are underway in such contexts (Jefferies 2012).

 In this research, Pickering’s mangle of practice provides an epistemological framework

informing my overall methodological approach to examining the creative practice of

interactive systems development, and the related performance practices that have

evolved from the use of my software artefacts. Pickering sees practices themselves as

being subject to the mangling process, and it is through reflective practice that I elucidate

this process in Chapters 4, 5 and 6 of this thesis. Pickering’s mangle is used to justify a

self-reflexive approach to analysing practice, acknowledging the present research

trajectory as being tied to the emergent understandings of software artefacts that have

developed over time. The research themes that have been investigated through practice

should therefore be situated in their temporal context, understood as products of

an emergent interplay between human and material agency in the processes of artefact

creation, use and evaluation.

 Much of the uniqueness of Pickering’s ‘mangle of practice’ lies in its fundamental

questioning of commonly held epistemological perspectives in the Sociology of Scientific

Knowledge. His critique of SSK is a critique of the positions of both social

constructivism and technological determinism, and in particular the inability of either of

these perspectives to deal with the outcomes of research from the perspective of

engagement in practice. To Pickering, their understandings of scientific knowledge are

atemporal (Pickering 1995, p. 4). A social constructivist perspective, typical in the field of

SSK, contextualises scientific discoveries with respect to relatively fixed social and

cultural factors influencing scientific knowledge and practice from the outside. From

such a perspective, technological innovation as exemplified by advances in the scientist’s

apparatuses might therefore be understood as causally linked to larger societal and

cultural factors. With respect to technological determinism, Pickering notes that a

 55

temporally emergent understanding of scientific knowledge is also at odds with

perspectives that attest that “the social is continually refashioned around technological

imperatives.” (Pickering 1995, p. 169) Pickering suggests that such an antihumanist

version of history glosses over the complexities of engagement in the plane of practice

that shape both society and our technology.

 To Pickering, neither social constructivism nor technological determinism

acknowledge the entangled nature of the relationship between human and material

agency, and therefore neither can be used to explain the significance and depth of the

outcomes of scientific research. Viewing scientific practice as temporally emergent

enables one to understand its outcomes in relation to both the cyclical patterns of

problem setting and problem solving inherent in practice, as well as the active and

influential role that material agency plays in this process. To this end, Pickering highlights

the vital role played by the researcher’s apparatuses (their machines), with their use and

reconfiguration – their intersections with human agency – credited with forming a

large part of the understandings that arise from scientific practice. As part of the

mangling process, materials and machines, as well as interpretive and phenomenal

accounts of the research domain are ‘interactively stabilised’ through practice, as the

researcher finds unique accommodations to unforeseen resistances that arise unexpectedly in

the plane of practice. This cyclical process puts both human and material agency in an

interactive relationship, a process Pickering describes as a dance of agencies (Pickering 1995,

p. 21).

 The mangle and reflective practice 3.3.1

Although developed in the context of empirical scientific research, it is the importance

that Pickering places upon process that suggests that his ‘mangle of practice’ has much to

offer practitioner-researchers engaged in reflective practice in the creative arts. In seeking

to understand scientific knowledge as entangled in temporally emergent practice,

Pickering makes extensive use of the personal accounts of practitioners in his own

analyses. Importantly, the author attests that such personal accounts might be seen as an

integral part of the ‘mangling process’ engaged in by the practitioner, and might be

viewed as “products of the dialectic of resistance and accommodation, at once

retrospective glosses on emergent resistances and prospective elements of strategies of

 56

accommodation.” (Pickering 1995, p. 53) Due to their foregrounding of process,

Pickering’s acceptance and encouragement of the use of scientists’ personal accounts

might therefore be interpreted as an acknowledgement of the role of reflective practice in

shaping scientific knowledge. Pickering’s appraisal of such reflective accounts emphasises

the emergent nature of goals, plans, and interpretive accounts and the important role that

practitioner reflection plays in the process of knowledge generation.

 Pickering’s perspective on practice as both interactive and temporally emergent finds

obvious common ground with both Schön and Scrivener’s conceptions of reflective

practice in both professional and creative practice contexts. Schön’s notion of practice as

a ‘reflective conversation with the situation’ and his emphasis on the practitioner

responding to the situation’s ‘back talk’ are analogous to Pickering’s understanding of

practice as a dance of human and material agencies. What Pickering’s perspective shows

is that machines and the material world profoundly affect subsequent decisions made by

practitioners in the plane of practice. The way in which the practitioner responds to

unexpected resistances encountered in practice might be said to take a familiar form, that

of reflection-in and on action as the practitioner searches for appropriate accommodations to

these hurdles in order to move the practice forward.

 By seeking to fully understand the real-time context of empirical practice and its

implications for scientific knowledge, Pickering advocates for a process-driven

conception of knowledge production in which the messy nature of problem solving is

examined as it occurs through time. Recalling Scrivener’s analysis of research approaches

detailed in Section 3.1.2, we might therefore understand Pickering as arguing for the

communication of the various twists and turns that exist in the problem finding phase of

a problem-solving research project. Although the context in which Pickering developed his

ideas differs from the artefact-driven approaches of practice-based research, his ideas

resonate with conceptions of interactivity and emergence experienced by those engaged

in such research in the creative arts. By situating knowledge production in the plane of

practice rather than as an atemporal result of practice, Pickering’s ideas suggest that

artefacts (outcomes) developed in practice-based research should therefore be

understood only through a consideration of the specific and changing circumstances that

gave rise to their production.

 57

 Connecting the mangle to creative arts research 3.3.2

Considering the original context from which Pickering developed his ideas, it is

important to examine the potential of its application by analysing how researchers

outside of the Sociology of Scientific Knowledge have appropriated the mangle to their

needs. New media artist and researcher Ashley Holmes has discussed Pickering’s mangle

of practice with particular reference to reflective practice in new media research (Holmes

2006). Situating new media creative practice within a critique of approaches to practice-

based research outlined by Scrivener (2000), Holmes points to Pickering’s ideas as

providing alternative epistemological and ontological grounds with which to understand

technologically focused creative practice. Holmes’ appropriations of Pickering’s ideas to

this context are focused upon the connections between Pickering’s dance of agencies

metaphor and the “rigour of procedural engagement with software tools and/or

algorithms’ that characterises much new media creative practice (Holmes 2006, p. 6).

 Holmes describes such engagements with technology as forming grammars of practice; a

series of routinised practices that help to shape the trajectory of a given technological

project. It is suggested that such grammars of practice are observable in and central to

many fields of endeavour, therefore justifying the link between these seemingly disparate

areas of practice. For Holmes, the connection between scientific practice and creative

practice is concerned primarily with the negotiations between both human and material

agency that typify these domains of practice, hence the invocation of Pickering’s ‘dance

of agency'. Furthermore, the author highlights the connection between Pickering’s

notion of the tuning of goals and intentions in scientific practice, and the iterative cycles

of planning, implementation, appraisal and review that are characteristic of artefact

creation in new media software development (Holmes 2006, p. 6).

 Further justifying his appropriation, Holmes interrogates Pickering’s concepts in more

detail, turning his attention to Pickering’s definition of material agency and its

relationship to digital arts practice. Here Holmes extends Pickering’s concept of material

agency to encompass digital technology, situating this concept with respect to software

development in new media arts practice. Citing Steigler, Holmes illustrates that both

human and technological (software) agencies can be seen as temporally emergent and

mutually influential through practice (Stiegler 1998). Considering Pickering’s concept of

 58

material agency in its original context however, Holmes’ appropriation requires further

clarification. In Pickering’s work, material agency is referred to throughout the text both in

relation to the material world (the object of empirical scientific research) and the world of

machines developed to frame and capture this material agency (the scientist’s apparatuses).

 This is an important distinction to make in this context, as the separation between

these two types of agencies is directly connected to the doing of empirical scientific

practice. From Pickering’s point of view, material agency is encountered in both the use

of machines to frame material agency, and in the capturing of material agency itself as a part

of this framing process (Pickering 1995, p. 83). The importance of this distinction goes

to the heart of Pickering’s conception of his ‘dance of agency’, and the associated

tuning process Holmes’ adapts to his purposes. According to Pickering, the dance of

agencies is characterised by periods of interchange between activity and passivity on the

part of the practitioner during their interaction with their machines (Pickering 1995, p.

21). The active role relates to the building of and modifications to a machine designed to

capture material agency, whilst the passive role sees the practitioners observing the

results of the machine’s capture of material agency. Viewed from this perspective,

Pickering’s dialectic between activity and passivity necessitates a conception of machine

agency that acts in the face of human passivity during processes of scientific observation.

 A challenge for technologically focused creative-production research is in reconciling

this conception of material agency with alternative understandings of machine agency in

creative practice. Returning to reflective practice, Schön has noted that much artistic

practice relies upon the artist entering into a ‘reflexive dialogue with materials’, describing

the personal and interactive relationship between the practitioner and their subject

matter. Considering design as a ‘reflective conversation with the situation’, Schön

acknowledges the entangled nature of both human and material in creative practice:

‘Typically, [the designer’s] making process is complex. There are more variables—kinds of possible moves,

norms, and interrelationships of these—than can be represented in a finite model. Because of this

complexity, the designer’s moves tend, happily or unhappily, to produce consequences other than those

intended. When this happens, the designer may take account of the unintended change he has made in the

situation by forming new appreciations and understandings and by making new moves. He shapes the

situation, in accordance with his initial appreciation of it, the situation “talks back,” and he responds to the

situation’s back-talk.’

 59

(Schön 1983, p. 78)

To use Pickering’s terminology, the designer is therefore engaged in a process of

interactive stabilisation whereby the consequences of action (as exhibited by the situation’s

‘back-talk’) shape his or her subsequent moves in practice. Each move is informed by the

consequences of action, leading to a process in which concepts, goals, materials and

artefacts stabilise over time. This ‘dance’ between the human and material plays out as a

human search for accommodations to material resistances encountered in practice. Each

search for accommodations by the designer has the potential to create unforeseen

resistances, resulting in outcomes that can only be understood as an emergent result of

this interactive relationship.

 Another central component of Pickering’s mangle is the dialectic encountered between

resistance and accommodation in practice. For Pickering, the ‘dance of agency’ is

characterised by the interplay between resistances encountered in material agency, and

human accommodations to these resistances in practice. In the context of creative

programming practices, Pickering’s conceptions of activity and passivity may be

expanded to include the material agency expressed by the output of a computer

algorithm. The dialectic between resistance and accommodation lies at the core of the

mangle of practice, articulating a process in which goals and plans, interpretive and

phenomenal accounts are mangled through the practice towards cultural extension

(Pickering 1995, p. 22).

 According to Pickering, a resistance “denotes the failure to achieve an intended

capture of agency in practice” (Pickering 1995, p. 22). Although one might conceive of

all artists encountering some form of resistance throughout the creative process,

Pickering’s sense of the word is specifically connected to the capturing of material agency,

a core concern of empirical scientific research. However, the notion of resistance lends

itself to a conceptualisation of creative practice as interactive and temporally emergent.

In the context of creative practice, a resistance may be understood not as a ‘failure to

capture material agency’, but as a disconnection between what is initially strived for in

practice and what is found or discovered. Accommodating these disconnections can then

take a variety of forms, as indeed they do in Pickering’s model. This may include the

artist changing the conditions that gave rise to this disconnection (taking another course

 60

of action), or by incorporating the new discovery into the conceptual space that defines

the practical domain, re-orienting the direction of practice itself. This enlargement of the

artist’s conceptual space is analogous to Pickering’s understanding conception the

mangling of a scientist’s interpretive accounts of a phenomena under study (Pickering 1995, p.

74), through engagement in practice.

3.4 Bricolage programming and reflective practice

The entanglement between human and material agencies, as articulated by Pickering, is of

direct relevance the creative practice engaged in by artist-programmers. A large part of

the creative process in the programming of new software artefacts for interactive music

involves a heavy dose of trial and error. In addition, the software programmer often

begins with a set of concepts and goals that provide the stimulus for the creation of a

new software artefact, however it is in the direct relationship between the programmer

and their code that the overall artistic direction of the project begins to take shape.

McLean and Wiggins (2010) have paid specific attention to the process of software

programming in the creative arts, developing a theoretical understanding of the

interactive and iterative process of programming as an artistic practice and the vital role

played by the machine in this process. The authors introduce the notion of the

programmer as bricoleur, an approach to programming previously described by Turkle and

Papert (1992). Bricolage programming is contrasted with ‘planned’ approaches to software

engineering, in which unexpected results are viewed as ‘mistakes’ or ‘missteps’ that

deviate undesireably from an initial design. According to Turkle and Papert, bricoleurs by

contrast “have goals but set out to realize them in the spirit of a collaborative venture

with the machine.” (Turkle & Papert 1992, p. 136)

 From the above foundation described by Turkle and Papert, McLean and Wiggins

outline an embodied view of programming in artistic contexts, maintaining that the

interactive relationship between a programmer and their code enables an emergent

process of design to occur. Through direct feedback from the execution of code – an

expression of machine/material agency – programmers make artistic decisions that

cannot be anticipated outside of practice. These decisions are directly influenced by the

unexpected feedback of the software they are developing. Such deepening connections

between artist and code leave open a space in which trial and error and tangential

 61

experimentation are guided by the moment-to-moment experience of writing, executing

and testing a software artefact (McLean & Wiggins 2010). This form of mediated

decision-making recalls Schön’s concept of material ‘back talk’ in the practical domain,

an integral part of a practitioner’s reflection-in-action.

Figure 1: The Bricolage Programming cycle of action and reaction (McLean & Wiggins 2010, p. 2)

Bricolage programming is characterised as a cyclical process of action and reaction

between the programmer and their code. In this cycle the programmer’s initial concepts

are encoded and elaborated into algorithms, whose output is then observed and

appreciated by the programmer leading to potential revision and extension of their

original concepts. In Figure 1 above, the elaboration of a programmer’s ideas is

represented as an inner loop between the programmer’s concepts and the encoded

algorithm. The outer loop represents the output of the algorithm followed by the

programmer’s perception of this output, and finally how this percept affects the

programmer’s initially defined conceptual space. The role of perception in the outer loop

is crucial for the direction of the artistic project, with the program’s output being

evaluated by the programmer against the initial concept of what the program might have

been. The feedback loop is characterised as being formative and evolutionary for the

project, as the initial concept itself is then open to revaluation and change. The authors

suggest that externalising the interpretation of the programmer’s concept to a computer

 62

program often results in a greater degree of surprise and unpredictability to the creative

process. (McLean & Wiggins 2010)

 With reference to Wiggins’ ‘Creative Systems Framework’ (CSF) (Wiggins 2006), the

authors define creativity as “a search in a space of concepts” (McLean & Wiggins 2010,

p. 4) and introduce the notion of transformational creativity as it applies to artistic

programming, a concept developed by Boden (2004). As the business of the artist-

programmer is to develop software, the search the authors describe necessarily involves

the encoding of concepts into algorithms to be interpreted by the computer. Interestingly

however, the authors suggest that this creative practice has as much to do with the

observation and perception of the computer’s interpretations of the encoded algorithms

as the actual encoding itself. As the authors note, in such contexts “observation may

itself be a creative act.” (McLean & Wiggins 2010) The boundaries of the programmer’s

initial search space (which define their concepts, intentions and artistic ideas) are

continually being expanded and altered through the perception of the machine’s

interpretations of their encoded algorithms. This can be understood as a genuinely

performative view of artistic computer programming, in which both the human and the

machine play equally important roles in advancing the artistic work.

 Figure 2 illustrates the bricolage programming cycle once more, further annotated with

elements from Wiggins’ Creative Systems Framework. The CSF incorporates three

distinct elements that McLean and Wiggins have applied to their concept of bricolage

programming, each helping to further refine this initial cycle. According to the CSF, R

defines the search space of the programmer’s concepts, T defines the traversal of this

space whilst E defines the evaluation of concepts found in the space. With the CSF

applied to bricolage programming, the authors regard the act of artistic programming as

interactive, with the computer’s output concretely influencing the programmer’s

concepts about their own work. Importantly, the programmer’s conceptual space – R – is

not fixed or closed but subject to expansion and change through interaction in the plane

of practice. When viewed as a search space, the act of elaborating and encoding concepts

into a working algorithm is considered a means by which the programmer traverses – T –

the search space suggested by R. This traversal is characterised by the authors as a

strategy by which the programmer employs “techniques and conventions employed to

convert concepts into operational algorithms.” (McLean & Wiggins 2010, p. 6)

 63

Figure 2: The Bricolage Programming cycle of action and reaction annotated with the
components of the Creative Systems Framework (McLean & Wiggins 2010, p. 6)

3.5 Bricolage programming and the mangle of practice

McLean and Wiggins’ concept is a useful description of the type of programming

engaged in through this research project. Although each software artefact may be

initiated by a series of specific goals, the bricolage programming cycle describes the

emergent process of artefact development in contrast to top-down software engineering

approaches to design. As a performer-developer, the software artefacts developed

throughout this thesis were borne from exploratory processes that sought to investigate

rather than to solve design problems. Chapters 4, 5 and 6 of this thesis articulate this

process by detailing the development of my creative practice, highlighting the way in

which technical outcomes engendered further areas of exploration that could not have

been foreseen in advance. In addition, my unique position as a performer-developer

ensured that physical, musical performance formed an integral part of the development

of my software artefacts. When such algorithms are designed to interact with a human

performer, the close relationship between performance and development not only aids in

the interpretation stage of the bricolage model, but also continues to redefine the initial

concept from which the algorithm is encoded. Musical performance is therefore

 64

integrated directly into the feedback loop between myself as developer, and the output of

these developing software artefacts.

3.6 Data Collection

As has been detailed in this chapter, self-reflective practice has been the primary

methodological approach in this research. The development narrative pursued in

Chapters 4, 5 and 6 is informed by the close consultation of various complimentary

sources of data recorded between 2010 and 2014. These data sources therefore aided in

the process of critical self-reflection. Three primary sources of data were collected

throughout this project that give insight into the development process: research memos,

computer code in the form of Max ‘patches’, and audio recordings. Throughout the three

central ‘wayfinding’ chapters of this thesis, this research data was consulted extensively in

order to articulate both the technical implementation of my developing software systems,

and also to give valuable insights into the reasons behind certain creative decisions.

 Whilst many of the Max patches are referred to directly within the text, the various

research memos and audio recordings generated throughout the project are not explicitly

referred to in this thesis. Instead, these valuable forms of qualitative data were

continually consulted in order to trace the underlying technical and aesthetic trajectory of

my creative practice. Below I outline the three sources of data in detail, and how they

were used in this project.

 Research memos 3.6.1

Throughout this research project I have undertaken a process of self-reflexivity through

systematically recording research memos in a variety of forms. The memos exist as either

handwritten entries written in A4 notebooks or as digital notes taken using the free

cloud-based software program Evernote16. I have collated five A4 notebooks that

contain memos recorded between January 2010 and May 2012, and a digital archive of

Evernote data ranging from August 2010 to present. These research memos have served

multiple purposes. They have been an indispensible part of the iterative development of

16 https://evernote.com

 65

my creative work, enabled prolonged reflection on my specific area of creative and

performance practice, helped trace emerging themes related the field at large and

provided a site for the planning of future creative moves. As the basis of my self-

reflective practice, these memos are therefore the primary means by which I have

engaged in reflection-on-action throughout the duration of my doctoral project.

 Although there is often considerable overlap between various types of memos, these

writings may be categorised into the following groups:

- Technical implementation plans

- Reflections on current development

- Programming problem-solving

- Reflections on performances

- Reflections on broad aesthetic goals

- Brainstorming next creative moves

Research memos were particularly useful in understanding the rationale behind the

aesthetic decisions made throughout this research. By triangulating information from

these written documents with the documented Max ‘patches’, a rich and accurate account

of this complex creative trajectory spanning several years was created. In addition, the

theoretical perspectives articulated in Chapter 7 of this thesis developed directly from

research memos written throughout the development of my software artefacts. This

illustrates that the process of reflection-on-action in this project was conducted at various

stages throughout the research project.

 Max patches 3.6.2

The software development undertaken throughout this project makes use of Cycling

‘74’s Max software (formerly ‘Max/MSP’), a ‘visual programming language for media’

(Cycling '74 2014). For the user of the Max environment, the act of programming

requires the arrangement, structuring and manipulation of high-level graphical objects

originally developed in the programming languages of C, Java or JavaScript. The source

code that underlies a Max program written by the user lies beneath the surface of the

documents created by the Max programmer. A finalised program in the Max

 66

environment is called a Max ‘patch’. As the act of developing a finalised program using

the Max environment depends upon manipulating these higher-level objects, the role of

the programmer-user is best understood with reference to the user-generated patches

themselves, and not the underlying source code as represented in these lower-level

languages. The Max patches files I have produced throughout this research contain all

the information needed to interpret the creative intentions behind the functioning

software artefacts. Therefore, for the purposes of this thesis these files may be

conceptualised as the source of the resultant software artefacts.

 Several hundred documents (patches) have been created using the Max environment

as a part of this research project. Some of these patches are small programs that were

developed to test specific programming ideas, whereas others are much larger and

incorporate numerous other Max patches and other files as software dependencies. This

working method encouraged code re-use and adaptation, as smaller programs were used

as building blocks and eventually incorporated into larger working programs. It should

be noted that this type of development differs from a hierarchical, project-centred

approach to software development. Many of these files began their existence as rough

‘sketches’ that were later incorporated into working systems, and organising this large

collection of files into a formalised code repository such as git17 was not considered vital

to my working methods in the Max environment.

Whilst some of the Max patches developed in this project included embedded comments

on their functionality, many of these files did not. In order to make sense of the

emergent development of my software systems, I have maintained an extended a textual

description and preliminary analysis of these ‘source’ documents developed throughout

the duration of this project. This document was developed retrospectively by surveying

the archive of Max patches stored on the hard drive of my personal computer, describing

their contents and functionality as well as grouping them with related files in order to

account for the appearance of larger streams of creative enquiry. Given the emergent and

naturally messy nature of my development process, this retrospective account of my

work aided in making sense of the programming trajectory, and was triangulated with the

17 https://git-scm.com/

 67

‘programming problem-solving’, and ‘technical implementation plan’ research memos

outlined above.

 Audio recordings 3.6.3

Audio recordings made throughout the development of the _derivations software have

provided an invaluable source of data to aid in reflection-in-action throughout the

development process. Over time these recordings have also enabled critical reflection-on-

action that has helped in shaping the theoretical understandings of human-machine

performance practice discussed in this thesis. Throughout the development of the

_derivations system several hundred audio recordings were made, some in order to

document various stages of design process and others as direct outputs of my creative

practice. In addition, throughout extended use with the _derivations software I have

accumulated a large library of rehearsal databases or ‘sessions’ created with the software

itself. Included in such databases are the reference audio recordings that document the

solo contributions of instrumental interactions with the _derivations software.

The various audio recordings made throughout this project can be grouped into the

following categories:

- Tests of individual system components

- Simulated system performances

- Studio human-machine performances

- Live human-machine performances

- Session database reference recordings

As mentioned above, the audio recordings created throughout the research are not

referred to specifically throughout the thesis, nor have they been the objects of formal

musical analysis. The majority of these are treated as creative artefacts of my developing

interactive systems, and as such these were used as objects of critical reflection for both

advancing practice and provoking broader theoretical considerations. In the case of

session database recordings, given the machine listening and timbral matching

approaches discussed in this thesis, these recordings were used extensively in advancing

 68

the technical implementation of _derivations phrase matching algorithm (see Section 6.5 for

more detail).

 Data excluded from the research 3.6.4

Although developed in the context of my personal creative practice, it must also be

noted that numerous third party musicians have also used the _derivations software in

performance. Some of these musicians have worked directly with myself in close

collaboration, whilst others have made use of the software independently in their own

work. Through introducing _derivations to third parties I have had many fruitful

conversations with musicians regarding interactive performance and human-machine

improvisation. Whilst surveying the experiences of other musicians interacting with

_derivations would have provided interesting qualitative data, in this research a decision

has been made not to include information pertaining to these users’ experiences with the

software. As a performer-developer creating an idiosyncratic system such as _derivations, a

self-reflective approach enabled me to focus upon the changing approach to

development and use of this artefact from inside the mangle of practice. Such an approach

provided a rich and unique perspective on the development of new technological

artefacts and emergent artistic practices. Conducting user studies on expert musicians

may have yielded interesting additional perspectives on the developing artefact and

performance practice, however in the context of the current research it is my belief that

such perspectives would have been outside the scope of this current research.

3.7 Conclusion

Through a cyclical process of action and evaluation, the creative practice discussed in this

research relies upon the emergent and reciprocal relationship that has developed between

both human and material agencies. The developing agency of my technical artefacts

mangled my goals and interpretations of the domain of interactive, human-machine

performance. The form of development followed throughout this research, as discussed

in the following three chapters, has followed a bricolage approach to creative

programming. By following such an open and exploratory form of software

development, significant software artefacts were developed that embodied my

developing understandings of interactive musical performance.

 69

 By engaging in self-reflective practice, both reflection-in-action and reflection-on-action

have enabled sustained critical insight into issues, concerns and interests relevant to the

field at large. Through reflecting-on-practice, the relationship between myself as performer-

developer and my developing software artefacts is analysed and investigated. The next three

chapters detail my creative practice as a narrative of development, describing and reflecting

upon the software development process engaged in throughout this research. The first of

the three reflections in Chapter 7 is dedicated to investigating this complex dance of agencies

in relation to relevant theoretical literature. Here Pickering’s conception of the mangle of

practice gave rise to a sustained analysis of the practical domain of interactive system

development itself.

 70

 71

 Wayfinding Part 1: Formative Software Chapter 4.

4.1 Introduction

In the following three chapters I describe and reflect upon the trajectory of the creative

practice I have undertaken throughout this research. As outlined in the previous chapter,

a concern for an understanding of interactive system design as a creative practice, as well

as making sense of the unique performer-developer creative context has led me to adopt

a self-reflexive approach to my research. The three ‘wayfinding’ chapters trace the major

developments in my creative practice, detailing formative programming experiments as

well as the creation more substantial creative projects. Each chapter concludes with

reflections on issues, concerns and interests that have arisen throughout this creative

trajectory.

4.2 Formative development approaches

As is common in practice-based doctoral projects in the creative arts (Scrivener 2000),

the initial stage of this research project was characterised by an extensive period of

creative experimentation. In the context of my programming practice, this resulted in the

initiation of numerous Max projects that explored the central creative concerns identified

in Chapter 1. From the beginning of 2010 I began working on a series of techniques for

use in interactive music systems that have since found their way into more substantial

and long-lasting projects. These in turn revealed some fundamental questions about the

forms of interactivity and generativity that are both achievable and desirable in such

computer music contexts.

 During this early period, some 142 individual Max patches were developed as a part of

my creative work. These software patches ranged from small programming exercises to

evolving creative projects that integrated a variety of sketched programming ideas into

their code-base. In parallel to these practical experiments, reflective memos were kept in

hand-written notebooks, and numerous audio recordings were made of the results of the

software programs developed. In what follows I triangulate these various forms of data

to uncover nascent research themes that have emerged from this project. The section will

 72

conclude with a reflection on these emergent themes, situating these in context both with

the creative work undertaken during this period, and with the wider field at large.

 Before beginning this doctoral project, much of my programming in both the Pure

Data and Max programming environments had been focused upon the creation of

custom software instruments such as polyphonic samplers, sound file granulators,

software synthesisers and other sound generation methods common to computer music

practice. In addition, as a trained interpretive performer with developing creative

programming skills, I had gained some experience in the creation of deterministic

software systems for the performance of ‘mixed’ music compositions for instrument and

electronics.18 However, up until this point any meaningful connection between the two

creative practices that I was engaged in – namely instrumental performance and

computer music programming – remained lacking. This was due in part to the level of

my technical expertise as a self-taught programmer, and also by my limited exposure the

potentials of both interactive approaches in computer music practice. Considering this, it

was during this early period of my research that I began to focus intently upon achieving

novel forms of interactivity between instrumental sources and computer music software.

In particular, it was in this period that a concern for the process of live sampling as a

generative strategy was first explored in any depth. In addition, a focus upon various

forms of input analysis and representation dominated the programming experiments at

this time, leading to the development of a series of approaches to the analysis and use of

sampled performance data.

 In addition to the promising development trajectories pursued at this time, there were

also a number of programming experiments that, whilst having potential as self-

contained technical exercises, were not followed through into more substantial software

systems. This was sometimes due to their incompatibility with the creative trajectories

favoured in other experiments, and at other times more promising methods of achieving

similar outcomes were pursued, rendering such approaches redundant. Although these

experiments may appear to be irrelevant to the larger creative trajectory of my practice,

18 One such system was built to facilitate the performance of Ost-Atem (1992), a piece for saxophone and

electronics composed by French composer François Rossé. A Pure Data patch was developed to replace

the obsolete hardware equipment required by this composition. The new software version was performed

in concert by saxophonist Joshua Hyde in June 2009 at the Conservatoire de Bordeaux.

 73

each of these programming experiments do highlight the emergent potential of such

creative programming practices, and the potential for failure to inspire new strands of

creative enquiry.

 Reviewing the source code developed in the Max environment during this period, the

programming experiments undertaken at this time may be roughly categorised into the

following areas of concern:

 Input analysis and segmentation

 Temporal pattern recognition

 Data sampling techniques

 Probabilistic methods for musical generativity

The remainder of this section will outline the programming projects undertaken in each

of these areas, and their significance to my developing creative trajectory.

 Input analysis and segmentation 4.2.1

As an instrumental performer, one of my first concerns in this project was to developing

efficient and useful ways of analysing my instrumental signal for use by interactive and

generative processes. Although there are numerous means by which an acoustic signal

may be analysed for use in such systems, I began by focusing on the integration of

fundamental frequency analysis in order to expand upon previous experiments with both

live sampling and event-based experiments. As an end-user programmer making use of

such algorithms, my approach to using real-time pitch analysis was linked specifically to

the creative tasks I set out to achieve in the Max environment. My approach to pitch-

tracking was therefore highly idiosyncratic and based upon personal heuristic methods,

informed in large part by approaches taken by other artist-programmers (Dobrian 2004;

Winkler 2001). Having begun experimenting with MIDI-based generative approaches in

Max, my pitch-tracking experiments were borne out of a desire to represent, as accurately

as possible, an acoustic signal into something manageable within such a MIDI-based

system. Unfortunately however, this optimisation process was not as simple as I had

initially anticipated, and by necessity pushed the creative development process towards a

 74

development style usually associated with problem-solving, software engineering

disciplines.

Figure 3: tthresho ldp i t ch subpatcher from newaudio tracking .maxpat

Based initially upon Miller Puckette’s fiddle~ external object (Puckette, Apel & Zicarelli

1998) (and subsequently using the more recent sigmund~ algorithm19), the abstraction

newaudiotracking.maxpat was programmed in order to convert fundamental frequency

analysis streamed from the fiddle~ object into MIDI note-on and note-off messages. The

purpose of analysing and representing a monophonic instrumental source in this way was

an attempt to extend the capabilities of fundamental frequency analysis available from

such external objects. The rationale being that such a standardised representation of the

acoustic signal would then enable an expansion upon my nascent, event-based generative

approaches by substituting MIDI input for real-time, instrumental input. With access to

19 Developed Miller Puckette for Pure Data, a port to Max iby Puckette, Lippe and Apel is available from

http://vud.org/max/

 75

high level objects such as fiddle~ and sigmund~, the work of a Max programmer wishing

to use fundamental frequency as a control signal within Max is on the surface ostensibly

simple. However, there are a number of delicate aspects to this process that make

efficient, accurate and reliable pitch to MIDI conversion a difficult task. Whilst both of

these objects provide adjustable parameters for the user wishing to optimise pitch-

tracking accuracy, in order to effectively represent an instrumental signal as MIDI data

some further programming is often needed.

 The work completed on this pitch-following abstraction was informed by the work of

Dobrian, who has illustrated techniques in the Max environment for discretising and

representing analysed pitch and amplitude data streams from an instrumental signal as

MIDI data (Dobrian 2004). The approach taken in newaudiotracking.maxpat made use of a

simple amplitude threshold technique to filter the pitch output of the fiddle~ object; only

allowing note-on messages to be generated after the input signal crossed a user-specified

amplitude threshold (see Figure 3). This technique was developed to work with the

internally defined amplitude thresholds of the fiddle~ and sigmund~ objects, which only

output so-called ‘cooked’ pitches above a specified amplitude. Making use of a user-

specified amplitude threshold, the abstraction reported a note-on after the peak

amplitude had exceeded the threshold level, packing the most recently analysed pitch

with its peak amplitude scaled to MIDI velocity range (0-127).

 The amplitude threshold described above was most useful however in determining the

all-important note-off data needed for generating MIDI sequences. This was achieved by

combining the detection of a negative threshold crossing with a timing mechanism to

generate a ‘note-off’ from the input signal after a specified time delay. This enforced a

sensitivity threshold for the amplitude input stream, mitigating spurious reports of MIDI

notes in quick succession that could be created by rapid fluctuations in amplitude from

the input signal. With regards to the pitch output of the fiddle~ object, another sensitivity

mechanism was included by way of a timing threshold, ensuring that only the most stable

pitch estimations were output as note-on messages. Finally, a ‘legato filter’ was also

included to force a note-off for stable changes in pitch from an input that were not

accompanied by a negative crossing of the amplitude threshold. From this basic MIDI

data the abstraction also took care of some initial timing analysis, calculating and

outputting both the duration of each note from note-on to note-off – the note’s delta time

 76

– and the period between successive note-on messages – or inter-onset-intervals (IOIs) –

enabling a rudimentary representation of the rhythmic distribution of MIDI note data.

 This amplitude-driven approach, recognising the limited stability of such pitch-

tracking algorithms, attempted to filter analysed pitch data to be represented as useable

MIDI information. The various filtering, thresholding and gating approaches deployed in

the abstraction mitigated hung MIDI notes and spurious pitch estimations with

reasonable accuracy. The abstraction was developed and tested using monophonic

sources (namely soprano, alto and tenor saxophones), and for my purposes proved a

relatively reliable means of representing traditional, note-based instrumental performance

as MIDI input for use in an interactive or generative system.

 Temporal pattern recognition 4.2.2

As the previous abstraction demonstrates, my programming endeavours at this time were

focused upon representing musical input in a computer music system as a series of

‘events’ (such as MIDI note-ons and note-offs). Such event-based methods, in addition

to providing a consistent link between the current analytical and generative aspects of my

programming work, also aided greatly in facilitating the analysis of temporal patterns

from an input source. Consequently, this period gave rise to some experiments with the

analysis, storage and recognition of various aspects of musical timing from an input.

Having implemented some basic schemes for analysing both inter-onset-intervals and

delta times from an acoustic signal, I began to make use of such basic timing information

to glean more information about a live performance, seeking to recognise basic temporal

patterns from an input. Such an analytical approach was initiated by a desire to siphon as

much information as possible from the performance of an improvising instrumentalist,

knowledge that might later be used in the generation of new musical material by the

computer.

 In these experiments with temporal and rhythmic analysis, I sought to make use of the

preliminary analyses of IOIs in order to track higher-level rhythmic trends, facilitating

the recognition of common temporal gestures such as accelerations and decelerations, as

well as specific rhythmic sequences. These approaches, in contrast to the more

representational focus of the above-described pitch-tracking abstraction, required a shift

 77

towards a higher-level, analytical approach in my programming practice. However, for

reasons that will become clear towards the end of this section, this foray into higher-level

analysis was a relatively short-lived part of my development trajectory. In spite of this,

the technical achievements of these experiments did help to reveal some conceptual

boundaries in my approach to the use of various forms of analysis in the development of

interactive music systems.

 As a starting point for the recognition of temporal patterns, the abstraction

aceldeceldetect.maxpat sought to recognise specific acceleration or deceleration gestures

analysed from an input source. The choice to track accelerations and decelerations from

an improviser was directly influenced by the kinds of rhythmic gestures that had become

common in my saxophone playing during this period. My improvisational style was often

characterised by short and often pointilistic gestures without a stable underlying pulse,

and I was therefore interested to see if the recognition of such temporal gestures might

be useful in developing the generative capabilities of an interactive music system. The

algorithm worked by comparing successive IOIs analysed from an input source, and

reporting the appearance of ‘absolute’ acceleration and deceleration gestures; i.e.

temporal gestures represented by consistently increasing or decreasing inter-onset-

intervals.

 In the algorithm, an acceleration gesture was recognised and reported if each

successive IOI was shorter than the previously analysed IOI across a finite sequence of

impulses. Conversely, a deceleration gesture would be recognised and reported if each

IOI became progressively longer (see Figure 4). The abstraction therefore provided some

basic conditions to which any input sequence must conform in order for such a gesture

to be recognised. The two independent algorithms tested input IOIs concurrently over a

user-specified number of impulses, and would output a message indicating whether or

not a gesture of either type had been found. Using this simple form of iterative

comparison, the algorithm was therefore able to detect these two specific types of

temporal gesture from an instrumental input of either an acoustic or digital origin.

 78

Figure 4: Impulses forming an absolute deceleration gesture

 However, whilst testing this abstraction during development it became clear that

human performances of these types of gestures did not always conform to such absolute

temporal relationships. In my iterative testing of the abstraction using both digital

(keyboard/mouse and MIDI keyboard) and instrumental (saxophone/electric guitar)

inputs, I learned that such an exact measure of acceleration or deceleration was not

necessarily correlated to a perception of these gestures in a musical sequence. As the

algorithm left no room for error when searching for the recognition of these temporal

gestures, it would often not detect the inexact and slightly ‘noisy’ nature of human

performance. In addition, because the focus of the abstraction was concerned with

pursuing efficient means of recognising input patterns, not enough thought had been put

into the integration of such an algorithm into an eventual working interactive system.

Beyond proving useful as a technical exercise, the output of the algorithm remained less

than inspiring due to the focus upon simply reporting the recognition of these gestures.

 As a result of these issues, two revised abstractions (acceldetectthreshold.maxpat and

deceldetectthreshold.maxpat) were developed that sought to give the recognition algorithm

more flexibility with respect to the inexact nature of human timing, and further outputs

were added to enhance the usefulness of such an algorithm as a component within an

interactive system. As the names suggest, these new abstractions incorporated flexibility

in their recognition strategy by means of a thresholding mechanism. A detection threshold

incorporated into each abstraction enforced a degree of tolerance when analysing

successive inter-onset-intervals to determine whether or not an acceleration or

deceleration gesture had occurred in the input. This tolerance allowed for some degree of

error in the recognition of these temporal gestures, by enabling a percentage of IOIs that

did not conform to an exact accel/decel trajectory to pass through without affecting the

overall recognition of the gesture.

 79

Figure 5: Inside the aacc e lde t e c t thresho ld abstraction

As illustrated in Figure 5 above, throughout the duration of a user-specified number of

impulses, the acceleration detection algorithm maintained a ‘yes count’ of the total

number of occurrences of decreasing IOIs received from an input (i.e. those that

conformed to an acceleration trajectory), in addition to the number of IOIs that did not

conform, a ‘no count’. The user-specified detection threshold, represented as a

percentage, was used to specify exactly what percentage of analysed IOIs must conform

to the expectation of a progression of decreasing IOIs in order for an acceleration to be

recognised. This augmentation of the original algorithm represented a form of statistical

filtering that, whilst relatively simple, enabled a degree of freedom between individual

impulses whilst still requiring a sequence of IOIs to satisfy either a decreasing or

increasing trend, i.e. an acceleration or a deceleration. Such a tolerance measure ensured

that despite the possibility of a select few errors occurring in an input sequence, an

overall acceleration of deceleration trajectory could still be recognised from the input.

 80

 Secondly, as alluded to above, it was decided that taken alone, the simple reporting an

accel/decel gesture (represented by the output of a bang message in the Max

environment) would not prove very useful as a data type to be used into a developing

interactive system. This type of temporal pattern recognition was quite specific, and the

simple recognition of such patterns was not seen as especially useful in the development

of machine behaviours in response to an improviser’s performance. Although useful as a

technical exercise, this approach began to represent part of a ‘crisis of relevance’ to the

overall goals of my programming practice at the time. After reflecting upon this, in

addition to the momentary reporting of these gestures, a skeletal reduction of each

gesture recognised was also collated for output alongside the reporting of a recognised

gesture. As is shown in the bottom right of Figure 5, the third outlet of each abstraction

was reserved for the output of a list of analysed values from each of the gestures

recognised from an instrumental input. This list was comprised of three values stored

during the comparison process, namely the first IOI analysed from the gesture, the

gesture’s final IOI, and the total elapsed time in which the recognised gesture took place.

 In addition to simply recognising a gesture therefore, the algorithm now acted as a

reductive mechanism for sampling performance data from an instrumentalist. By

outputting a reduced version of the gesture itself, the abstraction facilitated the

approximate recreation of temporal gestures analysed from the live performance of an

instrumentalist. In practice, such a recreation required only a limited amount of further

programming to achieve, an example of which is illustrated in Figure 6. This figure

illustrates how two captured lists of timing information (the first representing an

acceleration and the second a deceleration), combined with a timed ramp of control data

(the line object) and a variable rate metronome (the metro object), facilitate the

approximation of the original contents of gesture analysed from an input. Whilst not

recreating the exact temporal relationships between the impulses analysed in the original

gesture, this reduced form was flexible enough to enable an interactive system the

capacity to dynamically store, perform and alter specific rhythmic gestures siphoned

from an instrumentalist during performance.

 81

Figure 6: Using accel/decel lists to generate rhythmic gestures

By intentionally reducing analysed gestures so that they may be output as complimentary

data, this algorithm had clearly strayed from its original purpose. What had begun as a

technical exercise in pattern recognition had been augmented to directly facilitate the

generation of rhythmic patterns as derived from an input. Acceleration and deceleration

gestures, at first the subject of a directed form of pattern recognition, had become a

direct link to an interactive system’s generative potential. Through this simple form of

reductionism, a strictly analytical algorithm had therefore been linked directly to the

development of a repertoire of rhythmic gestures for a developing computer music

system.

 In parallel with the development of the above algorithms I also began experiments

that sought to further these pattern-matching techniques into a more deterministic space.

The most notable of these experiments was the abstraction titled findthatrhythm2.maxpat, a

program that compared impulse sequences from an input source with pre-defined

 82

rhythmic patterns stored on disk. The purpose of findthatrhythm2.maxpat was to

experiment with the possibility of using such rhythm recognition techniques to provide

high-level, analysis-based control triggers to an interactive music system. Given that this

abstraction was focused upon the recognition of patterns from an input, its predominant

output (the report of a recognised rhythm) remained largely similar to that which I had

identified as undesirable in the pattern recognition work described-above. This program

therefore suffered from a similar ‘crisis of relevance’ within my programming practice.

Despite these misgivings however, I used the development of this abstraction to further

expand upon some of the thresholding techniques I had been developing, as well as to

integrate the acceleration and deceleration detection algorithms I had developed into a

more specific, pattern recognition context.

 The abstraction was tasked with the following objectives:

 to compare a sequence of impulses from an input with a stored rhythmic pattern

 to report that a rhythm has been recognised

 to provide a ‘performance score’ to the user showing how similar the input

sequence is to the stored ideal

In this abstraction the process of comparing input sequences to stored rhythms was

achieved by representing rhythmic patterns as simple temporal ratios. These ratios were

related neither to either a central pulse, absolute inter-onset-interval values nor to an

overall time signature, but rather to the initial relationship between the first two impulses

in a sequence.

 As an example, a rhythm such as the rhythmic sequence shown in Figure 7 would be

expressed as the following sequence of ratios: 1. 0.5 0.5 1. 2. 1. 2.

Figure 7: Example rhythmic sequence in ff indthatrhy thm2.maxpat

 83

By representing rhythmic patterns as ratios, the successive comparison of incoming IOIs

with sequences of stored ratios became a relatively trivial task. In order for the algorithm

to compare live input to stored sequences, the abstraction first represented the incoming

IOIs as ratios to the first IOI analysed from the input, and then compared subsequent

incoming ratios with those stored in a sequence chosen by the user.20 As discovered in

the initial pattern recognition algorithm discussed above, it was important however to

provide a measure of flexibility for the real-time comparison of the input source, as

human performance of even the simplest of rhythmic patterns could never conform to

the exact ratios expected by the algorithm. Consequently, a threshold percentage similar

to that discussed above was employed, enabling a degree of error when comparing

incoming ratios with those stored on disk. This threshold mechanism enabled analysed

IOI ratios to pass above or below the ideal ratio r by a user-specified tolerance factor t,

represented as a percentage of the originally stored ratio. Each successive incoming ratio

would be counted as a match between the ranges of r + tr and r – tr.

 For example, in a performance seeking to match the rhythm illustrated in Figure 7,

with a tolerance factor of t = 0 the algorithm could only accept incoming rhythmic ratios

that exactly matched the sequence 1. 0.5 0.5 1. 2. 1. 2. However, with a tolerance factor

of t = 0.3, the following ranges of values would be accepted as representing the stored

ideal rhythm: (0.7 – 1.3) (0.35 – 0.65) (0.35 – 0.65) (0.7 – 1.3) (1.4 – 2.6) (0.7 – 1.3) (1.4 –

2.6). Such a metric therefore made the recognition of stored rhythmic ratios more

tolerant to noisier, human temporal fluctuations. In addition to the above recognition

algorithm, a metric for reporting a simple ‘performance score’ for these input sequences

was also developed. The metric first calculated the absolute difference between a list of

performed ratios with the ‘ideal’ sequence stored on disk. If the performed sequence

satisfied the recognition algorithm described above, the algorithm then computed and

output an average accuracy of the performance as a percentage across the entire

sequence of ratios (see Figure 9). This performance score was output alongside the

momentary bang message indicating the recognition of a stored sequence.

20 The abstraction was designed to test a performance against a specific stored rhythm chosen by the user.

It is conceivable that a more sophisticated design could match an incoming performance to a rhythm

stored in corpus of rhythms, however this kind of matching was not implemented in my work at this time.

 84

Figure 8: Inside the ff indthatrhty thm2.maxpat abstraction

 85

Figure 9: Performance score algorithm from ff indthatrhy thm2.maxpat

As mentioned above, findthatrhythm2.maxpat also integrated acceleration and deceleration

detection as a core element of its design. Making use of the above-described

acceldetectthresold.maxpat and deceldetectthreshold.maxpat, the abstraction gave an indication of

the overall tendency of the rhythmic performance to either accelerate or decelerate

across the course of the pattern being analysed. Due to their specific focus upon

acceleration and deceleration detection, these algorithms were re-purposed to aid in the

detection of such temporal trajectories in relation to stored sequences, as opposed to the

recognition of the specific temporal gestures of acceleration or deceleration.

 To achieve this, the abstraction computed the difference between each incoming

performance ratio and those of the stored sequence, passing these differences as direct

inputs to both the acceleration and deceleration detection algorithms. The length of the

ideal sequence was chosen as the length to test for an accel/decel trajectory, allowing

these algorithms to report whether or not the analysed performance tended to accelerate

or decelerate across a the length of a stored sequence. In addition to the momentary

reporting of an accel/decel tendency from the performance, the abstraction also output a

 86

value indicating exactly how much faster or slower the performance was to the stored

ideal, as tested using analysed ratios.

 Although findthatrhythm2.maxpat had been designed as an analysis abstraction for use in

larger musical systems, it remained largely a proof of concept system that was not

pursued further after its initial development. The shift from input analysis and

representation to pattern recognition had been a surprising development in my

programming practice at this time. Having begun by searching for interesting methods of

informing generative processes through analysis, my trajectory had led me towards a

deterministic approach that, whilst technically interesting, found no real place in my

developing creative trajectory. It had become clear to me that whilst the potential for

detailed, idiosyncratic pattern recognition techniques was technical feasible in my

practice, their potential use for informing the generation of musical material in

performance remained limited. Whilst I had been comfortable developing idiosyncratic

pattern recognition techniques that reflected my musical pre-occupations, soon after

their implementation I began to question the purpose of pattern recognition as an

interactive strategy in the context of non-idiomatic, improvised computer music

performance.

 A concern that emerged from this period of development was related to the relative

usefulness of specific levels of analysis used to inform a generative algorithm of the

context of a live performance. Such was the experimental nature of my programming

practice at this time that, despite my initial goal of providing a system a rich array of data

analysed from an instrumentalist, the specificity of the knowledge gained from analysing

a musical input had reached a threshold for my practical purposes. I believe that moving

from FFT analysis to MIDI representation helped nourish a desire for higher-level

analytical knowledge about an improviser’s performance, which in turn led to a level of

determinism that I was uncomfortable with as an interactive mechanism in computer

music performance. Beginning with the analysis of acceleration and deceleration

trajectories, it soon became clear that the practical use of detecting patterns in an input

would require of a system a level of prior knowledge about the possible range of musical

gestures of a performer, which in turn would limit a system’s ability to respond to a

greater diversity of musical material without developing an extensive array of such

recognition algorithms.

 87

 After exploring these avenues in some depth, it was decided that these ideas were not

worth pursuing any further in my work, as they had strayed far from the original goal of

developing novel interactive and generative techniques for improvised human-computer

performance. These recognition experiments, whilst novel, remained sufficiently

abstracted from this goal that my attempts at this time to steer them towards this

purpose remained somewhat cumbersome and deterministic. However, the approach

that remained the most useful from these experiments was the choice to output and store

reduced versions of detected accelerations and decelerations. An example of the

implementation of these ideas into larger systems can be seen in the patches

audiotomiditest.maxpat and interactiveoptions.maxpat, where the detection of such gestures was

used to build databases of analysed temporal gestures to be triggered for output. Such an

approach, originating in experiments in pattern recognition, came to dominate my

programming practice at this time, leading to further exploration of such ‘data sampling’

techniques for use in the development of autonomous system responses to live

instrumental input.

 Data sampling techniques 4.2.3

After implementing the above-described method for reducing and storing temporal input

gestures, I began experimenting with methods of using such data for creative purposes.

In addition, it was also during this period that I began to further explore methods for the

sampling and storage of other types of performance data that could be later called upon

for use by the computer in an interactive environment. The reduced gestures of these

accel/decel sequences, comprising of a small amount of data, became a useful starting

point for a variety of methods that sought to gather information from the instrumentalist

for later use. The patches alluded to above, audiotomiditest.maxpat and

interacrtiveoptions.maxpat, were the first to include this sampling and storage method as a

part of larger interactive environments, alongside other nascent methods for capturing

performance data from a live instrumental performance. As is clear from their titles,

these two patches were not however developed as integrated musical systems, but rather

as collections of options being explored in the development and testing process. As many

of these options had arisen from programming experiments developed in isolation from

the approaches discussed previously, these two patches provided a locus for a heuristic

approach to developing larger, interactive musical systems.

 88

 Audiotomiditest.maxpat and interacrtiveoptions.maxpat explored a combination of triggered

processes, MIDI transformations, delayed and re-mapped amplitude envelopes and well

as direct one-to-one mapping of analysed pitch to parameters of synthesis and processing

modules such as additive synthesis and sound file granulation.

Figure 10: ee las t i c i t y s torage .maxpat

Importantly however, both of these patches made use of complimentary algorithms that

implemented accel/decel detection for the sole purpose of gesture storage and

performance. These abstractions repurposed the original momentary recognition

algorithm towards its direct implementation in an interactive environment. In both

audiotomiditest.maxpat and interactiveoptions.maxpat, the output of the note-on detection from

newaudiotracking.maxpat was used as an event input to elasticitystorage.maxpat, which

contained a data collection that incrementally stored detected acceleration and

 89

deceleration trajectories analysed from this input (see Figure 10). Elasticitystorage.maxpat

was designed to store these trajectories in a cumulative data collection, so that their

contents could be accessed for output by any algorithm seeking to use these rhythmic

gestures in a larger interactive system. In the case of audiotomiditest.maxpat, a basic second

abstraction was used to trigger output of these stored gestures by an additive synthesis

module playing exponentially decaying bell tones. The mapping of this abstraction

however remained limited both with respect to the choice of gesture to output (a

randomised choice), and the way in which the gestures were triggered (following a time

threshold linked to the duration of an incoming MIDI note-on and off data).

 In interactiveoptions.maxpat, the elasticityread.maxpat abstraction was first implemented, an

abstraction that enabled a more flexible means of outputting gestures stored in

elasticitystorage.maxpat. This abstraction enabled the user to choose from three types of

output from the gesture data collection, randomised, sequential, or discrete, the latter allowing

the user to specify an exact index of the gesture desired for output. In

interactiveoptions.maxpat this abstraction was implemented once more with the additive

synthesis module described previously. Despite these additions however, the means by

which gestures were output remained the same. Relying upon the direct triggering of

these pre-analysed gestures, this approach remained limited as a generative strategy as

this storage and output approach did not help to provide an autonomous and

contextually-aware musical contribution to an improvisation with a live musician.

 Another approach taken at this time was to provide a more flexible means with which

to facilitate the sampling of time-varying data, and to investigate more permanent

methods for capturing and storing such data. The abstraction dataatintervals.maxpat was

created in order to facilitate the sampling of time varying data from an input source.

Originally conceived for the sampling of amplitude data from a live signal, this

abstraction was generalised in order for it to be used to capture, store, output and alter

any time-varying control data in the Max environment (see Figure 11).

 90

Figure 11: ddataat in t erva l s .maxpat graphical user interface

In contrast to the reductive mechanism applied in elasticitystorage.maxpat, this abstraction

was designed to store lists of floating-point numbers pertaining to individually sampled

data points captured from a live signal. Each data point captured in a locally stored data

collection was accompanied by a ramp time value representing the sampling rate at which

incoming data had been captured for storage in the collection. As these temporal

gestures were stored as discretely sampled points, the ramp time value was included so that

this information could be later used to aid in the compression and expansion of stored

temporal gestures upon output. Dataatintervals.maxpat therefore provided a direct link

between the sampling rate chosen for the capturing of performance data, and the ability

to alter the temporal identity of captured gestures. This separation between the data

point and its sampling rate was chosen due to its ability to interface with the commonly

used line object in the max environment, which provides for a linear interpolation

between data points over a specified ramp time.

 An important element of this abstraction was its ability to read and write data to and

from disk, enabling captured temporal gestures to be made use of beyond the confines of

a single interactive session. For data storage, the simple user interface of

dataatintervals.maxpat asked the user to choose a target folder for their data collection to

reside on disk, in conjunction with a unique filename type. After setting the ramp time, a

user could enter their continuous data into the internal data collection of the abstraction

for storage.

 91

Figure 12: Amplitude curves sampled from the tenor recorder using ddataat in t erva l s .maxpat

 92

Once a temporal gesture was complete, clicking ‘write/clear coll data’ would write a new,

indexed text file containing the gesture to the target folder, with each subsequent gesture

incrementing the numbered index. To read gesture files previously stored on disk, the

abstraction automatically populated a menu of indexed text files corresponding to the

filename type chosen at the top of the interface. Once a gesture had been chosen for

output, the interface displayed some meta-data about the temporal gesture useful for

scaling of control parameters, including the minimum and maximum value of the

gesture, the number of data points in the file, the stored ramp time of the gesture and

finally the file’s original length in milliseconds (determined by the sum the ramp times

values stored alongside each data point). Most importantly, the ramp scale value included in

this abstraction enabled the real-time adjustment of a gesture’s output ramp value,

enabling the temporal dimension of these stored gestures to be easily altered in real-time.

 This abstraction marked a change in the way in which data sampling was managed in

my work. Previously to dataatintervals.maxpat, the approach taken towards sampling real-

time performance data was local to a specific interactive session. That is, data sampled

from a performer was only envisaged for use within the same session, with no prevision

for this data to be used in other interactive contexts. Dataatintervals.maxpat was

specifically designed as a means of collecting real-time, continuous data streams for use

outside of any one, specific interactive context. Although the abstraction could be used

in this way, its primary goal was to enable the efficient and flexible future use of

performance data siphoned from a performer. During this period, I made use of the

abstraction to store temporal gestures from a variety of time-varying sources, ranging

from sampled amplitude curves (see Figure 12 for an example) to movement and

acceleration data sampled via OSC from sensors within smartphone applications. These

pre-analysed temporal gestures were made use of to automate a variety of control

parameters of complex sampling and synthesis modules such as phase vocoders and

sound file granulators. Sampled gestures such as these provided a useful, non-

randomised means of automating certain musical parameters in systems either directly

controlled by a performer (a sampler), or triggered by event-based analyses of improvised

performances.

 93

 Probabilistic Methods 4.2.4

4.2.4.1 DurationalProb

DurationalProb was the first fully functional system developed in this research that was

intended for use as an interactive system for improvised performance. The software

represents the culmination of numerous experiments that investigated the relationship

between input analysis and generativity in the creation of an interactive music system. As

with much of my early programming experiments, this system made use of the MIDI

protocol as its main source of both musical input and output. Taking a stream of MIDI

note/velocity pairs from an improvising musician (on any MIDI-enabled instrument,

or through a pitch to MIDI converter), the software generated new and varied material

by referencing a cumulative history of the captured performance data, enabling an

interactive dialogue to develop between human and machine in an

improvised performance.

Figure 13: DDurat iona lProb Max patcher

 94

Making use of the cumulative history of MIDI data streamed from a musician's

performance, DurationalProb sought to mine a musician's past performance as a tool

for achieving autonomous generativity in a computer music system. The data sampling

approach used in this system manifested itself in numerous programming experiments

undertaken at this time, and it became central to my thinking about the relationship

between interactivity and generativity in computer music performance. The possibility of

recognising the genesis of a computer's musical gestures in one's own performance,

whilst at the same time being presented with self-generating structures was very

appealing to me as a performer. The majority of my work in this area has involved

variations on this approach.

 DurationalProb makes use of analyses of a musician's performance in order to

dynamically create state spaces that the system uses to create its own material. The creation

of these state spaces is achieved by collating the number of occurrences of the various

notes, velocities and timing information captured from a live MIDI performance into a

series of performance histograms. These parameter histograms are useful for any number

of generative algorithms to mine for patterning and generation, from simple probabilistic

generation to more complex data-mining methods. Durationalprob made use of

probabilistic techniques in developing histograms from MIDI note and velocity

information, as well as analysed timing information extrapolated from this MIDI data

captured from a performer. The generative strategy treated the histograms as simple

probability tables to lookup for note generation, creating a statistical system with

multiple, independent musical parameters generated simultaneously from independent

histogram data. In this approach, the greater number of occurrences of a particular value

analysed from the input, the higher probability weighting given to that value,

therefore increasing the likelihood that it would be chosen for output during

performance by the software.

 Despite the simplicity of the probabilistic methods employed, this approach provided

the potential for rich and varied musical generation due to the multi-dimensional nature

of the data siphoned from the performer. Although the separation of these musical

parameters into independent histograms might be seen as somewhat arbitrary, such a

parametric approach to musical composition has historical precedent as a method of

 95

structural generativity in musical composition, from the isorhythmic compositional

approaches 13th and 14th century composers such as Philippe de Vitry and Guillaume de

Machaut, and later to the parametric techniques of the 20th century integral serialists

(Taruskin 2009).

 However, although ostensibly useful as a data driven method of musical generativity,

an obvious limitation with such a probabilistic approach in interactive performance is

that the system's generative capabilities are devoid of any context from which stored data

points appear in the analysed input. That is, although the accumulation of statistics on a

musician’s performance creates a rich state space representing statistics on past

performance, a simple probabilistic method of generating new material from this space

lacks any connection to the temporal trajectories of the original input sequences. The use

of probability in musical composition has a long and rich history, belonging to a family

of algorithmic approaches referred to as stochastic music (Roads 1996, p. 868). However, in

the context of live, interactive performance, such static methods for generating musical

material remain musically unconvincing. From melodic and dynamic shapes to timbral

changes, understanding musical patterns as occurring both in series and in time is central

to achieving convincing musical generativity. A probabilistic approach that took into

account the sequential context of musical patterns was sought next in my practice.

4.2.4.2 Tripartite Markovia21

Figure 14: The TTripar t i t e Markovia graphical interface

21 Two demonstration videos of this software can be viewed at the following URLs:

https://www.youtube.com/watch?v=byZjyBiehmk and https://vimeo.com/19863192

 96

Tripartite Markovia makes use of the Markov property for its generation of new musical

material in performance, a mathematical principle that has been used to model random

processes using probabilistic methods. Markov chains have been applied in a variety of

fields, extending classic probability theory to account for the temporal aspects of

randomised events. A Markov chain is a probabilistic process that uses the outcome of a

previous probability experiment to affect the outcome of future experiments, thereby

creating chains of events that are dependent upon the previous output of the process

itself (Grinstead & Snell 1997). Markov chains have been used in algorithmic

composition since the late 1950s, and have proven to be a useful method of creating

coherent musical structures in both compositional and interactive musical systems (Ames

1989; Roads 1996; Zicarelli 1987). Fundamental to the Markov property is what is called

the transition matrix. The transition matrix is a stochastic matrix that contains probability

weightings for the transitions between events in an n-dimensional state space. As these

matrices hold weightings for the transitions between events and not of the individual

events themselves, Markov chains generate sequences that are dependent on their own

history of decisions. Chosen states are fed back into the Markov process, which are

subsequently evaluated to provide the next state, thereby creating a chain of discrete

events that are dependent on a previous output state.

 One of the most important properties of Markov chains is its order, the property of the

transition matrix that determines how many previous events in the chain are taken into

consideration when determining the next event. For example, a zeroth-order Markov chain

describes a standard probability distribution, as exploited in the above-described

DurationalProb. Such distributions are one-dimensional, meaning that a decision about the

next state is not informed by the preceding state in the chain, but only by the standard

probability weightings of all possible states. Sequences generated by zeroth-order chains

are therefore not imbued with any sense of historical context. First-order chains however

rely on a two-dimensional matrix that describes the probability that the current event will

be followed by another event. Such a Markov chain creates a sequence where each event

is determined by probability weighting attached to its immediate predecessor (Ames

1989). First-order Markov chains are therefore the simplest instantiation of the Markov

process, whereby the output sequence takes into account part of the history of

probabilistic decisions. As the order of a Markov chain increases, so too does the

specificity of the sequential nature of the chain itself. The output of a second-order Markov

 97

chain takes into account the probabilities of two preceding decisions in the chain,

whereas a third-order chain takes into account the three previous decisions and so on.

When used in conjunction with transition matrices derived from an input source – such

as MIDI note data siphoned from a live performance – higher-order chains such as these

begin to more closely resemble the input sequence itself.

 Given my interest in creating generative processes derived from data-sampling driven

approaches, the application of Markov chains provided interesting and contextually-

aware musical results when applied in tandem with real-time data sampling methods. In

Tripartite Markovia, the transition matrices themselves are generated interactively from a

growing histogram of MIDI data streamed from the performance of an improvising

musician. As its generative basis, Tripartite Markovia employed four independent first-

order Markov chains that combined the data-sampling approach discussed above with a

probabilistic process that took into account the historical nature of the data gathered

during a musician’s performance. Listening to the MIDI input of a live performer, the

software streamed and collated four musical parameters into separate histograms for

MIDI note number, MIDI velocity number, inter-onset-interval (in milliseconds) and

MIDI note duration (in milliseconds). These histograms were then used to build four

independent transition matrices informing the state transitions of the Markov chains

tasked to generate new material for the improviser to respond to in performance.

 In Tripartite Markovia, the Markov property is exploited for use in its simplest form,

making use of only first-order Markov chains in its design. Given this restriction, the

ability of the chosen method to accurately model input sequences was admittedly limited,

as the implementation of lower-order chains creates less predictable output than those of

a higher order. However, in designing an improvisation system whose generative

potential was based solely on material extracted from a performer’s performance history,

a balance was sought between the generation of recognisable musical gestures, and the

creation of novel musical trajectories from this source material. In other words, the

Markov property was not chosen in order to accurately model the stylistic tendencies of

an improviser, such as in the work of Pachet (2002) or Assyag et. al (2006), but rather it

was used as a novel and efficient means of generating complimentary material from a

history of the performer’s actions.

 98

Figure 15: The ppi t ch_markov subpatcher contained within Player 1 . The anal object is responsible
for building a histogram of incoming MIDI notes, whilst the prob object is used to build the
necessary transition matrix from this data

As the software made use of these first-order Markov chains for multiple, simultaneous

musical parameters, the system was able to generate a complex and nuanced response

derived from the musical input of an improviser. This process was aided by the

independent nature of the Markov chains assigned to each musical parameter. Given that

these Markovian sequences exhibit a great deal of unpredictability, the probabilistic

trajectories of these independent parameters displayed a degree of opacity in the resulting

musical material. The relationship between rhythmic and pitch sequences can therefore

be described as creating a type of parametric counterpoint, again reminiscent of the

isorhythmic and serial methods mentioned in relation to the DurationalProb system

described in Section 4.2.4.1.

 In addition, as suggested by the software’s namesake, the computer’s generative

responses to the performer were expanded to encompass three, separate ‘Markovian’

performers that each made use of independent transition matrices developed during an

improvisation. Tripartite Markovia was therefore designed to provide the performer with a

virtual ensemble with which to improvise in performance. This virtual ensemble,

following the sequential nature of the Markov process, was designed to follow a pre-

 99

configured direction of influence that affected the development of transition matrices, the

output of the resultant Markov chains as well as their temporal synchronisation. Rather

than creating three identical players with access to the same transition matrices, a

sequential method of passing MIDI information from the live performer was

implemented, so that each performer accessed the material siphoned from the improviser

at varying degrees of abstraction. This direction of influence is represented in the

graphical interface of the software (see Figure 14), and is described as follows:

 First, player one receives raw MIDI information from the live performer and begins to

build a transition matrix based on four elements analysed from the performer (pitch,

velocity, IOIs and duration). After waiting for a random number of MIDI events from

the performer, player one begins generating new material by referencing its internal

transition matrices. As player one begins to output material, player two builds its matrices

directly from the data output by player one. The transition probability weightings used by

player two therefore refer only to the analysed output of player one, and not the live

performer directly. After a randomised number of events collated from player one, player

two begins to generate material by referring to its internal matrices. Subsequently, player

three builds its transition matrices in a similar fashion, by referring only to the output of

player two’s material. Player three is tasked with generating five-note chords taken from the

sequential output of its MIDI pitch transition matrix, modified with an octave

transposition value per note. Player three therefore generates a harmonic layer to the

contrapuntal texture of players one and two, modeled upon the output of player two.

 The complex and interdependent nature of Tripartite Markovia’s generative strategy

resulted in a highly polyphonic musical texture from the system. The level of complexity

exhibited by the software was unsurprising given the independence of the various

musical parameters, and the sequential, dependent relationship created between the

Markovian players. Such a degree of complexity generated from the input of a sole live

musician was enticing and provocative as a performer interacting with the system,

however it was specifically in the temporal domain that I felt that the independent nature

of the various Markov processes began to crowd the musical texture. The rhythmic

generation of the three players was not tied to a metric grid, as it was my intention to

maintain the elasticity of the original temporal sequences in the software’s output.

 100

Figure 16: The pprobabi l i t yp layer1 subpatch from Tripar t i t e Markovia . In red, individual markov
chain algorithms per parameter; in blue, the synchronisation algorithm.

 101

Instead, the Markov chains generated from IOI and note duration data were built using

absolute values represented in milliseconds, as analysed directly from the input. In

comparison to the parameters of pitch and velocity, which exhibit a maximum of 127

possible values, relying upon absolute durational values as input into the system resulted

in a limited array of possible transitions between states. Despite their low order, the

Markov chains built from this temporal data exhibited more determinism than other

parameters in the system.

 Although these rhythmic sequences exhibited more determinism, the parametric

independence inherent in each player, coupled with the indifference each player

displayed to their current musical surroundings, resulted in complete temporal autonomy

between the three computer parts and the live input. Given this, it was decided that a

balance needed to be struck between this temporal autonomy and maintaining musical

coherence between the various parts in the improvisation. This related both to the

interaction between the three players themselves, as well as in the interaction between

real-time input of the musician and the system as a whole. Searching for this balance,

subsequent programming experiments proceeded in a heuristic fashion, trialing different

methods of constraining and linking the temporal output of the three players with

respect to each other and the live input.

 These constraints worked on two primary levels of control. First, by implementing

algorithmic control over the global level of musical density, and second on a local, event

by event level, by forcing rhythmic convergence between the various parts in the

improvising ensemble. Seeking to constrain the density of the system’s global output,

control over which player was heard at any one time was outsourced to a quasi-random

control system known as the playbackfilter algorithm, which followed the same direction

of influence present in development of the player’s transition matrices described

previously. In contrast to the autonomous means by which the players generated their

material, this control mechanism gave the performer a direct yet opaque form of control

over the output of the system. In addition, the same control mechanism gave the three

players themselves control over each other’s presence in the resulting musical output.

 As an improvising musician performs, the inputplaybackfilter algorithm counts the

number of events performed by the improviser, only enabling the output of player one

 102

after a randomised number of note-on messages – its playback threshold – has been

reached. After beginning to output material, player one’s playbackfilter counts the number of

events it has performed, subsequently turning on player two’s generative output after

reaching its own internally generated threshold value. If still playing, player one will also

turn off player two’s output after another randomised number of events has been reached.

In turn, player two has the same direct control over the output of player three, ensuring that

this player (performing only chords) is constrained by the output of player two, which is

itself constrained by the output of player one. To close the loop, player three has direct

influence over the output of player one, so that if no live input is being fed into the system,

the three players are able to self-regulate the global density of the system as a whole.

Figure 17: The ssyncedwinput subpatch from Player 1 . See Figure 16 above for context.

With respect to constraining local rhythmic relationships, a time threshold mechanism

was implemented that synchronised the active players in the system in a hierarchical

manner (see Figure 17 above). This synchronisation hierarchy also followed the same

direction of influence discussed above, proceeding from the live input, to player one, then

 103

player two, followed by player three and back again to player one. A synchronisation threshold

value (shared amongst the three players) was consulted in order to determine whether or

not a player should synchronise with the preceding player in this loop. Beginning with

the live input from the performer, passages would be synchronised if their IOIs were

smaller than this threshold value (i.e. faster). If true, synchronisation was achieved by

momentarily bypassing the output of a player’s IOI Markov chain in order to

synchronise directly with the incoming events of the player preceding it. The process

occurred only if the preceding player was active, and if the player’s incoming IOIs fell

below the user-defined threshold value in milliseconds. After some initial tests of this

approach, it was decided that complete unison rhythm added an undesirable level of

predictability to the output of the system as a whole. To improve upon this, a final

filtering algorithm was included in order to alternate, in a quasi-random fashion, between

complete rhythmic unison on the one hand, and synchronising with every second event

received from the preceding player.

Figure 18: Scored excerpt of a performance using TTripar t i t e Markovia – rhythmic values
quantised to the nearest 32nd note value.

 104

The constraints on the rhythmic independence of the various parts can be seen in the

transcribed excerpt of an improvisation displayed of Figure 18. The top line displays the

live, improvised part (performed on a MIDI keyboard), whilst the bottom three layers

represent players one, two and three of the software.22 As can be clearly seen in the score,

the rhythmic gestures of the live performer constrain the computer’s rhythmic

performance. At the recorded tempo of 110 bpm, and with the synchronisation

threshold set to the default value of 500ms, all rhythmic values faster than a crotchet beat

(545ms) are filtered through the synchronisation algorithm discussed above. Bars 31-34

are a good example of this process. In bar 32, player one (second line) performs in

complete synchrony with the live performer (top line). Given that the majority of

rhythmic values in this bar are shorter than a crotchet in length, it is clear that player one’s

synchronisation algorithm has been invoked at this point.

 Meanwhile, player two (third line) carries over a c-sharp from the previous bar, before

synchronising with the fifth septuplet pulsation of player one inside beat two of bar 32 (the

c-sharp). The appearance of this held pitch is due to the fact that the pitches performed

by player one are longer than one crotchet beat at this point – hence not constraining player

two. The septuplet synchronisation of player two to player one in bar 32 displays the periodic

synchronisation of the algorithm as described above. This synchronisation with player one

was invoked by a series of short durations from that player, after which player two

continues to hold for a longer duration into bar 34. This subsequent change from

synchronisation to independence in bar 34 follows the tied low c-sharp player by player

one, a duration that is longer than the synchronisation threshold once more.

 As exhibited by the programming trajectory described above, decisions were made

throughout the development of Tripartite Markovia in order to constrain the inherently

autonomous nature of the Markov generation process. The multi-layered, parametric

autonomy exhibited by this system, owing to the use of simple first-order Markov chains,

resulted in a form of system autonomy that posed challenges for maximising its potential

as an interactive musical system. The probability experiments of this period solidified an

approach to sampling performance data as a powerful generative strategy for use in

interactive, human-machine performance. However, through working with these

22 The five note chords of player three have been filtered to the lowest sounding pitch in this particular

example.

 105

algorithms in performative testing, it became clear that to maximise a system’s interactive

potential, autonomous methods such as these needed to be balanced with methods for

constraining and controlling the way in which these algorithms functioned in a real-time

performance.

4.3 Reflections

After reflecting upon the above practical experiments, a number of emergent conceptual

ideas become clear. Some of the key concerns to have surfaced from this period of

development are the following:

 Reconciling analysis methods with generation techniques

 Balancing control, influence and derivation in interactive systems

 Hearing vs. listening in computer music systems

 Reconciling analysis with generation 4.3.1

The programming experiments discussed in chapter relied upon the discretisation and

segmentation of acoustic signals into event-based MIDI representations, as well as the

sampling of continuous data streams analysed from an improvising musician. The choice

to segment the instrumental signal into a standardised MIDI representation (comprised

of individual notes with durations and velocities) enabled relatively simple and

quantifiable approaches to generating musical sequences and triggering events. Such

event-based approaches, whilst useful for certain types of musical generation, did not

allow for a nuanced connection between an acoustic instrumentalist’s performance and a

computer’s generative response. What these representations gained through efficient

classification of pitch, rhythm and duration, they also lacked with respect continuous

changes in dynamics, timbre etc. As a result, the form of analysis chosen dictated the

kinds of generative approaches pursued in my work. Whilst some approaches regarding

remained promising (probability, Markov modelling etc.), further deterministic analysis

such as rhythmic pattern recognition were not easy to reconcile with considered forms of

musical generativity. These techniques were therefore not pursued further in my work.

 106

 Seeking to provide nuance in conjunction with event-based techniques, the

exploration of continuous sampling in dataatintervals.maxpat provided an efficient way of

making use of temporal gestures performed by the instrumentalist. Similar Dobrian’s

description of stealing expressivity (Dobrian 2004), this approach was conceptually

interesting, however my efforts at linking these analyses to other event-based generative

designs proved overly cumbersome and somewhat arbitrary. Reconciling the choice of

analysis method with the type of generation desired in my system had therefore come

into focus. Through considered reflection it became clear that the choice of analysis

method largely dictated the form of generation that could be pursued in an interactive

system.

 Balancing control, influence and derivation in interactive systems 4.3.2

With Tripartite Markovia and other experiments during this time, I solidified an approach

to musical generativity that relied upon data continuously captured from an

instrumentalist during performance. Reflecting on my experience in developing and

testing the Tripartite Markovia system, it became clear to me that I was seeking a delicate

balance between control, influence and derivation in an interactive system. As each of

the three players in this system could independently generate their own material from

analyses of the performer, my largest challenge was to constrain their independence so as

to provide a coherent ‘ensemble’ approach from the software. In developing constraints

on Tripartite Markovia I followed a bricolage programming approach, refining the

interactions set up between the three players by iteratively constraining the software’s

autonomous characteristics. As a result, the constraints on Tripartite Markovia’s generative

autonomy facilitated a more interactive feel to the software. Giving the performer a

degree of real-time control over the system enabled a sense of rhythmic coherence in the

ensemble as the musician performed. In addition, the same constraints helped maintain a

similar coherence without the presence of the performer. This marked a significant

turning point for the way in which I approached balancing the relationship between

generativity, control and interactivity in such performance systems.

 Whilst testing these constraints on the system throughout its development, it became

clear that relatively small constraints upon the output autonomous algorithms had a

profound effect on the interactive relationship between the system and a performer.

 107

Prior to its synchronisation constraints, Tripartite Markovia’s players were free to generate

material derived from an improviser’s performance history. However, they had no sense

of contextual awareness to the present improvisatory context. The addition of these

constraints served to centralise control over the temporal independence of the system’s

output to the improvising musician. The immediacy of this addition was noticeable when

testing the software, however I was also wary of diminishing the autonomy of the three

players through such a form of synchronisation. In recognistion of this fine balance, the

addition of a user-defined synchronisation threshold therefore gave the performer

nuanced control over the level of synchronisation desireable in any given interaction.

Beginning with Tripartite Markovia, such ‘fine-tuning’ controls were provided to the

performer for determining the right balance between control and autonomy over the

output of an interactive system.

 Hearing vs. Listening 4.3.3

Throughout this period, I began reflecting upon the purpose of analysis in the creation

of interactive software, and the separation between deterministic and non-deterministic

approaches to using these analyses. As discussed above, my initial attempts at

representing an incoming audio stream as MIDI events, whilst useful, limited the means

by which such analyses could be used. Throughout this period, various levels of analyses

from the instrumental performer had been used in order to suit separate design goals.

The central analysis module, newaudiotracking.maxpat was responsible for collecting and

segmenting live audio into MIDI representations. The function of this module was to

take low-level analysis such as fundamental frequency estimation and peak amplitude

tracking, and to apply further analyses to create musically meaningful events (MIDI data).

This secondary layer of analysis, as discussed above, was useful for probabilistic

approaches as well as and onset/offset detection from the live signal.

 In addition to these analyses, higher-level analyses were used to group, classify,

segment, store and compare data streamed from newaudiotracking.maxpat. With the

breadth of analysis approaches I was experimenting with at the time, I began to reflect

upon the separation I saw between ‘hearing’ and ‘listening’ algorithms in a computer

music system. Reflecting upon the differences experiences between approaches, I began

drawing a distinction between passive data collection and storage - a hearing mode - and

 108

active data separation, analysis and storage - a listening mode. In the work outlined in this

chapter, there is a blend of these two approaches to using analysis data streamed from a

live instrumentalist. In the Tripartite Markovia system, after pitch-to-MIDI conversion, the

software uses passive hearing techniques to continuously collect and build histograms of

past data. The system is agnostic to the specifics of the data itself, as it is to be used for

later generation. However, the synchronisation algorithms within the same software

could be classed as listening analysis algorithms, actively listening for threshold crossings

from the input before changing the synchronisation parameter.

 Such listening analyses are most often related to control over the software’s output.

The software responds in some meaningful way once a certain condition is met from the

input. Therefore, the system may be conceptualised as listening for a particular event. Such

control triggers, as is the case in Tripartite Markovia, can greatly influence the type of

interaction had by a musician with the software. Conversely however, overly proscriptive

listening analyses, as was the case in my temporal pattern recognition algorithm, provide

exact conditions that need to be met from an input. Such an approach to ‘recognition’

was not pursed in my work because such selective listening becomes deterministic, and

therefore more suited to score-driven interactive designs (Rowe 1992). The conceptual

separation between hearing and listening in an interactive system is an interesting one.

Finding a balance between surprise and constraint is therefore also a consideration in the

analysis stage of such an interactive design.

4.4 Conclusion

This first period of my development trajectory was formative both for developing my

programming skills, and for discovering emergent themes of my interactive musical

practice. An exploratory approach to development that followed a bricolage programming

style led to both successful musical systems, and redundant technical exercises. The

iterative and exploratory practice engaged in during this period revealed concerns, issues

and interests in my practice for me to continue pursuing in my creative work, guiding my

creative practice towards new areas of interest.

 109

 110

 Wayfinding – Part 2: Synthesis and sampling Chapter 5.

5.1 Introduction

As detailed in Chapter 4, formative approaches to interactive system design raised

questions for me as a performer-developer designing for improvisatory interaction. What

this first period solidified was an approach to creative programming that was exploratory

in nature, one that involved non-linear cycles of research, experimentation and evaluation

through self-reflection. As discussed previously, such an approach was sometimes prone

to an over-development of tangential avenues of enquiry discovered throughout the

creative process. This is exemplified in particular by the deterministic approach to

temporal pattern matching discussed in Section 4.2.2. However, by following these

various lines of enquiry in depth I began to solidify some nascent ideas of about

designing for musical autonomy, such as ceding human control over algorithmic

processes and balancing autonomy with constraint in interactive computer music

practice.

As previously discussed, I had become dissatisfied with forms of generativity that

manipulated representations of acoustic instrumental sounds in the form of MIDI data.

Instead, I sought forms of sampling-led generativity that made direct use of captured

instrumental sound as its raw material. As detailed in the present chapter, this resulted in

some interesting yet unforeseen issues and concerns arising in my creative practice as

both a programmer and instrumental performer engaging with the systems I was

designing. In addition, the exploratory and sometimes tangential nature of my creative

programming practice also became responsible for some of the core elements of what

would eventually become known as the _derivations system. This account details how the

present integrated architecture of this software system began as a series of modular

components developed independently of each other.

Similarly to the previously discussed period of development, the present period was

typified by a confluence of programming approaches and concerns developing

simultaneously. Therefore, its chronology as a developmental period of the first part of

this period is naturally messy. However, a number of strands of programming enquiry

have been identified as forming the backbone of my creative practice during this period.

 111

These areas of programming practice can be broadly categorised into the following two

areas:

- Synthesis and processing methods

- Towards integrated systems

The remainder of this chapter details specific projects related to these areas, outlining a

trajectory of creative practice and research that eventuated in the _derivations interactive

performance system, as discussed in detail in the following chapter.

5.2 Synthesis and processing methods

As a saxophonist, I quickly grew dissatisfied with pursuing algorithmic approaches that

relied upon only the pitch, rhythm and instantaneous dynamic parameters of my acoustic

performance. Although the Markov generation methods employed in the Tripartite

Markovia system were promising, such a reductive approach to musical generativity

neglected the timbral and expressive nuances of instrumental performance. In my work

the acoustic instrumental signal had served either as something to be reduced and

statistically modeled, or used as a trigger for arbitrary electro-acoustic generation. As

discussed in Section 4.2.2, interactiveoptions.maxpat and audiotomiditest.maxpat made use of

synthesis and processing modules to be triggered by audio and temporal analysis. Such

modules included frequency modulation, additive synthesis and sound file granulators.

However, the implementation of these modules remained simplistic, as these systems

were primarily oriented towards the testing of recently devised temporal pattern

matching approaches. As discussed previously, these approaches were deterministic in

nature, and resulted in the triggering of arbitrary musical events and processes (bell

tones, granulation of pre-loaded sound files, etc.). In the context of improvised and

interactive musical performance, such approaches situated my work within the

boundaries Rowe’s definition of controlled, instrument paradigm as well as score-driven

systems (Rowe 1992, pp. 6-7).

 Whilst attempts were made to algorithmically control the processing parameters of

these modules, the more sophisticated player paradigm generative methods possible in the

MIDI domain had not yet been implemented in the context of live sampling of my

 112

saxophone performance. Maintaining an interest in sampling-led approaches, it was

during this period that I began exploring methods for coherently integrating the sound of

the instrumental performer with the output of an interactive system. Searching for

flexible and coherent means of using the instrumental signal in my work, I turned to

spectral analysis/re-synthesis as a methodology for creating new musical gestures from

those sampled from the live performer. Specifically, the techniques of phase vocoding

and sinusoidal additive re-synthesis were exploited as complex and nuanced methods for

creating this connection between performer and system.

 Four buffer phase vocoder 5.2.1

The analysis/re-synthesis technique of phase vocoding was chosen in order to provide a

flexible means of manipulating digital audio materials whilst maintaining the identity of a

sampled instrumental source. A phase vocoder (PV) is a form of analysis/re-synthesis

that enables independent time and pitch transformations on a digital audio signal. PVs

make use of the short-time fourier transform (STFT) to represent digital audio signal in

the frequency domain, enabling the independent manipulation of frequency and time

(Roads 1996, p. 566). To explore the potentials of this analysis/re-synthesis method in

my work, the patch 4-buff-pvoc-test.maxpat implemented four independent phase vocoder

samplers that re-synthesised and transformed sampled and analysed materials. This patch

sought to balance control and autonomy in the re-synthesis of materials stored in four

separate audio buffers, and to manage polyphony between these multiple playback

sources. The patch was designed to sample and analyse short segments of audio from an

instrumental source, and for these samples to be re-synthesised and transformed via

linked transformation methods. To facilitate testing, the patch was also envisaged as a

standalone digital instrument. This instrument allowed for the importation of audio

samples into memory from disk, and some of its processing parameters could be

controlled directly by a user.

 The basic PVs implemented in this patch were developed using the pfft~ external

object, a simple and efficient implementation of the STFT for analysis/re-synthesis

purposes. This algorithm required analysed materials to be recorded in buffers of spectral

data stored within the pfft~ abstraction, with each player accessing their own audio buffer

housed within a dedicated sub-patch in the object. Each sub-patch enabled the flexible

 113

temporal scrubbing of spectral data, and independent pitch transformations via the

gizmo~ external object. One limitation of this method was the real-time nature of the

STFT algorithm. This simple implementation of the PV required audio to be played into

the object in real-time in order for their amplitude and phase data to be recorded into

memory. In this approach, sound files chosen for analysis must first be played into the

pfft~ before any re-synthesis can occur.23 In the context of live-sampled performance this

initially posed no problems, however an improvement on this method was sought at a

later date.

 This patch was developed as a controllable digital instrument, allowing a performer to

manipulate mixing, playback scrubbing and transposition values of four separate phase

vocoder players. The controllable dimension of the software was provided by user

interface elements that were mapped to external controllers communicating via the Open

Sound Control protocol (Freed & Wright 1997).24 This direct control over processing

parameters was implemented in order to test the possibilities of controlling multiple

parameters with a single source of control – a two-dimensional XY pad. Although the

phase vocoders were not envisaged for direct control in performance, manual control of

these parameters facilitated a gestural understanding of the potential of these parameters

during the development process. Four individual phase vocoder players were

implemented whose output mix, transposition values and playback scrubbing positions

were controlled by three separate mixing algorithms. Controlled by separate XY pads,

each two-dimensional space acted as a multi-parameter mixer, simultaneously increasing

and decreasing the values of four separate parameters as a pointer traversed the space of

the XY pad (see Figure 19). Each of the three multi-parameter spaces could either be

controlled manually, or by a randomised traversal of the space, the speed of which could

be chosen by the user. In addition, the playback scrubbing could also be algorithmically

controlled by four separate instantiations of the dataatintervals.maxpat abstraction, enabling

more independence between the four scrubbing parameters (see Section 4.2.3 for details

on this abstraction).

23 See Dudas and Lippe (2006) for a detailed account of this process.

24 A screencast performance of this prototype instrument using an Apple iPhone running TouchOSC

(Fischer 2008-13) can be viewed at the following URL: https://vimeo.com/16791411

 114

Figure 19: Sound File Mix GUI element in 44-buf f -pvoc - t e s t .mapat – displayed at two separate
positions

As a digital instrument, this combination of direct and algorithmic control provided a

playful type of ‘shared control’ between user and system, as defined by Chadabe (1984).

For example, by automating playback scrubbing the user was free to manually control

output mix and transposition in response to the module’s algorithmic playback. The four

channel mixing approach enabled a small number of controls to modulate multiple

parameters at once. However, this flexibility was also inherently constrained, as each

parameter controlled by an XY pad was inversely proportional to the values of the other

parameters. For example, as shown in the far left of Figure 19, positioning the cursor in

the bottom left corner of the XY pad increased the value of parameter four whilst

attenuating the other three values. This patch was an experiment in a new approach

towards manipulating sampled audio material in my work. Despite the inherent simplicity

of this controlled approach, the combined algorithmic control over sound file mix,

transposition and playback position enabled fluid and unpredictable results from the re-

synthesis process. However, the patch was not immediately connected to a more holistic

interactive environment. In the software, parameters such as record triggers and

scrubbing ranges required manual control, and the automation of parameters remained

governed by layers of constrained randomisation. These control elements of the patch

were therefore treated as placeholders for future autonomous processes.

 This aspect of 4-buff-pvoc-test.maxpat was typical of my development trajectory during

this period. My previous focus had been on the analysis and generation side of interactive

musical system development, focused upon event-based triggering and MIDI-based

generative algorithms. Although much can be achieved in this space, by focusing on

these methods it had become harder for me to discover means of connecting analysis,

generation and synthesis in my work that satisfied my aesthetic criteria. As a performer-

 115

developer devising my own interactive systems, I wanted to prioritise the sonic quality of

the systems being designed for my own performances. My development approach

therefore focused upon achieving interesting sonic and musical processes, leaving open

the means by which these approaches could then be integrated into more complex

interactive environments. The balance between developing sound synthesis/processing

and finding autonomous use of sampled material dominated my thinking during this

period, as evidenced by my reflective writing at this time:

Reflective memo, November 11th 2010:

One of the biggest issues I'm grappling with is the deferred and algorithmic use of sampled material - both

data and audio - and finding ways to influence the output of the system. This is in direct contrast to

controlling it directly […]. The decoupling of gesture to sound making is what interests me here. Why? I

think it's because as a performer you already have something to control, your instrument - and so this

should not get in the way of continually playing the instrument – otherwise it becomes a meta-instrument

and not an instrument interacting with abstracted versions of itself.

 Pitch Models25 5.2.2

Having previously explored additive synthesis techniques in my practice, during this

period I began exploring sinusoidal additive re-synthesis (SAR) techniques as a form of

sampling-led sound generation (Roads 1996, p. 555). Although concerned with achieving

a coherent timbral palette between human and machine, given my interest in player

paradigm interactive approaches I sought abstracted and highly flexible means of

achieving this aim. The phase vocoder approach described above, although capable of a

variety of transformations, projected re-synthesised signals with a close connection to the

original source. The SAR approach enabled the flexibility of using analyses instrumental

signal as the timbral basis for a wide range of synthetic transformations. Crucially, these

transformations could be at the level of individual sinusoidal partials.

 The pitch models system implemented an approach to SAR within the context of my

recently developed data sampling methods. Using Miller Puckette’s sigmund~ external

object, the system extracted a fixed number of partials (frequency-amplitude pairs) from

25 An example of this early version of pitch models can be heard at the following URL:

https://soundcloud.com/emeidos/improvisation-tenor-saxophone-and-electronics

 116

the live signal at a constant rate, storing them in an expanding data collection to be used

for re-synthesis using additive synthesis techniques. The system made use of the poly~

object within the Max environment in order to manage the output of multiple

overlapping sinusoidal models derived from this sampled spectral data. The poly~

abstraction developed employed the sinusoidal modeling object sinusoids~ developed by

Adrian Freed of the Centre for New Music and Audio Technologies at the University of

California at Berkeley (CNMAT)26. This object was used to output and manipulate

sinusoidal models of an instrumental input stored from the output of sigmund~’s partial

tracking and sinusoidal decomposition analysis.

5.2.2.1 Sampling and storage

The storage approach used in pitch models was aided by the pitch detection and amplitude

thresholding techniques developed in newaudiotracking.maxpat (see Section 4.2.1). The

system provided three storage types for the sampling of sinusoidal models from the

sigmund~ object: pitch detection mode was a momentary sampling method that captured a

single model from the input upon the detection of a stable pitch onset; continuous mode

provided a continuous analysis and storage of sinusoidal models at a constant rate (in the

vicinity of 100hz); whilst threshold mode made use of a user-defined amplitude threshold

to start and stop continuous model sampling. Each model output from sigmund~ was

comprised of fifty frequency-amplitude pairs compiled into a single list. Once collated,

these lists were parsed and collated into a format that could be used directly for re-

synthesis via the sinusoids~ external object. Sinusoidal models were then stored

incrementally in an indexed database, enabling the system to derive its sonic output from

a large variety of captured analyses of an instrumentalist’s past performance. Figure 20

shows this storage process at work in the [p storemodels] subpatcher.

 Given the large amount of data stored by pitch models’ analysis and storage mechanism,

a synthesis approach was sought that could make nuanced use of these captured models

in performance. A common method of implementing SAR is via peak or partial tracking

analysis, an analysis technique that aids in maintaining the spectral contours of the

26 These objects are available within CNMAT’s large collection of external objects for Max:

http://cnmat.berkeley.edu/downloads

 117

Figure 20: ss tor emode l s supatcher from pi t chmode l s .maxpat . Incoming frequency-amplitude pairs
are parsed into lists of ten partials in the [p peaks] subpatchers, grouped together into a single list
using cascading zl . j o in objects and stored in the [coll sin-lists] data collection for later output.

 118

analysed input in the re-synthesis process (Klingbiel 2009; McAulay & Quartieri 1986;

Roads 1996, p. 569; Serra 1989).

This method allows for the re-synthesis of sinusoidal components organised into

continuous tracks, minimising artefacts caused by abrupt changes in oscillator frequency

and amplitude.27 Whilst useful as a live re-synthesis method, I decided to avoid this

continuous approach for reasons of efficiency of storage and flexibility of re-synthesis.

Instead, I chose an approach that was less faithful to the spectral contour of adjacently

analysed models, yet allowed for flexibility in their automated manipulation and

structuring. Rather than seeking to directly re-synthesise sampled sonic materials, this

method used captured models as raw spectral data from which to polyphonically

synthesise sounds derived from the timbre of the live instrumentalist.

5.2.2.2 Model triggering

Given the complexity of pitch models’ various processing parameters and its connection to

the musician’s past performance, it was decided that a simple start/stop control would

suffice as a method of controlling the module’s output. The algorithmic re-synthesis of

pitch models’ sinusoidal models was either triggered via amplitude threshold crossings of

the instrumentalist, or engaged continuously throughout a performance. The output of

stored sinusoidal models from pitch models was achieved via a dynamic and layered

algorithmic process analogous to traditional sample and hold techniques. A looping

rhythmic module was developed that generated periodic triggers whose inter-onset-

intervals (IOIs) were derived from two dimensional lookup table drawn by the user. This

lookup table was known as the module’s ‘rhythmic envelope’, whose range of IOI values

was set by the user-definable impulse range parameter (see Figure 21). This module

launched a ramping control signal that queried the lookup table in series over a specified

period in milliseconds. A metro object periodically sampled new values from the resultant

stream of IOI data, updating its delay time thereby creating dynamic rhythmic patterns.

To avoid creating a repetitive rhythmic loop, the period of the ramping control signal

itself was modified at the beginning of each cycle of the control signal. This was

determined by a random value chosen from between the user-defined length range in

27 An implementation of this re-synthesis method using sigmund~ is usefully demonstrated in the sigmund~

Maxhelp patcher.

 119

milliseconds. This created a dynamic expansion and contraction of the table lookup

process, facilitating a variety of temporal trajectories from the same range of IOI values.

Figure 21: The IOI lookup table in ppi t chmode l s .maxpat

5.2.2.3 Model selection

In order to provide flexibility to the automated output of sinusoidal models, three

separate options were provided to determine how models stored in the growing database

were chosen for re-synthesis. Each trigger received from the rhythmic envelope was sent

to one of three model selection algorithms. These algorithms included random range, a

random choice of a model index from with a specified index range; this model, the direct

output of the most recent model analysed (triggered from a pitch or amplitude onset);

and random sweep, an automated data stream controlled by a looping control signal. In my

performative tests of this system, the two most common options chosen were either this

model or random sweep. However, both of these options provided very different interactive

potential in performance. This model enforced a triggered and controlled mode of

performance with pitch models that did not make use of its sampling capabilities. In this

mode, the system acted as a synthetic extension of the performer, shadowing the

performer with re-synthesised gestures derived from the most recently analysed

performance. The looping control signal approach of random sweep was relatively simple,

 120

yet capable of emergent and unpredictable results. The dataatintervals.maxpat abstraction

was once more employed to create a continuously looping control signal for the

automatic navigation of the database of stored models. This control signal was scaled to

the current number of models stored in the database, enabling the rhythm module to

periodically select models to output from this data stream.

5.2.2.4 Model synthesis

Polyphonic synthesis of models selected for output was achieved using the poly~ object,

an efficient means of developing polyphonic synthesisers in the Max environment. The

poly~ abstraction retrieved stored sinusoidal models and facilitated transformations to the

models before, during and after their re-synthesis. Once an individual poly~ voice has

received a chosen model index, this model was retrieved from the central database and

sent through a ‘partial scrambling’ algorithm to manipulate the amplitude values of the

output list. The algorithm parses the static model it receives from the database, and

‘scrambles’ the amplitudes of the first few partials via list interpolation, thereby altering

the timbre of the model during its re-synthesis stage. This scrambling process randomly

swaps the first n amplitude values stored in the static model, interpolating smoothly

between amplitude values over the length of a synthesised gesture.28

 As illustrated in Figure 22, the scrambling algorithm interpolates between the original

model (Figure 22a) and the scrambled model (Figure 22b), sending this interpolation

continuously through the sinusoids~ object for re-synthesis. 29 Further transformations to

the stored models included model transposition prior to re-synthesis, stereo panning and

control over the amplitude envelope of output gestures. In order to further enliven the

interpolated models, a final transformation was applied to the final output of each model

voice by way of formant filtering. Also developed by Adrian Freed, the resonators~ object

implements a parallel bank of resonant filters from sinusoidal model rather than using

additive synthesis techniques (Jehan, Freed & Dudas 1999).

28 The user chooses the number of amplitudes to scramble, and the length of this scrambling process in

milliseconds.

29 An example of this scrambling process is also illustrated in an animated GIF image accessible at the

following URL: http://bit.ly/scramble_partials

 121

a)

b)

Figure 22: Visual representation of the partial scrambling algorithm used in ppi t chmode l s .maxpat .
Figure 22a shows the amplitude distribution of a static sinusoidal model, whilst Figure 22b
displays the results of the model after the ‘scrambling’ process. In Figure 4b the amplitude of the
fundamental frequency has been replaced with the original amplitude of partial three; the
amplitude of partial four is replaced with that of the fifth partial, etc.

Making use of the linked res-transform object in ‘formant form’ mode, the output of the

sinusoids~ object was passed through a series of interpolating vowel formants. This

approach was modeled upon the vowel~ abstraction programmed by Wright and

Zbyszynski and distributed with the CNMAT collection of Max objects and abstractions.

The formant algorithm randomly interpolates between various formants at a user-

specified rate. These formants were provided by the vowel~ abstraction mentioned above

in a text file entitled ‘ircam-vowels.txt’.

5.3 Towards integrated systems

As discussed in the previous two synthesis approaches, live sampling of both audio and

spectral data was the primary method of driving the computer’s sonic contributions in

my systems at this time. Siphoning material from the instrumental performer continued

to be of interest to me during the period that followed, however I began to approach the

use of the sampled material with more nuance and complexity. The following section

details two separate systems that built upon my previous work in this area, namely the

Live-processing-1 and phrase player systems. In Section 5.3.1 I detail the integration of 4-buff-

 122

pvoc and pitch models into a larger interactive environment, highlighting the specific

technical and conceptual challenges arising from this process. Following this, Section

5.3.2 details a further system that addressed some of the shortcomings of momentary

approaches to live sampling materials from the performer. This section details how the

continuous and cumulative approach of pitch models became a model for the way in which

audio data was sampled and stored for use in a live sampling based system.

 Live-processing-130 5.3.1

After further testing and refinement I began integrating the above-described analysis/re-

synthesis methods as independent modules within an integrated performance

environment. The system Live-processing-1 combined the SAR techniques explored in pitch

models with the phase vocoder implementation of 4-buff-phase-vocoder-test.maxpat (now

known as 4-buff-pvoc). Although both modules used analysis/re-synthesis as their primary

methods of sound generation, they did so in contrasting ways. These two modules were

therefore deemed useful starting points for the development of a live sampling based

human-machine performance environment. In Live-processing-1, the live instrumental

signal was used to trigger algorithmic processes as well as to provide the source for FFT

analysis and re-synthesis. The central analysis module used within the system was

newaudiotracking.maxpat (discussed in Section 4.2.1), which was used to stream MIDI

pitches, amplitude values as well as the frequency-amplitude pairs needed for pitch models’

analysis.

 By seeking to integrate these two modules into an overall interactive environment, I

engaged in a form of programming practice that McLean and Wiggins have described as

bricolage programming (McLean & Wiggins 2010). Although my overall aim was to develop

a dynamic human-machine improvisation environment, I chose an exploratory approach

that was firmly situated within the musical and interactive potential of these recently

developed synthesis modules. By beginning with the development of these sound

generation modules, my exploration of interactive methods followed a ‘hands-on’

approach that was intimately connected with my experiences of human-machine

improvisation in practice. In Live-processing-1 the development of musical interactivity was

30 A screencast demo of this performance system can be streamed at the following URL:

https://vimeo.com/19109988

 123

therefore an emergent property of the interaction between my saxophone performance,

the affordances of these existing modules and subsequent programming decisions made

in response to my interactions. This was an intuitive and creative task.

 As both pitch models and 4-buff-pvoc possessed their own idiosyncratic automated

processes, the challenge was to develop plausible means of integrating these two modules

within a dynamic and coherent interactive framework. Whilst pitch models had been tested

as a standalone performance environment, 4-buff-pvoc had not yet been coherently

integrated into a live performance context. Importantly, neither of the modules had been

used in conjunction with other synthesis/processing modules in a broader interactive

context. I began by considering the way in which the live instrumental signal could be

used to control and influence the output of these modules during performance. Given

the nuanced and complex automated capacities of the existing modules, decisions about

performer control and influence over these processes were shaped by the inherent

affordances of their combined musical agency. Proceeding in a bricolage fashion, I began

by repurposing previous event-based approaches to trigger these pre-defined automated

processes. This included the use of pitch and amplitude onset and offset detection as

facilitated by the newaudiotracking.maxpat abstraction. During performative testing, the

interactive implications of these programming decisions prompted revisions to my initial

algorithms, and to the automated processes of the modules themselves. Live-processing-1’s

development therefore exhibited a process of interactive stabilisation between performance

and algorithmic refinement (Pickering 1995). The details of this process are outlined

below.

5.3.1.1 Control and automation of 4-buff-pvoc

To trigger the live sampling and FFT analysis of 4-buff-pvoc, a simple time threshold was

employed to filter incoming pitch detection and amplitude threshold crossings through

to control sampling/analysis triggers. A drop-down menu enabled the user to choose

either pitch or amplitude detection as the control signal, and a time threshold value in

milliseconds was chosen to filter detected events. Once the time threshold had been

reached, a gate was opened to allow the following event detected to trigger sampling of

 124

the input audio into one of four fixed-length audio buffers.31 This constituted a simple

form of event filtering; after an event passed through the gate it restarted the time

threshold, limiting the frequency at which input from the musician was sampled and

analysed for re-synthesis. As the performer continued to improvise, 4-buff-pvoc therefore

had access to up to four individual samples at any one time, representing the most recent

history of the instrumentalist’s performance.

 In contrast to this onset detection approach to triggering, 4-buff-pvoc’s sonic output

made use of an offset detection method by way of a silence threshold algorithm similar

to that described in the work of Cuifo and Hsu (2005; 2006) (see also Section 2.3.1). This

threshold tracked the amplitude of the instrumental signal, starting a timer when the

amplitude dipped below the threshold set in newaudiotracking.maxpat. If the input

remained below this threshold for a user-specified length of time, the threshold

algorithm sent a trigger to engage scrubbing algorithms that facilitated the re-synthesis of

samples captured from the input. A ‘performance time’ value in milliseconds also

constrained the length of time in which the algorithmic re-synthesis took place. Once the

end of this time threshold was reached (a random value chosen between 10,000 and

20,000ms), the scrubbing algorithms were turned off and the silence threshold

mechanism was again re-engaged.

 Re-synthesis of sampled and analysed audio in 4-buff-pvoc was automated in a similar

fashion to the original 4-buff-pvoc-test.maxpat (see Section 5.2.1), with transposition, output

mix and playback scrubbing following independent automated processes. Whilst both

transposition and sound file mix maintained the interdependent controls provided by the

four channel mixing algorithm, for playback scrubbing both the XY pad and

dataatintervals approaches were replaced with a randomised scrubbing algorithm aligned to

each phase vocoder. Seeking more independence between the four phase vocoder

players, the XY control mechanism was abandoned for the scrubbing parameters due to

the interdependence it enforced between the four players. Although dataatintervals.maxpat

had initially provided this independence, it was decided that this abstraction was too

arbitrary and cumbersome as a means of controlling processing parameters in my

systems.

31 The buffers were recorded sequentially, and buffer lengths were user-definable and usually set between

4000-8000ms.

 125

Figure 23: Screenshot of a performance with LLive-proc e s s ing -1 . The left hand side of the figure
features pi t ch mode l s many output parameters, whilst the audio buffers in the centre represent the
sampled and analysed material used in 4-buf f -pvoc .

As the polyphony of both audio and control data increased in my systems, such

randomised data streams were found to provide a suitable level of complexity for the

control of individual parameters. Given this observation, it was decided at this time that

sampled data would only be used if directly siphoned from the current performance

context. However, such automated control signals in my systems were fine-tuned over

time in order to achieve a balance between novel and musically desirable output gestures.

Adjustments were also made to account for the constraints provided by other

interdependent parameters. This approach was a natural part of the performer-developer

dynamic, as performative testing informed fine-grained programming decisions to

improve the musical potential of the modules being developed.

5.3.1.2 Control and automation of pitch models

Whilst pitch models had been tested as a standalone performance system, its direct

integration into Live-processing-1 highlighted the module’s complexity as a synthesis

instrument, and the need to develop efficient methods for automating changes to its

 126

many and varied parameters. Prior to its inclusion in this system, various static preset

configurations aided in enabling rapid access to chosen configurations of these numerous

parameters. To achieve further flexibility and variety in the module’s automated

performance, an interpolating preset system was developed using the pattr family of Max

objects. These objects (autopattr, pattrstorage, etc.) provided a flexible method of storing,

recalling and interpolating between presets containing a large number of parameters. In

all, more than twenty parameters were included in the pattrstorage data collection in the

pitch models module. A user could easily store snapshots of these parameters as new

presets to be saved and exported as a standard JavaScript Object Notation (JSON) file to

disk (see Figure 24).

Figure 24: A screenshot of the presets and associated parameter values within ppi t ch mode l s . The
current interpolation value of this algorithm is 4.8, as visually represented in this figure by the
relative shading of columns four and five.

This preset system facilitated a great degree of flexibility in the sonic character of the pitch

models system. The system was designed so that a single control signal could control the

interpolation between different preset states of this large array of individual parameters.

The pattrstorage object facilitated the interpolation process by accepting both integer and

 127

floating-point values, with floating-point values determining the linear interpolation

between parameters stored in two adjacent presets. In addition to such adjacent

interpolation, pitch models made use of the ‘recall’ message to pattrstorage, a method

facilitating the interpolation between non-adjacent presets. Each preset saved in pitch

models could be therefore be interpolated with any other preset in the database,

significantly broadening the scope of possible sonic gestures to be generated from this

synthesis module.

 As a form of high-level control in pitch models, the interpolation parameter was treated

in a similar way to other streams of control data in my systems – through the use of

constrained randomisation. A random walk algorithm was implemented to automate the

adjacent interpolation process, whilst non-duplicating random algorithm controlled non-

adjacent preset interpolation. This was achieved by cycling through each preset in the

collection in a random order. Both algorithms were automatically scaled to the number

of presets stored in the database, and the rate of the morphing process determined by a

fixed interpolation interval chosen by the user. The user could also choose which type of

preset automation was to be used (adjacent or non-adjacent), and if engaged this preset

morphing process was continuous during the output of stored sinusoidal models.

5.3.1.3 Control and interactivity in Live-processing-1

By placing these two existing modules into an integrated interactive environment, I

contended with the complexity and limitations of live sampling and re-synthesis as

methods for musical interactivity in human-machine performance. The aim of this

exercise was to assemble a system from existing components, one that was functional

enough to facilitate interesting musical interactions during performance. As a performer-

developer, I was first and foremost concerned with creating working systems that could

be tested in rehearsal with a live instrumental input. My programming approach therefore

relied upon a ‘code-and-fix’ methodology that sought to build working prototypes

without much concern for their further integration with other systems.32 This approach

to development was focused upon quick results, and of integrating previously developed

algorithms to incrementally improve upon an evolving yet functional artefact.

32 In the context of formalised software development methodologies, this programming approach is often

derided as ‘cowboy coding’ (Boehm 2006; Lindell 2012).

 128

 Given the scope and complexity of the various moving parts already present within 4-

buff-pvoc and pitch models, previously explored techniques were often absorbed into my

systems without immediate concern for their revision or expansion. The implementation

of event-based triggering and randomised automation, whilst initially considered as

placeholders for future algorithmic methods, became part of the software’s internal

dynamics, and therefore its material agency. As a developer, a large part of this form of

development was facilitated by the partial externalisation of my decision-making process.

By beginning with these two existing modules, further development relied upon my

perception of the combined agencies of these systems to suggest new avenues for

exploration. As a form of design, this process allowed the ‘back-talk’ of the materials to

be foregrounded as an integral part of the decision-making process (Schön 1983, p. 79).

Rather than following a premeditated development trajectory, Live-processing-1 evolved as

a function of the combined potential of its constituent parts, as revealed and navigated

through interactive human-machine performance.

 By considering the environment as a whole, the internal dynamics of both 4-buff-pvoc

and pitch models were altered to suit the overall interactive context. In addition, a balance

was sought between direct control and automation in Live-processing-1, which was

achieved through the implementation of simple performer-controlled triggering and

streamlined software automation. Although the triggering methods described above

enforced a degree of performer control over various musical processes, this control

remained high-level and the exact results any direct triggering remained opaque to the

performer. In contrast to the deterministic pattern matching techniques described in

Section 4.2.2, these simple algorithms did not require further layers of analysis, nor did

they seek to recognise specific patterns from the input in order to trigger musical events.

Designed to be unobtrusive, these methods facilitated the high-level control over

sampling and playback to be a function of the instrumentalist’s continued performance.

Nonetheless, the directly triggered nature of both sampling and system output was a

noticeable performance dynamic enforced by the software, a factor I considered less than

ideal in a musical system of this type.

 In both of these independent modules, a tension existed between sampling-led

methods of sound generation, and the growing complexity of the many and varied

parameters used to control re-synthesis. As discussed above, these parameters were

 129

largely automated through layered forms of constrained randomisation, not through

nuanced and sophisticated generative and machine learning algorithms. Although I was

interested in employing such approaches in my work, I was also conscious of the

potential for such methods to obfuscate the relationship between the sampled material

and its origins. Given the complexity of this issue, I sought to simplify the relationship

between instrumental performer and Live-processing-1 by maintaining independence

between the algorithmic processes themselves and the analysis of the human performer.

Although the performer provided the material with which the system generated its sonic

materials, the improviser had no further influence over their structuring or processing.

Real-time analysis of the instrumentalist was used purely for event-based triggers and for

pitch models’ sinusoidal decomposition.

 Through the design of Live-processing-1, balancing the conceptual clarity of live sampling

and the novelty of autonomous generativity had revealed itself as a significant creative

challenge in my work. Although relatively simple, the above-described layered approach

to randomised automation did provide a degree of complexity that provided interesting

results in interactive performance. However, having acknowledged this tension between

sampling and autonomy in my work, I began searching for alternative that could further

enhance my interactive performance systems. As I had arrived at this issue in my work as

a result of my bricolage approach to development, it became clear than a more considered

and planned approach to addressing this challenge was needed from my practice.

 Phrase Player33 5.3.2

After implementing triggered and momentary methods of live sampling and processing

in Live-processing-1, I sought to expand my approach to enable a wider array of sampled

material for use in performance. I also sought an approach that displayed less

determinism and more potential for autonomy in its sampling and processing capabilities.

In the 4-buff-pvoc module of Live-processing-1, amplitude onsets analysed from the audio

stream served as triggers for sampling and processing using fixed-length audio buffers.

Although the content of these buffers were available for a wide variety of

transformations, the momentary nature of this sampling method limited the range of

33 A short simulation of the output of this system is documented at the following URL:

https://vimeo.com/18285721

 130

possible musical material to be used at any one time. Performing using this approach, I

quickly became dissatisfied with the structural limitations of such momentary sampling.

Given previous experiences with the use of histograms, Markov chain processes (see

Section 4.2.4) and the cumulative sampling achieved in pitch models, this momentary

method lacked flexibility. The sampled material that could be held for processing at any

one time was limited, and these methods suffered from some similar structural

limitations as the live looping practices discussed in Chapter 2 (Section 2.3.3.1).

 Phrase player was subsequently developed as a proof of concept system to deal with the

deficiencies encountered with these previous approaches. This new system involved the

segmentation and storage of continuously sampled material from a live audio stream.

This required the management of a more rigorous and continuous approach to sampling

live audio, one in which the segmentation and storage of captured musical material could

be automated in a meaningful fashion. Using a similar approach to techniques employed

in Live-processing-1, a form of silence thresholding was used to capture and store timing

information from an incoming audio stream, as well as to efficiently start and stop

recording of the audio input to disk, rather than to an audio buffer in memory. This

segmentation approach was designed to capture small units from the input delineated by

‘phrase boundaries’. This simple event-based conception of what constituted a phrase

was used to efficiently chunk the audio stream into manageable units for later output, an

approach directly inspired by the silence thresholding techniques of Ciufo and Hsu

(2005; 2006) (see also Sections 2.3.1 and 5.3.3.1).34

 Given the choice to record the live input directly to disk, a decision was made to limit

the number of audio files written during a session so as to make the recording/writing

process more efficient. Two separate silence thresholds were used as segmentation

triggers acting upon the recording on the live input. The first user-definable silence

threshold was relatively short (in the vicinity of 100ms), and was used trigger the storage

of a growing list of time-stamped ‘cue-points’ referring to the segmented phrases. These

cue-points were cumulatively stored in a format commonly used by the sfplay~ object for

locating cue-points in audio files. A second silence threshold (fixed to 1000ms in length)

34 Despite these units being dubbed ‘phrases’, it was not my intention to classify the content between these

segmentation boundaries as constituting a musical phrase by any analytical measure. Such an approach

would have necessitated a detailed form of analysis that was beyond the scope of the current approach.

 131

was used to trigger the writing of this file to disk, and to send the list of cues associated

with each file to a group of four sfplay~ objects. Figure 25 displays the logic of this cue

storage process. Inputs one and three receive timestamp data (in milliseconds) derived

from a central clock triggered from the output of the first silence threshold. These

timestamps are then grouped together, prepended with an index number and stored

temporarily in the [coll preloadinfo] data collection object.

 Upon the crossing of the second silence threshold, the accumulated cue-points are

dumped out of the coll object and its memory is cleared (received via the [r #0_dump]

receive object). Each cue-point is then prepended with the preload symbol and send via

the [s #0_storecues] send to the sfplay~ objects for later output and processing. This final

process coincides with the writing of the file currently being recorded to disk. The sfplay~

objects were then able to access the file stored on disk and the various segmented

phrases indexed to this file. In addition to storing this information, the length of each

phrase is also stored in the data collection [coll phraselengths] for later use in processing.

 The generation and processing methods used relied heavily upon both data sampling

and constrained random generation techniques similar to those described in Live-

processing-1. In an effort to provide variety to the output of the phrases captured from the

live signal, a polyphonic approach was implemented that saw each playback device

accessing the list of stored phrases by following their own independent generative

trajectory. In the software, the growing list of recorded cue-points was used to constrain

the range of phrases available for output by four separate sfplay~ objects. Each playback

device referenced an independent data stream continuously outputting potential phrase

indexes. Using an identical method to pitch models, these data streams were generated by

four independent instantiations of the dataatintervals.maxpat abstraction, each referring to

a different stored list of sampled data curves for its output. Working independently, each

data stream provided a scaled control signal from which each playback device would

sample its next phrase index for output. The specific curve used could be chosen by the

user and once enabled the curve would simply loop throughout the duration of a

performance. As the data streams were scaled to match the growing range of phrases

captured from the live input, the space of possible materials each player grew in direct

proportion to the current performance history.

 132

 In addition to the output logic, another live sampling method was used to process the

polyphonic output of the system. Throughout a performance, amplitude curves were

analysed from the instrumental signal and stored in an expanding database. These curves

were scaled for use as control signals to modulate the delay time of individual feedback

delay lines processing each playback device. Figures 26 and 27 show both the sampling

and storage logic, as well as the scaled output of the various curves respectively. As

shown in Figure 26, during the recording of a phrase the amplitude values of the

incoming signal are collected in the subpatcher and stored in the [coll ampstream]

temporary data collection. Once the phrase boundary (indicated by the silence threshold

trigger) has been reached, the phrase on/off toggle is turned off forcing the output of

the current stream. This stream is collated into a list, prepended with an index number

and stored in the data collection [coll amplists] for later use. These amplitude curves are

then accessed for use as control data for modulating feedback delay lines. The scaled

output logic for these amplitude curves is displayed to the right of Figure 26. The

identical subpatchers [p-ampstream-output(1-4)] control the output algorithms used to

output the individual curves.

 Figure 27 displays the inside of the first of these subpatchers. As is clear from this

figure, a random number generator is used to access the curves stored in the [coll

amplists] data collection. Upon the output of a phrase, each playback device outputs the

phrase length stored in the [coll phraselength] data collection to the corresponding

phraselength send object. Upon the output of a phrase by the playback device, a random

amplitude curve stored in the data collection is chosen for output. Data received via the

receive object [r #0_phraselength1] initiates this process. As can be seen in Figure 27,

the phrase length received is then used to calculate the ramp time between each

individually stored data point in the amplitude curve. This method ensured that each

sampled amplitude curve used as a control signal would be output over the exact length

of the chosen phrase. Finally, the output of each buffer was further automated with a

stereo panning mechanism for each playback device, and the inclusion of an automated

mix between the four elements. The panning automation was achieved using a crude

one-to-one mapping from the output of each of the phrase choice data streams, and

automated mix between the four players made use of the same 4-channel mixing device

used in 4-buff-pvoc.maxpat (see Section 5.2.1).

 133

Figure 25: ss tor e cues subpatcher from phrasep layer -GUI.maxpat

 134

Figure 26: aampl i s t s subpatcher from phrase -p layer -GUI.maxpat

 135

Figure 27: aampstr eam-output1 subpatcher inside the ampl i s t s subpatcher

 136

By focusing upon efficient methods of storage and recall, the phrase player system opened

up new avenues of creative speculation in my work. The approach pursued in this system

was guided by dissatisfaction with deterministic sampling techniques, as well as the desire

to further enhance the autonomous capabilities of my previous interactive designs.

However, besides the decision to change the sampling approach in my work, the

coherent use of these sampled materials had yet to be considered in any depth. Phrase

player’s design was entirely contingent upon decisions made in relation to the sampling of

live material, not planned as an integrated part of the initial design process. The

generative structuring techniques implemented in this system, although capable of

emergent behaviours, remained a somewhat arbitrary solution to the structuring of live

sampled musical materials. The use of previously sampled data curves using

dataatintervals.maxpat, whilst efficient and unpredictable, remained convenient rather than

genuinely novel as a generative method. This was due to both the conceptual separation

of these streams from the present interactive context, as well as their fixed and

deterministic nature. In addition, the playback and processing methods explored were

not as complex sonically or algorithmically as previously explored synthesis and

processing approaches. The direct one-to-one mapping of delay line modulation

remained too rigid and simplistic to be considered for further development, an approach

that was also triggered by a rather arbitrary aleatoric process.

 Given the fully automated nature of the generative experiments discussed above, this

system was yet to achieve the same kind of balance between influence and autonomy that

had been previously achieved in the constrained Markov approach taken in Tripartite

Markovia, nor the sonic and interactive nuances of Live-processing-1. In the former, the

generative patterning mechanism of the Markov chain process enabled musically relevant

extrapolations from sampled MIDI data. In addition, the syncronisation constraints also

ensured these materials were imbued with a direct relationship with the current context

provided by the improviser. In the latter, although 4-buff-pvoc was driven by a simplistic

form of live sampling, its larger range of sonic transformations and combination with

pitch models made Live-processing-1 a superior holistic environment. However, the

automated sampling and storage mechanism enabled me to speculate upon further

avenues for making use of this captured material for the computer’s output.

 137

5.4 Reflections

Throughout this second period of development I solidified an approach to live sampling

in my electro-acoustic performance practice. The creative trajectory I have outlined

displays an exploratory form of development, with a strong focus on developing

independent synthesis and processing modules designed for interactive performance.

Through a bricolage programming approach, my creative practice engaged deeply with

select synthesis and processing methods, namely 4-buff-pvoc and pitch models (see Sections

5.2.1 and 5.2.2). Through iterative development and performative testing, this

developmental approach uncovered inherent challenges and opportunities in using a live

instrumental input as the primary means of sonic and algorithmic derivation in

interactive performance systems.

 Co-evolving systems with practices 5.4.1

By focusing upon automating the internal dynamics of 4-buff-pvoc and pitch models, I was

able to evolve the musical character of the individual components before their

incorporation into a larger system architecture. This bottom-up approach was highly

dependent upon the feedback of these two synthesis and processing modules in

performance, making performative testing an invaluable creative space for both modules.

Equally, this space began to influence my conceptions of interactive performance and

subsequently my own performance practice. By interacting with the musical potential

these two evolving modules I began to learn what I wanted from an interactive system of

this type as a performer. The creation of Live-processing-1 was an attempt at discovering a

performance practice through the intersection of two independently designed musical

systems. Whilst the two systems were evolved separately, they were also left open enough

to enable flexibility in their integration with each other in a larger system.

 However, whilst Live-processing-1 pointed towards a new form of interactive

performance in my practice, it also highlighted the limitations of some of the

‘placeholder’ triggering approaches implemented in each module. Amplitude threshold-

based triggering appeared an arbitrary connection between a musical performer and the

nuanced generation provided by both 4-buff-pvoc and pitch models. In addition, the

approach to live sampling used in 4-buff-pvoc immediately revealed itself as inflexible

 138

alongside the more sophisticated continuous data sampling approach of pitch models. This

final aspect led towards the creation of the phrase player system discussed above, enabling

the efficient recall of indexed phrases segmented and stored on disk. Given that phrase

player was designed to address the sampling issues encountered previously, I had not yet

however made meaningful use of the recorded segments, leaning once more to tried and

tested methods of triggering individual phrases.

 These issues became a matter of perspective and priority in the development process.

By focusing my programming efforts on the internal dynamism of each synthesis and

processing module, the global organisation of an integrated interactive system became a

challenging task. The shift towards a planned, methodical approach to live sampling

following Live-processing-1 not only addressed the immediate creative needs of my

software, it also signalled a shift in the type of programming engaged in throughout my

work. Following a period of considered focus upon the details of individual working

modules, a designed, problem-solving approach was needed. Finding a balance between a

bricolage approach to building such systems, such a designed approach would later surface

in my practice in the early stages of the creation of the _derivations’ phrase matching

algorithm, as discussed in the following chapter.

 Connections between data and generativity 5.4.2

The placeholder approach taken in my practice was also beginning to reveal more

fundamental issues with sampling-led generativity in human-machine performance. By

focusing upon segmenting and storing continuously sampled data, the question arose as

to how an interactive system might organise sampled material in a meaningful fashion.

Until this point in my creative trajectory, I had not taken pause to ask this question of my

developing practice. In the Tripartite Markovia system, continually sampled MIDI events

were automatically organised by virtue of the Markov generation process (see Section

4.2.4.2). In previous data sampling experiments, sampled data curves were mapped

directly to synthesis parameters, or used to create sampling-led, aleatoric control data (see

4.2.3, 5.2.2.3 and 5.3.2). However, with such a wealth of audio data arising from phrase

player’s continuous sampling approach, a more sophisticated form of organisation was

required. This emerging theme in my practice would become the next challenge of my

programming practice.

 139

5.5 Conclusion

Throughout this second period of my creative trajectory I solidified a number of

techniques that would become part of my ongoing practice in the _derivations system. By

focusing my programming endeavours on individual modules, I prioritised the internal

dynamics of specific, automated modules over a global approach to designing for

interactivity. During this period my creative practice evolved from initially exploratory

practices, to a more focused forms of creative development. This process allowed me to

iteratively refine both my specific creative designs, and my desired mode of performance

with these modules. Hence, the creative practice itself was part of a dance of agencies

between human and material, revealing the mangling inherent in such a performer-

developer context.

 140

 141

 Wayfinding – Part 3: _dder ivat ions Chapter 6.

6.1 Introduction

The present chapter traces the development of the _derivations interactive performance

system through a series of advancements in my programming practice. Throughout the

previous two chapters I have detailed incremental advances in my creative work, and my

developing conceptions of interactivity and generativity in improvised human-machine

performance. In Chapter 4 a series of idiosyncratic, event-based approaches coalesced to

create the Tripartite Markovia system, a Markov-chain based system based with multiple

players interacting with each other in a self-referential feedback loop. With Tripartite

Markovia I had the advantage of focusing solely upon the generative design, given the

MIDI paradigm the system was working in. As a result, this system was complex and

detailed in its generativity, yet lacking without a specific sonic identity.

 Throughout Chapter 5 I described an alternative development approach, focused

upon the creation of specific synthesis and processing modules from which larger

interactive systems could be fabricated. The interactive systems Live-processing-1 and phrase

player provided fertile ground for the creation of an integrated interactive environment

using live-sampling techniques. The bricolage approach initiated by Live-processing-1

remained appealing given the intuitive means by which such complexity could be

achieved. However, the issue encountered with the limited sampling history available to

4-buff-pvoc needed addressing using a planned approach to managing sampled material.

The phrase player system, whilst not of immediate generative interest, provided a useful

technique for segmenting and storing continuously sampled data from an audio stream.

Therefore, the desire to combine the methodical, cumulative sampling of phrase player

with the complexity of sonic generativity of Live-processing-1 eventuated in the first

incarnation of a new hybrid system: the _derivations interactive performance system.

 The name _derivations was chosen to reflect the system’s goal of deriving its sonic

vocabulary directly from the history of the live performer. Whilst the previously

described systems made partial use of this history, it was only through the combination

of systematic sampling and storage with processing that this began to take shape as the

core generative method in my creative work. As alluded to at the end of the previous

 142

chapter, the sampling and storage capabilities of both Live-sampling-1 and phrase player

lacked a coherent approach towards the organisation of continuously live-sampled

materials. In the _derivations system, I sought to better organise the musical material

sampled throughout an improvisation, and also to make sophisticated use the sonic

content of this material to drive the system’s generative capabilities. As described in

Section 6.5 below, this approach led to the design of an approach to a form of content-

based music information retrieval (Casey et al. 2008) that I define here as phrase matching.

The phrase matching approach used spectral analyses of live-sampled material to drive a

self-referential generative system, allowing the content of previously performed material

to influence the future direction of the system’s contribution to an improvisation.

 The _derivations system therefore integrated a number of strands in my creative practice

into a single interactive system. Reflecting upon past approaches through my

development trajectory, this system emerged both as a response to the initially identified

issues, concerns and interests of this research (see Section 1.4), and as a result of an

iterative process of trial and error, performative testing and reflection-in-action that

formed the core of my creative practice. By bolstering the autonomous capabilities of my

sampling-led approaches using phrase matching, this system maintained the physical

performative freedom of a human improviser, whilst relinquishing direct control over the

organisation of musical materials to a sophisticated, algorithmic process. As will become

clear throughout this chapter, this approach to organisation and self-generativity allowed

an instrumentalist to interact with coherently organised material from their previous

performance(s). Thus, an explorative and ‘hands-free’ approach to live-sampling was

created that suggested novel avenues for performative exploration in an improvised

human-machine performance. In addition, integrating the linked synthesis and

processing modules described in Chapter 5 with this generative approach achieved a

variety of timbral extensions to material captured from the improviser.

 Throughout the remainder of this chapter I chronicle the iterative development of

_derivations towards its stabilisation as a useable performance artefact.35 Major technical

developments are outlined alongside reflections upon the emergent trajectory of my

35 The three most recent distributions of the _derivations system are detailed in Appendix A, and have been

supplied in the submission materials alongside this thesis. Video documentation of the software is also

detailed in Appendix E.

 143

programming and performance practice. The chapter concludes with reflections upon

the use of _derivations in performance with reference to audio and video recordings

supplied in the submission materials.

6.2 The phrase database

Building upon the templates provided by both Live-processing-1 and phrase player, a central

database was developed to manage the segmentation and storage of live-sampled

materials from a live input signal. Given the complexity and novelty provided by the

processing algorithms explored in Live-processing-1, this database sought to harness the

entire history of a musician’s performance in a systemised fashion, to be accessed for re-

generation and processing by linked synthesis and processing modules. This central

database – named the phrase database – was an abstraction residing in the newly titled

_derivations interactive system. In contrast to the approach trialed in the phrase player

system, the phrase database did not contain references to segmented phrases written as

individual files to disk, but instead to specific phrase points within one single audio

buffer stored in memory. Discovering the original cue-point method overly cumbersome

and prone to disk read errors, it was decided that all audio material captured from the

live audio stream would be stored in a single audio buffer residing in memory. This

required some slight modifications to the indexing approach implemented in the phrase

player system. In the modified version, the algorithm accessed each phrase in the database

with reference to its position in the buffer (in milliseconds), rather than by its filename

on disk. When a segment of audio was chosen by the phrase matching algorithm for output,

the algorithm simply consulted the time stamp information stored alongside the phrase

in order to select the correct segment of audio to use for the system’s output.36

36 As discussed in Chapter 2, other systems make use of long buffers for such live sampling and retrieval

work, with notable examples in the work of Assayag et al. (2006), Ciufo (2005) and Casey (2009).

 144

Figure 28: PPhrase Database module within the _der iva t ions system

Given the advancements of the previous two systems, implementing the live sampling

and segmentation approach of this software was relatively trivial. From the

commencement of an improvised encounter with the software, an audio buffer of a fixed

user-defined length recorded the input stream of the instrumentalist. As the improviser

continues to perform, the silence threshold mechanism indexed a growing list of phrase

points in milliseconds in the central phrase database. The four phase vocoders contained

within 4-buff-pvoc could then use this data collection (stored in a central [coll] object) to

point their internal audio buffers to sections of the central audio buffer containing the

relevant phrase index. This central sampling process (relying upon a single internal audio

buffer) solved a fundamental structural issue I had encountered when working with Live-

processing-1. As described previously, the momentary and triggered sampling approach

used for 4-buff-pvoc limited the breadth of musical material accessible for processing by

the four phase vocoder samplers. With this new approach, each PV could reference any

segment of the continually expanding musical material stored in the central audio buffer.

The internal buffer thus contained the entire history of the improviser, much the same as

pitch models’ approach to cumulatively building a central database of sinusoidal models.

This flexibility completely changed the interactive and musical potential of my software

system with respect to live sampled audio.

 145

6.3 Upgrading and expanding output modules

Figure 29: GGranulator processing module included in the _der iva t ions system

As the above process solidified as a core generative method, a third output module was

added to further enhance the textural complexity of the _derivations system. A previously

developed sound file granulator was adapted to be included as a final output module in

the system, giving _derivations three separate and contrasting synthesis and processing

modules with which to express a global sonic vocabulary (see Figure 29). As with the 4-

buff-pvoc module, the granulator accessed the central phrase database for its material, loading

the relevant section of the central audio buffer into its internal buffer for use in

processing. The output of the granulator was based upon an automated ‘scrubbing’

mechanism. A randomised control signal was used to dynamically automate both the

scrubbing position within the audio buffer, and the density of the output grains. Once

triggered for output, the granulator could heavily obscure the original source material,

creating sonic gestures through the superimposition of randomised parameter curves.

The user could preset the remaining parameters of the granulator such as stereo spread,

grain duration and transposition in advance of a performance.

 In addition to the addition of the granulator module, the original pfft~ based phase

vocoder algorithm implemented in 4-buff-pvoc was upgraded due to my dissatisfaction

with its efficiency and sound quality. As noted in Section 5.2.1, the STFT implemented

using the pfft~ object limited the use of the phase vocoder in real-time, live sampled

 146

performance. This was due to the requirement that spectral data be recorded into the

pfft~ object in real-time before being made available for re-synthesis. In the context of

the recently developed phrase database, this limitation made it difficult for 4-buff-pvoc to

dynamically access phrases from the database for re-synthesis. A new algorithm was

subsequently implemented based on a Max-based phase vocoder described by Dudas and

Lippe (2006, 2007). The advantage of Dudas and Lippe’s PV was primarily in its capacity

to load reference phrases from the database without the delay of real-time spectral

recording. After testing this PV for some time, a higher quality solution was eventually

sought from the SuperVP library of external objects released by the Institute de

Recherche et Coordination Acoustique/Musique (IRCAM), available from the ‘SuperVP

for Max’ collection from the ‘Forumnet’ subscription service (IRCAM 2015). In

particular, the supervp.scrub~ external had the added advantage of enabling the

preservation of transients on time stretched material, allowing for a less ‘smeared’ sound

quality from particularly percussive source material. Finally, pitch models’ analysis object

was also updated at this time. Having made use of sigmund~ for sinusoidal

decomposition, IRCAM’s iana~ external (from the ‘Max Sound Box’ collection) was

implemented in its place to improve the efficiency with which sinusoidal lists were

output and stored (Todoroff, Daubresse & Fineberg 1995).37

6.4 Phrase triggering and selection

Given the focus upon expanding the use of live-sampled audio materials, 4buff-pvoc and

granulator now required a mechanism for phrase selection in addition to output triggering.

Whilst in Live-processing-1 the internal buffers of each phase vocoder were filled with

recently sampled material, _derivations’ generative paradigm required a selection to be

made from the central phrase database. This new method of accessing source material

necessitated a form of phrase selection at the point of activation of each of the output

modules accessing the phrase database. As with many of the advancements in my software

systems throughout this project, such a major shift in the structure of a working system

forced reconsideration of the means by which musical generativity was to be achieved in

performance. However, as has been demonstrated in other projects, rather than initially

37 These proprietary objects from IRCAM’s Forumnet are only included in the ‘SuperVP’ distribution of

_derivations. As outlined in Appendix A, both the ‘standard’ and ‘standalone’ distributions implement Dudas

and Lippe’s PV, and the sigmund~ object.

 147

dealing with such change through considered planning, I preferred enabling a direct

performative experience with the changes in software through recourse to simple, tried

and tested forms of generative design. By falling back on known methods of both

triggering and automated phrase selection, I was able to discover what was required in

the system through performative engagement with my developing software algorithms.

 Given the added complexity of the granulator module, a balance was now sought in

automating the output triggering of these three processing modules in the context of a

live performance with an instrumentalist. In Live-processing-1, a simple time threshold

triggering mechanism had been used to trigger the generation of both 4-buff-pvoc and pitch

models (see Sections 5.3.1.1 and 5.3.1.2). This direct triggering approach of Live-processing-1

initially provided the basis for _derivations’ output triggering, with the various time

thresholds carefully manipulated so as to achieve a balanced polyphonic output between

these three modules in performance. Using this method, three separate time thresholds

filtered the incoming amplitude threshold crossings, feeding the triggers to the relevant

output module.

Figure 30: Parsing phrase point data in the ggranula tor . The floating window displays the data
contained within the [coll phrase-points 1] object. Each indexed list refers to the position of an
individual phrase as it appears in the internal audio buffer. Values for each index take the
following format: <phrase s tar t><phrase end><phrase l eng th>. The named s end objects in the
left of the figure send this data to the granulator before processing.

In order to choose material for processing/re-synthesis from the growing phrase database,

these performer-controlled triggers were also appropriated to trigger the selection of a

phrase for output from the database. Although an initially arbitrary approach to

 148

achieving musical generativity, the first implementation of this process saw phrase

selection delegated to a random selection algorithm akin to the approach implemented

within phrase player (see Section 5.3.2). Upon the triggering of either a phase vocoder or

the granulator for output, a random algorithm chose a phrase index from the database

containing indexed phrase cues stored within the central audio buffer. Once chosen,

these indexed portions of the central audio buffer could then be used as a reference for

processing via granulation or phase vocoding (see Figure 30).

 With respect to pitch models, whilst the original implementation of this module’s

triggering remained in tact, with the advent of the phrase database a fundamental change

was made to the model selection algorithm to respond to indexes received from the

phrase database. Up until this point, pitch models’ re-synthesised output followed an aleatoric

trajectory that was not bound by phrase boundaries analysed from the input. The

challenge at the point was to connect pitch models with the segmented approach to phrase

selection enforced by the central phrase database. Whilst this module did not make use of

the recorded audio referred to by the phrase database’s time stamp data, the data was

instead used to group together model indexes associated with each phrase index in the

database.

 To make use of these phrase boundaries, a further data collection was created listing

the range of model indexes for each time range. This additional data collection was then

referenced when a phrase index was received from the phrase matching algorithm. To

output models, the random sweep algorithm described in Section 5.2.2.3 was replaced with

a new one shot mode that facilitated the sequential output of models within the range

specified by the incoming phrase index. Once pitch models received a phrase index for

output, the [coll thresh-phrases] data collection was consulted to retrieve the first and last

model in the range. For output, the length of the phrase stored in the database was used

as the basis for a timed control signal that swept across the range model indexes

associated with that phrase index. Similarly to the random sweep algorithm, it was from this

control signal that pitch models’ IOI lookup table would then choose models for output.

 With the addition of the phrase database, a cumulative approach to musical generativity

was now being pursued consistently throughout the _derivations system. The sampling-led

approaches employed throughout previous projects had coalesced into an integrated

 149

system whose sonic vocabulary was derived entirely from data and audio captured from a

live musician. Yet, whilst this performance system was flexible due to this cumulative

approach, a challenge remained as to how the system might make nuanced and relevant

use of the rich history of sonic material. Whilst the above approach provided an

expansive array of materials for use in an improvisation, their triggering and selection

remained somewhat arbitrary due to the choice of simplistic output and selection

methods. As with the approach implemented in the phrase player system, selecting

segmented phrases using a random algorithm was not designed to be a long-term

solution for musical interactivity in my work. In addition, the means by which the three

output modules were triggered during performance was also problematic, due to the

overly reactive relationship this created between human performer and musical system.

These two issues of musical interactivity and generativity were now clearly highlighted as

areas of concern as the _derivations system began to stabilise as an integrated interactive

performance system.

6.5 Phrase matching in _derivations

Whilst the advances in sample storage and retrieval were of great benefit to _derivations’

ability to organise material from an improviser’s performance, the means by which this

material was used in an improvisation remained somewhat arbitrary. At this point in my

creative trajectory, my sampling-led approach generativity lacked a coherent, content-

based approach to their use in performance. Without referencing the sonic content of the

material being stored for later processing and re-synthesis, I decided that it would not be

possible for my system to be genuinely interactive or autonomous in performance. By

relinquishing control over electronic processes to a computer music system, I was hoping

to engage the performer in a meaningful interactive dialogue with the computer. To

achieve this aim, it was therefore decided that _derivations must display some form of

awareness of the current and past sonic context of an improvisation. Given that the

system’s sonic vocabulary was derived entirely from an improviser’s past sonic gestures,

any such awareness must therefore express itself in a relational fashion. In other words,

_derivations should be able to understand the performance of a human instrumentalist by

making comparisons between what it hears, and what it has already stored in memory.

 150

 The following section details the incremental implementation of the analysis, storage

and matching approaches developed to address the selection of sampled material for

processing in the _derivations software. In addition to providing technical details about the

specific machine listening and music information retrieval (MIR) methods used, this

section illustrates how elements of technical problem solving became instrumental in

solidifying some of the most fundamental artistic concerns of the developmental project.

It was in the exploration of this area of music technology that I began to become

acquainted with areas of computer music research that were initially beyond the scope of

my technical expertise. As I continued to pursue the creation of my software artefact in

an exploratory fashion, a narrowing focus upon spectral analysis as the basis for musical

generativity forced a consideration of the potential pitfalls of ‘getting it wrong’ on a

technical level in my practice, something I had yet to seriously encounter in my work at

this time. Consequently, the developmental approach of the _derivations software shifted

gears by approaching these tasks from a problem-solving and solutions-focused

development perspective.

 Whilst initial experiments with sampling and storage of live audio had begun what I

have termed sampling-led approaches to musical generativity, the manner in which such a

growing database of material was to be used in an interaction had not yet been

sufficiently explored. As detailed in previous sections, at this stage I had managed to find

perceptually meaningful methods of segmenting and storing musical phrases from a live

input using silence threshholding methods. However, the choice of how to access and

use this stored information was limited to the referencing of some basic meta-data of the

stored data points. Such meta-data included the actual index numbers associated with

each phrase, the total length of a phrase or the relative temporal position of the phrase in

the database as a whole. In other words, although these systems demonstrated the

possibilities of segmentation for building large databases of live sampled materials, the

methods of generativity that such meta-data facilitated remained lacking. Given that this

meta-data was devoid of any contextually significant information about the contents of

each entry in the database, the generative capabilities of these early systems relied heavily

upon aleatoric methods of selecting materials for output and processing.

 In light of these challenges and limitations, the next step in my developmental

trajectory was to investigate methods that used the content of segmented and stored data

 151

as an integral part of the software’s generative strategy. The method that I began to

explore in my work at this time I define here as phrase matching, a technique that may be

broadly described as a form of content-based music information retrieval, as defined by

Casey et al. (2008).38 Phrase matching is a content-based audio similarity search method that

makes use of sound descriptor analyses streamed from a live audio signal to query a

database of segmented and pre-analysed audio materials. These audio materials, or

phrases, are segmented in real-time from the instrumentalist and time-stamped using the

silence threshold algorithm discussed in Section 5.3.1.1.39 In the various iterations of this

technique that were implemented in the _derivations software, sound descriptor analyses

of an improvising musician were used both to build this cumulative database – the phrase

database – as well as to query the database in order to find similar, stored materials for

playback, processing and re-synthesis.

 Multi-descriptor phrase matching using analyzer~ 6.5.1

Thus, the phrase matching approach began as a means towards enabling the contents of the

data being stored in these databases to lead the musical generation process. As discussed

in relation to the pitch models module however, I had already begun in this project using

FFT-driven spectral analysis as a means towards integrating the sound of a computer

music system with a collaborating instrumentalist (see Section 5.2.2 for details).

However, the present phrase matching method required a higher-level approach to the use

of sound descriptor analyses streamed from the live audio signal. Rather than collecting

and storing streams of analysis data for re-synthesis, the purpose of the phrase matching

algorithm was to build a statistical representation of each audio segment to be stored

within the database. This statistical representation could then be used to make

contextually significant decisions about which stored phrases were to be used for

playback, processing or re-synthesis in a live performance with the system.

38 In this survey paper on content-based music information retrieval, Casey et al. refer to real-time,

performative efforts in this area collectively as ‘soundspotting’. However, there are some fundamental

differences in the present approach than those outlined in this paper and others by Casey. For more detail

on Casey’s own soundspotting system, the reader is referred to Section 2.3.3.2 of the Literature Review.
39 This segmentation approach is also discussed in Carey (2012).

 152

 In early iterations of the phrase matching algorithm, the system response in _derivations

relied upon referencing phrase vectors that contained statistical representations of four

sound descriptors captured throughout the duration of each phrase. These phrase vectors,

grouped and analysed after the conclusion of each phrase, were indexed alongside each

phrase contained within the database, creating a perceptually significant extension to the

existing meta-data contained within the original database. The vectors would then be

used to select phrases stored in the phrase database that best matched the most

recently analysed phrase performed by the instrumentalist. This process is described

below.

Figure 31: Building a phrase vector

Making use of Tristan Jehan’s analyzer~ external object for Max (Jehan & Schoner 2001),

the phrase matching algorithm collected the continuous output of four sound descriptors

from the live signal throughout the length of each phrase. The descriptors streamed from

analyzer~ were pitch, loudness, brightness (spectral centroid) and noisiness (a measure of

spectral inharmonicity). Upon the completion of a phrase, the system computed both the

mean and standard deviation of the accumulated data for each descriptor, storing

the resultant eight statistical values in the database as a phrase vector indexed to each

analyzer~ output (normalised)
 pitch loudness brightness noisiness

mean mean mean mean

std std std std

(pitch mean, pitch std, loudness mean, loudness std, brightness mean, brightness std, noisiness mean, noisiness std)

phrase vector

 153

individual phrase (see Figure 31). In order to find the closest matching phrase contained

within the phrase database, the matching algorithm compared the most recently formed

phrase vector against the database accumulated from all previously stored vectors. This

process was executed once the statistics had been grouped together at a phrase boundary,

immediately prior to being stored in the phrase database as a new phrase vector. This

querying process was not, however, completed on the vector as a whole, but by

separating out the statistics stored for each descriptor so that they may by queried

individually against the accumulated databases of each of the separate descriptors.

Figure 32: Querying the phrase database –– pi t ch comparison

This querying process can be defined as follows: the mean value of each sound

descriptor in the current vector is compared against the database of all of the means

phrase vector (query)

stdmean

pitch:

top 4 phrase
matches

top 2 matches

filtered std database

std database

means
database

 154

calculated for that descriptor (the mean database). To do so, the algorithm takes the

Euclidean distance between the mean of the input query and the means contained in the

database, ranking the values returned from the database from smallest to largest distance

from the input query. The algorithm then returns the four closest matching phrase

indexes to this input. These phrase indexes were then used to filter the database of stored

standard deviation values for each descriptor, and a further Euclidean distance was

computed between the standard deviation value of the input phrase and these four

phrase indexes (the filtered standard deviation database). This process was executed

simultaneously across all four sound descriptors, returning a total of eight phrase indexes

as potential matches to an input phrase (two per descriptor). This process is illustrated

for the pitch descriptor in Figure 32.

 Given that this matching approach dealt with multiple sound descriptors as well as

inconsistent overall phrase lengths (i.e. analysis windows), a choice was made to focus

only upon these basic statistics of each descriptor (mean and standard deviation). By

surveying first the mean and subsequently the standard deviations values across the

individual descriptor databases, the algorithm attempted to determine, in steps of

increasing specificity, the relationship between the input representation and the statistical

values stored in the phrase database. By itself, the mean value was not considered

satisfactory as a similarity measure for descriptor comparisons, given that the temporal

nature of the analysed descriptor data would not be contained within such an analysis. By

continuing the similarity search by computing the standard deviation value as a second

step in the process, the algorithm was able to compare the relationship between the input

statistics and the phrase database, by focusing on the degree of variance between the

input and the database of descriptor data.

 The common match algorithm 6.5.2

Once the above-described two-step similarity search was complete, the final step in the

matching process, defined as the common match algorithm, sought to find common

matches amongst the top ranking phrase indexes returned by the four descriptor

similarity searches. In this process, the individual matches returned from each descriptor

are compared against every other descriptor in order to find like matches amongst the

eight total phrase indexes returned, as illustrated in Figure 33. Following the individual

 155

querying of descriptor databases outlined above, the returned phrase indexes were tallied

in order to find agreement between descriptors, with the highest number of occurrences

of a phrase index chosen for selection. In cases where descriptor matches were tied

between two agreeing phrase index matches, such ties were broken at random. By

contrast, where no common indexes were found amongst the descriptor matches, a

random choice was made between the between top ranking indexes chosen by the search

algorithms.

Figure 33: Comparing descriptor matches – the ccommon match algorithm

 Limitations of the multi-descriptor and common match approaches 6.5.3

At the time of development, the common match algorithm represented a solution to the

discretisation inherent in building a multi-dimensional representation of recorded audio

segments from a live signal. This approach privileged agreement between the four

descriptors in order to find the closest match to an input phrase. In addition, a choice

find common phrase indexes

 common index(es) found no common index(es) found

pitch: loudness: brightness: noisiness:

top 2 matches top 2 matches top 2 matches top 2 matches

highest ranking phrase index

output chosen phrase

top 4 matches (one per descriptor)

random selection

 156

was made to compute descriptor comparisons separately, as opposed to as a complete

feature vector of the input. As illustrated above, the multi-descriptor approach

treated the mean and standard deviations of each descriptor individually before

computing a matching phrase. Comparisons between matched phrases were therefore

made only after each descriptor had queried its own area of the phrase database.

Although each of the descriptors queried the database in parallel, the comparison of both

mean and standard deviations with the database therefore occurred in series, with each

descriptor querying the mean and subsequently the standard deviation database.

 Whilst proving useful in providing a basic matching scheme for use in the _derivations

software, the above approach did prove overly cumbersome, as it required multiple steps

of analysis and comparison, as well as prioritising agreement between descriptors that in

practice may occasionally not share any matching phrase indexes. As specified by the

common match algorithm, it could often be a random decision that determined which

descriptor’s top ranking phrase index would be chosen for output. This in turn provided

a limitation to the algorithm that would sometimes result in the output of perceptually

unexpected results. Given that the ultimate goal of this analysis and matching scheme

was to return perceptually significant matches to an input phrase, the separation between

descriptors in the matching process did not always prove consistent from one input

phrase to the next. This was especially true for situations where an instrumentalist either

a) played sonic materials that did not have a great deal of precedent stored in the

database or b) improvised with a multi-source database, where there is an inherent

variety of materials present in its design (more information on multi-source databases see

Section 6.8).

 By way of example, let us consider an input phrase to this algorithm that returns no

common phrase indexes across the statistics databases queried for each descriptor. In

such a case, although the statistics databases for each descriptor would return their top

two closest phrase indexes, none of the four descriptors share matching indexes. In this

example, the algorithm randomly chooses between one of the top four matching phrase

indexes to output. According to the above-described matching algorithm, there would be

an equal chance that the closest matches returned by either pitch, loudness, brightness or

noisiness could be chosen for output. Although the algorithm would faithfully choose a

phrase index for output that closely matches the input phrase query, the choice of

 157

descriptor may not accurately reflect the most perceptually relevant feature of the input to the

improviser. In addition, this random prioritisation of one descriptor over another also

made no account of any history of previous decisions made by the algorithm in previous

matches. In light of this, the choice to output a phrase index returned from the loudness

statistics of a phrase might not be considered perceptually similar enough to a musician’s

recent performance history with the software. This would be particularly true if the

musician was expecting matches that closely related to features of their sound other than

the dynamic profile of their most recent performance (as expressed by the statistical

representation provided by the loudness database).

 Having tested the above-described approach extensively in rehearsal and performance,

it was decided that the matching scheme suffered from problems of consistency. Often

such inconsistencies manifested themselves in the system making perceptually

inconsistent jumps between stored materials, when compared with the musical variety

exhibited by a human improviser. Although these inconsistencies could not be

technically classed as errors of the matching algorithm itself, their occurrences did

conflict with the overall purpose of employing such a matching algorithm in an

interactive music system. That is, if an algorithm for comparing the sound of a live

improviser is to be implemented in such a system, it should be able to be relied upon to

make perceptual sense in performance, and for it to be somewhat predictable and

reliable. Of course, in an improvised performance any unpredictable output of this kind

would often become the catalyst for new musical explorations. This is because it was

very hard to tell the cause of a perceptual jump in sonic material by the algorithm in

performance, and indeed in practice this knowledge would be completely irrelevant to

the ongoing musical discourse. Instead of viewing these surprises as erroneous behaviour

of the algorithm, they would often be viewed as digital provocations by the software that

a musician might choose to react.

 At this point however, it may be useful to reconsider my creative aims in the

development of interactive performance systems, as outlined in Section 1.4. As with the

majority of the approaches outlined in this research, _derivations was developed to provide

playful exchange between a computer and a human improviser. By relinquishing control

over the system to algorithmic processes, _derivations sought to encourage an exploratory

approach from the improviser in performance, by ensuring that both musical coherence

 158

and surprise was evident in the system’s output. In particular, this system sought to

display genuinely emergent properties from the recombination and processing of musical

materials familiar to the human improviser (i.e. recorded segments of the musician’s past

performance(s)). However, given that the type of analysis and generation relied heavily

on specific music information retrieval techniques, this analysis and matching component

– the heart of the generative system – did need to prove as consistent as possible. As

discussed above, if an analysis and matching algorithm is to be used as the core

generational element in such an interactive system, reliability, repeatability and

predictability of the algorithm would need to be maximised. Therefore, it became

increasingly clear at this stage of the development process that the place for variety and

unpredictability in a system of this type should be found elsewhere in the design of the

system. The unpredictable and surprising parts of such systems should be included as

intentionally programmed elements, not as a fortuitous byproduct of internal

inconsistencies. It was therefore decided that the ability of such an algorithm to provide

perceptually relevant matches to a live signal must rely upon the algorithm being

consistent and predictable in nature.

 To account for the inconsistencies outlined above, three extensions to the phrase

matching algorithm were developed and tested in the rehearsal process that were

intended to provide more reliable and predictable output from the matching process.

Two of these extensions to the matching approach required user decision-making in

rehearsal, whilst the other extended the algorithm to automatically choose the most

perceptually significant descriptor from the input phrase. These extensions are described

below, followed by a critique of their effectiveness.

 User-defined descriptor weighting 6.5.4

The first approach that tested to improve matching consistency made use of a set of

user-defined descriptor weights. This was included as an option in the software, allowing

the user to choose between the weighting scheme and the original common match approach

as outlined above. In the weighting scheme, four sliders allowed the user to weight the

importance of each descriptor in matching the input to the phrase database. These sliders

were mapped to weighting values in a probability table consulted by the matching

algorithm before the output of a matched phrase (see Figure 34). Thus, instead of relying

 159

upon descriptor matches reaching agreement (or picking a random match in the case of

non-agreement), the weighting scheme enabled the user to define the likelihood that the

matches returned by particular descriptors would be chosen for output.

Figure 34: User-defined descriptor weighting

The rationale for this approach was that allowing a user to weight the importance given

to various aspects of the internal analysis/matching of the software, the more likely the

algorithm would return phrase indexes that matched their input according to their own

criteria. In addition to this, an options per descriptor parameter was added that enabled the

user to specify how many options each descriptor would return as possible matches. This

parameter served to broaden the scope of the common match algorithm when searching for

agreement between descriptors, allowing a larger pool of possible phrase indexes to be

consulted by the descriptor weights algorithm.

 User-defined descriptor filtering 6.5.5

Secondly, a more brute-force approach was developed that allowed users to choose a

subset of descriptors they deemed relevant for perceptually significant matching of their

input. This option required the user to decide upon which single descriptor, or

combination of two descriptors, they would prefer the system prioritised from their

input to obtain meaningful matches in their improvisation, to the exclusion of all other

descriptor matches (see Figure 35). The choice of a single descriptor simply forced the

algorithm to pick the top ranking phrase index returned by the chosen descriptor, whilst

the choice of a subset of two descriptors caused the software to implement a stripped-

down version of the common match algorithm, seeking agreement only on the matches

 160

returned by the two chosen descriptors. As well as reducing the potential for abrupt

changes in descriptor focus during matching, this approach also limited the matching

process to at most half of the original similarity search in previous approaches.

Figure 35: User-defined descriptor filtering

 Automatic similarity metric 6.5.6

The final approach to improving consistency comprised of an algorithm that filtered the

eight chosen phrase indexes according to an automatic similarity metric. Instead of

relying upon the user to determine the most salient descriptor to be prioritised, this

metric filtered the top four indexes and compared their standard deviation values in

order to choose the most similar phrase for output, based on the smallest Euclidean

distance. As the values contained within each of the descriptor databases were

normalised between 0 and 1, directly comparing the standard deviation values calculated

from the analysed data points was deemed a useful measure of similarity. As described

above, the matches returned by each of the descriptor databases were calculated by

choosing the smallest distance between the standard deviation value of the input and the

top ranking phrase indexes. Given that these standard deviation values were calculated

from the mean of all data points analysed during the length of a phrase, this algorithm

required only a small amount of extra programming as it was the statistical values

themselves that were being compared and not agreement amongst the various

descriptors.

 161

 Evaluating multi-descriptor phrase matching 6.5.7

As is shown by the above extensions to the phrase matching algorithm, initial attempts at

using content-based techniques as a generative strategy revealed some fundamental

problems with using separate sound descriptors for this task. Although the individual

matching algorithms of each descriptor worked consistently and predictably, there

remained great difficulty in integrating this matching approach into a coherent scheme

across the four descriptors chosen to represent the sonic content of each phrase. Making

use of the analyzer~ external as the basis for a multi-descriptor analysis approach, the

multi-descriptor matching scheme relied heavily on agreement between descriptor

matches. As critiqued above, unforeseen problems of consistency in the common match

algorithm stemmed directly from the simplicity of this approach.

 The first two extensions of the phrase matching algorithm attemped to address

inconsistencies by giving the user more control over the outcome of the final decision

made by the matching algorithm. What these extensions acknowledged was that the

problems of consistency in the algorithm stemmed from the jump in descriptor focus

that could occur if this multi-descriptor approach could not agree internally on the best

matching phrase index. Both of these approaches sought to reduce the likelihood that

the algorithm would make random decisions, instead calling upon the user to provide

contextual information to the algorithm to aid in finding consistent matches during

performance.

 Comparing these two user-defined approaches in rehearsal and performance, it was

found that the simpler, brute-force descriptor filtering approach improved the consistency

of the matching algorithm, whilst the descriptor weights extension of the matching

algorithm proved to be an ineffective means of improving consistency. In my own

performances and rehearsals, the descriptor filtering approach suited my desired interaction

style with the software. Given that I was primarily interested in engaging with _derivations

using timbre as main analytical focus, when using this algorithm at this time I

consistently opted for a combination of brightness and noisiness as the descriptors to be

queried from my input (eliminating both pitch and loudness from the similarity search).

By contrast, although enabling users to prioritise certain descriptors over others, the

nature of the probability table used in the descriptor weights algorithm did nothing to

 162

eliminate the possibility that inconsistent jumps between materials would occur. This is

because such a probabilistic approach did not take into account transitions from one

descriptor to another, hence leaving open the possibility of inconsistent matching

decisions occurring (albeit with less frequency).

Finally, from my perspective as both a performer and developer of the software, a

non-trivial disadvantage I saw in both of the above extensions was the increase in

options provided to an improvising musician working with the software. Given the

complexity of the software as a whole, I was also concerned to avoid over-complicating

the software for potential users that may not be as interested in making such fine-grained

decisions. The _derivations system, whilst providing improvising musicians with a musical

environment that could be customisable to their musical inclinations, should also work

‘out of the box’. That is, the software must be able to facilitate meaningful performative

engagement without requiring users to delve any deeper than they deemed necessary.

Giving a user choice over relatively low-level parameters risked being both superfluous

as well as potentially confusing for the average user interacting with _derivations.

 It was a desire to remedy this issue that prompted the creation of the automatic

similiarity metric discussed above. In principle, enabling a more autonomous means of

establishing consistency in a similarity algorithm was ideal when compared with the

previously discussed heuristics. However, the discretised analysis method made the

problem a difficult one to solve. In the automatic similarity metric, the normalised

descriptor data streamed from the analyzer~ external presented very levels of variation

for each descriptor. Here the process of normalising mean and standard deviation values

to ensure correct comparison relied upon making assumptions about the range of the

various data streams in advance of their analysis. The problem was therefore one in

which the process of normalisation itself came into question. The algorithm as it stood

made assumptions about the consistency between the four descriptors, and it was

decided that improving upon its effectiveness was not an ideal means of improving

consistency in the matching algorithm.

 As evident in the various attempts at taming the multi-descriptor matching approach, this

process relied on a great deal of trial and error in both development and testing.

Although the original common match algorithm did prove somewhat sufficient in enabling a

 163

content-based approach to sampling-led generativity, the few inconsistencies

encountered during repeat performances with the software led me to question to merits

of the approach, and the methods by which such a core component of my software was

developed. The ‘code-and-fix’ methodology employed in the phrase matching algorithm

provided a detailed and exploratory approach to fine-tuning the core matching algorithm.

However, given the complexity of the interlocking parts within the _derivations system,

this approach to development proved inefficient at solving such a fundamental design

problem. As the _derivations project progressed, it became clear that the conceptual

interest in the matching approach required a stable and reliable algorithm, one that could

remain hidden from the user and trusted to provide predictable results. The paradoxical

situation uncovered through this process was that without a deterministic and predictable

generative process underpinning the design, the layered aleatoric methods of processing

and generation could not be relied upon to generate interest. Phrase matching therefore

needed to be as foolproof as possible in order for the complexity to reveal itself as the

driver of the system’s novelty in performance.

The fundamental issue with the common match algorithm was the difficulty in using four

separate descriptors to determine similarity. Given my inclination for timbral matching,

in the period that followed I implemented a matching algorithm based on a single

analytical measure of the musician’s live performance, Mel Frequency Cepstral

Coefficients (MFCCs). Compared with the multi-descriptor method of analysis in

_derivations, the use of MFCCs proved a more consistent and streamlined way of

recording perceptually significant information about a recorded audio segment. The

details of this matching approach are outlined below.

 MFCCs in _derivations 6.5.8

Employed heavily in the speech recognition community, Mel-frequency Cepstral

Coefficients (MFCCs) have been shown to be useful for music information retrieval

tasks (Casey et al. 2008; Logan 2000). The mel-frequency cepstrum is considered a

‘spectrum of a spectrum’, representing the power or magnitude spectrum of the

spectrum obtained from an FFT. MFCC feature vectors are obtained by taking the

logarithm of the amplitude spectrum of a windowed audio signal, spacing the resultant

audio bins along the Mel frequency scale before decorrelating the values using the

 164

discrete cosine transfer (DCT). The Mel scale is a perceptual scale of pitches that more

accurately reflects the nonlinear frequency perception of human hearing. MFCCs are

therefore more likely to result in perceptually significant representation of incoming

audio for musical applications than an FFT representation. Figure 36 outlines the process

undertaken to create vectors of MFCC features for use in the analysis of instrumental

timbre.

 In _derivations, MFCC analysis replaced the multi-descriptor analysis using the analyzer~

object. MFCC feature vectors are extracted from the input audio signal using the

zsa.mfcc~ external object for Max, developed by Emmanuel Jourdan and Mikhail Malt

and released as part of the zsa.descriptors library (Malt & Jourdan 2008, 2009).40 Using the

same segmentation method based upon amplitude thresholding, the segmented audio

signal is analysed via an FFT with a window size of 1024 samples (approximately once

every 23ms), which is then fed through the zsa.mfcc~ object to obtain twelve cepstral

coefficients for each analysis frame. This feature vector is streamed and collated

throughout the duration of each phrase, and then subjected to further statistical analysis

for use in phrase matching once a phrase boundary has been reached.

 Upon reaching a phrase boundary, the collected data streamed for each of the twelve

coefficients is analysed for mean and standard deviation over the duration of the

analysed phrase (see Figure 37 below). The resultant values are collected into a 24-

dimensional feature vector representing timbral content of the phrase, indexed by phrase

number in the database. In contrast to the previous multi-descriptor approach, however,

the MFCC phrase matching implementation used the entire feature vector for

comparison with the phrase database. In order to calculate a match, the Euclidean

distance was calculated between the input feature vector and the database of stored

vectors. This process was achieved using the zsa.dist external object from the zsa.descriptors

library. This method has proven more efficient, as is has not relied upon the agreement

between the output of multiple features in determining a match, and the statistical

data points are easily compared as single, multi-dimensional feature vectors.

40 This library is accessible from the following URL: http://www.e--j.com/index.php/what-is-zsa-

descriptors/

 165

Figure 36: Creating MFCC features from an audio signal (Logan 2000)

 166

Figure 37: Collating MFCC phrase vector statistics

When tested using simulation performances, the MFCC matching approach produced

perceptually strong matches from pre-analysed inputs. The zsa.dist external object

enabled incoming phrase vectors to be compared amongst the growing list of vectors

stored in its growing database. Given that the phrase vectors contained both mean and

standard deviation for each of the twelve coefficients streamed through the length of

each phrase, this technique enabled an efficient and simple and reliable matching

method.

6.6 Self-referencing

Having developed, tested and refined the above-discussed phrase matching approach, this

idiosyncratic form of content-based music information retrieval had become central to

_derivations’ internal dynamics. The trajectory that the software followed towards the final

MFCC implementation, whilst clear in retrospect, could not have been predicted in

advance. As has been discussed above, the initial choice to make use of multi-descriptor

analysis for this task spawned a series of experiments aimed at refining the original

matching technique. These experiments, on the whole, were designed to tame a largely

inefficient and unreliable algorithm to achieve more consistent results. As has been

previously discussed, given my focus on provoking surprise and unpredictability in the

design of the system, a need for reliability and consistency in this generative algorithm

 167

was not immediately revealed until such problems were encountered during performative

testing of the software. As design criteria therefore, consistency and reliability in the

matching process were revealed only as the software and my performance practice

evolved.

 Similarly, it was the evolution of the phrase matching approach and experience with this

in performance that led to a revision of the overall architecture of triggering and control

in the _derivations system. As discussed previously, when the various pre-existing modules

were assembled to create _derivations as an integrated system, the approaches towards

both module triggering and phrase selection were co-opted from previously implemented

systems. Whilst the subsequent phrase matching approach had significantly changed the

software’s approach to phrase selection, the triggering of the three output modules

during performance was in need of considerable re-design. The three output modules

within _derivations (4-buff-pvoc, pitch models and the granulator) were still being triggered

based upon amplitude threshold approaches (as discussed in Section 5.3.1.1). Amplitude

threshold crossings from the live performer were filtered through a series of time

thresholds, allowing for a degree of control of the relative density of the software’s

output. Whilst both phrase selection and the internal dynamics of each output module

were automated, the live performer was still in direct control of the temporal output of

the modules themselves.

 Given the recent advances in automated phrase selection, I began to scrutinise this

method of control in the _derivations system. In its current form, this threshold triggering

represented a high-level form of control over both the sophisticated phrase matching and

the aleatoric automation of each output module. As the improviser performed, the latest

amplitude threshold crossing passed through the threshold gate would trigger both the

matching process and the output of the module itself. In addition, due to the nature of

the matching process, each output trigger received from the performer would trigger the

index returned from the previous query to the database. This was a necessary restriction

of the software, given that a phrase index could not be returned from the phrase matching

algorithm until the end of a phrase boundary (see Figure 38 below). As a result of this

triggering process, the performer was in control of triggering the response of the output

modules via the amplitude threshold mechanism.

 168

Figure 38: __der iva t ions ’ original phrase storage and triggering logic. The beginning of a phrase
boundary sends the previously matched phrase index to an available output module.

 169

After performing for some time with this form of matching and triggering process in

_derivations, it was decided that the link between performance gesture and automated

output was not in keeping with the generative autonomy desired in a system of this type.

The coupling of automated phrase analysis with triggering of the output modules no

longer made sense in the context of the above-described phrase matching algorithm. The

reactive nature of this triggering mechanism engendered an ambiguous form of control

over the output of the software. That is, although a musician triggered _derivations’ output

directly through amplitude triggering, the precise phrase index chosen for output, the

module chosen to process/re-synthesise this phrase and the specifics of the

processing/re-synthesis were largely unpredictable to the performer. In other words, a

deterministic trigger was being used to initiate an unpredictable process. Whilst this

indeterminacy did form a large part of the software’s performative agency, it was decided

that such a mechanism should no longer be controlled by the performer, but must be

automated globally within the software itself.

 To achieve this aim, I sought to distance _derivations’ output modules from the

amplitude triggers necessary for the software’s analysis. This approach saw a fundamental

shift in the way in which _derivations’ output modules were conceptualised, facilitating the

creation of an autonomous dynamical system that controlled the software’s overall

generative output. Until this time, _derivations’ three output modules (4buff-pvoc, pitch models

and the granulator) had been treated separately with respect to their triggering and internal

control. Besides the sonic coherence brought about by the phrase matching algorithm, to

this point the modules were solely contingent upon the continued performance of the

human improviser for their sonic material and output triggering. If the performer ceased

playing, the system quickly came to rest given the lack of amplitude triggers received

from the live signal. In this new approach, each of _derivations’ output modules was

considered an individual player that could have influence over the subsequent output of

the system itself. By splitting 4-buff-pvoc’s phase vocoders into four individual players,

_derivations was now comprised of six separate players with the potential to influence the

dynamics of the system as a whole: Pvoc-1, Pvoc-2, Pvoc-3, Pvoc-4, granulator and pitch models.

This new approach was referred to as the self-referencing algorithm, and saw an expanded

 170

role of the phrase matching algorithm in determining the sequential output of individual

processing/re-synthesis modules.41

 In the self-referencing algorithm, input from the live performer is injected into the system

as ‘seed’ material from which the algorithm generates its internal dynamics. In contrast to

the previous triggering approach, here each ‘player’ is triggered sequentially by the

previous player to perform, after a given time threshold. These time thresholds are a

function of the length of the current phrase chosen for output, allowing the system to

maintain a coherent level of polyphony between the six output modules. To create a

sense of variety in the output duration of each chosen phrase, the density of the output

gestures is governed by a parameter modulating the output length of each phrase slowly

within a user-specified range during an improvised session. _derivations’ temporal output

is therefore continuous and contingent upon the output of each individual player, not

solely the live performer.

 Most importantly, the self-referencing algorithm contains six individual instantiations of

the phrase matching algorithm itself. Once a player receives a phrase index for output, it

passes this index to the next available player to find a suitable match from the database,

ready for subsequent triggering. The algorithm keeps track of which players are currently

available for output, allowing for the continuous output of sonic materials from the

phrase database. This process can be conceptualised as a digital form of the game chinese

whispers (also known as telephone), whereby the previously matched phrase is queried

against the remaining database to find the next closest match. This process is illustrated

in Figures 39 and 40.

41 The self-referencing module in the interface displays itself as a pop-up window accessible via the

‘Triggering’ tab in the main _derivations interface.

 171

Figure 39: __der iva t ions ’ s e l f - r e f e r enc ing algorithm. This figure displays a cycle of output triggering
and phrase comparison that occurs from input provided by an improvising musician.

Figure 40: The s e l f - r e f e r enc ing algorithm can continue generating material without continued
input from the performer.

 172

An important aspect of the self-referencing algorithm is the decentralisation of the phrase

matching algorithm, and the lack of a hierarchy resulting from this continuous form of

phrase comparison. As illustrated in Figure 39, the input provided by the improviser

represents a single link in a continuous chain of phrase comparisons. As the improviser

performs with the system, the input phrase matching algorithm is queried upon phrase

boundaries to find the closest match from the database. Once found, this match is

passed to the first available output module in the self-referencing algorithm for output (Pvoc-

1 in Figure 39). Once this phrase index is received by Pvoc-1, a subsequent comparison is

made with this phrase index and the database, excluding the current phrase, with the next

match retrieved and sent to the next module (pitch models) for output. If the live

performer ceases playing, the algorithm continues passing phrase indexes from module

to module, creating a cyclical pattern of comparisons, as illustrated in Figure 40.

Consequently, the algorithm does not prioritise the live input over its internal

comparisons; it simply passes any information received through the network in a

continuous fashion.

 The advent of the self-referencing algorithm greatly improved _derivations’ sense of

autonomy as a performative system. Whilst the material passed from player to player

originated directly from the live performer, the internal dynamics of the algorithm’s

comparison and triggering created a level of opacity in its approach. Such opacity helped

to separate the live performance of the instrumentalist from the generative grammar of

the software itself. The conceptual interest of this enhanced form of software autonomy

was the solution to a problem encountered in my performances with the software.

Finding the software overly reactive in performance, this intentional distancing of

_derivations’ generative grammar from its analytical capacities helped to shape the future

direction of the project, along with my conceptions of both performance practice and

the design of interactive systems.

6.7 Evaluating live sampling and generation in _derivations

As a performer-developer, I evaluate my systems first and foremost for their capacity to

contribute to an improvised encounter in a musically interesting fashion. As has been

demonstrated throughout this thesis, incremental advancements to my systems often

fuelled unforeseen areas creative speculation and refinement. Having worked with

 173

sampling-led forms of musical generativity for some time, a series of questions regarding

the nature of sampling as both generative method and principle of structural organisation

came to light. With respect to Live-processing-1, the notion of ‘momentary’ sampling had

been evaluated as a limiting approach to gathering source material for use in an

interactive musical system. Through the advancements of phrase player and the above-

discussed matching algorithms in _derivations, this limited form of live sampling was

expanded to enable _derivations to ‘mine’ continuously sampled musical material using

content-based music information retrieval techniques. This approach to sampling and re-

generation could not have been predicted from the outset of my creative practice.

 After performing with the _derivations system and fine-tuning its processing capabilities,

I began to question the musical interest of continuous live sampling itself as a generative

method in human-machine performance. Although this form of live sampling facilitated

a flexible content-based form of musical generativity, such an approach still limited the

system’s response to the temporal context of the present improvisation. This was due to

the fact that the growing size of the system’s ‘vocabulary’, although accessed in a

sophisticated manner through phrase matching, displayed a consistent linear trajectory

throughout an improvisation. That is, the relative length of a live improvisation

ultimately determined the size of the phrase database used by the matching algorithm to

develop new musical material in performance.

 This aspect of the _derivations system raised interesting questions regarding musical

form and interactivity between human and machine performances. As critiqued in

Chapter 2, the momentary sampling approach of live looping (see Section 2.3.3.1) can

suffer from an additive and linear form of musical structuring. Although a more

sophisticated and automated technique, the continuous live sampling employed in

_derivations also suffered from its own structural limitations by being tied to the temporal

context of the presently unfolding musical scenario. The additive and linear nature of

such a sampling-led form of generativity, whilst providing a coherent approach based on

the recent past, followed a pre-determined trajectory that was directly related to the

growing possibility space provided by the phrase database. Therefore, as a performance

with the system unfolds in time, the richness of the musical material available to the

system grows.

 174

 As discovered through performative testing, this facet of the system encouraged

certain modes of interactive performance. With the knowledge that the system’s database

(its sonic vocabulary) was growing over time, a performer may take advantage of the

cumulative nature of the system’s sonic vocabulary as a performance strategy. In my own

performances, this growing space of possibilities was exploited to develop musical

structures based upon elaborations of initial seed materials. The phrase matching method

ensured that each musical gesture performed by the instrumentalist was treated both as a

query to the phrase database, and as a new musical phrase for later use. Due to this aspect

of the system’s design, performing with _derivations became as much an exercise in

developing the system’s vocabulary, as it was an interaction with the system itself.

Though interesting form of musical interaction, the consistently cumulative nature of this

interactive relationship began to feel limited as a structural device in improvised musical

performance. The connection to the musician’s recent performance limited the

complexity and unpredictability of the system’s output, and therefore its potential for

creating a novel interactive relationship between human and machine in performance. If

the system’s sonic vocabulary was completely contingent upon the sounds siphoned

from the performer in real-time, then the ability of the system itself to surprise and

provoke – a trait that Young has described strong interactivity (see Section 2.2) – was

subsequently diluted.

 After considering these issues, it was determined that _derivations lacked the ability to

express a system-specific sonic vocabulary. The system’s reliance on musical material

siphoned from the current performance promoted specific structural constraints on an

improvised encounter. It was therefore decided that the form of live sampling in use in

this system should be expanded, in order to enable the pre-definition _derivations

vocabulary in advance of a musical encounter. It also occurred to me at this time that the

cumulative nature of _derivations’ real-time sampling did not take full advantage of the

potential of the phrase matching approach to musical generativity. As a form of content-

based music information retrieval, the application of phrase matching need not be limited

to the most recent past of a musical improvisation. Hence, the size of the queried

database was of no direct consequence to the matching algorithm, as the technique is

decidedly agnostic as to the temporal context from which the musical materials were

derived. Therefore, it was the potential of this newly developed approach to musical

generativity that forced an expansion of my approach to sampling as a method for

 175

gathering musical materials, and therefore a considerable modification of _derivations’

musical and interactive capabilities.

6.8 Session databases

The sampling and storage architecture of _derivations’ phrase database was based upon the

cumulative storage of musical phrases analysed from a live improvising musician. As

discussed previously, this architecture was based around a central data collection

containing precise timing information relating to a single audio buffer recorded during

performance. The statistics module used in both the above versions of the phrase matching

approach (the initial analyzer~ and later MFCC-based approaches), also contained a list of

spectral data indexed to individual phrases contained within the phrase database. Whilst

the granulator and 4-buff-pvoc modules used this data for their generation, the pitch models

module made use of its own internal data collection for storing and recalling sinusoidal

models analysed from the live input (see Section 5.2.2.1). In any given performance with

the _derivations system a series of data collections were consulted in order for the software

to generate new musical materials. It was from these data collections that the software

made its contribution to an improvised encounter.

 Importantly however, at the end of an improvised session all of this data was

discarded to make way for new material captured in a subsequent improvisation. Whilst

_derivations worked in a cumulative fashion within an individual improvised performance,

each performance with the system began with an empty phrase database; the system had

not been designed to retain audio nor analysis data from session to session. Given the

detailed and robust nature of the software’s data storage and recall facilities, it was

decided that a performer should be given the option to save such data collections for

later use. Such an approach subsequently enabled the real-time capabilities of _derivations’

data storage to be re-appropriated for future interactive encounters. Making use of the

coll object in Max, the above data collections could be easily stored and recalled from disk

in the form of simple text files. All audio and analysis data collected during an

improvisation with _derivations could be later used to define the system’s sonic vocabulary

in advance of a performance.

 176

 To facilitate this, the phrase database was amended to allow all relevant data collections

to be named and saved in a central database directory on disk. Initially referred to as a

Rehearsal Database, this central database contained relevant analysis data, the contents of

the audio buffer recorded during the session as well as a high-level ‘master’ file used as a

reference to all files pertaining to the exported session. Figure 41 shows the internal

mechanism used for saving data stored during an improvisation with _derivations. Once a

performer has finished an improvised session with the software, clicking the ‘Save

Rehearsal’ button in the phrase database launched a save dialog enabling the user to write

the data collected during the improvisation (this UI element is visible in Figure 28).

Naming the database and clicking ‘Save’ subsequently wrote the contents of each coll

object to disk with a unique filename prepended with the user-chosen database name. In

the initial iteration of this approach, the user was expected save the database in a

dedicated folder of their choice on disk. In later versions of the software, this

functionality was replaced with use of the shell object and its mkdir command, enabling

the simplified saving and creation of named directories in a centralised location in the

Max application folder.

 Once a location on disk was chosen to save the database, the files stored by _derivations

included the following:

 the ‘_derivations Master’ file (e.g. databasename_derivations-MASTER.txt)

 a file referencing the audio files stored in the database (e.g. databasename-

audiofiles.txt)

 the recorded audio files themselves (e.g. databasename-reh-1.aiff)

 a ‘phrases’ file containing cue points relevant to the audio files (e.g. databasename-

phrases.txt)

 a ‘statistics’ file containing descriptor/MFCC data pertaining to the segmented

phrases (e.g. databasename-stats.txt)

 a ‘models’ file containing pitch models sinusoidal models (e.g. databasename-

models.txt)

 a file grouping models ranges within phrase boundaries (e.g. databasename-model-

phrases.txt)

 a file containing indexed silence lengths analysed from the input (e.g.

databasename-model-silences.txt)

 177

Figure 41: Inside the [p save/load-rehearsals] subpatcher in the phrase database module

 178

 a file containing reference to ‘disabled’ phrases from the database (e.g.

databasename-phrases-disabled)

Having saved the totality of the software’s data collections to disk, the performer was

now given the option to engage with _derivations as an interactive environment possessing

a pre-defined sonic vocabulary. By selecting ‘Load Rehearsal’ in the phrase database

module, the performer could navigate to a previously stored rehearsal database on disk to

load prior to an improvisation with the software. Selecting the ‘_derivations-

MASTER.txt’ file from the chosen directory, the software subsequently loaded the

relevant data files from disk back into their original locations in the software. This

process had the effect of populating _derivations’ internal databases with data analysed

from a previous performance with the software. Once loaded, a performer could either

engage with _derivations’ loaded session database alone, or cumulatively build upon the

loaded database during performance.

 Cumulative databases 6.8.1

This new approach to musical generativity in _derivations was also designed to be

cumulative, facilitating the session-to-session development of layered and complex

databases of pre-analysed material. By maintaining the phrase database’s recording and

storage capabilities, the software now enabled a hybrid approach that could combine a

loaded database with new material recorded and stored throughout the current

improvised session. After an improvised session with the software, the performer was

given the option to save the current session as a cumulative ‘multi-session’ database. Re-

saving the session with an identical name appended the most recently recorded analysis

data to that already stored on disk. In addition, the newly recorded audio was saved to

disk alongside the pre-existing audio, with the databasename-audiofiles.txt file updated to

contain reference to the newly saved file. In this approach, multi-session databases would

therefore contain reference to multiple audio files pertaining to the number of sessions

used for its creation. Figure 42 displays an example of such a database on disk, whilst

Figure 43 shows the splashscreen displayed in the software once this database is loaded.

 179

 Merged databases 6.8.2

In a further development of this approach, the performer was also given the choice to

‘merge’ existing databases stored on disk to create hybrid databases of materials. With the

assistance of the shell object, the software facilitated the copying and re-formatting of

database files on disk into new hybrid databases. Whilst a relatively simple extension of

the database concept, the facility to merge previously unrelated databases became an

inspiring development in the _derivations software. In contrast to building _derivations’

vocabulary cumulatively from session to session, potentially disparate musical materials

from contrasting instrumental sources could be combined into a single multi-session

database. This form of curatorial authorship over the system’s vocabulary became an

important feature of the software, enabling great flexibility in the character of the system

in performance. In my own work, I began making use of _derivations’ analysis and storage

capabilities to develop large multi-session databases containing a variety of instrumental

sources. These ranged from my own performances to those of other musicians using the

system, to carefully prepared sessions containing prepared sound design elements,

percussion and other sonic materials.

Figure 42: Example multi-session database on disk containing three ‘rehearsals’ or ‘sessions’

 Phrase disabling 6.8.3

As the session database concept matured, a final function was added to the phrase database

module that gave the user detailed control over the makeup of the database chosen for

use in performance. An ‘Audition’ window allowed the performer to audition individual

 180

phrases contained within the loaded database, and also to disable both individual phrases

and entire sessions from _derivations’ matching algorithm (see Figure 44). This option was

designed to give the user the flexibility to quarantine undesirable sonic materials from

output during a future improvisation. This was achieved by making the chosen phrase

indexes invisible to the phrase matching algorithm.

 Without deleting these phrase indexes from the database, this approach simply filtered

the chosen indexes from the list of matched phrases in the phrase matching process. Given

this filtering process, disabled phrases could also be easily re-enabled from within the

interface. Phrase indexes listed as disabled were written to the phrase database to be

loaded upon a subsequent performance, as stored in the ‘databasename-phrases-

disabled.txt’ file. This fine-grained control over the software’s capabilities allowed for the

performer to curate the software’s vocabulary with a great degree of control.

Figure 43: RRehearsa l In fo splashscreen that appears after loading a session. The above database
contains three ‘rehearsals’ or ‘sessions’ containing a total of 394 phrases. Three of these phrases
have also been ‘disabled’ from use by the phrase match ing algorithm

 181

Figure 44: The audition window. The first drop down menu allows the user to audition individual
phrase indexes, and enable/disable their use in pphrase match ing . The Rehearsals dropdown menu
allows for per-rehearsal enabling/disabling of phrase indexes.

 Performing with multi-session databases 6.8.4

As discussed in Section 6.5, _derivations’ phrase matching algorithm was designed to

simultaneously query and store new analysis data into the phrase database module. As an

improviser performs with _derivations, each phrase used to query the database is also

stored as a new phrase index for future matching. In this approach, a direct link between

continuous live sampling and phrase matching was formed that engendered a cumulative

approach to musical generativity. With the advent of session databases, it was no longer a

necessity for _derivations to simultaneously build and query the phrase database during

performance. Once a database had been loaded into the software, _derivations’ phrase

database contained sufficient data to be immediately queried from the analysis of a live

performer. That is, the phrase matching algorithm no longer needed to be linked to the

storage of new material.

 This new scenario therefore gave the performer the option of either engaging solely

with a loaded database, or with both the loaded database in addition material recorded

throughout the current session. Although the cumulative approach was an interesting

means of developing coherent multi-session databases, it was found that this approach

was most interesting for defining _derivations’ vocabulary during rehearsal, not necessarily

in live performance. The ability to cease sampling new material from the improviser in

 182

favour of direct interaction with a pre-defined database became essential. In order to

engage solely with a loaded database, the performer was presented with a simple toggle

to disable ‘Analysis Storage’ (see again Figure 28). This option disabled the recording of

audio into the central audio buffer, as well as the cumulative storage of analysis data

captured from the improvising musician. Here the output of the MFCC analysis was now

used solely to query the pre-defined phrase database during performance, and not for the

continued development of the database itself.

Figure 45: A simple algorithm in the ggranula tor for determining which source to access for its
audio content

To make use of both current and pre-defined databases in performance, _derivations’ data

storage and recall mechanism was redesigned to facilitate the use of both current and

previously analysed audio and analysis data. In the case of analysis data, new analyses

captured during a performance were appended to the list of data imported from a

previous session. Each newly analysed phrase index and associated analysis data was

cumulatively added to the data already contained in the phrase database. For audio content,

the use of both current and past live-sampled audio materials required an approach that

combined access to both the central audio buffer, and the audiofile(s) stored on disk. To

achieve this, the two audio processing modules in _derivations (4-buff-pvoc and granulator)

 183

were modified to account for these two different audio sources. By way of example,

Figure 45 displays the simple algorithm used in the granulator module to determine which

source the granulator should access its content for processing.

 In this example, if the incoming phrase index received from the phrase matching module

is greater than the range of indexes present in the loaded database, the index must refer

to a newly recorded phrase. In this case, the granulator accesses the internal audio buffer

as normal, sending the phrase index to the [p play-recent] subpatcher. If however the

index received falls within this range of existing phrases, this index must refer to a phrase

indexed to a file stored on disk. Here the received index is sent to the [p play-from-file]

subpatcher in order to dynamically access the relevant phrase from the audio file stored

on disk by referencing the [coll preload-cues] data collection. Given that the audio file(s)

stored on disk are likely to be of considerable length (they are the full length of previous

improvisations), this dynamic process is aided by the buffer~ object’s read and size

messages, enabling the dynamic loading of specific portions of the audio file into the

buffer~ object, not the whole file.

6.9 Reflections

 Evaluating session databases 6.9.1

With the complete audio and analysis data captured during a session saved to disk,

_derivations could now be engaged with as an interactive and generative system containing

a pre-defined corpus of sonic materials. This shift in focus in the system initiated a new

form of sampling-led interactive performance. Engaging with session databases

cumulatively, each performance with the software contributed to the development of a

library of material for use in future improvisations. The more a musician performed with

the software, the more material the software would have in its vocabulary. In the case of

merged session databases, a user of _derivations now had a great deal of curatorial

authorship over the software’s subsequent contributions to a live performance. In this

respect, a performer’s interaction with _derivations was now split between the dual roles as

‘user’ and performer, with the software acting as both a pre-compositional tool and a live

performance system.

 184

 This cumulative and curatorial aspect of the software became a defining feature in my

own performances with _derivations. As a performer, I began to think of _derivations as a

vessel that could contain a personalised sonic vocabulary specifically designed for each

interaction. Although every performance with the software is unique, the added ability to

curate the software’s vocabulary gives the performer a great deal of freedom to define

the space in which an interaction takes place. The potential for building upon previous

encounters made the rehearsal space an invaluable place for developing the software’s

sonic vocabulary for an eventual performance. From the advances of the cumulative

approach to developing session databases, I developed an interest in the unique role that

rehearsal could play in an interaction between a human performer and a machine

interlocutor. Developing a database from one rehearsal to the next was an interesting

development, as it broadened the scope in which sampling-led approach to interactivity

could be conceptualised. In such an approach, cumulative interactivity was present both

inside and outside the boundaries of a single performative encounter with the software.

In this respect, _derivations now took into consideration Paine’s concept of interaction as

representing the ‘cumulative experience of interrelationship’ (Paine 2002) (see also

Section 2.3.5). Each performance with the software, whether live or in the studio, was

also a means of developing the complexity of the software itself. This approach to

musical interactivity shone a light on rehearsal as an integral part of the development of

an improvisatory practice. It was this view of _derivations’ new capacities led me to first

name databases stored on disk ‘Rehearsal Databases’.

The capabilities of merging session databases allowed the performer to breathe new

life into sonic material used in previous musical contexts. Large databases of disparate

musical materials could be used to diversify _derivations’ sonic vocabulary, and to enlarge

the possible sound palette available to the software in an improvised performance. In my

practice, curating such databases became a form of pre-compositional authorship, as I

worked to define the possibility space in which I would interact with the software during

performance. A combination of contrasting sonic materials allowed me to explore

different timbral spaces within an improvisation, effectively guiding the software through

a large corpus of materials. In addition, the larger this space became, the more

possibilities existed for genuine surprise and unpredictability from the software’s output.

 185

 Performing with a stabilised artefact 6.9.2

In its various iterations, the _derivations interactive performance system has been a part of

my live performance practice for the past three years. Since mid-2013, the software has

been made feely available online via the dedicated _derivations website since mid-2013,

and has been downloaded approximately 2200 times.42 Since this time, _derivations has

been used in numerous performances throughout the world by myself and by a variety of

instrumental improvisers. Performances with _derivations have been invaluable in

informing the continued development of the software, and for evolving my personal

conceptions of interactive performance practice. Each performance with the software is

unique, and every performer working with the software approaches the improvised

encounter differently. These encounters have included performances by improvisers with

whom I have had direct collaborative involvement43, and events curated by third parties

with no direct involvement of myself in their production.44 In February 2014, a collection

of improvisations with the _derivations system was released as a 6-track EP on the

Integrated Records label. Along with the _derivations software itself 45 and other

performance documentation provided in the submission materials, this album is

presented as a significant outcome of this research.

 In each of the performances documented for this research, improvisations with the

_derivations system reveal the particular interactive traits of the software as provoked by

the individuality each performer. In my own performances I have explored a breadth of

sonic materials with the system, as well as ways of working with the software. The track

Chelmsford on the _derivations EP is the earliest recorded performance with the system

itself, showcasing the use of an atonal/microtonal yet melodic form of improvisation.

Making use of the software’s core live sampling mode, the layering of transposed and

processed soprano saxophone materials provides a dense, contrapuntal texture. In my

42 See Appendix D for more information on the website, which is available at the following URL:

http://derivations.net
43 See Appendices B and C and the event timeline outline in Appendix F
44 See Appendix H for details on third party produced releases.

45 See Appendix A for details on the _derivations distributions included in the submission materials of this

thesis.

 186

live performance at the Musical Metacreation Weekend (documented in Appendix C)46,

my improvisation focuses on percussive effects and extended saxophone techniques. A

very physical form of action and reaction is evident in this performance, displaying a

playful sense of interactivity with processed percussive sounds originating from the

saxophone. This form of improvisation has evolved alongside the software, and is

similarly evident in the track Oblique from the above-mentioned _derivations EP.

 Close collaborations with saxophonist Joshua Hyde and pianist Zubin Kanga

highlighted the way in which the software can be exploited for use in quite different

musical contexts. Joshua Hyde’s continued use of the software in his solo and duo

performances attests to the flexibility of the software as a performer-driven interactive

system.47 Hyde’s work has involved heavy use of idiosyncratic session databases, using

percussive and found sound materials recorded specifically for use in his saxophone

improvisations with the software. This is clearly evident in the performance with

_derivations on his debut solo disc, in which the tenor saxophone is paired with a database

comprised of tubax, prepared piano, bowed percussion instruments and various found

sounds.48 In addition to his solo performances, Hyde has performed with _derivations in

duo and ensemble contexts. Most recently, Hyde made use of _derivations in

performances with percussionist Noam Bierstone of scapegoat duo, before introducing the

system to an improvisation workshop with six free improvisers in Detroit, Michigan.49

His interest in expanding the performative context of the system, and taking curatorial

control of its features has been very encouraging.

 Pianist Zubin Kanga recently included _derivations in a tour program for solo piano and

live electronics.50 In these performances, Kanga chose to interact with the software in its

original live sampling incarnation, without recourse to the use of session databases. In this

mode, the software grows its pool of resources throughout a performance, allowing the

46 This performance can be streamed here: https://www.youtube.com/watch?v=GHxHumlCZOQ
47 Hyde’s performances are documented in two musical releases outlined in Appendix B, as well as a live

performance in Appendix C
48 See Appendix B
49 See Appendix F for a detailed chronology of recent performances.

50 A sample performance in outlined in Appendix C, and recent reviews of these performances can be

found in Appendix I

 187

pianist more material to improvise with as the performance progresses. This

performance was placed in the context of Kanga’s tour program ‘Dark Twin’, a program

of works seeing the pianist’s performance shadowed and augmented by various forms of

audio-visual processing. The piano’s natural resonance and dense polyphony allowed

Kanga to exploit the system using a layering technique. Using this cumulative format

gave the impression of a tangled web of materials that the performer enmeshes with

throughout a performance. In this mode, the performer remains in control of the

structural layering of the musical materials, guiding the software through a cumulative

database of previously performed phrases. This mode of performance suited the

musician’s pianistic style, as well as the overall concept of the tour program.

6.10 Conclusion

Throughout this final ‘wayfinding’ chapter I have detailed the advancements in my

programming practice that led to the stabilisation of the _derivations system. Reflecting

upon the development of this idiosyncratic software artefact has revealed a deep mangling

of my personal performance practice along with the development of the artefact itself.

Having developed individual modules before integrating them into a larger interactive

system, the trajectory of the _derivations system could not have been predicted in advance.

The internal dynamism of both the pitch models and 4-buff-pvoc modules discussed in

Chapter 5 contributed greatly to the trajectory of the _derivations system, and to the

decisions made throughout the stabilisation of this software artefact. However, whilst

this bricolage approach to programming undertaken in this research has been formative to

the creation of this software, this chapter has also highlighted the change in my

programming practice to find stable and reliable accommodations to unforeseen resistances

encountered throughout my practice.

 As discussed in Section 6.5, the phrase matching approach devised in this system sought

to provide a coherent, generative strategy that could unite the three, independent

processing modules contained within this system. Focused upon matching the timbral

content of a live improviser with a growing database, this form of generativity required a

robust and reliable algorithm to compliment the nuanced and unpredictable automations

of pitch models, 4-buff-pvoc and the granulator module. Following considered testing and

refinement, MFCC vectors were chosen as the best possible means for achieving this

 188

aim. The self-referencing algorithm in _derivations was developed to address the triggered

nature of the software’s output modules. This advancement in the software altered the

system’s output from a reactive to an autonomous and emergent form of generativity.

This addition enabled the software to generate material with reference to a database

without prioritising input from the live improviser. Consequently, the performer’s real-

time input into the system is treated as just one of several players in a self-referential

game of chinese whispers, passing phrase comparisons from one module to another. With

the use of MFCC feature vectors for phrase comparisons, this form of continual phrase

comparisons has proven effective in enabling the software to successfully generate

material independent of human input.51

 The addition of _derivations’ session databases concept changed the focus of the system

from one based entirely on real-time live sampling, to one enabling the performer to

make curatorial decisions about the system’s overall sonic vocabulary. Given the phrase

matching algorithm’s agnosticism to the temporal context of its phrase indexes, the use of

cumulative and merged session databases allowed the system to exploit this algorithm’s

full potential as a content-based MIR technique. As discussed above, this aspect of the

system has been a feature of my own performances with the software, and performers

such as Joshua Hyde have made extensive use of this feature to curate their own sonic

material for use with the software.

 In summary, the previous three ‘wayfinding’ chapters have outlined the iterative and

exploratory approach of my development trajectory throughout this research project.

Tracing the evolution of my creative practice, I have used self-reflective practice to

advance both creative artefacts and conceptualisations of the practical domain itself. In

addition to highlighting issues, concerns and interests relevant to advancing practice, the

use and refinement of the _derivations system has aided in identifying larger research

themes regarding the creative practice of human-machine performance. The following

chapter presents three sustained reflections upon such research themes, connecting my

creative practice to broader issues concerning human-machine performance practice that

are relevant to the interactive computer music community.

51 An example of a ‘system only’ performance using a large session database can be heard here:

https://soundcloud.com/emeidos/derivations-alone

 189

 190

 Findings: Reflections of a performer-developer Chapter 7.

7.1 Introduction

The current chapter presents three sustained reflections upon research concerns

emerging from the creative work undertaken as a part of this doctoral project. As

discussed in Chapter 3, as a creative-production research project I have used the creative

practices of interactive music system development and use to investigate complex themes

arising from these burgeoning practices. The software artefacts, recordings and

documentation developed throughout the research, whilst also presented as significant

research contributions, must be understood as the end point of a considered search for

understandings of the domain in question. As noted by Scrivener and Gray, the multiple

issues, concerns and interests of creative production researchers need to be

foregrounded in such approaches in order to highlight researchable problems raised in

practice (Gray 1998; Scrivener 2000). This chapter therefore presents the culmination of

my reflections on such issues, concerns and interests arising throughout this creative

practice research project.

 Performer-developer devised creative artefacts are naturally bound to the specific

artistic, technical and social contexts surrounding their production. The tightly woven

relationship that emerges between development and use in such creative contexts

presents a challenge for research methods seeking to understand such practices purely

from their creative outputs alone. My role as a performer-developer creating and

performing with interactive performance systems has given me a unique perspective on

the relationship between design and use in such artistic practices. This chapter reflects on

personal experiences in order to highlight and analyse relevant concerns emerging from

my practice. Importantly, these reflections are both situated within the lived experience

of the creative practice itself and contextualised with reference to relevant theory.

 The chapter is divided into three sections interrogating separate concerns and interests

related to interactive system development and performance practice. Section 7.2 engages

with the complex and interrelated topics of machine agency and authorship in the

development and use of interactive performance systems. With reference to concepts

derived from actor-network theory, this section seeks to make sense of the relationship

 191

that exists between development and use of these systems. Section 7.3 considers the

concept of musical interpretation as it applies to improvised human-machine

performance practice. Despite the inherent improvisatory nature of the performance

practice, here it is suggested that the development of such systems is akin to the creation

of a musical text, and therefore can be understood as extending traditional conceptions

of interpretation in musical performance. Finally, Section 7.4 interrogates the concept of

autonomy and interaction in the use of interactive musical systems. Here symbiosis is

proposed as a metaphor for musical interactivity, a concept that foregrounds the

reciprocal relationship that exists between both performer and system in the practice

arising from the use of the _derivations interactive performance system.

7.2 Artefact scripts and the performer-developer

Performer-developer devised creative artefacts provide a unique focus of study for the

field of human-computer interaction. The role of the designer as both developer and

user raises some interesting questions about the intersections of human and machine

agency through both the development and use of such artefacts. Here I am interested in

the way in which both of the roles present in this creative practice mutually influence

each other, and how we may make sense of this process with reference to theories from

science and technology studies. In my creative practice, my role as both designer and

user of interactive software systems is complex and multi-layered. My software systems

are not intended to act as transparent ‘tools’ for use by the performer, but as quasi-

autonomous performance partners exhibiting emergent and dynamical properties. In my

practice the relationship between design and use has therefore been focused upon

balancing surprise and familiarity for myself as a performer engaged in human-machine

interactive performance.

 Within this creative practice a reciprocal relationship emerges between the performer-

developer and their emerging technology. This development process involves setting the

conditions for a future interaction between oneself and an interactive musical system.

Despite the naturally close relationship between the development and usage contexts,

unpredictable and emergent algorithmic processes lead to a direct consideration of the

role of material agency in shaping both creative practices. In this space, the development

of the software artefact is an emergent process that relies upon an interplay between the

 192

developer’s assumptions of the interactive context, and their direct experience of the

software through use. Assumptions of a system’s capabilities made in development do

not always match experiences in performance, and modes of performance also evolve

over time in relation to cumulative experiences with a system over multiple rehearsals

and performances. The processes of development and performance practice greatly

influence each other through this cyclical form of performance-led software

development. This relationship provides fertile ground for both the development of new

musical interfaces and performances, as well as new knowledge about human-computer

interaction from inside the performer-developer context.

 Throughout my creative practice, one area of interest that has become integral to my

understanding of this practice is the role and perception of machine agency in both

development and use of such software artefacts. The employment of algorithms that

facilitate system autonomy encourages speculation on the role of machine agency in

musical performance. In addition to this performance-time consideration, I am also

interested in the way in which both the development and use of such artefacts hinges

upon the perception of the machine at various stages of the creative process. Because of

the intimate knowledge a performer-developer has of their software artefact, issues of

machine autonomy, agency and authorship are brought into sharp relief. These issues

relate both to how the performer-developer as ‘user’ synthesises such concepts into an

emergent performance practice, and how the performer-developer as ‘designer’ takes

cues from this practice to further design.

 In the context of improvised human-machine performance, a central aim of the

software development process is to define and harness the material agency of software

algorithms to provoke new modes of musical discourse. As discussed in Chapter 2, such

approaches have involved musical modeling, varying degrees of sonic and algorithmic

derivation and a concern for musical autonomy to achieve these ends. As discussed in

Chapters 4, 5 and 6, in my practice I have been concerned with balancing both

deterministic and unpredictable algorithmic processes in the creation of my software

artefacts. This negotiation between autonomous generation and performer control has

led to questions about the inherent agency of the machine in this process. From within

the performer-developer context, I am questioning whether such musical systems can

truly exhibit agency in such a scenario. If so, I am interested in how might we understand

 193

the role of this material agency in defining the relationship between the design and use of

such systems.

 Artefacts as instruments of sociotechnical knowledge 7.2.1

Actor-network theory (ANT) has much to say about the relationship between humans

and technology, as well as the role of technology in society. This analytical perspective

treats humans and non-humans as equally capable of exercising agency in a network,

positing that ‘sociotechnical systems’ are developed through negotiations between

people, institutions and organisations (Latour 1992). In Akrich and Latour’s writings,

technical artefacts play an influential role in complex networks of actants that make up

societies and cultures. These artefacts are considered central to the way in which

organisations, institutions and societies interact due to their non-neutral ability to exert

agency within networks. This non-neutrality is due to a variety of factors surrounding

both the development and use of such technical objects in sociotechnical settings. ANT

theorists propose that artefacts be studied as an integral part of understanding social and

cultural phenomena, a position articulated famously by Bruno Latour who stated that

‘technology is society made durable’ (Latour 1990). In order to understand the agency

exerted by technical artefacts in their networks, the analyst may trace the artefact’s

development through it its ‘innovation network’, the specific socio-technical context

within which the artefact is developed. In addition, by analysing human interactions with

stablised artefacts we may also uncover information about the way in which arefacts

exert influence over those who interact with them in specific contexts.

 In actor-network theory, ‘technical objects’ (artefacts) are foregrounded as mediating

forces within interaction, social networks, culture and society (Akrich 1992; Akrich &

Latour 1992; Latour 1992). One concept integral to ANT is that of an artefact’s script.

Akrich has defined the development of an artefact’s script as involving the projection of a

‘virtual user’ into and through an artefact (Akrich 1992). According to Akrich, designers

inscribe and project roles for ‘virtual users’ into the workings of an artefact through the

design process. This process is called inscription and describes how the specific constraints

and affordances of an artefact are viewed as the embodiment of usage conditions

envisaged by its designer. Conversely, it is in the user’s encounters with these designed

artefacts that the designer’s visions are ‘de-scripted’ and subsequently realised or not

 194

(Akrich 1992). An artefact’s script is a rich and complex way of understanding both the

motivations and domain specific assumptions of designers during development, as well

as the way in which real-users interact with the affordances expressed through the

material agency of the artefact (Akrich & Latour 1992). As discussed in Mattozzi (2012),

whilst Akrich’s definition of the script focuses upon the designer’s projections of a

virtual user onto the technical object, for Latour the artefact itself can be analysed

without reference to the designer’s decisions. There is a difference between the designer’s

conceptions of the usage scenario and what the artefact itself enables/allows, i.e. its

competences. Rather than focusing upon the disconnection between design and use,

Latour’s analysis seeks to discover the script of the artefact itself and how this can be

seen as an expression of both human and material agencies. The process of analysing an

object is therefore not necessarily to ‘uncover’ the designer’s script as imbedded in the

object, but also understand the object’s own script as perceived (Mattozzi 2012).

 These two perspectives provide complimentary means by which we may understand

the agency exerted by an artefact within a network, and from where the artefact may

derive this sense of agency. However, for performer-developer devised creative artefacts

we must also concern ourselves with the boundaries between the script as designed, and

the script as perceived. Unique to this particular context is the emergent means by which

such artefacts are developed through experimental creative practice, and the way in

which performance practices emerge from interactions with the artefact in performance.

These two complimentary processes have been discussed in relation to my own software

artefacts in Chapters 4, 5 and 6 of this thesis. In seeking to harness this space as a useful

site for practice-based research, in Chapter 3 I introduced Pickering’s mangle of practice to

describe how research outputs must be considered as an emergent interplay between

both human and material agencies (Pickering 1995).

 As noted by Pickering, through periods of negotiation between human and material

agency a process of interactive stabilisation emerges between the practitioner and their

apparatuses. This dynamic process of stabilisation causes the artefact, the user and the

user’s understandings of the domain of practice to emerge and redefine themselves

through interaction (Pickering 1995). It is from within the negotiation between

development and use that a performer-developer uncovers and refines scripts embedded

within their software artefacts. For the performer-developer, a direct consideration of

 195

material agency (both in design, testing and performance) extends the frame of reference

provided by the designer’s original intentions. Because this cultural and historical frame is

known intimately (it is the very personal history of the designer), balancing the known

and predicted output of the machine with emergent understandings of its capabilities

become part of this stabilisation process. Interactive stabilisation is therefore an integral part

of designing and performing with such software systems, given the ability of the

performer-developer to alter the artefact as a direct result of previous interactions.

 Performer-developer context 7.2.2

As suggested above, the notion of an artefact’s script is complex when applied to

performer-developer devised software artefacts. In this creative context, the practitioner

often designs an artefact primarily for himself or herself as user, and one may therefore

assume a tight correlation between the ‘real’ and ‘virtual’ users of the artefact being

designed. Additionally, awareness of an artefact’s developmental history is ever-present

during performance practice, making it difficult to consider an artefact’s inherent

affordances as separate from the designer’s intentions. The complex interaction between

development and performance therefore precludes any understanding of this process

through engagement with the artefact alone. In the performer-developer context, any

virtual user projected throughout the design process is itself informed by feedback from

the real user’s experiences. Given the openness of this developmental scenario, it is

suggested that both real and virtual users of such artefacts develop entirely in tandem

with each other through an integrated process of negotiation.

 Expanding upon McLean and Wiggins’ conception of bricolage programming (McLean &

Wiggins 2010), here the software development process is expanded to include feedback

from the experiences of the developer interacting with their algorithms in real-time

performance. For the performer-developer, performative testing is often inseparable

from development. As discussed in Section 3.5, for McLean and Wiggins the process of

observation may be considered a creative act in the programming process, as the

perception of the result of encoded algorithms is a vital part of the creative feedback

loop (McLean & Wiggins 2010). Expanded to include performance, observation

becomes an interactive concept that acknowledges the real-time understanding of how a

developer’s algorithms work in practice.

 196

 Related back to inscription, here the real user assimilates both the conceptions of the

virtual user as well as their direct experience with these algorithms in performance.

Tracing through my creative practice, I believe that the separation between use, design

and development aided in the creation of hybrid virtual/real users of my artefacts. The

real user is itself an emergent part of this sociotechnical process, open to assimilating

possibilities encountered in the design process at the same time as directly influencing

this process through use. The design process, as detailed throughout Chapters 4, 5 and 6,

therefore becomes a speculative position for the performer-developer. New avenues may

be explored in development through quite tangential and accidental means, and specific

biases in performance are only revealed during the act of performance itself.

 In my practice designing interactive artefacts, the process of passing over from being a

developer to user is a distinct and definitive shift in role. Whether testing the artefact in

the studio or on stage, as user of my software I distance myself from my design history in

order to work with the script revealed by the machine’s affordances. This process might

be thought as suspending disbelief, as the performer succumbs to the material agency

exerted by the software during performance. This is a complex space where material

agency interfaces with the history of the designer’s decisions in the moment of

performance. The dual roles played by the performer-developer are also further

complicated through the agency exhibited by elements of the software being designed.

As discussed previously, the enhancement of material agency is a fundamental guiding

principle in the context of improvised human-machine performance. The developing

relationship that exists between human and material agency should therefore be

acknowledged as fundamental in shaping the way in which such artefacts evolve.

 This process has been apparent in my performance practice with the _derivations

software. Any interaction I have with the software is naturally imbued with an awareness

of the software’s affordances, given how intimately the various underlying processes

driving the system’s musical contributions are known to me. However, given the

emergent and unpredictable nature of various processing and structuring parameters in

the software, my role as a performer is to navigate the agency displayed by the machine

in the moment of performance. This agency is naturally evident in the specific

algorithmic decisions made by the software at any given point during an improvisation,

the majority of which remain opaque to me as a performer. Although the algorithmic

 197

generation methods used in _derivations do not exhibit high levels of creative autonomy as

defined by Bown and Martin (2012), the precise combination of aleatoric and

deterministic processes at work provide enough surprise and unpredictability to allow the

performer to focus upon navigating the software’s inherent affordances. Thus, the real-

time interaction is therefore framed by the opacity sought in the development process.

Whilst certain details of the machine’s performance may be clearly understood by a

performer, the global output also remains complex and unpredictable, ensuring a

performance remains dynamic from moment to moment. This performance practice is

therefore intimately concerned with blurring the boundaries between the known and the

unknown, the predictable and the unpredictable.

 An artefact’s ‘episteme’ 7.2.3

Finding a balance between determinacy and indeterminacy is a common part of software

design in computer music contexts. As suggested above, the continual shift between

projection and interaction, between encoding and observation is an integral part of the

creative practice of the performer-developer. Hamman has sought to understand the

processes at work in the development of software artefacts exhibiting dynamical

properties, focusing specifically on the dance of agency that occurs between the user and

the machine’s inherent affordances (Hamman 1999). For Hamman, an important

distinction is to be made between artefacts that enable music making through use, and

those that engage a user to contemplate the usage context itself during an interaction. In

the former, the user employs the artefact as a transparent means through which to

achieve an outcome, whilst in the latter, the artefact itself comes into sharp focus, forcing

a consideration and navigation of its affordances. The author details an approach to

musical interface design where the composer’s role is redefined towards interacting with

and navigating the task environment itself, as opposed to composing music through a task

environment. (Hamman 1999).

 Although Hamman describes software artefacts designed for compositional purposes,

his ideas are especially relevant to interactive performance systems. The separation

between a transparent tool and a dynamical system recalls Rowe’s separation between

systems conforming to either an instrumental or performance paradigm (Rowe 1992). Seeking

to understand interaction in these scenarios, Hamman distinguishes between two

 198

overlapping dimensions of human performance in interaction with a ‘mechanism’

(artefact) – that of an action and a description. An action is that which “can affect change

within an environment”, when coupled with an artefact. Made by a user, an action is

made in order to “alter the state of the mechanism, and thus its outcome” (Hamman

1999, p. 94). A description, by contrast, defines how the user understands the relationship

between an action and its outcome. A description allows the user to hypothesise a

mapping between action and outcome, which Hamman describes as an “internalised

framework that determines our actions and observations regarding our use of some

mechanism.” (Hamman 1999, p. 94)

 Hamman explains that descriptions are formed historically, both culturally and

through individual experiences with familiar artefacts. For familiar artefacts, a user’s

understanding of action-outcome relationship has been formed prior to an interaction,

whether through personal experience or cultural understanding of the artefact’s

affordances. For the unfamiliar artefact, it is the user’s interaction with the artefact that

informs this description through use. Hamman introduces Focault’s concept of episteme

here to situate the description in relation to the unfolding of an epistemological frame.

Developed in The Order of Things, Focault’s concept of the episteme denotes the structures

that underlie the production of knowledge during a particular epoch, or the grounds

upon which a statement can be counted as knowledge (Foucault 2005). In this context,

Hamman describes the episteme as the way in which “a mechanism, within an interaction,

comes to make sense through description.” (Hamman 1999, p. 95) Regardless of whether

the description has been developed through cultural precedent or individual experience,

this historically situated understanding of the action-outcome relationship provides the

grounds upon which a user understands the outcomes of an interaction.

 Hamman draws a distinction between Focault’s episteme as either open or closed,

seeking to establish a basis for the development of interfaces that challenge the

traditional notion of a usable, transparent tool. According to Hamman, a closed episteme is

“deeply coupled to the cultural/technical program according to which the mechanism is

designed.” (Hamman 1999, p. 95) Such a ‘program’ informing design and development

has been developed through historical precedent and defines the boundaries of an

artefact’s affordances. What Hamman suggests is that the usage context of the artefact

(defined by the episteme) shares this technical and cultural frame of reference. As a result,

 199

the user’s expectations of the outcomes of an interaction are in line with the designer’s

specifications. In other words, the artefact makes sense to its user due to its familiarity;

the user’s descriptions of the artefact are derived from the same cultural and historical

precedents referred to by the designer.

 By contrast, an open episteme is not wedded to such historical frames of reference. As

Hamman suggests, an open episteme is one in which the particularities of the domain in

question define the usage mode of the artefact, therefore beginning to establish a frame

of reference for its use. As Hamman explains, the episteme is “porous, open to input from

the particularised situation.” (Hamman 1999, p. 95) Characterised as a ‘disruption’ of a

historical frame of reference, the user is placed in a particularly interpretive position

whereby developing understandings of the artefact’s affordances are derived from the

present interaction. Descriptions are formed through interaction with the artefact itself,

as they cannot be intuited prior to an encounter with its affordances. As open therefore,

the artefact’s episteme forces a direct engagement by the user with the artefact’s

particularities, thus encouraging new modes of interaction. As noted by Rose and Jones

(2005), any interaction between a human and a machine is a situated process in which the

human’s personal history of interactions influence subsequent interactions. In the case of

the unfamiliar artefact, the lack of personal history frames the initial interactive

encounter. Each subsequent interaction builds upon this initial experience, helping to

define a developing interactive relationship between human and material agency.

 Hamman’s understanding of the episteme in this context can therefore be conceived of

in relation to Akrich and Latour’s script. As closed, the episteme enables a tight correlation

between the designer’s inscription of the virtual user, and a real user’s descriptions of the

artefact. Both real and virtual users are aligned as the user approaches the artefact with

an understanding of the interactive paradigm that matches the designer’s ideal usage

context. By contrast, the open episteme evolves along with input received from the user’s

understandings of the new interactive domain. The designer may have inscribed a virtual

user into the object that is far removed from the experiences of real users, or the user is

unsure as to their role as user at all. In such a context, the user’s understanding of the

artefact forces stronger engagement with the material agency of the object itself,

consequently contributing to the artefact’s episteme through use.

 200

 In the design and use of performer-developer devised artefacts, I would suggest that

an artefact’s episteme moves between being open and closed. To begin with, the

developer’s awareness of their artefact’s internal structure immediately connects the user

to the historical frame of reference for its use. This inescapable fact places the artefact’s

episteme as closed in this respect. However, the underlying complexity resulting from the

interactions between various generative components in the software ensures that new

understandings about the artefact’s potential are continually gathered. Importantly, such

cumulative understandings require nuanced and repeated interactive encounters with the

artefact in performance. This scenario describes an artefact whose episteme remains open,

as each experience with the software artefact contributes to a working understanding of

the affordances of the artefact in performance. The various generative algorithms

employed in the software become part of the performer-developer’s growing

understanding of the artefact’s affordances. Previous design decisions regarding the

choice of algorithms, processing and synthesis parameters manifest themselves through

the agency of the machine in performance. In other words, the space in which a tool is

purposefully left open enables new descriptions to be formed. These descriptions

contribute to new understandings of the design space, ultimately feeding back into future

interactive encounters.

 Considering the episteme of performer-developer devised artefacts is useful in

understanding the role played by material agency in this creative context. Through an

intentional thwarting of the natural connection between development and use, genuinely

surprising interactions between the performer and their artefacts can occur. In reference

to the software designed in this project, these concepts help to explain the tension

inherent in my development process. The exploratory nature of my design approach may

be understood as an open-ended search for surprise and novelty in performance,

achieved by balancing deterministic and indeterminate approaches. The continual

preference for sampling-led methods of generativity directly challenged my performative

desire for unpredictability and surprise. In Tripartite Markovia (see Section 4.2.4.2), the

depth of understanding I had about the Markov generation approach was not a

hinderance to that system’s dense and unpredictable performance dynamic. Indeed, the

unpredictability of response of this particular system forced a re-consideration of the

notion of performer control, eventually implemented through temporal synchronisation

methods. By balancing predictability and unpredictability, complexity and coherence,

 201

design decisions were made that forced part of the artefact’s episteme closed and

predictable, whilst the specifics of the musical generation allowed the episteme to remain

open.

 In the _derivations system, a deterministic phrase matching approach was tempered by

aleatoric methods of processing and structuring material siphoned from the performer.

This dichotomy forced me into a search for equilibrium in both performance approach

and design methods in my practice. Paradoxically, by implementing the session database

concept discussed in Section 6.8, I engaged more fully with the cumulative affordances

of the software whilst simultaneously decreasing the possibility of repetition and control

mastery from this process. The more the system’s sonic vocabulary was pre-defined in

advance of a performance, the more possible it was to distance oneself from the system’s

cumulative potential as exploited in previous approaches. Although a large session

database may contain material that is very familiar to the performer, predicting the

precise timbral connections between these materials becomes more difficult the larger

the database. In addition, by disabling ‘Analysis Storage’ (see Section 6.8.4) the lack of a

cumulative connection to the current performance created further unpredictability

between the performer’s actions and the system’s response. The fixed database therefore

represented a familiar yet opaque space of possibilities. This inherent opacity helped to

drive interactions further into territories unpredictable outside of an interaction. Another

example of this increasing opacity was the creation of the self-referencing triggering

approach (discussed in Section 6.6). By eliminating a direct connection between the

temporal gestures of the performer and the system’s output, I successfully distanced

myself once more from known affordances of the software in favour of the opacity

provided by the self-referencing algorithm.

 Stabilised and non-stabilised artefacts 7.2.4

Akrich and Latour’s ideas concerning the role of technical objects in networks hinges

upon the distinction between stabilised and non-stabilised artefacts. Non-stabilised artefacts

are those considered to be still within a development and innovation phase, they are

artefacts for which meaning is still emerging. These artefacts are continually being

adjusted and re-defined according to input from developers, end-user testing and so on.

By contrast, stabilised artefacts are those artefacts that have exited this innovation network

 202

and entered the real world to be made use of. According to Akrich, stabilised technical

objects can be considered ‘instruments of knowledge’ (Akrich 1992, p. 221). In addition,

the author explains that in order for us to access knowledge through these objects, one

must be able to engage in a process of black boxing:

the conversion of sociotechnical facts into facts pure and simple depends on the ability to turn technical

objects into black boxes. In other words, as they become indispensable, objects also have to efface

themselves.

(Akrich 1992, p. 221)

 From Akrich's point of view, stabilised technical objects enable us to learn something

about a sociotechnical context as their complex, interrelated inner workings have been

made invisible. The author explains that for non-stabilised technologies, we are able to

draw links between the technical content and user through a mediator, such as the

innovator of the artefact. In the case of technological artefacts under development, both

the innovator and user's viewpoint aids in moving the technology towards stabilisation.

They can also help us glean useful insights into the development of design assumptions

and the design process itself. However, for stabilised technologies that have been black

boxed, the innovator is no longer present and the ordinary user has already taken on

board the general prescriptions implied in interaction with the machine (Akrich 1992, p.

211). In such cases, the black-boxed object therefore serves as an instrument

through which knowledge can be accessed about its sociotechnical context.

 The author’s distinction between stabilised and non-stabilised technologies references a

type of technological development in which the artefact is deployed to separate end users.

Before becoming stabilised, the innovator is present and an integral part of the process.

The artefact is part of the innovation network, identifying the technology as

fundamentally open therefore not yet black boxed. In this scenario, the aim of the

innovation network is to move the technical object closer to being stabilised and

deployed into a defined usage context. For Akrich, black boxing describes the ability of a

technology to act as an instrument of knowledge, enabling the transcendence of what is

knowable from inside this innovation network itself. In order for the researcher to

understand the implications of the technology in its usage context, the inner workings of

 203

the artefact and the complex and heterogeneous elements of the innovation network

must fade into the background.

 As we have seen, there exists in the performer-developer context a unique connection

between the innovation and usage networks of development and performance. The kind

of knowledge attainable from this developmental context differs from that which is

available by analysing the deployment of stabilised technologies. In my practice, the

inscription of an ideal usage context is an interactive and emergent process without a

defined end-point or goal. The ideal user is itself emergent, and a performance practice

that surrounds a continuously developing artefact influences the conception of design.

Here the usage context shifts and changes along with the emergent conception of the

ideal user. In addition, the process of black boxing is something that occurs throughout

both the innovation and usage network, helping to define and shape the final outcome of

the development process. The two networks themselves are not as clearly defined as

actor network theory might suggest, as they continuously blur into one another.

 However, the concept of black boxing remains relevant to this scenario. As discussed

in relation to Hamman’s ideas, the relationship between performer-as-developer and developer-

as-performer enforces an artefact’s episteme to be both open and closed. With respect to

black boxing, here I argue that the status of the artefact as a black box depends entirely

upon the context in which the artefact is used. Following on from Akrich's description,

the performer-developer engages in a process of black boxing during performance with

their artefact in order to acquire knowledge. Black boxing the specifics of their designs is a

way of engaging in a performative dialogue with the results of material agency. In my

practice, interaction with _derivations through both testing and live performance can

therefore be conceived of as a form of knowledge acquisition. Although the broader

socio-technical context may not be directly interrogated, the act of black boxing a

technology in performance enables the performer to ask questions and interrogate

accepted norms in interactive and improvised performance. Performance and

development can therefore be conceived of as a form of knowledge acquisition that can

only be achieved through the process of intentional black boxing. It is an intentional

hiding of complexity in order to engage with the artefact through use, and to project

future hypothetical uses during development.

 204

 Attributing agency 7.2.5

The complexity of the process of black boxing results not only from the relationship

between design and use of technical artefacts, but also from the inherent complexities of

these software artefacts themselves. As described above, turning an artefact into a black

box enables it to exert agency in a network. In the usage network, an interactive

performance system can therefore be said to exhibit agency if it can successfully be black

boxed as a stabilised artefact. However, in the performer-developer context, this

stabilisation Akrich refers to is not permanent. Returning to Hamman’s ideas, an

artefact’s episteme is left open for input from the performer’s experiences, and the

connection between the dual roles occupied by the practitioner preclude the artefact

from being completely stabilised. Continually shifting between open and closed, the

episteme of such artefacts therefore helps to explain an artefact’s status as stabilised or

non-stabilised.

 In actor-network theory, the concept of the hybrid actor defines the complex

interrelations between the various parts of a network acting as one. For Schulz-Schaeffer,

Latour’s concept of the composite or hybrid actor is further complicated by the uneven

relationship that exists between the various elements that constitute this entity. The

difficulty of understanding the relationship between the human and the artefact is where

to attribute authorship to an action, and at what point the hybrid actor itself may be said to

exhibit agency. According to Schulz-Schaeffer, “the more comprehensive the list of

actants becomes which contribute in one way or another to the action in question, the

more difficult it is to conceive the association of all these as one actor.” (Schulz-

Schaeffer 2006, p. 135) A hybrid actor is therefore a product of the interaction between

these constituent elements, some of which may be human, and others non-human. In the

context of performer-developer designed software artefacts, the concept of a hybrid

actor necessarily takes into account the developer’s role in the artefact’s creation, the

desired response of the system and other elements relevant to the design of the artefact.

 Designing a plausible interactive space for machine agency to exert itself is a core

challenge of this creative endeavour. In order to maintain a dynamic and unpredictable

musical interaction, the performer must attribute agency to the machine’s actions. In the

design of interactive systems, the hybridity of the software artefact is displayed through

 205

the various analysis, generation and processing modules in play as well as the developer’s

role as programmer of the system. In the context of performer-developer devised

artefacts, the hybridity of the artefact can increase the artefact’s perceived agency in a

performance. Rose and Jones (2005) have noted that the process of agency attribution is

unique to human agency in a human-machine interaction. Humans attribute actions,

causes and outcomes to actors within an interaction, even if this attribution is erroneous.

Given this, the design of interactive systems may involve a certain level of obfuscation

and trickery. For the performer-developer, this trickery helps to obscure the underlying

processes at work in their software. In the _derivations system, the various processing and

structuring algorithms at work obscure the deterministic process of phrase matching. Whilst

the broad timbral context of the musician’s current performance is predictable, the

generative processes of each processing module manipulate the temporal profile of the

retrieved phrases that the musician then interacts with. Whilst the process by which the

machine decides upon its core material may be transparent, the means by which this

material is used opaque and unpredictable. Acting as an automaton, the machine is

therefore able to invoke unpredictable temporal gestures from a somewhat predictable

analytical process.

 Models of ‘invisibilisation’ 7.2.6

For Schulz-Schaeffer, black boxing means “that the complex interrelatedness of the

many actants contributing to the overall programme of action becomes invisible”

(Schulz-Schaeffer 2006, p. 140). This concept of invisibilisation is at the heart of black

boxing, and the ability of actors to navigate and make sense of technical objects and

networks. The two different models of invisibilisation proposed by Schulz-Schaeffer are

the encasing model, and the outshining model. Schulz-Schaeffer explains that the encasing model

describes components of the artefact that are made invisible, as they are not relevant to

the interaction between a human actor and the hybrid actor. The examples of the inner

workings of a bank as a corporate hybrid actor, as well as the insides of a piece of

technical equipment are used to define this model. In the encasing model, only when there

is a break down in the system do the various parts of a hybrid actor reveal themselves, as

they have until now been hidden from view (Schulz-Schaeffer 2006).

 206

 By contrast, the author describes the outshining model as a situation whereby one actant

is perceived to outshine the other actants that make up the hybrid actor, whilst still

maintaining their presence as perceived and understood parts of the network. As Schulz-

Schaeffer explains, the contributions of most of the actants “become invisible because

the actant to which actorhood is attributed diverts attention away from them.” (Schulz-

Schaeffer 2006, p. 141) In contrast to the encasing model, the hybrid actor is engaged

with as a black box not through the irrelevance of the other actants in the network, but

because their status as actants need not be brought to the foreground. They are therefore

intentionally made invisible.

 With respect to _derivations, there are various levels of this invisibilsation process that

occur both for myself as performer-developer, but also from the perspective of the

uninitiated performer interacting with the software. This brings forward the notion of

authorship in such performative encounters (a concept I explore in more depth in

Section 7.3). There is a wide network available to be in engaged with outside of

performance time, however in performance time this recedes in favour of the

performance-time encounter. I would argue that there are elements of the _derivations

system that are black boxed by way of Schulz-Schaeffer’s encasing model, and others that

follow his outshining model. Importantly, both of these understandings of _derivations as

a hybrid actor vary in relevance depending upon who is interacting with the system. For

myself as a performer-developer, I am familiar with the vast majority of software code

that contributes to the software’s autonomous potential. Consequently, the type of black

boxing I engage in is an example of the outshining model, as I am fully aware and cognisant

of a great deal of the actants that make up the performance and development networks.

When on stage interacting with _derivations, although I am aware of the various

interrelated actants that make up the software, I allow these to recede into the

background in order for the machine’s agency to come to the fore. The machine

becomes a single hereogeneous actant with which I engage.

 For the uninitiated performer interacting with _derivations, the outshining model of

invisibilisation may also explain some of their interaction with the machine. There are

indeed certain elements in the performance network that the performer is aware of that

fade into the background as irrelevant at the time of performance. These might include

my personal role as the author of the software, the microphone amplifying and feeding

 207

an analysis of the sounds of the instrument, the computer’s role of storing the

information it hears for later use, the system’s capabilities of combining previous

performances together, the distribution of the software via the website, etc. In addition

however, these performers also interact with _derivations as a hybrid actor with many

actants made invisible through the encasing model. This type of black boxing describes a

typical understanding of human-machine interaction in which many details of an artefact

are irrelevant to the user, and are therefore not communicated and made invisible. For

_derivations this list would be exhaustive, however such details would include the source

code of the software itself, the inner workings of the output modules, the type and rate

of the audio analysis that is taking place, the manner in which files are stored and

accessed on disk, along with many other things.

 As argued above, interaction with technological artefacts necessitates the user to place

some known details about the artefact to one side, and to engage with those that can

most easily be attributed actorhood and authorship. In addition, I have argued that the

process of black boxing is present to varying degrees depending upon who is interacting

with the software, and with which network the user is interacting. Considering black

boxing as invisibilisation allows us to understand the role of the performer in navigating

the inherent affordances of an interactive software system of their own design. Schulz-

Schaeffer’s outshining model is most relevant in describing the intentional process that

occurs in this creative practice. The agency of a software artefact in this scenario is

contingent upon the ability of the performer as developer to suspend disbelief, but also to

allow the various components of the software to recede into the background during an

interaction.

 Conclusion 7.2.7

Throughout the present section I have sought to understand the entangled relationship

that exists between development and performance in the context of performer-developer

devised software artefacts. By interrogating relevant theoretical concepts as they relate to

this practice, I have highlighted a number of specific challenges to understanding the role

of material agency in both development and performance. The ability of a software

system to exhibit agency is dependent on a variety of context-specific factors. The

concepts of script and black boxing derived from actor-network theory go some way to

 208

explaining the ability of a software artefact to exhibit agency, however these concepts are

challenged by the unique and hybrid nature of artefacts produced by performer-

developers.

Pickering’s concept of interactive stabilisation provides a useful understanding of the

emergent nature of both development and performance. As highlighted earlier in this

thesis, understanding creative practice as a dance of agency became a specific

methodological consideration in this research. In addition, Pickering’s ideas have also

helped to further an understanding of software agency in human-machine interactive

performance. The process of black boxing has been outlined as forming an integral part

of understanding the agency exerted by software artefacts in this context. As suggested

above, black boxing as invisibilisation is a necessary and intentional act of the performer-

developer interacting with their systems, allowing for the suspension of disbelief in

interactive performance practice. McLean and Wiggins’ concept of bricolage programming

also acknowledges this intentional shift in role between developer and observer of an

algorithm that takes place in such creative contexts.

 209

7.3 Interpretation in improvised human-machine performance52

The development of interactive performance systems is an active area of research in the

field of live electronic music. Whilst the various models and metaphors discussed in

Chapter 2 help to define the boundaries of this practice, the engagement of these systems

in improvised performance remains somewhat under researched. As is the case for many

emerging artistic practices, sustained critical insight on practice is often carried out by

practitioner-researchers directly engaged in the artistic domain in question. These

practitioners are at once developing artistic works, engaging collaborators in their

creative practices and publishing about their specific technical, artistic and theoretical

concerns. New knowledge derived from such practice-based approaches must be

understood as arising from this entanglement between research and practice. In order to

understand performance practices emerging from the development of interactive

software artefacts, the specific relationships that exist between developer, performer and

software must be taken into account.

In the previous section, the performer-developer context has been interrogated to

further understand the role of material agency in shaping both development and

performance practice. However, by expanding the theoretical lens to include interactions

between artefacts and performers from outside of the innovation network, a new set of

conceptual challenges arises. Placing an improviser in performance with an autonomous

or responsive software system provokes significant questions about the notion of artistic

authorship in this practice. In these scenarios, improvising musicians are often invited to

participate in a performance by the system designer, who is invariably present for

rehearsals and performances with the software artefact. The possibility for a performer

to suspend disbelief in performance is therefore influenced both by their interactions with

the software artefact and system’s designer. Given this important aspect of the creative

practice, here I argue that the term ‘musical interpretation’ warrants discussion as it

relates to the performance practices that emerge from the development of these

52 The ideas presented in the current section have been galvanised by some fruitful discussions with a

number of fantastic musicians and researchers. My thanks go to Owen Green, Oliver Bown, Bill Hsu,

Mark Summers, Aengus Martin, Arne Eigenfeldt and Pierre-Alexandre Tremblay for taking the time to

discuss this topic.

 210

artefacts. Throughout a consideration of the notion of the musical text, in the sections

that follow I situate such creative artefacts within the context of interpretive musical

practice.

 Free-improvisation and interpretative performance 7.3.1

In a freely improvised performance, improvising musicians develop musical structure in

real-time without the presence of an overarching compositional framework. The real-

time interactions between one or more musicians dictate both the materials and

trajectory of the musical encounter. Also dubbed non-idiomatic improvisation, this type of

performance distances itself from rules of melody, harmony and form in favour of free

expression (Bailey 1993). The most fundamental and defining feature of this type of

improvised performance is the contribution of the individual performers to the musical

outcome. From a freely improvised perspective, improvising musicians are free to make

their own decisions on how to affect the musical discourse, without having to defer to a

set of instructions that might constrain these decisions. Saxophonist Evan Parker

outlines this type of musical activity as his ‘ideal music’ (Bailey 1993, p. 81), a form of

music making that not only eschews the presence of a pre-defined musical text, but also

places specific emphasis on the reliance upon the interpersonal relationships between like

minded musicians. These musicians improvise “freely in relation to the precise

emotional, acoustic, psychological and other less tangible atmospheric conditions in

effect at the time the music is played.” (Bailey 1993, p. 81)

 This practice contrasts with interpretive practices in which the instructions provided

by a composer govern music making, mediated through a musical text. In interpretive

practices, the musical ideas of the composer are codified in a musical score, stated in a

textual description or transmitted orally to the performer. Although these practices

require a degree of improvisation in the performative realisation of a musical work, the

performance itself partly exists as a rendering of the musical ideas communicated by this

text. Even in traditionally improvised musical contexts such as jazz, the presence of a

musical text or referent structures the improvisational activity, along with the melodic and

harmonic conventions of the musical style (Pressing 1988). Given this dichotomy, the

term ‘interpretation’ may be considered antithetical to the goals of freely improvised

musical practice. In this context, the notion of interpretation as requiring something to

 211

interpret – that is, a pre-existing ‘work’ communicated via a musical text – does not exist

in any traditional sense. However, by introducing autonomous and responsive musical

systems into a previously human-only performance scenario, the nature of both

improvisational practice and the identity of these systems come into question.

 It is important therefore to establish exactly what is meant by interpretation in this

context. The Oxford English Dictionary defines musical interpretation in part as “…the

rendering of a musical composition, according to one's conception of the author's idea.”

(Oxford English Dictionary 2015a) In Davies and Sadie’s discussion of the term,

interpretation refers to “the understanding of a piece of music made manifest in the way

in which it is performed.” (Stephen & Stanley 2015) For the purposes of the present

discussion, here I define interpretation as a ‘bringing to life’ of the ideas communicated

by one or more authors in the form of a real-time performance. This form of practice is

common to all performing arts, including dance and its relationship to choreographers,

theatre and film’s playwrights and screenwriters, and finally to music and its composers.

These definitions consider the presence of an author, the existence of a musical work

and the decisions made in relation to the author’s ideas as communicated in this work.

 For music as for other art forms, central to the notion of interpretation is the medium

in which artistic ideas are transmitted, the musical text. In musical interpretation, the

performer must make decisions about how to successfully bring to life a composer’s

ideas within the constraints communicated by this text. Musical texts take a variety of

forms, from traditional western notation to graphic notation, textual instructions as well

as verbal and gestural instructions. A musical text might be fastidiously prescriptive by

offering detailed symbolic instructions for the performer to follow, such as the complex

musical notation of Brian Ferneyhough or the tablature notation of Aaron Cassidy

(Rutherford-Johnson 2011). Other types of text outline a framework that guides a

performer’s musical decisions, such as in the textual scores by La Monte-Young: “Draw

a straight line and follow it” (Young 1963), or the instructions found in the works of

Christian Wolff: “Make a sound in a middle place, in some respect, of the sounds around

it.” (Wolff 1964) In addition, in so-called game pieces such as John Zorn’s Cobra, the

musical text is manifest as a set of specific interactional rules followed by a conductor

and a group of improvising musicians (Zorn 1984).

 212

 Regardless of the medium in which they are communicated, musical texts contain not

only instructions for the performer to follow; they also express context-specific

assumptions about the role of the performer in bringing the work to life. Let us consider

a few examples to illustrate this point. The basso continuo line in music of the 17th and 18th

centuries assumed a level of contextual understanding about harmony on the part of the

performer, as the musician was required to improvise a chordal accompaniment to a

melodic line. Tablature notation is a form of notation that directs the performer towards

the execution of physical action as opposed to sounding result. This form of notation

implies strict adherence to the physical instructions of the notation, in contrast to the

symbolic representation afforded by traditional western staff notation. Graphic notational

practices often rely heavily upon the subjective interpretive faculties of musicians, leading

to a large space of possible renderings of a musical work. Finally, textual scores like those

of La Monte Young and Wolff focus upon providing performers with a musical and

interactive framework with which to construct the musical work. Such texts may direct

the performer in the course of some pre-defined action, but may also leave out the

specific means by which the action is achieved. These texts may also be relational and

interactive, provoking the performer to respond to the unexpected results of previous

actions, or to their environment.53

 Freedom and constraint 7.3.2

Despite their disparate manifestations, the above forms of musical text all share the same

core attributes. All of these types of musical text articulate the desired boundaries of a

musical performance by implying various levels of musical freedom and constraint for

performer(s) interpreting the work. They all involve some combination of explicit and

implicit constraints from within which the musician makes decisions as to the best

rendering of the work. For Coessens (2013), on one extreme the musical score can be

seen as a form of direction or command. The author describes instruction as a target-

oriented process, in that it “invites action to realise a fixed goal.” (Coessens 2013) At this

extreme, a score as instruction becomes analogous to a set of commands pointing

towards an expected outcome. The completed process is a result of these commands,

and as such any deviation will change the expected outcome. On the other hand, the

53 The recent works of Scott McLaughlin are a good example of this textual, algorithmic approach to the

musical score: http://www.lutins.co.uk/

 213

process of artistic expression is only partly target-oriented, as the interpretation of a

musical text foregrounds the score as “material for performative action,” where value is

to be found in the process of a musical narrative rather than a final product (Coessens

2013). This balance between freedom and constraint is therefore evident in the process

of interpreting the musical text. Indeed, as Sarath has noted, even in the most

prescriptive cases the freedom afforded a performer in interpreting a musical text may be

seen as a type of improvisational practice:

While interpretive performers do not change the pitches or rhythms delineated by the composer, they

certainly do deconstruct personal interpretive patterns in seeking spontaneous renditions of pieces they

have already played countless times. Interpretive performance might then be seen to involve temporal

principles similar to those defining improvisation within a highly detailed referent.

(Sarath 1996, p. 21)

 Understanding a musical text as a set of explicit instructions provided to performers,

the term interpretation therefore implies a balance between fidelity to these instructions,

and the injection of significant performative and stylistic understandings of the

composer’s intentions. The relationship between adhering to and interpreting these

instructions is dependent upon a variety of factors, which may include input directly

from the composer during rehearsals, stylistic norms of the musical period in which the

work was written, and the cultural conventions of contemporary performance practices.

In all of these cases, interpretation refers to the process by which any gaps in

communication between composer and performer are made sense of in light of

supplementary knowledge pertaining to the work in question. In this respect, the musical

text communicates the requirements of the work as articulated by the composer, whilst the

musical and cultural context in which the work resides provides further constraints on any

reasonable and/or correct interpretation of it in performance.

 Discussing the role of the score and of the composer in contemporary music-making,

Parker posits that a musical score might be considered as either one of two contrasting

types of text: in some cases as a representation of an ‘ideal’ performance, and in others as

a “recipe for possible music-making.” (Bailey 1993, pp. 80-1) Speaking as an improviser,

Parker’s opinion on the role of the composer and the prescriptive nature of some

musical scores is articulated in his characterisation of the composer’s role as score-maker:

 214

“… if anyone in the production of a music event is dispensable, it is the score-maker, or

the ‘composer’ as he is often called.” (Bailey 1993, p. 81) Although the perspective

articulated here is largely negative, Parker notes that the more a musical score resembles

a ‘recipe for possible music making’, the more there is a gap between the score as ‘ideal’

and any live performance of it.

 To Parker, the more unequivocal a text appears as a form of instruction, the more the

score resembles the ideal performance envisaged by the composer. In such scenarios,

with the addition of a weight of cultural conventions associated with the text, less

interpretive flexibility is offered to the performer(s) in creating their own personal reading

of it. The text is no longer a recipe, but a prescription. By contrast, graphic scores, as

more ambiguous forms of musical text, are often provided to performers with no

accompanying instructions or performance direction. Although such scores may not

communicate explicit performance requirements of the work to the performer, these

objects still exist as forms of musical text to be interpreted. Graphic scores range from a

set of symbolic instructions allow for varying degrees of freedom within specific musical

parameters, to objects of immense interpretive flexibility, such as Cornelius

Cardew's Treatise (Cardew 1967). In the latter case, the notion of interpretation rests

upon the performer developing explicit rules and procedures in order to realise the

musical work. Arrangements of graphic symbols such as those found in Treatise can be

seen as the catalyst for the creation of a personalised musical and sonic grammar in

response to the text. Rather than acting as direct instructions, these scores provide sets

of constraints that anchor a musician's interpretive decisions; choices that are guided

both by their own personal musical vocabulary, as well as the cultural and stylistic

context of experimental musical performance.

 Extra-musical constraint 7.3.3

For Parker, it is within the gap between the explicated ideal and the live performance that

the real-time act of musical performance resides, leaving open for consideration further

context-specific ‘ingredients’ of musical performance in addition to the instructions

outlined by the composer. Such ingredients may include the choice of specific musicians

to perform the work, where the work will be played as well as how the audience might

react (Bailey 1993). Speaking of the difference between requirements and constraints in the

 215

context of musical performance, Bown has noted that performances of graphic scores

may also include forms of extra-musical constraint that should be considered either

directly curatorial, or at least requiring a form of interpretation by a group of musicians

(Bown 2014, pers. comm., 28 September). Such constraints might include the decisions

and wishes of a concert promoter (venue decision and therefore acoustics, performers

asked to ‘keep it short’), discussions regarding musical/sonic materials between players,

to the presence of ‘garish paintings’ hanging on the walls of the concert space. Such

instructions and environmental constraints may require a form of interpretation on the

part of the musicians that will directly or indirectly affect the resultant musical outcome

of the performance. As Bown implies, such constraints often also apply to freely

improvised music, potentially affecting the way in which musicians interact with each

other on stage, despite the lack of a unified performance framework as embodied in a

score.

 The question however is whether such extra-musical constraints, acting as objects of

interpretation, should be considered part of an interpretive framework on par with the

constraints provided by a graphic score. My answer to this question rests upon an

understanding of composition and curation as intentional activities of persons acting

outside of the real-time context of musical performance. The framing of a performance

context might be achieved through the existence of explicit requirements (notes on a

score, imposition of formal boundaries etc.), but equally through placing musicians in a

performance context that might constrain or alter their natural performance dynamic in

some intentional way. However, the inherent collectivity and self-organisational

properties of improvised music making, free of intentional constraints on musical

structure and materials, preclude it from being understood as an interpretive activity in

this sense. Because of a decided lack of musical text to be interpreted, any extra-musical

constraints that might influence an improvised performance should be considered part of

the social and cultural context of improvised performance itself, not as intentionally

imposed as objects of interpretation.

 Musicians engaging in improvised performance bring with them their own personal

histories of engagement with the practice, and although the boundaries and constraints

of improvised practice invariably change from performance to performance, these form

part of the context of improvised performance that has developed over time. This

 216

context both normalises and frames the performance activity itself. Although external

constraints may be ‘interpreted’ by a group of improvising musicians and subsequently

affect the musical discourse, these constraints should be seen as manifestations of the

context in which an improvisation takes place. They are not part of a set of intentionally

curated decisions in which the musicians must engage. The social and cultural context

enables improvisatory music making to occur, rather than directing it as such.

 Interactive systems and improvisational performance 7.3.4

Acknowledging these specifics of improvised performance practice, we turn to the

inclusion of interactive and autonomous systems into this performance scenario. The

question we must ask here is this: is an improvised musical performance fundamentally

different with the added presence of an interactive musical system? To answer this

question we must concern ourselves with the ontology of such systems, and the way in

which musicians may perceive them in performance. With the ability to generate

independent musical material as well as to listen and adapt to their performance

environments, it might not be so unusual to think of such systems as ‘virtual performers’

in their own right. In some respects, one might argue that the presence of such systems

in performance, although synthetic, does not change the nature of the musical context

given that a successful system may act in the same way as another musician. From this

perspective, the presence of such an autonomous machine might form part of any ‘less

tangible atmospheric conditions’ Parker has referred to – its status as a machine

contributor resting as a mere technicality in the context of freely improvised

performance.

 Contrary to this assumption, I would suggest that the presence of such systems alters

the way in which the musical context is perceived in performance, thereby changing the

nature of the practice itself. The presence of a generative, responsive or autonomous

musical system brings into focus the relationship between system designer and any

human musician engaged in this practice. Here I take the view that such types of human-

machine performance take place as part of a unique form of sociotechnical curation. The

presence of the autonomous machine constrains and alters the performance practice in

some intentional way, due to its existence as a programmed entity. It is precisely because

of the specific creation of a non-human actor to be engaged with in performance (i.e. the

 217

software) – a context traditionally reserved for human musicians – that the dual notions

of interpretation and constraint in performance become relevant. However, at issue

when relating these concepts to human-machine improvisation is the notion of a ‘work’,

the detachment of the developer from the instantiation of the work in performance, and

the ambiguity of the software as a form of musical text. Questions we may ask therefore

are where the work resides in human-machine performance, whether or not we can

attribute the proposed musical framework (inclusive of the software) to a single author,

and whether or not the software itself may be considered a musical text.

 In human-only improvisational contexts, when musicians encounter surprising musical

materials and forms in performance these can be rationalised in terms of the skillset and

abilities of their decidedly human counterparts. Human musicians approach an ensemble

improvisatory context aware of the both the musical potential and cognitive faculties of

their fellow human interlocutors. However, the same cannot reasonably be said of

human-machine contexts. Any relationship that develops between a human and a

computer system during performance might be characterised as one of navigation,

exploration and discovery. During performance-time, the system’s interactive and sonic

behaviour promotes a mode of interaction whereby the constraints of any given system

are revealed during the act of performance. A system’s capabilities, as experienced by the

musician in performance, manifest themselves as both musical and interactive constraints

on improvised performance. The more a musician spends time with such a system, the

more such constraints are revealed. In this respect, initially unfamiliar performance

paradigms can be conceptualised as a form of material with which the human improviser

engages.

 In Bown et al., the authors suggest that performers engaging with such systems do so

to varying degrees of appropriateness to the inherent capabilities of designed systems

(Bown et al. 2013). The disconnection between performer expectation and system

response is highlighted as an issue in assessing the effectiveness of such systems in

performance. In addition, experiences with musicians also varied regarding their level of

interest in the capabilities of the machine prior to a performance. Consequently, the

degree to which performers understand the intricacies of the machine they are to be

interacting with will vary widely. To avoid over-complicating the performative scenario,

the authors suggest asking a performer to play ‘naturally’, where the machine is not a

 218

“cause for the musician having to perform, interact or behave in novel ways.” (Bown et

al. 2013) However, even if a musician is advised not to try and provoke a direct response

from the software, certain interactive preferences are revealed to the performer prior to

an interaction. In the context of freely improvised musical performance, spontaneity and

the ability to provoke and surprise are important elements of the performance practice.

The choice not to reveal the underlying capabilities of a system can be seen as a

manifestation of such an attitude to performance. In addition, a preference for non-

reactive and causal modes of performance further communicates to the musician the

aesthetic and interactive preferences of the designer. The assumptions and expectations

of both improvisation style, as well as a musician’s ability to act as if the machine is

human are further revealed.

 Development as sociotechnical curation 7.3.5

As alluded to above, the machine’s existence as a programmed entity highlights the role

of the human actor responsible for its design. In this performance practice, it is first and

foremost the system designer who proposes the musical scenario of human-machine

performance to improvising musicians, either explicitly (via invitation) or implicitly

(through software distribution). Regardless of how this proposition is made, the system

designer in this context, acting as author, proposes a musical framework to be navigated

in performance. The placement of one or more human improvisers in such a

performance context should therefore be understood as a non-trivial act of curatorial

authorship. The programmer is no longer only the author of a piece of software, they are

also responsible for the framing the musical and interactive context in which both the

human and machine engage. From this perspective, although a system may act in an

unsupervised and autonomous fashion, the programmer shares authorship over the

musical discourse through their software’s interactive behaviour, acting as a part of this

curated performance framework.

 Part of the curatorial position of the software designer involves the choice of

musician(s) to be engaging with the software, and how much information is given to

musicians about the software’s affordances. In some cases, software behaviours may

have been explained to a musician prior to an interaction, whilst in others they may be

left to the improviser to be discovered during performance. In addition, repeated

 219

experiences with the software by a performer are often coupled by informal discussions

with the developer about their experiences, adding to their knowledge of the system’s

affordances. The performer’s prior understanding of the precise abilities of the software;

whether directly responsive, analytical, generative or otherwise will no doubt affect the

perception of their relationship to the machine in performance. Bown et al. note this in

their analysis, reflecting on the influential nature of these specific details upon the

musician’s understanding of the interactive context (Bown et al. 2013, p. 6).

 In the case of the _derivations software, individual interactions with musical

collaborators varied in this respect. As detailed in the appendices to this thesis,

performances with the _derivations software have included ongoing collaborations, one-

off performances as well as third-party organised performances without my direct

participation. With respect to ongoing collaborations, improvisers Joshua Hyde

(saxophone), Alana Blackburn (tenor recorder) and Zubin Kanga (piano) had all either

experienced _derivations in performance, or discussed the software with me in advance of

their initial performative encounter. 54 The musicians therefore came into the

environment with a conception of the performative context informed by my ideas as a

developer. The focus on extended instrumental techniques, a lack of concern for melodic

and rhythmic contours were therefore evident in each of their initial performances with

the system. In addition, all three of these performers are classically trained interpreters of

contemporary music with whom I have personal a history of collaboration. Working with

these musicians, discussions on the reasoning behind programming decisions, the

intricacies of certain processing modules and the inner workings of the matching

algorithm were commonplace. As such, direct experiences of the performers with the

software were supplemented by contextual knowledge of the system’s affordances.

 Importantly, each of these collaborations initially took place in the context of a

planned upcoming performance. Discussions were coupled with repeated exposure to

the system in rehearsal, a process that involved an ongoing dissection of previous

performances with a view to obtaining the best possible performance outcome. This type

54 Performances with Joshua Hyde and Alana Blackburn are included on the accompanying audio CD

_derivations: human-machine improvisations (Appendix B). An example of Zubin Kanga’s work (as detailed in

Appendix C) can be seen at the URL https://www.youtube.com/watch?v=PmUCGbcrGuw.

 220

of collaboration bears a distinct resemblance to the composer-performer dynamic

observable in new music performance scenarios.55

In addition to the above collaborations, two encounters with musicians Evan Dorrian

(drums) and Antoine Läng (voice) were characterised by a lack of sustained exposure to

the _derivations musical system prior to performance. 56 Instead, an in situ discussion on

the basic premise of the software framed each interactive encounter. Neither of these

musicians had any prior experience with the _derivations system, nor any other interactive

performance system of this type.57 These two musicians both came from improvised

musical backgrounds, ranging from jazz performance to noise and freely improvised

group improvisation. In these contexts, it is commonplace for spontaneous musical

encounters to occur without any pre-arranged grouping of personnel or instrumentation.

In this respect, the performance-time context of both encounters was not dissimilar to

that of a freely improvised duet. Each performer was open to engaging with _derivations

with only one short rehearsal session with the software, and although this preparatory

encounter was discussed prior to the eventual performance, neither the software’s

specific affordances nor the interaction was dissected in any great detail.

Despite the spontaneity of these encounters, common to both circumstances was the

curatorial context in which they engaged with the software. Alongside two other

performers, Dorrian was invited to participate as part of a weekend ‘hack-together’ event

that involved numerous developers working with algorithmic and interactive software.

This researcher-led event framed the encounter between the Dorrian and _derivations.

Similarly, Läng performed with _derivations as part of an impromptu grouping of

instrumental performers and software developers. The event was the performative

showcase for the ‘Biome Symposium’ – an interdisciplinary research symposium

surrounding mathematical approaches to various creative practices.58 Läng’s performance

55 For recent research on issues of collaboration in new music performance see Kanga (2014) and Roche

(2011).
56 These live performances are documented on the audio CD _derivations: human-machine improvisations

(Appendix B).
57 Evan Dorrian has since performed in numerous ensemble situations with interactive software devised by

Oliver Bown.

58 More information on this symposium can be found at the following URL:

http://www.biome.cc/symposium.html

 221

with _derivations was a chance grouping decided upon in the afternoon before the event,

as were other performances showcased in the concert. For this performance it was

primarily the Biome theme that framed the musical context in which Läng improvised

with _derivations.

 Third party performances with _derivations have been many and varied. Since the

launch of derivations.net in 2013 the software has been available for free download and

use, facilitating performances and recordings with the software without any direct input

from myself. In the first instance, performances and recordings have been undertaken by

contacts I have met either in person or purely online through various social media

platforms. These contacts have been aware of the software and its affordances through

exposure to live performances, radio and online media and/or electronic

communications with myself. In addition, a number of musicians have produced

performances with the software without any direct contact with myself. These musicians

have downloaded the software and also potentially engaged with media documenting

previous performances made available on the site. Live performances and recordings

posted online by these musicians have credited the software and myself as its developer,

with many linking to derivations.net in their online media.59

The case of third-party musicians is very different to those performances in which I

have been an active participant. These musicians have engaged with the _derivations

software on two separate levels; both as musical performers, and as traditional ‘end-

users’ of the software acting outside of performance-time. In order for these

performances to take place, these musicians have engaged with the specifics of the

software artefact, initialising the graphical interface and making use of the session

database capabilities. To facilitate this self-guided user interaction, five detailed

documentation videos were designed to familiarise performers with the software. These

videos exist both as a communicative tool and a how-to guide for musicians wishing to

interact with _derivations. When compared with information typically available to

musicians engaged in this type of performance practice, these videos explain the

underlying musical, conceptual and technical details behind the software artefact in great

detail. This ‘de-mystification’ of the underlying processes at work within the system

59 Third-party produced releases with _derivations are detailed in Appendix H.

 222

further therefore solidifies my role as author of the interactive context in which the

musician engages.60

 Software as musical text 7.3.6

System designers hold personal musical goals and stylistic preferences, many of which are

subtly or overtly manifested in the behaviour of their systems in performance. Although

these musical systems are often capable of surprising yet musically coherent results, their

capabilities should be understood as the result of specific, programmed decisions of a

human author external to the performance-time interaction. In the _derivations system,

although the software is agnostic towards sonic content, the generation and processing

capabilities of the system enforce certain aesthetic boundaries on the improvised

performance. The lack of melodic and rhythmic awareness of its listening algorithms,

and the electroacoustic means by which sampled materials are combined inevitably limits

the stylistic horizons navigable by musicians interacting with the software. Whilst neither

the programmer nor the machine has made explicit requirements of a musician’s

performance, the programmed dynamics of _derivations ultimately contribute to framing

the musical and interactive boundaries of any performative encounter. These boundaries

are both imbedded in the artefact as programmed behavioural characteristics, and made

manifest as the specific sonic context provided by the software’s contribution to the

performance. In this context, the interplay between the chosen generative grammar and

sonic vocabulary affirms the designer’s aesthetic intentions in the creation of the musical

system.

 For Coessens, an important function of a musical text or score is that it organises

action in some meaningful way. This type of text also “reveals underlying ideas in a

coded format” – the ideas of the author – rather than simply codifying instructions

(Coessens 2013). Although not communicating explicit requirements to the performer,

the curatorial context proposed by the developer of an interactive performance system

clearly frames the context of an improvised encounter. The presence of an autonomous

machine in an improvised scenario codifies the developer’s broad ideas about human-

machine performance. In addition, the choice of algorithmic, sonic and interactional

60 Video documentation for the _derivations system is available at http://derivations.net/about/video-

documentation, and detailed in Appendices E and J.

 223

capabilities of these machines also organises musical action in meaningful ways. The

machine’s interactive and generative specificities should therefore be seen as forms of

musical constraint with which the musician engages, contributing to the creation of an

interpretive framework.

 It may therefore be argued that the development of the software is akin to the creation

a form of musical text. This text is not dissimilar from both the graphic and algorithmic

textual scores discussed previously in Section 7.3.2. However, rather than embodied in a

graphical or textual representation, the constraints on a musician’s performance are

interactively instantiated through performance with the software. As discussed above, certain

modes of performance will ultimately reveal themselves as implicitly more reasonable

than others, and may also have been communicated as such by the developer prior to an

interaction. Therefore, imbedded in the software as text are the context-specific

expectations of the performance practice by the author of the software. Exhibiting

agency within a musical performance, these systems therefore provoke, shape and

contribute to a musician’s improvised trajectory. The programmed nature of these

behaviours, regardless of the degree of autonomy displayed during performance, express

the compositional concerns of their authors.

 Conclusion 7.3.7

Musical performances with interactive performance systems may be seen as an

instantiation of the combined musical ideas of the system developer, the musician

navigating this space of ideas, and the interactively instantiated contributions of a

machine to the performance. It is precisely because such systems are imbedded with

these subjective attributes that performers in this context necessarily engage in a form of

interpretation. Although their moment-to-moment performance may be freely

improvised, the framing of the interactive context suggests a curatorial framework

requiring interpretation in performance. From this perspective, any consideration of a

musical text must take into account the entire performance scenario. The musical text is,

in effect, the boundaries and constraints of such a human-machine musical interaction as

influenced by the machine’s perceived capabilities. Navigating these possibilities in a truly

interactive sense is the task laid out for the musician. By navigating this space proposed

by the designer, the musician is engaging in an interpretive act.

 224

7.4 Symbiosis in human-machine performance

The analyses of this chapter situate this type of human-machine performance in an

interactive frame imbued with design intentions, curatorial decisions, performance

actions and material agency. The relationships that develop between designer, performer

and code are emergent results of the specific, situated interactive encounters between

musicians and designed software artefacts. The previous two sections have examined the

relationship between human and machine agency in the development and use of

interactive performance systems. In Section 7.2 I highlighted how machine agency is

entangled with software development and use. By interrogating the performer-developer

context as the site for balancing machine and human agencies, I have articulated some of

the inherent complexities of this developmental practice with reference to relevant

theory. In Section 7.3, the notion of musical interpretation was proposed to define the

broad musical artistic context in which musicians engage with such interactive software

artefacts. Here the cultural context of creative software development is acknowledged as

the fundamental driver behind the development of new performance practices.

Regardless of the autonomy of the musical algorithms being developed, a confluence of

factors surrounding performance-time interaction help to define the space of human-

machine improvisation as one of sociotechnical curation.

 This section is concerned with a specific conception of interactive musical practice

developing from my creative work. Here I consider the notion of symbiosis as a metaphor

for the musical, technological and interactive interests that have crystallised throughout

my creative practice. As outlined in Chapters 4, 5 and 6, a series of idiosyncratic

technological experiments led to the development of the _derivations interactive

performance system, representing the end result of a search for a unique form of human-

machine performance practice. Although primarily concerned with musical interactivity

and generativity, the trajectory of my creative work also shows concern for finding

intuitive and coherent means of achieving interactivity between instrumental performers

and computer music systems. By focusing upon sampling-led methods of generativity,

my practice led towards the creation of a piece of software that could also engage the

musician as user outside of a performance-time encounter. As discussed previously, this

is a form of metacreation that enables the performer to customise their real-time

 225

encounters with the _derivations software through the development and use of session

databases.

 This particularity of the _derivations system further complicates the ideas discussed

previously in this chapter. The interpretive framework entered into by the improvising

performer, it has been argued, is in part defined by curatorial agency exerted by myself as

developer of the software. This agency is exerted through the software’s inherent

affordances, but also through the distribution of the software via derivations.net and the

de-mystification provided by the accompanying video documentation. However,

_derivations’ session database concept (discussed in Section 6.8) also places a significant

degree of curatorial authorship over the interactive environment in the hands of the

performer. The ability to customise the processing and structuring parameters of the

software give the performer agency over the machine’s contribution to any subsequent

real-time encounter. In addition, by pre-defining the sonic vocabulary of the musical

system cumulatively from session to session (or by merging disparate musical materials),

the musician’s agency and authorship over the resulting interactive context is also

assured. Interacting with the _derivations software in rehearsal is therefore another form

of metacreative authorship.

 As we have seen in the case of _derivations, musicians can substantially influence future

encounters with the machine both during and outside of performance. The machine’s

performative agency is therefore directly dependent upon the input of the musical

performer, both for its generative and sonic capabilities. Although the system’s

autonomous processing and structuring algorithms provide a degree of opacity from the

matching algorithm, the system is entirely dependent on human stimulus to generate its

contribution to an improvisation. The software’s self-referencing algorithm, as discussed in

Section 6.6, enables it to autonomously generate patterns of musical material free from

the interventions of a real-time performer. Crucially however, the sonic materials

accessed for use by this algorithm are digital remnants of past interactive encounters with

a human musician. Even the most autonomous form of generativity expressed by

_derivations is reliant upon past human musical gestures.

 This is a cumulative approach to developing musical generativity. The interaction

between human and machine in performance is defined by their interaction in rehearsal

 226

and performance. Although the underlying organisation of the self-referencing algorithm

remains intact, the machine’s sonic contribution is dependent upon human performative

agency. This historical and cumulative dimension to the _derivations software has

encouraged speculation on the nature of this unique interactive scenario. Borne out of a

sampling-led approach to generativity, it is the dependence inherent in this generative

approach that has led to a symbiotic conception of musical interactivity. The software

needs the human utterances to express its organisation, and in turn the human needs the

expression of this organisation in order to engage in meaningful dialogue with the

software.

 Metaphors for interactivity 7.4.1

As discussed in Chapter 2, interactive models and metaphors have been used to outline

modes of interaction, and also to explain the traits of designed musical systems and the

interactive modes they engender in performance. These have included metaphors related

to instrumental performance to delineating levels of control (Chadabe 1984; Rowe 1992;

Winkler 2001); biological systems metaphors such as stigmergy that describe group

dynamics (Blackwell & Young 2004, 2005); categorisations of interactivity into differing

modes such as conversational/ornamental/instrumental interaction (Johnston 2009);

understanding systems and interfaces as prostheses (Young 2008) etc. These metaphors are

used in two specific ways: to project ideal modes of interaction as an aid to design, and as

means of understanding interactive traits perceived when observing humans interacting

with machines. For the former, they provide a means by which complex technical

projects can be positioned into useful conceptual frameworks, becoming anchor points

with which to ground future design aims. For the latter, they enable retrospective

understandings of the traits exhibited in the interaction domain itself. In this case,

metaphors aid in explaining observed interactive modes without imposing any

preconceived notions of interactivity on the domain in question.

Whilst some of these metaphors of human-machine interaction have been developed

through observation of real-world settings, others remain speculative understandings of

the space in which humans and machines interact, borne from personal artistic

experiences and aesthetic leanings. These speculative understandings say as much about

the aesthetic preoccupations of the system designer as they do the phenomenon itself.

 227

The choice to develop musical systems that participate in improvised performance is in

itself a speculative position, and as such models and metaphors in this space should be

understood as situated within the aesthetic context in which they are developed.

By way of example, the composer and researcher Michael Young has outlined his

aspiration for musical systems that are able to adapt and contribute to their sonic

environments, engaging with human performers with a level of intimacy to the current

performance context (Young 2009) (see also Section 2.2.4). Regarding adaptability, the

author’s has proposed stigmergy as a model for collective interaction between entities and

their environments, an organisational property observable in ant and termite colonies.

These concepts therefore serve to unify the author’s concern for avoiding

anthropomorphism in interaction design, with a view of collectivity and sonic interaction

in an established musical performance context such a free improvisation. Implicit in

Young’s description of these two notions is an overall concern for designing for musical

improvisation as a known and understood musical practice, albeit a complex one. This

aspect of Young’s approach can therefore be contrasted with the discussion present in

this chapter. Although human improvisatory practice is necessarily the foundation of any

human-machine improvisation, it has been argued here that such a dynamic is in itself

fundamentally different precisely because of the presence of the machine collaborator.

Such a contrast in approach serves to highlight the ability of musical and aesthetic

perspectives to influence the development of metaphors for interactivity.

 As has been discussed in this thesis, the aesthetic concerns of both free improvisation

and electro-acoustic composition have grounded the design aims of the _derivations

system. In addition, concerns for the development of a useable, customisable and

sharable creative artefact have strongly influenced the specific decisions of the software’s

development and dissemination. In Sections 7.2 and 7.3 I articulated how the artefact

development is intimately linked to the usage context of performer-developer devised

artefacts. This interest in the openness and transparency in the design process has

influenced how interactivity is viewed in my practice as related to _derivations. It is

therefore from this vantage point that I situate my ideas of symbiotic human-machine

performance practice.

 228

 Symbiosis in art and technology 7.4.2

The biological process of symbiosis provides an evocative metaphor for the relationship

between humans and technology in both artistic and technological practices. Widely

documented in the natural world, symbiosis is an “association of two different organisms

[…] which live attached to each other, or one as a tenant of the other, and contribute to

each other’s support.” (Oxford English Dictionary 2015b) The process of symbiosis is

such that two species, as symbionts, are intimately connected to each other and often rely

on each other for survival. Examples of symbiotic relationships are those of lichens,

composed of algae living inside a fungus, the mutualistic relationship between sea

anemones and the hermit crabs, as well as the symbiotic relationship between humans

and bacteria living inside the body. There are three main types of symbiosis observable in

nature: mutualistic, parasitic and commensalistic. Each one of these types describes the

relationship that exists between different organisms:

 Mutualistic Symbiosis – describes a situation where two organisms are dependent

upon each other, with both benefitting from this interdependence.

 Commensalistic Symbiosis – where one organism benefits from the other, yet the

other is neither harmed nor helped.

 Parasitic Symbiosis – is a one-sided relationship where one organism benefits and

the other member is harmed by the interaction.

Licklider (1960) was the first to suggest symbiosis as a metaphor for the relationship

between humans and computers, proposing that man-computer symbiosis was an

“expected development in cooperative interaction” between humans and machines. For

Licklider, humans and computers were to develop symbiotic partnerships, whereby

computers could enable humans to control complex operations without recourse to

inflexible and predetermined programs (Licklider 1960). This conception of the

relationship between humans and machines acknowledged the mutually beneficial nature

of both entities, rather than the ability of machines to simply extend human abilities. In

addition, this notion of cooperation was conceptually separated from the concerns of

artificial intelligence, in which the machine is said to dominate as the principle problem-

solver (Jacucci et al. 2014).

 229

 In the field of human computer interaction, ‘Symbiotic Interaction’ has gained traction

in recent years as an area of research. The term is used to describe a mode of interaction

that combines “computation, sensing technology and interaction design to realise deep

perception, awareness and understanding between humans and computers.” (Jacucci et

al. 2014) This new area of research is concerned with enabling computers to implicitly

detect user goals and psycho-physiological states without removing control from human

users (Blankertz et al. 2015). Taking cues from Licklider’s original definition, this

emerging field differentiates itself from artificial intelligence research through a focus on

merging computation and human goals and abilities. Jancucci et al. (2014) make specific

reference to goal and agency independence of humans and machines in symbiotic

interaction, highlighting the specific ideal of such interactive scenarios.

Symbiosis has been of interest to artists-researchers interested in emergent forms,

artificial life and artificial intelligence. In their ‘Symbiotic Art Manifesto’, artist Leonel

Moura and scientist Henrique Garcia Pereira proclaim that the future of art-making as

one in which humans relinquish control over the art-making process to intelligent

machines (Moura & Pereira 2004). Declaring that “Art as we know it is dead. This time it

is definite and official,” the authors define an artistic paradigm in which the human’s role

is the design and manufacture of artists, and not of art itself. Moura’s artworks make use

of robotic artists that follow autonomous procedures set out by the artist. Robots

interact with and shape their environments and not each other directly through the

process of stigmergy, resulting in complex and unpredictable forms. Conceiving of this

type of creation as ‘symbiotic art’, Moura’s conception of artistic practice is one in which

the artist’s task is less concerned with practical skills, and more related to setting the

conditions for machines to generate artworks autonomously without human intervention

(Moura & Pereira 2004, 2011).

 Moura’s work is essentially a metacreative practice; that is, the creation of machines

that may be deemed creative on their own.61 However, the use of the word ‘symbiotic’

displays a concern for the reciprocal relationship that exists between the artist and their

creative machines. From Moura’s perspective, the symbiotic relationship exists between

61 Metacreation is an emerging field concerned with endowing machines with creative behaviours. More

information on the field and a definition of metacreation can be found here:

http://metacreation.net/about/

 230

the artist as designer, and the automaton as artist working in real-time to create artworks.

In this context, the human needs the machine’s agency in order to render artworks, and

the machine needs the developmental guidance of the designer-artist to make artworks.

Moura and Pereira’s metaphor of symbiosis therefore rests upon the mutual

dependencies that exist between the designer-artist and the robot-artist in this practice.

The former conceives of and fabricates the latter, specifying its generative properties.

The symbiotic relationship between human and machine is therefore abstracted, with

finished artworks existing as a result of both human and material agencies as separated in

time.

Figure 46: Painting Robots Orchestra (PRO) – PRO021113 – Leonel Moura (2013). ‘PRO is
constituted by a series of robots able to detect sound. Each robot is receptive to a different
frequency that activates a painting device.’62

This symbiotic relationship has provoked Moura to consider how this practice affects the

human designer. Considering the development of artists as opposed to art itself, Moura

and Pereira ask the question: “what do we become ourselves?” In doing so, the authors

acknowledge that this practice puts this mutualistic relationship in sharper focus: “The

life of the artist/machine is interlinked to the life of the artist/human.” (Moura & Pereira

2004)

62 http://www.leonelmoura.com/pro.html

 231

 American artist Amber Stucke creates drawings that represent symbiotic relationships

between imaginary forms and various species of fungi, algae and lichen. In her

‘Symbiosis State’ project, Stucke’s drawings are presented as taxonomies of symbiotic

relationships between the real and the imaginary, exploring these complex biological

phenomena. Stucke describes her creative drawing practice as an ‘embodiment’ of

symbiosis, a practice in which consideration for the reciprocal relationship between

human consciousness, material forms and biological concepts coalesce into an integrated

creative practice (Stucke 2011). Through a phenomenological lens, her artistic practice is

conceived of as embodying a symbiotic relationship between graphite, paper, flesh and

mind. Although the object of Stucke’s practice emanates from a concern for this natural

phenomenon, the artist has also incorporated and assimilated the concept into an

understanding of her own practice. Through a consideration of the potential

consciousness of biological forms such as mycelium and lichens, the artists sketches a

poetic ideal of reciprocity and dependence in her art making:

The symbiosis between the paper, the graphite, and me grows slowly in-between the blank spaces like

mycelium under the earth feeding on the plant’s roots and also becoming a part of its roots–transforming

the root system to an evolved dynamic root that is both plant and fungus. This metamorphosis is also a

transformation of the mind. It evolves an internal state of mind of becoming symbiotic relationships

(symbiosis state).

(Stucke 2011)

In Stucke’s work, the symbiotic relationship between human and material is one in which

consciousness and performative action is entangled with the results of material agency.

Artworks borne out of this negotiation reflect upon the biological process of symbiosis

itself, and are a direct consequence of unpredictable relationships. Her works are

speculative, engaging the viewer in a consideration of the process of symbiosis as both a

biological process and embodied practice. Stucke’s conception of interdependence

between human and material has parallels with Pickering’s conception of the mangle of

practice (Pickering 1995) (as discussed in Section 3.3). The artist’s ‘symbiosis state’ is

conceptualised as a form of knowledge generation, her drawing practice as an integrated

and embodied practice enabling new knowledge systems to emerge (Stucke 2011).

 232

Figure 47: MMutual i s t i c Re la t ionsh ips No. 5 (Symbios i s Sta te) – Amber Stucke (2013)

Although the artists discussed above approach symbiosis from contrasting artistic

practices, they are both concerned with practice itself as the site for symbiotic interaction

between human and material agencies. For Stucke, symbiosis is an embodied process that

describes art making, and a philosophy of mind in drawing. Her artworks are the final

result of this process of entanglement between human and material. For Moura,

symbiosis defines the relationship between human and machine, concept and

performative execution. Although the interdependence between the two entities is

abstracted in time, the artist’s conception of the symbiotic artist reflects a consideration

of their reciprocal influence. Returning to the field of human-computer interaction,

symbiotic interaction is a term used to describe the ideal of cooperative and reciprocal

exchanges between humans and machines. Contrasted with the pursuit of software

autonomy for its own ends (artificial intelligence), this conception of practice is

concerned with human-machine reciprocity and goal and agency independence.

 233

In Moura’s work, the performative actions of autonomous agents create fixed artworks

(paintings), and do not engage with humans to create these. The metacreative artistic

process is therefore considered symbiotic, not the real-time process in which the

automatons themselves create. Stucke’s conception of symbiosis is also performative, yet

the process of artistic creation also gives rise to fixed artefacts (drawings). For those

metacreative works that exist in time (music, animation etc.), it is the process of generation

and interaction (the performative act) that is presented as an artwork. Furthermore, for

those works in which the environment involves the input of a human performer, this

performative act becomes more complex, and the notion of a symbiotic

relationship must also refer to the act of performance and use of the artefacts by the

performer. Mutual dependence between the automaton and the human as both

performer and end user must therefore factor into an understanding of symbiosis in such

practices.

 In light of the above, whilst not subscribing strictly to the definition of symbiotic

interaction as outlined by Jacucci et al. (2014), my use of symbiosis as metaphor is

concerned with the performative exchange between human and material as asynchronous

artistic practice (software development, use of software in rehearsal), as well as with the

performative act itself. Human-machine improvisation is a space in which mutual

influence must be balanced with concerns for software autonomy. As discussed in

Section 7.2 and 7.3, this creative practice should be understood as a complex space in

which the relative transparency or opacity of the system is taken into account, along with

the cultural context in which the performance practice takes place.

 Defining symbiotic musical interaction 7.4.3

The development of interactive performance systems, whilst often focused upon

maximising the autonomous decision-making capacity of the machine, should be thought

of primarily as engaging human musicians in a mutually influential performance context.

Human engagement with such systems fundamentally differs from human-human

interactive contexts. As articulated throughout this chapter, performers are somewhat

dependent upon the interactive capabilities of the musical systems they interact with.

Musical systems are developed with specific stylistic constraints in mind, and performers

interacting with such systems learn to interpret the nuances of these systems through

 234

repeated exposure to them in rehearsal and performance. They are dependent on the

system in a broad conceptual sense, as it is often the case that the musical system’s

interactive vocabulary (or indeed, sonic vocabulary) defines the range of possible musical

territory to be covered in an interaction. Although a musician is clearly an autonomous

entity, their musical contribution is shaped and altered by the context provided by the

intersection with the musical system.

Symbiosis as an interactive metaphor sits decidedly outside of the purely technological,

acknowledging this mutual dependency and influence between player and machine. The

metaphor is inherently interactive, with its genesis in the intersection between

separate and contrasting organisms. Although describing mutual dependence between

human and machine, the metaphor of symbiosis in performance should be understood as

encapsulating the complex interaction between two autonomous entities that are both

aware but also dependent upon each other in performance.

 In light of the above, symbiotic musical interaction may be characterised in the

following ways:

 Mutualism – mutual dependence between human and machine in performance

and from performance to performance

 Commensalism – the machine may feed off the performer to sustain its own actions,

without obscuring or hindering the performer’s musical contribution

 That one’s actions may affect the evolution of the another’s material, though not

as a direct reaction to or cause of the other’s responses

 Machine autonomy is an emergent property of interactions between humans and

software in rehearsal and performance

With respect to system design, it is possible to conceive of such systems as

enabling either mutualistic or commensalistic symbiotic relationships to occur between

humans and software systems. The development of these relationships need not seek to

maximise the qualities of musical autonomy, however musical autonomy may emerge

through cumulative interaction with the system over a period of time. In human-machine

performance practice, an interactive environment fundamentally shapes the performance

of a human musician throughout an improvised session, as well as from session to

 235

session. Mutual dependence in this instance refers to the change brought about in the

human’s behaviour towards the system, and the ability for the system to change along

with the performer. One way of conceiving of machine dependence in this context is

through the material siphoned from the performer and used to further its own

autonomous behaviour. Such an approach repurposes the cumulative history of past

material as a possibility space, providing the machine with a sense of performative agency

that is directly tied to the history of the human musician’s performance. In Chapter 2 I

suggested the concept of derivation for this process in the design of interactive musical

systems. Both sonic and algorithmic derivation were highlighted as methods by which

system designers make use of the performance of a musician to generate musical

contributions of generative software. Such dependency on the musical performer can be

seen as displaying qualities of a symbiotic musical interaction.

 Symbiosis and _derivations 7.4.4

My work developing and performing with the _derivations performance system has

embodied this conception of symbiotic interaction. One of my central concerns for

developing musical performance system was that the software’s contribution in

performance should be heavily influenced by the improviser’s playing. Although I was

interested in developing a system that could contribute to performance un-assisted, the

system’s agency as expressed in performance must be emergent and tied to the specific

context of the current performance. As discussed throughout Chapters 4, 5 and 6, the

work preceding _derivations explored the capture and storage both audio and analysis data

streams that could then be used to develop the generative capacities of an interactive

system. Making use of live sampled phrases of my saxophone performance, I was further

drawn to using recorded data as a means of generating complex behaviour using simple

underlying rules. Enabling the re-structuring and processing of sampled data streams

(including audio recordings) was a metacreative process. In comparison to other

approaches, such generative techniques are dependent on outside stimulus. Without

having interacted with a human performer, systems of this type have no space of

possibilities with which to generate their own material.

 The sampling-led approach taken in my work has led to systems and processes that are

dependent upon human interaction. The autonomy expressed by the _derivations system is

 236

predicated upon connections drawn between materials siphoned from past human

performance. In my work, symbiosis is a metaphor for the way in which _derivations

engenders reciprocity, mutual influence and interdependence between human musician

and software system, both inside and outside of a performance. The system is at once

independent and dependent, influenced and autonomous. For the performer interacting

with _derivations, real-time navigation of the system’s affordances is entangled with the

direct siphoning of one’s past musical gestures. The machine is dependent upon these

materials to express its underlying organisation. In turn, the musician needs this real-time

expression in order to further an ongoing musical dialogue with the machine. _derivations

feeds off the performer as the performer assimilates these new constructions into their

understandings of the immediate performance environment.

 In my own performance, the intimate knowledge I have as both developer and

performer of the system enables me to shape my interactions in a way that is particularly

in tune with the system’s character. I have developed a performance practice that is

specific to this particular interactive scenario. With the knowledge of _derivations’ ultimate

dependence on my current and past performances, I am able to provoke and predict

certain actions from the machine. However, owing to the emergent nature of the

software’s generative organsiation, I am consistently surprised and provoked by its

interactive presence in performance. My performance has evolved with the design of the

system, but at the same time, I am dependent on the interactive context that the system

provides during performance. This provides a set of constraints for improvisation that I

thrive off in performance with the system. It is a composed space of possibilities that

enforces a mutually dependent relationship to develop between player and system.

7.4.4.1 Software as symbiont

In the _derivations system, the self-referencing algorithm is based upon a fixed algorithmic

organisation. Each of the system’s internal players engages in a game of chinese whispers or

telephone; passing stored analyses from one player to the next (see Section 6.6 for a full

description of this process). Although this process is deterministic in nature, left on its

own this internal organisation is able to generate emergent behaviours over a period of

time without direct influence from a human performer. The individual players in the

system maintain the intention of matching analyses received with phrases stored in

 237

memory, and outputting the results for processing and re-synthesis. Crucially however,

the machine can only express this underlying organisation with material siphoned from a

human performer. This material can either be pre-loaded as a fixed sonic vocabulary, or

built cumulatively throughout the current improvised performance. The machine is

therefore dependent on the results of human agency in order to evolve through its

possibility space. That is, it is dependent on the musician to provide the space with which

it expresses its organisation.

 In its interactions with a human performer, _derivations is therefore a sonic automaton

acting as a musical symbiont. By entering into a performance with the system, the musician

allows the software to feed off its past in order to generate its contributions to the

improvised encounter. This type of dependence is unique to the system, and is not

pursued in order to approximate human interactive traits. However, this particularity of

_derivations solidifies its specific function in this symbiotic relationship. The self-

referencing algorithm that is at the heart of _derivations’ generative strategy is

deterministic, and also agnostic to the separation between what is self-generated and

what is generated externally. Given this, the system may be considered an autopoeitic

system, as defined by Maturana and Varela (1980). Real-time analyses of the live

performer are injected into the system’s self-referential feedback loop without any

priority given to this analysis. The system takes information from the performer and

passes it through its network. However, once this information is in the network itself, the

individual components do not distinguish its origins as being from outside or inside.

_derivations therefore integrates the outside world into its continual self-generative

process.

7.4.4.2 Performer as symbiont

Facilitated by the process of black boxing (see Section 7.2), a human performer perceives

the above-described generative process as a totality, interacting with the system as if it

were a single living organism. The trajectory of the human-machine performance is the

result of an interactive exchange between the complexity of the self-referential algorithm

and the performer’s sonic gestures. From outside of this system, the musician engages

with _derivations’ sonic contribution as a whole, expressed by the polyphony inherent in

the overlapping of its various players. The inherent unpredictability and emergence of

 238

this process becomes the space in which the musician interacts. It is the expression of

the system’s self-generative identity. Making use of the system’s cumulative live sampling

capabilities, the growing complexity of the system’s sonic vocabulary benefits the

musician by creating a space of possibilities that grows along with the performance

trajectory. In addition, the session database facility of the software further structures this

symbiotic interaction in performance. The performer’s engagement with the software

from session to session allows _derivations to express its underlying organisation within a

larger range of possible source materials.

7.4.4.3 Mutualism in performance

As with mutualistic symbiotic relationships in nature, the needs and goals of the two

symbionts differ in this human-machine interactive partnership, yet they remain

complimentary. The _derivations software maintains a rigid strategy of live sampling and

storage, analysis and comparison. This relatively simplistic algorithmic approach is not in

any way comparable to the ingenuity, subtlety and novelty achievable by a human

musician. However, by relying upon internal and external analyses and randomised

mutations of captured materials, _derivations’ self-referential loop projects novel structures

from its fixed organisation. The unpredictability of this process is what makes an

interaction with the system dynamic and playful for the musician. Although each

musician that interacts with _derivations will do so with differing musical and aesthetic

aims, it may be suggested that the ultimate goal of a live interactive exchange with the

software is a successful performance. As for any performance practice, the relative

success of any one performance is purely subjective matter, to be judged by both

performer and audience. As discussed previously, adapting to the particular interactive

context provided by _derivations is a constraint upon a musician’s interaction with the

software, and therefore the ability to create a successful performance. Each musician will

chart the space provided by the system’s particularities differently in performance,

discovering the most suitable way of co-existing with the emergent structure expressed

by the system’s persistent organisation.

 239

 Template for the design of a musical symbiont 7.4.5

Considering mutual dependence as a design principle is sufficiently broad in many

respects, but also constraining in others. As suggested previously, the concepts of both

sonic and algorithmic derivation have proven useful in balancing autonomy and

dependence in the design of interactive performance systems. As surveyed in Chapter 2

and articulated with respect to _derivations in Chapter 6, the methods available for the

generation relationships between captured and analysed performance material are many

and varied. However, from my practice I have found that focusing attention on capture

and storage, navigation and re-generation has provided an intriguing balance between

transparency and opacity of a machine’s contribution to a human-machine improvised

performance.

 To conclude, below I propose some specific traits that may be desirable in a musical

symbiont. This list is not intended to be exhaustive nor proscriptive. Rather, through

retrospective consideration of my own design trajectory and performance practice, this

template articulates some of fundamental design considerations that have emerged from

the development and use of the _derivations interactive performance system.

 The machine and the human form a symbiotic relationship whose musical results

are an emergent result of their interactive history

 The machine is an empty vessel – it cannot act without having interacted with a

human

 The machine’s behaviour and/or content is in some way dependent upon the

human’s current and past actions

 The impetus for the machine’s contribution is tied to some present

understanding of the human’s actions

 The autonomy of the machine’s actions is in some way derived from the

interactive history with the human performer

 The machine displays agency by making connections between materials siphoned

from human interlocutors

 The machine feeds off the performer, using captured memories of the encounter

as fresh material for its contribution

 240

 The machine also listens to itself, depending equally on its own past as an

indicator of its future state as it does outside stimulus

7.5 Conclusion

Throughout this chapter I have reflected upon three core concerns arising from the

development and use of my interactive and generative designs. Whilst chapters 4, 5 and 6

of this thesis have traced the iterative development of my software, these three

reflections have articulated in depth emergent research themes that have persisted

throughout my creative practice. Self-reflective practice has been an invaluable tool in

identifying these key areas of concern emerging from my work. As my creative practice

progressed throughout this research, these broad theoretical concerns developed in

tandem with my software and performance practices. Importantly, the reflections on

issues, concerns and interests articulated here are made relevant to the wider community

through considered analysis and reference to literature relevant to the field at large.

 In the first reflection I articulated a concern for understanding creative programming

practices as a dance of agencies between human and material. Here the context of the

performer-developer is outlined as a unique space for investigating the relationship

between software and developing performance practices. In this reflection I have

articulated how the performer-developer engages in a form of incremental black boxing, a

process in which the complexities of the developing system recede in favour of the

agency displayed by the artefact acting as a whole. In addition, Akrich and Latour’s

notion of the script is appropriated to describe the complex relationship between design

and use for the performer-developer. In the second reflection, the concept of musical

interpretation is positioned as a framework from which to view improvised human-

machine performance. Considering the mediated nature of such practices and the

presence of the designer as author, here it is argued that such software systems may be

regarded as a type of musical text. Understood in this way, improvised human-machine

performances can be conceptualised as extending traditional understandings of

interpretive performance practice.

 In the final reflection I propose symbiosis as a useful metaphor for interactivity in

human-machine performance practice. Considering the interdependence between both

 241

human and machine agencies in such performance practices, symbiosis describes the

reciprocal relationship that exists between performer and software. Sitting outside the

purely technological, symbiotic interaction acknowledges the affect that such software has on

the developing performance practices of human musicians. With reference to _derivations,

symbiosis is used to describe the way in which systems of this type can be dependent upon

the human musician to act during performance. Contrasted with designing to maximise

musical autonomy, such an approach harnesses both sonic and algorithmic derivation as

the primary means by which such software systems display their material agency.

 242

 243

 Conclusions, Ongoing and Future Work Chapter 8.

In this thesis I have undertaken a practice-based approach to research enquiry,

positioning artefact development as a site for investigating key issues, concerns and

interests encountered in the development of a significant software artefact and related

creative outcomes. Throughout the chapters of this thesis I have detailed the

development trajectory of the _derivations system, revealing the iterative cycles of

development that have led to the current working artefact. Seeking to explore novel

approaches to both musical software and performance practice, my research has traced

the development of personal approaches to designing for musical interactivity. In doing

so, I have highlighted technical, aesthetic and theoretical issues encountered from inside

my creative practice. The contributions and outcomes of this research relate directly to

my practice as a performer-developer. In the remainder of this chapter I summarise the

contributions originally outlined in Chapter 1 of this thesis, before outlining the related

creative outcomes of this research and my ongoing and future research and creative

work.

8.1 Contributions of the research

The development of novel computer music techniques for use in interactive musical performance

As a practice-based research project, the creative outcomes of this research are presented

as significant research contributions from which the findings of this thesis may be

contextualised. In Chapters 4, 5 and 6 I outlined the various interactive designs

developed throughout this research. Presented in the form of a narrative of

development, significant creative outcomes from each chapter have been included in the

submission materials of this thesis. In Chapter 4 I detailed early work focused upon

audio analysis, event-based pattern matching techniques and probabilistic generative

methods. From these experiments I detailed the creation of the Tripartite Markovia

system, an interactive system based around first-order Markov chains (Section 4.2.4.2,

Appendix G). Whilst sophisticated Markov modelling approaches are prevalent in the

field of interactive computer music (Ames 1989; Martin 2014; Pachet 2002; Roads 1996;

Zicarelli 1987), the idiosyncratic approach of Tripartite Markovia is presented as an

example of the early data sampling approach in my work. Using Markov modelling as a

 244

foundational generative strategy, the trajectory of this system solidified personal

heuristics for taming complexity in my designs. The continuous data sampling and

modelling approach of this system, whilst based on an event-based MIDI paradigm, also

foreshadowed later methods for working with continuously sampled and analysed audio

from a live performer.

 In Chapter 5 I detailed a series of advancements in my programming practice focused

upon developing self-contained modules that could be later appropriated into integrated

interactive systems. The creation of 4-buff-pvoc and pitch models solidified a new interactive

strategy in my work based upon live sampling and spectral re-synthesis (see Section 5.2.1,

5.2.2 and Appendix G). Given the independence these two modules, their inherent

idiosyncrasies served as catalysts for subsequent explorations of musical interactivity in

performance. Working in this modular fashion allowed the rapid evolution of an

approach to live performance through performative testing and refinement. This

bottom-up, bricolage approach to development (McLean & Wiggins 2010) led to the

creation of Live-processing-1, a precursor to the _derivations system in its current form.

Following these experiments, the phrase player system (see Section 5.3.2 and Appendix G)

sought to address a fundamental issue with momentary live sampling experienced whilst

testing Live-processing-1. As a proof of concept system, phrase player segmented the live

audio signal in a continuous fashion, indexing individual phrase points analysed from the

live signal using silence threshold techniques. Whilst the system itself was not pursued

further, this approach formed the basis of _derivations’ approach to the segmentation and

storage of phrases analysed from a live performer.

 In Chapter 6, the _derivations interactive performance system is outlined in depth.

Beginning with _derivations’ phrase database, this chapter details incremental advancements

to my software as _derivations matured into a stabilised software artefact (see Appendix A

for the current distributions of the _derivations system). The most significant feature of

the software is the phrase matching algorithm, as described in depth in Section 6.5. This

approach to timbral matching solidified into a core generative strategy of the software,

and has undergone a significant degree of testing and refinement throughout this project

(see sections 6.5.3 – 6.5.7 for details). The current phrase matching approach utilises MFCC

feature vectors to match target phrases with those stored in the database (as described in

Section 6.5.8). This approach is presented as a novel form of content-based music

 245

information retrieval (as defined by Casey (2008)). In addition to phrase matching, the

development of session databases also became a defining feature of the _derivations software

(see Section 6.8). The ability to save, load and merge pre-analysed databases of material

has facilitated a very different form of interactivity than experienced previously, enabling

the performer to influence the software from both inside and outside of a performative

encounter.

A novel self-reflective study of the development and use of interactive musical performance systems from

the perspective of a performer-developer

The development trajectory that led towards the creation of _derivations, as articulated in

the three central ‘wayfinding’ chapters, highlights how the creative process has been

harnessed to explore emergent research themes arising from my practice. As discussed in

Chapter 3, Stephen Scrivener’s conception of creative-production research is one in which

process is foregrounded in practice-based research projects (Scrivener 2000). In contrast

to problem-solving projects, creative-production research projects seek to explore, define and

respond to research problems through the plane of practice. Whilst digital arts practices

are often concerned with the design and development of unique software artefacts, the

criteria by which such artefacts are developed and evaluated differ greatly to engineering

disciplines. Throughout the development and use of my various interactive designs,

Schön’s notion of self-reflective practice was used to continually pose questions about

musical interactivity, human-machine performance and the relationship between human

and material agencies in development and performance (Schön 1983). By investigating

these various issues, concerns and interests, this research led to the creation of significant

creative outcomes, as well as in-depth engagement with relevant theoretical issues arising

from this practice.

 My creative practice followed a bricolage approach to creative programming. As such,

my interactive software was not designed with reference to clear and unchanging design

principles, but evolved slowly in response to specific resistances and accommodations

encountered through engagement with my developing software artefacts. By tracing the

iterative process of development engaged in throughout my work, I have highlighted the

emergence of specific technical and aesthetic challenges that were overcome throughout

the development process. Whilst accommodations were developed in response to resistances

 246

encountered in practice, the process of reflective practice was used to surface important

theoretical issues related to my practice that could be further be engaged with in

extended reflections-on-action. These reflections form the core of Chapter 7 of this

thesis, and address the final contribution of this research.

Theoretical perspectives on the design and use of interactive musical performance systems

The development and use of interactive and autonomous musical systems is a rich area

for practice-based research in the digital arts, provoking questions surrounding human

and material agency, authorship and musical performance practice. Throughout iterative

cycles of development, testing and performance, reflection-on-practice has served as the

means by which theoretical understandings have been advanced in this research. By

engaging in this form of self-reflexivity, my research has sought to connect these

emergent concerns with wider understandings of practice and theory. Chapter 7 of this

thesis explored three key theoretical concerns emerging from my creative work, acting as

the site for extended reflection-on-action. Although addressing specific areas of interest,

the three reflections contained within this chapter address related theoretical concerns

emanating from my practice. This chapter investigates the relationship between design

and use of interactive software artefacts, positions such a burgeoning artistic practice

within the spectrum of contemporary musical practices, and proposes alternative models

for the development of interactive musical systems.

 The chapter begins with an investigation of the reciprocal relationship that exists

between human and material agency in the design and use of interactive musical systems.

Engaging with the writings of sociologists Bruno Latour, Madeline Akrich and Andrew

Pickering, here the unique context of the performer-developer is examined, situating the

outcomes of this creative practice within a dance of agency between the human (performer-

developer) and the material (software/code). Seeking to understand the complex

relationship between the performer-developer and their developing artefacts, Akrich’s

notion of an artefact’s script and the concept of black boxing are used to explain the way in

which interactive software artefacts are engaged with in development and performance.

In addition, Hamman’s conception of an artefact’s episteme was used to describe the

means by which developing artefacts provoke surprise and unpredictability, in spite of

the developer’s proximity to their developing artefacts.

 247

 As my creative practice developed throughout this research, I became interested in the

broad performative context of human-machine performance. Whilst my practice

revolved around freely improvised performance, the development of software to be used

in this context posed fundamental questions about authorship, agency and the notion of

musical interpretation in this scenario. The second reflection in Chapter 7 (Section 7.3)

engaged with these issues, arguing that any understanding of improvised human-machine

performance must contend with its mediated nature. Implicit in such an understanding is

the context in which the interaction takes place, the non-human agency exhibited by the

machine in performance and the role of the developer as author. By outlining how

various forms of musical text embody direct and/or indirect constraints upon a performer,

I have argued that such software artefacts place the performer within a decidedly

interpretive framework. With reference to commonly understood notions of musical

interpretation, the development of interactive software is positioned as akin to the

creation of a musical text. By setting the aesthetic and interactive boundaries of the

musical encounter, I argue that such software systems reveal their constraints

interactively through engagement with human musicians in performance.

 In the final reflection of Chapter 7 (Section 7.4), symbiosis is proposed as a metaphor

for interactivity and reciprocity in the design and use of interactive musical systems.

Sitting outside of the purely technological, symbiosis describes the mutually dependent and

reciprocal relationship that exists between performer and system. Mutual dependence

can be expressed both inside and outside of a performative encounter with such systems,

as evidenced by _derivations’ session database capabilities (see Section 6.8). As illustrated

throughout Chapters 4, 5 and 6, there existed in my practice an inherent tension between

designing for unpredictability and surprise, and a focus upon sampling-led musical

generativity. In developing the _derivations system, I sought to foster a mutually

interdependent relationship between performer and system. Whilst the improviser does

not directly control system in performance, _derivations can only express its material

agency by having previously interacted with an improviser. Its performative agency is

therefore dependent upon the input of a human performer. Conversely, the performative

context of improvised human-machine performance places the performer in a somewhat

dependent relationship with interactive software. As discussed in Section 7.3, the

interactive constraints of such software define the boundaries of an interactive

encounter.

 248

8.2 Performances, collaborations and releases

Across its various iterations, the _derivations system has been in use in my own practice

since 2011, and my performances have evolved along with the software itself. As

discussed throughout this thesis, advancements to the software’s design have provoked

new modes of performative engagement with the software. In my own practice, the

development of session databases led to a fundamental shift in the way in which

interactivity, authorship and machine agency have been viewed in my work. In the early

stages of working with the software, each performance led to new conceptualisations of

human-machine performance practice, and new ideas about how to advance the

software’s design. The feedback from my performances into the refinement of the

software was an organic and iterative process, helping to advance the software in a rapid

fashion. However, in the past two years the software has coalesced into a workable,

flexible yet idiosyncratic system with a fixed structure. Consequently, my recent

performances with the software have been focused more on exploiting its capabilities,

developing new session databases and being conscious of the developing symbiotic

relationship between myself and the system I have designed. My most recent

performances with the software are detailed in Appendices B and C of this document,

and a detailed list of performances and presentations of the software can be found in

Appendix F.

 Besides my own performances, throughout the life of the software _derivations has

been engaged with by several improvisers, both through direct collaborations with myself

and also by way of ‘third party’ performances and recordings. In February 2014 a

collection of live and studio recordings with the _derivations software was curated into an

EP titled _derivations | human-machine improvisations and released on the independent label

Integrated Records63 (see Appendix B). The collection of recordings groups together six

performances recorded between 2011 and 2013, displaying the _derivations system from a

variety of performative perspectives. In addition to the two performances by myself as

performer-developer (on tenor and soprano saxophones), two of the performances are

by contemporary classical music specialists Joshua Hyde (alto saxophone) and Alana

Blackburn (tenor recorder), both of whom had worked with the software under my

63 http://interecords.com/

 249

guidance over an extended period of rehearsals. The remaining two musicians, Antoine

Läng (voice) and Evan Dorrian (drums), are from freely improvised and jazz musical

backgrounds, with neither musician having rehearsed with the software prior to their

recorded live performances. Of the six tracks on the EP, half were recorded during live

performance and half in the studio, two made use of cumulative databases of pre-

recorded material and two more include the addition of multi-source session databases.

8.3 Software distribution and communication

The distribution and communication of the _derivations system has been an important

part of this project. Although the system reflects my idiosyncratic musical concerns and

has evolved as a part of my personal performance practice, I have been interested in

finding ways of engaging performing musicians with interactive computer music tools,

and making such a complex software system approachable and useable for non-

programmers. Since 2013, the _derivations software has been made available for free

download via the dedicated website http://derivations.net (see Appendix D for more

information). Along with the release of the software, a series of instructional videos were

developed in order to clearly demonstrate and explain the software’s operation to

interested users (see Appendices E and J). Emanating from within my personal creative

practice, efforts made to distribute the software and to communicate its functionalities

reflect a concern for openness, and for sharing of musical and technical ideas. Whilst the

software was not designed and tested as a typical ‘end-user’ software system, it is the

software’s ambiguous identity as part musical work, part autonomous performance

partner and part software tool that has led me to release it to the wider public.

 Since the software’s release, numerous third-party produced performances and releases

have been made with the software. Besides occasional technical questions and

troubleshooting requests from users, these third-parties working with _derivations have for

the most part had no direct contact with myself, engaging with the project entirely online

(third-party releases are detailed in Appendix H). To date, the software continues to be

used by musicians across the globe. At the time of writing, a musician in Sheffield, UK

has recently posted an improvisation with Shakuhachi and _derivations to SoundCloud64,

64 Multi-instrumentalist Hervé Perez’s latest improvisation with _derivations:

https://soundcloud.com/sndsukinspook/emptysky

 250

whilst another prepares for an improvisation with the system on saxophone for his final

Doctoral of Musical Arts recital in Colorado, USA65. It is my hope that the _derivations

system can maintain its presence online as a unique musical artefact, provoking

adventurous musicians to develop their own symbiotic relationships with the software.

8.4 Ongoing and Future Work

In addition to the practice-based research engaged in throughout this project, my current

creative work involves various collaborations and solo compositional endeavours in the

area of generative and live electro-acoustic music. Throughout this research I have had

the good fortune of meeting and collaborating with a wide range of inspiring and

talented musicians and researchers working in the field. I have recently been

collaborating with Dr. Oliver Bown (University of NSW, Australia) and Dr. Arne

Eigenfeldt (Simon Fraser University, Canada) on a project for collaborative ‘musical

metacreation’. The Musebot project invites musicians and researchers to build algorithmic

software systems that can work together to create novel, original music through a

networked form of musical generativity.66 These musical robots, or musebots, are tasked

with responding to each other and their environment, enabling them to contribute

meaningfully to an ensemble interaction without direct control by a human operator.

Building upon the skills learned in the creation of the _derivations software, my role in this

project has been to help build the initial communication protocol for the networked

systems, and to program the ‘Musebot Conductor’ Max application to synchronise and

distribute messages from various networked software systems.

 My interest in practice-based research methods has led to recent participation in a

workshop on practice-based research at the International Conference on New Interfaces

for Musical Expression (held in London, July 2014)67. The paper I presented during this

workshop, ‘Artefact Scripts and the Performer-Developer’, was selected for further

publication in a forthcoming issue of the Leonardo Transactions Journal, due for

65 Saxophonist Paul Zaborac plans a performance with _derivations at Boulder College of Music on October

24th, 2015.
66 For more info on the Musebot project see Bown et al. (2015) and Eigenfeldt et a. (2015). Media can be

viewed at http://metacreation.net/musebots/
67 http://www.creativityandcognition.com/NIMEWorkshop/

 251

publication in January 2016. The theoretical ideas presented in this paper, with particular

concern for the role of the performer-developer, formed the basis of the reflection

contained in Chapter 7 of this thesis (see Section 7.2). Whilst the present research is

based upon self-reflective practice, I am interested in pursuing further qualitative

research methods for investigating the diverse practices of computer music practitioners

identifying as performer-developers. In this future research I intend upon applying the

theoretical perspectives outlined by Pickering (1995; 2008), Latour (1990; 1992, 1994)

and McLean (2011; 2010) to further understand the unique entanglement that exists

between human and machine agencies in the development of human-machine

performance practices.

8.5 Final thoughts

In the development of idiosyncratic interactive musical systems, a unique and symbiotic

relationship develops between a musician and their code. For the system designer,

creating a performance artefact is a highly complex process that unites human and

material agencies in the pursuit of an emergent yet indefinable end goal. For the

researcher interested in the development of new modes of artistic expression,

understanding this process further is a complex task. However, it is from within this rich

and complex space that I believe some of the most interesting research into new

methods, techniques and performance practices will be found. As has been reflected

upon in this thesis, the entanglement between human and machine agencies has defined

my artistic practice as a performer-developer. In following a self-reflective approach to

research enquiry, I have been able to surface and engage with salient research themes

related to human-machine performance. In order to understand the significance of new

tools and related performance practices, I believe that computer music research must

first be articulated from the perspective of artists innovating in this space, giving voice to

the valuable insider knowledge accumulated through deeply mangled human-machine

creative practices. It is my hope that more performer-developers will consider qualitative,

self-reflective methodologies in their research, contributing to the diversity of

perspectives on the creation and use of today’s and most exciting interactive musical

artefacts.

 252

 253

Appendix A - _derivations software

The software developed throughout the duration of this doctoral project is presented as

a significant contribution to knowledge, and is therefore included in the submission

materials alongside this thesis. The main contribution of this work is the _derivations

interactive performance system, distributed both as a standalone Mac application and as

two separate libraries of Max patchers and abstractions. In addition to these three

distributions of the _derivations software, formative software systems discussed in Chapter

4 have also been included in the submission materials, and are listed in Appendix G as

Formative Software.

__derivat ions dis tr ibut ions:

As detailed throughout much of this thesis, the _derivations software has been a major

creative focus of this research. Building upon creative programming techniques initiated

in 2010/11, the _derivations software was made freely available to the public to download

upon the launch of the _derivations website (http://derivations.net) in June 2013 (for

more information about the _derivations website see Appendix D). In order to account for

the widest possible variety of use cases, _derivations has been compiled into three separate

distributions. Below I outline the three distributions included in the submission materials

and the differences between them.

_derivations ‘SuperVP’ distribution (Max library)

Version included in submission materials: _derivations-superVP-v1.08.zip

As outlined in Chapter 6, a choice was made during the development of the software to

employ a select few high quality analysis and processing tools developed for the Max

environment by the Institute de Recherche et Coordination Acoustique/Musique

(IRCAM). These tools include the supervp.scrub~ external (from the ‘SuperVP for Max’

collection), and the iana~ external (from the ‘Max Sound Box’ collection) (Todoroff,

Daubresse & Fineberg 1995), both of which are available via IRCAM’s subscription

service ‘Forumnet’ (IRCAM 2015).

 254

Figure 48: Screenshot of _derivations’ graphical user interface (v1.08)

Due to the inherent licencing approach of these two objects, only users with a paid

subscription to Forumnet are able to make full use of this _derivations distribution.

However, this is the software distribution that provides the highest audio quality and

system performance. For both my own performances and those in which I am in close

collaboration with another performer, this is the distribution that is used. All audiovisual

material submitted with this thesis was therefore produced using this distribution.

 255

_derivations ‘standard’ distribution (Max library)

Version included in submission materials: _derivations-v1.08.zip

To counter the limitations of the previous distribution method, a ‘standard’ distribution

of _derivations was created to enable any user of the Max environment to download and

run a fully functional version of the software. To achieve this, this distribution replaced

the analysis and processing tools of the SuperVP distribution with alternative objects and

abstractions unhindered by licence restrictions. The supervp.scrub~ object was replaced

with the original phase vocoder abstraction used in my work, an implementation of

Dudas and Lippe’s phase vocoder for the Max environment (Dudas & Lippe 2006,

2007). Whilst providing an efficient replacement of the supervp.scrub~ external, this

abstraction unfortunately does not match the sound quality of IRCAM’s SuperVP

algorithms as it is suffers from audible ‘transient smearing’ artefacts common to other

phase vocoders. The iana~ external was replaced with Miller Puckette’s excellent

sinusoidal and pitch tracking external object sigmund~ (ported to Max from Pure Data by

Miller Puckette, Cort Lippe and Ted Apel).

_derivations ‘standalone’ distribution (Mac application)

Version included in submission materials: _derivations-v1.08-standalone.zip

Finally, a standalone build of _derivations was made in order to appeal to potential users

without access to the Max software, and with no desire to make use of the accompanying

source code. Given that the proprietary IRCAM objects discussed previously are

rendered unusable in a standalone Max build, this standalone distribution is compiled

from the source code of the standard distribution described above.

 256

Figure 49: Screenshot of _derivations ‘standalone’ disk image (v1.07)

In the Max environment, Max patchers are compiled into standalone applications from

within the Max application itself. This process creates a standard Mac application

package that includes a non-editable Max ‘collective’ file (extension .mxf) and a version

of the Max runtime software with which to run this collective. The _derivations standalone

application also includes necessary dependencies within this application package (impulse

response files and external objects). The application package itself resides in a parent

directory along with other necessary folders, and is built into a mountable disk image for

ease of distribution (see Figure 49 above). With over one thousand downloads as of

October 2015, the standalone distribution of _derivations is the most downloaded

distribution of the three made available on the _derivations website.

 257

Appendix B - Musical releases

Recorded improvisations with _derivations have featured on two discs recently released on

the ‘Integrated Records’ label (Carey & Hyde 2014). These releases are detailed below:

__derivat ions | human-machine improvisat ions (February 2014)

Figure 50: der iva t ions | human-machine improv i sa t ions cover art

6-track EP released on Integrated Records – Sydney/Paris. A collection of live and

studio improvisations with the _derivations software, recorded between 2011 and 2013.

Ben Carey - saxophone/electronics, Joshua Hyde – alto saxophone, Antoine Läng -

voice, Evan Dorrian - drums, Alana Blackburn – tenor recorder.

The physical CD release of this EP is included in the submission materials of this thesis.

http://interecords.com/products/6807406-_derivations-human-machine-improvisations

 258

Joshua Hyde – Berio , Sote lo , Quis lant , Parra, Carey (January 2015)

Figure 51 Joshua Hyde – Berio, Sotelo, Quislant, Parra, Carey cover art

6-track released on Integrated Records – Sydney/Paris. Debut album of Paris-based

Australian saxophonist Joshua Hyde. _derivations features on the final track with tenor

saxophone

Joshua Hyde - saxophones, Ben Carey - electronics/production.

A digital audio file of Track 6 from this release, titled ‘_derivations’, is included in the

submission materials of this thesis.

http://interecords.com/products/6707299-joshua-hyde-berio-sotelo-parra

 259

Appendix C - Performance documentation

Numerous live performances and demonstrations using _derivations and other formative

software have been documented throughout the duration of this doctoral project. For a

full list of performances and other significant events the reader is referred to the Event

Timeline found in Appendix F. The most significant performance documentation has

been included in the submission materials and is detailed below.

__derivat ions | Ben Carey | MuMe 2013 (June 2013)

Figure 52: Screenshot from ‘_derivations | Ben Carey | MuMe 2013’

Live performance footage of myself performing with _derivations on tenor saxophone at

the Musical Metacreation Weekend, presented in conjunction with the International

Symposium of Electronic Art (ISEA) at the University of Sydney, June 15th 2013.

_derivations was programmed in the first concert of the workshop titled ‘Improvising

Algorithms’, one of a series of events curated as a part of this international workshop.

This video can be streamed at https://www.youtube.com/watch?v=GHxHumlCZOQ

Filmed by Paul Gough, recorded by Oliver Bown.

 260

PPiano-computer dance : Zubin Kanga & Ben Carey 's _der ivat ions (May 2015)

Figure 53: Screenshot from ‘Piano-computer dance: Zubin Kanga & Ben Carey's _derivations’

Performance of _derivations by pianist Zubin Kanga for broadcast on ABC Radio

National’s ‘The Music Show’ with Andrew Ford, May 2nd, 2015. This performance was

filmed and recorded ‘as live’ at the Australian Broadcasting Corporation (ABC) in

Sydney, Australia on May 1st 2015. The broadcast was organised as promotion for Zubin

Kanga’s piano and electronics program ‘Dark Twin’ that toured Australia in May 2015.

This video can be streamed at https://www.youtube.com/watch?v=PmUCGbcrGuw

Film and sound recording – Australian Broadcasting Corporation.

 261

JJoshua Hyde and _derivat ions | IRCAM Live @ La Gaité Lyrique (December

2012)

Figure 54: Screenshot of ‘Joshua Hyde and _derivations | IRCAM Live @ La Gaité Lyrique’

Live performance footage of Joshua Hyde performing with _derivations on alto

saxophone. This performance was given on November 28th, 2012 at the ‘IRCAM Live’

concert organised during the 2012 IRCAM workshops at La Gaité Lyrique in Paris,

France. The performance was presented in 6-channel surround sound, and has been

down-mixed to stereo for this video.

This video can be streamed at the following URL: https://vimeo.com/55189188

Technical production - Cyrille Brissot (IRCAM) and Thierry Vitale (La Gaité Lyrique),

Sound recording - Jean-Marc Harel (La Gaité Lyrique), Film recording - Alex Boulic

(Je&Enjeux), DAFACT.

 262

Appendix D - Website

The _derivations website was launched in June 2013 at the URL http://derivations.net.

The website is published using Wordpress (Wordpress Foundation 2015). The site

includes software downloads, video documentation, links to reading material, recent

performances and audio-visual examples of the _derivations software in performance.

Figure 55: Screenshot of derivations.net landing page featuring Alana Blackburn in rehearsal

To launch of the website, the URL was disseminated via social media (Facebook,

Twitter) to my personal and professional networks. Further dissemination of the project

and website was achieved by sharing the URL to relevant Facebook groups such as

Max/MSP68, Electroacoustic Composers69 and Modisti70. Furthermore, a short, spoken

announcement was recorded and uploaded to the Soundcloud community website and

shared to relevant groups71. This online service has been of considerable use to me

68 https://www.facebook.com/groups/2209224391/

69 https://www.facebook.com/groups/22370892781/

70 https://www.facebook.com/groups/modisti/
71 https://soundcloud.com/emeidos/announcement-derivations

 263

throughout the development of my creative practice. In addition to direct social media

promotion, the _derivations project and website were disseminated to the Max/MSP

community via the ‘projects’ section provided for registered users of Cycling74.com.72

 Such targeted dissemination of the project has enabled derivations.net to be accessed

by a wide variety of users. According to user data obtained through Google Analytics

service (Google Inc 2015), since launching in June 2013 the site has been accessed some

4430 times from ninety-five separate countries. Cumulatively, the three versions of

derivations have been downloaded from the site approximately 2200 times. Figure 56

below displays a report from Google Analytics across the lifespan of the site, displaying

the top ten cities accessed in the past 24 months. The dots on the map represent average

comparative session durations from each location.

Figure 56: Google Analytics report for derivations.net in the period June 28th, 2013 – June 7th, 2015

72 https://cycling74.com/project/_derivations/

 264

Appendix E - _derivations Video Documentation73

The purpose of the _derivations website was to disseminate the _derivations software to as

wide an audience of potential users as possible. In order to achieve this, an integral part

of this distribution process was to effectively communicate the core functionality and

creative potential of the software to potential end users. This was therefore considered a

functional task for documenting the software, as well as a communications and

marketing task. Instead of creating a standard text document or manual, it was decided

that a series of screencast videos would be made to allow users to see and hear the

various aspects of the software in action. This choice was inspired by some recent

approaches to the communication of computer music systems, and especially the

approach taken by Rui Penha in the distribution of his spatium spatialisation tools (Penha

2013; Penha & Oliveira 2013). These videos were filmed and produced using

Telestream™’s Screenflow Software between June 28th and July 22nd 2013 (Telestream

2012). They are hosted on Vimeo.com and embedded on the _derivations website at the

following URL: http://derivations.net/about/video-documentation/

VVideo 1: Overview

Duration: 6 minutes 11 seconds

73 Transcripts of voiceovers from these videos are provided in Appendix J

 265

VVideo 2: Phrase Segmentat ion

Duration: 5 minutes 33 seconds

Video 3: Output Modules

Duration: 12 minutes 42 seconds

 266

VVideo 4: Comparisons and Trigger ing

Duration: 8 minutes 56 seconds

Video 5: Sess ion Databases

Duration: 10 minutes 3 seconds

 267

Appendix F - Event and Patch Timelines

Event Timeline

The following timeline details performances, broadcasts, interviews, recordings and other

events that were significant in the development of the creative work discussed in this

thesis. The event column provides a basic description of the event, including the location,

whilst the activity column lists the type of event (performance, communication,

development). The significance column gives some further information about the event,

including the personnel involved, and any issues encountered. The outcome column is

included to assess whether or not the event was deemed successful or not. For example,

some performances were abandoned entirely due to technical issues during sound

check/rehearsal, whilst others were deemed unsuccessful due to technical failures

encountered during the performance. The final present column details whether or not I

was personally present at each event, given that many of performances were run

interstate or overseas and without my direct participation.

Date Event Activity Significance Outcome Present

5-May-10 Presentation of

Multiple Players

(Sydney)

Communication Presentation of

working interactive

system - multiple

players at USYD. Alto

saxophone demo

Success Yes

22-Feb-11 IRCAM Course

(Paris)

Development Intense early

development period,

introduction to new

approaches and

objects

Success Yes

11-Jun-11 NMN Mini-series

performance

(Sydney)

Performance (me) First public

performance -

spatialisation and gain

issues. Tenor

saxophone

Failure Yes

 268

8-Jul-11 ACMC'11

(Auckland)

Performance

(me)/

Communication

Second public

performance - first

research presentation.

Tenor saxophone

Success Yes

1-Oct-11 Tactility – Alana

Blackburn

(Sydney)

Performance

(others)

First performance with

another

performer/using

rehearsal database.

Tenor recorder

Success Yes

18-Nov-11 diffuse @ UTS

(Sydney)

Performance (me) Performance on

soprano using a

rehearsal database

Success Yes

8-Mar-12 Prolegomena II –

Alexander Berne

(NYC)

Performance

(others)

NYC Dance

performance,

Alexander Berne uses

customised version of

_derivations.

Saxophone, custom-

made wind

instruments

Success No

21-Apr-12 Algorithmic

Hacktogether –

Evan Dorrian

(Sydney)

Development/

Performance

(others)

First performance

using self-referencing

algorithm. Drum kit

Success Yes

21-May-12 NIME 2012 (Ann

Arbor)

Communication Paper/Poster - first

publication on

_derivations

N/A Yes

1-Jun-12 dBale –

Switzerland (Basel)

Performance

(me/others)/

Communication

First performance with

large multi-corpus

database, first duo

performance, artist

talk. Tenor saxophone

Success Yes

21-Jun-12 UTS diffuse – with

Oliver Bown

(Sydney)

Performance (me) Zamyatin/derivations

duo, integrating two

software systems in

performance. Tenor

saxophone/computer

Success Yes

 269

14-Jul-12 ACMC'12 – Alana

Blackburn

(Brisbane)

Performance

(others)

Performance with

multi-database. Tenor

recorder

Success Yes

18-Aug-12 Biome Symposium

– Antoine Läng

(Sydney)

Performance

(others)

Multi-database. Voice. Success Yes

23-Aug-12 NMN Mini-series

– Alana Blackburn

(Sydney)

Performance

(others)

Multi-corpus database.

Tenor recorder

Success Yes

1-Nov-12 IRCAM @ Gaité

Lyrique – Joshua

Hyde (Paris)

Performance

(others)/

Communication

Spatialised, multi-

database with density

trajectory, artist

presentation. Alto

saxophone

Success Yes

8-Jun-13 Covalent

performance @

Vivid – Zane

Banks (Sydney)

Performance

(others)

Multi-database

performance on banjo,

technical failure. Zane

Banks – banjo.

Failure Yes

15-Jun-13 MuMe-WE

(Sydney)

Performance (me) Performance using live

sampling, size of space

presented challenges

for analysis. Tenor

saxophone

Success Yes

28-Jun-13 derivations.net

launch

Communication Launch of

derivations.net website

N/A N/A

12-Jul-13 Australasian

Saxophone &

Clarinet

Conference 2013 –

Joshua Hyde

Performance

(others)

Performance by

Joshua Hyde with a

multi-database. Alto

saxophone

Success Present

22-Jul-13 _derivations video

documentation

Communication Creation and

distribution of video

documentation

N/A N/A

 270

7-Oct-13 Joshua

Hyde/Noam

Bierstone Duo at

RNCM

(scapegoat)

(Manchester)

Performance

(others)

Duo performance,

technical failure due to

threshold settings.

Performance

abandoned. Percussion

and saxophone

Failure No

15-Feb-14 ‘_derivations |

human-machine

improvisations’

release

Recording Collection of

performances curated

into an EP on

Integrated Records

N/A N/A

23-Mar-14 Josh Hyde @

NASA Conference

(Urbana)

Performance

(others)

Multi-database

performance. Alto

saxophone

Success No

26-Mar-14 Josh Hyde @

Eastman School of

Music (Rochester)

Performance

(others)

Multi-database

performance. Alto

saxophone

Success No

26-Apr-14 Interview for

CutCommon Mag

Communication Interview with Sam

Gillies for

CutCommonmag.com

N/A N/A

12-Jun-14 Live on Ears Have

Ears FBi Radio

(Sydney)

Performance

(me)/

Communication

Interview/

performance – Brooke

Olsen. Performance

with database on alto

saxophone

Success Yes

19-Jun-14 C&C 2013

(Sydney)

Performance (me) Operator error -

changed parameters at

the last minute. Tenor

saxophone

Failure Yes

25-Jun-14 Interview for

Tokafi.com

Communication Extended interview on

aesthetics with Tobias

Fischer of tokafi.com

N/A N/A

2-Jul-14 NIME 2014

(London)

Performance (me) Technical failure due

to room conditions.

Alto saxophone

Failure Yes

 271

1-Aug-14 XU(E) Haiku EP

release (Italy)

Recording (others) Self-directed EP using

_derivations software

with no input from

myself

N/A N/A

24-Aug-14 Eric Honour @

KCEMA Happy

Hour (Kansas)

Performance

(others)

Rehearsal database

performance, alto

saxophone -

customised/updated

software

Success No

24-Sep-14 Array Ensemble

performance

(Sydney)

Performance (me) Rehearsal database

performance - group

performance - began

with alto saxophone

solo, morphed into

group improv

Success Yes

20-Nov-14 scapegoat -

dedans/dehors

(Paris)

Performance

(others)

Rehearsal database

performance + crowd

noise - percussion and

saxophone

Success No

4-Oct-14 SoundHub

Interview

(London)

Communication Interview about

_derivations EP on

Resonance 104.4 with

Elo Masing

Success Yes

5-Jan-15 Joshua Hyde - CD

release featuring

_derivations

Recording Studio recording of

_derivations with

tenor saxophone with

performance database

Success Yes

11-Jan-15 Joshua Hyde -

soundinitiative

speakeasy - CD

launch (Paris)

Performance

(others)

Rehearsal database

performance – alto

saxophone

Success No

6-Feb-15 Conference on

Artificial Life and

Computational

Intelligence

Performance (me) Rehearsal database

performance with alto

saxophone. Lack of

foldback - shorter

Success Yes

 272

(Newcastle,

Australia)

performance

14-Apr-15 Tate Carson @

Open Ears (New

Orleans)

Performance

(others)

Live sampling

performance - self

directed performance.

Solo double bass -

(some technical help

via email)

Success No

2-May-15 ABC RN ‘The

Music Show’

performance/

interview – Zubin

Kanga

Performance

(others)/

Communication

Live sampling

performance. Short

interview with Andrew

Ford on the software.

Piano

Success Yes

8-May-15 Zubin Kanga -

Dark Twin Tour

(Melbourne)

Performance

(others)

Piano performance

with live sampling only

- first performance

with piano

Success Yes

9-May-15 Zubin Kanga -

Dark Twin Tour

(Sydney)

Performance

(others)

Piano performance

with live sampling only

- feedback issues in

recorded phrases

Success Yes

15-May-15 scapegoat duo -

tour (Toronto)

Performance

(others)

Rehearsal database

performance with

percussion and

saxophone. Routing

issues. Not performed

Failure No

16-May-15 scapegoat duo -

tour (Toronto)

Performance

(others)

Rehearsal database

performance with

percussion and

saxophone.

Success No

19-May-15 scapegoat duo -

tour (Detroit)

Performance

(others)

Rehearsal database

performance with six

local players - bass,

cello, percussion,

saxophones

Success No

 273

21-May-15 scapegoat duo -

tour (Chicago)

Performance

(others)

Rehearsal database

performance with

percussion and

saxophone.

Success No

22-May-15 scapegoat duo -

tour (Chicago)

Performance

(others)

Rehearsal database

performance with

percussion and

saxophone.

Success No

22-May-15 Zubin Kanga -

Dark Twin Tour

(Perth)

Performance

(others)

Piano performance

with live sampling only

Success Yes

24-May-15 scapegoat duo -

tour (NYC)

Performance

(others)

Unknown technical

problem - no sound

output from the

software in

soundcheck - scrapped

from the program

Failure No

Patch Timeline

The following ‘patch timeline’ details the chronological development of the software

developed throughout this doctoral project. This timeline includes the formative

software discussed in Chapters 4 and 5 and listed in Appendix G, and complete versions

of the _derivations software. In addition, it details patches that were not discussed directly

in the thesis, but contributed to the overall trajectory of the software discussed

throughout Chapters 4, 5 and 6. For these particular patches, notes have been included

to outline the functionality of these formative patches. It must also be noted that

incremental changes to the _derivations software were made between 2012 and 2015 that

did not necessitate the creation of a new version number, nor newly developed patches.

From 2012 onwards this system was iteratively refined, and no formal version control

was developed.

Date Patch/Software Version Notes

Formative/unreleased software

 274

2010

January newaudiotracking.maxpat

 acceldeceldetect.maxpat

(- September) findthatrhythm2.maxpat

March acceldetectthreshold.maxpat

 deceldetectthreshold.maxpat

April elasticitystorage.maxpat

 interactiveoptions.maxpat

 audiotomiditest.maxpat

May dataatintervals.maxpat

 durationalprob.maxpat

 tripartitemarkovia.maxpat

November 4buff-pvoc.maxpat

December Live-processing-1.maxpat

2011

January (-March) pitchmodels.maxpat

February phrase-player-GUI.maxpat

(- March) big-buff.maxpat, big-buff-phrases.maxpat First implementation of

long buffer live-sampling

March (-May) granulator-phrase-locked.maxpat First implementation of the

granulator module

March (- April) _derivations.maxpat First instance of

_derivations as integrated

system

 yin-follow.maxpat, yin-follow-tabs.maxpat First dedicated analysis

module for derivations

 zsa-running-stats.maxpat First ‘matching’ tests

March _derivations_SPAT.maxpat Porting _derivations to

multichannel version

(- July 2012) _derivations-CRL.maxpat Formalising module control

from phrase choice in

_derivations

April analyzer~tests.maxpat Testing Jehan’s analyzer~

external

 zsa.keys.test.maxpat, find-in-list.maxpat,

list-comparisons.maxpat, list-distance-

test.maxpat

Testing list comparisons for

_derivations’ phrase matching

algorithm

 analyzer-follow-tabs.maxpat Further testing of Jehan’s

analyzer~ external for

 275

phrase matching

 zsa-descriptor-matching.maxpat Using zsa.dist for matching

lists in the phrase matching

algorithms

 __derivations-analyzer.maxpat Final implementation of

Jehan’s analzyer~ into

parent patch

 stat-matching.maxpat, stat-matching-

2.maxpat, _derivations-CTRL-

stats.maxpat

Implementation of standard

deviation and mean for

phrase matching

 4buff-pvoc-RT.maxpat Implmentation of Dudas

and Lippe’s phase vocoder

algorithm

May _derivations-rehearsal-buffer.maxpat First implementation of

rehearsal/session database

concept in _derivations.

 4buff-pvoc-superVP.maxpat Use of IRCAM’s

superVP.scrub~ external for

phase vocoder module

June _derivations-analyzer-SPAT-8ch.maxpat 8 channel version of

_derivations implemented

using IRCAM’s SPAT

external objects

 _derivations-rehearsal-buffer-2.maxpat Phrase database

improvements. Use of

‘constant interval’

segmentation, etc.

August enable-disable-phrase.maxpat Testing ‘disabling phrases’

concept in _derivations’

rehearsal database

 merge-data-tests.maxpat Testing ‘merging’ databases

September _derivations-info-for-automode.maxpat Sketching ideas for a self-

referencing algorithm

2012

January (- Febraury) _derivations-DL-stereo.maxpat Adaptation of _derivations

for a performance with

Alexander Berne with

dancers.

March simple-pm-triggering.maxpat Testing implementation of

 276

‘One Shot’ mode for pitch

models module

(- April) emergent-phrase-relations.maxpat Further test in developing a

self-referencing algorithm.

First conception of

_derivations modules as

independent ‘agents’

May _derivations-self-referncing.maxpat Implementation of self-

referencing algorithm in

_derivations

September _derivations-CTRL-MFCC.maxpat,

_derivations-self-referencing-

MFCCs.maxpat, _derivations-MFCC-

STATS.maxpat, zsa-mfcc-follow-

tabs.maxpat, zsa-dist-tests.maxpat, _deri-

mfcc-test.maxpat, _derivations-

mfccs.maxpat, Euclidean tests.maxpat,

__derivations-stereo-zsa-tests.maxpat, zsa-

follow-tabs.maxpat, zsa~follow-tabs-source-

2.maxpat, zsa-test-deri.maxpat,

_derivations-zsa-pfft.maxpat

Test patches and finalised

implementation of the use

of MFCCs in _derivations

__der iva t ions software versions

(complete packages/standalones)

2012

January v.1.01 Not publically released

 v.1.02 Not publically released

February v.1.03 Not publically released

 v.1.04 Not publically released

2013

February v.1.05 Not publically released

April v.1.06 First public release (released

in June 2013)

June v.1.07 Public release

2015

March v.1.08 Public release

 277

 278

Appendix G - Formative Software

The following software developed in the Max environment is described in Chapters 4

and 5 of this thesis. These software programs are considered formative to the significant

work presented in the _derivations software, and are provided in the submission

materials as individual Max patchers and Max libraries. Footnotes refer the reader to the

relevant sections in this thesis in which these programs are described. Video

demonstrations of the software are also listed in footnotes.

IInput analys is and segmentat ion74

newaudiotracking.maxpat

Temporal pattern recogni t ion75

acceldeceldetect.maxpat

acceldeceldetectthreshold.maxpat

findthatrhythm2.maxpat

Data sampling techniques 76

elasticitystorage.maxpat

dataatintervals.maxpat

interactiveoptions.maxpat

audiotomiditest.maxpat

Probabi l i s t i c methods77

DurationalProb.maxpat

tripartitemarkovia.maxpat78

74 Described in Section 4.2.1
75 Described in Section 4.2.2

76 Described in Section 4.2.3
77 Described in Section 4.2.4

 279

SSynthes is , Process ing and Sampling

4-buff-pvoc.maxpat79

78 Demonstration videos of this software can be viewed at https://vimeo.com/19863192 and

https://www.youtube.com/watch?v=byZjyBiehmk
79 Video of this software can be viewed at https://vimeo.com/16791411

 280

Appendix H - Third-party produced releases

Given the free availability of the _derivations software via derivations.net, musicians from

across the world are free to use the software for their own musical output. The releases

below were produced and released online without any input from myself:

August 2014: Random Thoughts: solo contrabass clarinet improvisations

8-track album released on Bangsnap Records – Denver, Colorado. _derivations used on

various tracks alongside other electro-acoustic processes.

Paul Milmitsch – contrabass clarinet/production.

Available to via Bandcamp: https://bangsnap.bandcamp.com/album/random-thoughts-

solo-contrabass-clarinet-june-2014

August 2014: Flowers Recollect EP

3-track EP self-released EP – Cremona, Italy. _derivations used to generate

source material for electroacoustic productions.

Xu(e): Nicola Fornasari (electronics) and Andrea Poli (electronics)

Available via Bandcamp: https://xu3music.bandcamp.com/album/flowers-

recollect-ep

February 2014: Nepenthes Project

6-track album released on Bangsnap Records – Denver, Colorado. _derivations used as

part of an expanded electroacoustic improvisation setup.

Kurt Bauer – percussion/laptop, Paul Milmitsch – bass clarinet

Available via Bandcamp: https://bangsnap.bandcamp.com/album/nepenthes-project

 281

Appendix I - Online content

Throughout the duration of this project, a variety of audiovisual and textual media has

been published online documenting _derivations and other formative projects. In addition

to self-produced content, below I also detail content disseminated by third parties

making use of my software, as well as published interviews, reviews and other media

pertaining to the creative work generated throughout this doctoral project.

AAudiovisual – se l f -produced

Self-produced audiovisual content has been largely disseminated via the media-hosting

services SoundCloud (SoundCloud 2015) and Vimeo (Vimeo 2015). Much of this

content was posted to social media websites such as Facebook and Twitter as well as

being embedded on my website at http://bencarey.net and its accompanying blog

http://blog.bencarey.net.

I have collated albums/sets of content disseminated relating to my creative work at the

following URLs:

Soundcloud: https://soundcloud.com/emeidos/sets/derivations-content

Vimeo: https://vimeo.com/album/3429252

Included in the Vimeo album are five videos developed as ‘Video Documentation’ for

the _derivations system as discussed in Appendix E. Transcripts of these videos are

provided below in Appendix J.

Content hosted on other media-hosting services can be found below:

October 2014 – audioBoom: Interview with Elo Masing – Soundhub on Resonance FM:

https://audioboom.com/boos/2536058-ben-carey-interview-with-elo-masing-

soundhub-on-resonance-fm

 282

AAudiovisual – third-party produced

May 2015 – ABC Online – ABC Classic FM: Re-stream of live to air concert from

Totally Huge New Music Festival, featuring Zubin Kanga performing with _derivations

(Perth, Western Australia):

http://www.abc.net.au/radio/programitem/pgZaG5yEeG?play=true

May 2015 – YouTube – Matthew Daher: Preview video of group improvisation with

_derivations at Detroit Contemporary (Detroit, MI) featuring Joshua Hyde - tenor

saxophone, Noam Bierstone – Percussion, Kim Sutton – cello, Matthew Daher –

percussion, Bubba Ayoub – video:

https://www.youtube.com/watch?v=gjMhETPU588&feature=youtu.be

April 2015 – Soundcloud – Tate Carson: Live recording of live performance with

_derivations at Open Ears (New Orleans):

https://soundcloud.com/tate-carson/solo-bass-and-electronics?in=tate-

carson/sets/open-ears-live-set

April 2015 – Soundcloud – Xu(e): Electroacoustic piece using _derivations for

synthetic/textural elements:

https://soundcloud.com/xu-e/thirstyleavesmusic-xue-in-the-midst-of-the-debris

December 2014 – YouTube – Noam Bierstone: scapegoat / Joshua Hyde + Noam

Bierstone – selections from dedans/dehors series including derivations improvisation

(Paris):

https://www.youtube.com/watch?v=bFnPR1sRxdA

October 2014 – Soundcloud – Hervé Perez: Shakuhachi improvisation with _derivations

and field recordings (Sheffield, UK):

https://soundcloud.com/sndsukinspook/amarashak

June 2014 – Soundcloud – Hervé Perez: Soprano saxophone improvisation with

_derivations + field recordings and other fixed media (Sheffield, UK):

https://soundcloud.com/sndsukinspook/808fields

 283

August 2014 – YouTube – Eric Honour: Live performance with _derivations at the

KCEMA Happy Hour (Kansas):

https://www.youtube.com/watch?v=D6-QIdTawZQ

July 2013 – YouTube – Joshua Hyde: Live performance with _derivations during the

Australasian Saxophone & Clarinet Conference – Sydney Conservatorium (Sydney):

https://www.youtube.com/watch?v=V8pJLWnEIFE

TTexts – se l f -produced

The main outlet for self-produced textual documentation of the creative work discussed

in this thesis has been via my personal blog:

http://blog.bencarey.net

I have also written about the _derivations project on the blog of Tobias Reber, 100

Quriky Legs:

http://tobiasreber.tumblr.com/post/42865806477/derivations-guest-post-by-ben-carey

Texts – third-party

Third party textual content related to the _derivations project and other creative work

discussed in this thesis has been published in the form of interviews and reviews of

performances and recordings. A list of these resources and accompanying URLs can be

found below:

May 2015 – Review: Limelight magazine review of Zubin Kanga’s Dark Twin program

featuring _derivations – Lisa McKenney:

http://www.limelightmagazine.com.au/live-reviews/review-dark-twin-zubin-kanga

May 2015 – Review: Blog review of Zubin Kanga’s Dark Twin program featuring

_derivations – Charles MacInnes:

http://bit.ly/charlesmacinnes_review

 284

May 2015 – Review: Partial Durations blog review of Zubin Kanga’s Dark Twin program

featuring _derivations – Matthew Lorenzon:

http://partialdurations.com/2015/05/12/metropolis-zubin-kanga-dark-twin/

May 2015 – Review: Realtime Arts magazine review of Zubin Kanga’s Dark Twin

program featuring _derivations – Laura Halligan:

http://realtimearts.net/feature/Totally_Huge_New_Music_Festival_2015/11940

May 2015 – Review: Realtime Arts magazine review of Zubin Kanga’s Dark Twin

program featuring _derivations – Alex Turley:

http://realtimearts.net/feature/Totally_Huge_New_Music_Festival_2015/11940

June 2014 - Interview: with Tobias Fischer of tokafi magazine:

http://www.tokafi.com/news/coding-aesthetics-ben-carey-derivations/

June 2014 - Review: Benjamin Carey et. al: _derivations - Matthew Lorenzon, Partial

Durations/RealTime Arts:

http://partialdurations.com/2014/06/19/benjamin-carey-derivations/

April 2014 - Interview: with Sam Gillies of Cut Common Magazine:

http://www.cutcommonmag.com/ben-carey-exploring-navigating-responding-listening/

August 2012 - Review: Getting more from your instrument - Felicity Clark, RealTime

Arts Issue 111, p.48:

http://www.realtimearts.net/article/111/10844

August 2012 - Review: In Varietate Concordia - Paul Nolan, ArtsHub News/Reviews:

http://au.artshub.com/au/news-article/reviews/performing-arts/in-varietate-concordia-

191258

July 2012 – Blog post: Musicuratum featured blog post with a variety of embedded

audiovisual media:

http://musicuratum.com/2012/07/10/ben-carey/

 285

June 2012 - Feature article: Sound Play - UTS U:Magazine featured event ‘Computer

Improvisation’:

http://newsroom.uts.edu.au/news/2012/06/sound-play

May 2012 - Feature article: Beyond Musical Borders - Sydney Conservatorium of Music

‘Conversations’ Magazine Feature, pp. 7-12:

http://issuu.com/con-conversation/docs/conversation_issue_4

 286

Appendix J - Video Documentation Transcripts

Transcripts of the Video Documentation outlined in Appendix E are provided below,

with permalinks to each video provided in the accompanying footnotes.

VVideo 1: Overview80

Hi and welcome to this overview video of _derivations. My name's Ben Carey, I'm the

developer of the software, and the purpose of this video is to get you up and running

and interacting with it as quickly as possible. In a nutshell, _derivations is at the same

time a musical work, a performance environment and a collaborative tool for use in

improvised electro-acoustic performance. The software has been under development for

the past two years as a part of my doctoral research at the University of Technology,

Sydney.

The system currently exists in three separate versions, one as a standalone piece of

software that can be run on any Mac, and two that require Cycling '74's Max/MSP to be

installed on your machine. The differences between the two Max/MSP versions relates

to the licensing of third party software. I won't bore you with the details here but if you'd

like to know more I've explained this on the software downloads page of derivations.net

_derivations works by recording and analysing the input of an improvising musician

throughout a performance, and by making relationships between musical gestures stored

in an expanding database and those being currently performed by the improviser. The

system uses these recorded gestures as source material to bring back and modify live as

its contribution to the improvised dialogue with the musician. In future videos I'll go into

more depth about the various ways that the software selects and processes these snippets

of sound, and how you will be able to customise parts of the system's response to best

suit your performative needs during rehearsal.

For now, let's get started with setting up a simple performance session in the software.

Once you have installed and launched the software, you will see the main _derivations

80 Video 1 permalink: https://vimeo.com/69298047

 287

interface. Click on the microphone icon to enable audio, and you can enter audio

preferences to double check your settings if needed.

To initialise _derivations parameters to their default settings, choose the Default

initialisation file from the drop-down menu in the top left of the window. We will

discuss creating your own initialisation files in a future video. Choose your audio input

from the drop down menu, which in our case will be 'Live Signal'. Alternatively,

choosing 'simulation' is useful if you have a pre-recorded improvisation you would like to

use for testing. You can open the simulation file from the 'open file' button.

With Live signal enabled, pay attention to the 'Input Monitor' section of the window to

check the level of your input. Much of _derivations analysis relies upon the level of the

incoming signal. The two sliders found next to the level indicator represent hi and low

thresholds for the input - these help _derivations in determining when the performer is

playing or is at rest. Make sure that when you are sending signal to the system the input

level rises above the first threshold, and when the input is 'silent', it lies below the right

threshold. This will become apparent as we learn more about how the system works.

With this simple calibration set, you're ready to begin improvising. For now, I'll interact

with the system as I talk. You will notice that as you play, the system begins to

incrementally count 'phrases' found. After a preset number of phrases recorded and

analysed - the default is four - the system begins to generate material in response to your

continual improvised performance. Let's briefly listen to the system's response to my

monologue…

Once you're ready to finish interacting with the software, simply press stop, causing the

software to come to a halt after a short amount of time.

Although this was a very short and pretty uninteresting interaction with the software,

let's quickly take a look at some of the information _derivations has stored throughout

our encounter.

The buffer tab shows us audio from the input that has been recorded throughout our

session. As this was a fairly short session, most of the buffer remains empty.

Nevertheless, _derivations analysis has found and references to '9' phrases within this

 288

buffer. We can individually audition each of these phrases using the audition tab. For

instance, phrase two sounded something like this:

In a future video we will see how auditioning, enabling and disabling of individual

phrases and even whole rehearsals becomes useful when the system is being used to

create multi-session performance databases. For now, let's simply save this current

session to our sessions folder so we can access it at a later date. In the standalone version

of the software, this folder is found in the application directory, and for the Max/MSP

versions, the sessions folder should have been copied to your Max directory.

That concludes this short overview of the _derivations software. Future videos will delve

deeper into the system's various processing modules, and how you can customise the

way in which these modules process recorded phrases. We will also look at how to

manage multi-session databases, which can allow you to completely pre-define the sonic

vocabulary of the system over several rehearsal sessions.

Thanks for watching, and I hope you enjoy working with _derivations.

VVideo 2: Phrase Segmentat ion81

As discussed in the overview video, _derivations' analysis and decision-making relies

heavily on the level of the incoming signal. This is because the system makes its

comparisons between live and pre-analysed sounds based on chunks of sound called

'phrases'. In this short video we're going to unpack this concept a little so that you can

choose the right settings that work for your performance context.

A 'phrase' in _derivations is the smallest unit of sound used by the software for both

analysis and generation of material. Everything that is recorded and analysed during an

interaction with _derivations is indexed by phrase number, and the software does this

automatically during a performance. Importantly however, determining exactly what

_derivations counts as a phrase can be customised by you, depending on the type of

input you're putting into the software. Two important settings to help you with this are

81 Video 2 permalink: https://vimeo.com/69458280

 289

the segmentation type, and the silence threshold. Let's take a look at the phrase database

module to understand these further.

There are two types of phrase segmentation in _derivations, firstly Attack/Release

segmentation, and secondly, Forced Phrase segmentation.

In Attack/Release mode, we return to our high and low input thresholds discussed in the

overview video. In this mode, _derivations counts the start of a phrase from when the

input first rises above the left threshold. This threshold crossing is called an 'attack

trigger'. Conversely, the end of a phrase is reported by a release trigger linked to a

crossing of our low threshold. This release trigger works in a very similar way to our

attack, with one notable exception. Once the input dips below our low threshold on the

right, _derivations will wait for a specific amount of time before reporting a release

trigger - our phrase end. If our signal rises back above our high threshold before the

length of this silence threshold, _derivations assumes that the original phrase has not

ended.

This waiting period is called the 'silence threshold' and can be set in the phrase database

module. You can think of the silence threshold as a way to make sure that a phrase has

really ended before the software reports a phrase end. This can be quite important as it

will directly affect the number of phrases _derivations will index in its database, and the

relative lengths of these phrases.

Let's briefly look at two examples to illustrate how our silence threshold has an effect on

_derivations analysis:

In this first example, we can see that _derivations has segmented approximately 9

seconds of audio into three phrases of varying lengths. As our silence threshold in this

case is 1000ms - or 1 second - the signal must be silent for a full second before

_derivations reports the end of a phrase. As a result, all of the quick dynamic changes in

this input are grouped as part of a larger phrases.

In contrast, let's look at the same 9 seconds of audio with a much shorter silence

threshold. We can see that the fluctuations in our input, because of our shorter silence

 290

threshold, are counted as individual phrases, meaning that the same 9 seconds of audio is

segmented into 13 chunks of audio.

Let's now move to our next segmentation type - forced phrase segmentation. Forced

phrase segmentation is useful if your input is often sustained in nature, and therefore

rarely dips below the low input threshold. In this case, _derivations provides a 'forced

phrase interval' parameter, which sets the maximum amount of time a signal remains

active before _derivations forces the reporting of a phrase end. Whilst quite a brute force

way of segmenting the input, it does prove useful for a variety of types of instrumental

inputs.

The following example shows a fairly sustained signal with less active fluctuations in

dynamics. With force phrase enabled, the 24-second sound would be evenly chunked

into 6 phrases of equal length. For signals of this type, forcing the indexing of phrases is

useful as it enables the system to continually build a database of material, without waiting

for the input to fall silent first.

Of course, most sound sources display a combination of both sustained and dynamic

material. Choosing force phrase and carefully choosing a maximum interval is therefore a

good option, as anything below this maximum will be segmented in the same way as the

attack/release mode.

It goes without saying that settling upon a configuration that works best for your input

will probably take a good deal of trial and error, however we will see in later videos how

decisions made on this input stage can affect the responsive character of the system

in performance.

In the next video I will discuss how system response works in _derivations, from phrase

comparisons, to autonomous triggering and phrase processing, and how you can tweak

various processing parameters to suit your taste. Future videos will discuss managing

session databases, and cumulatively building your own performance environments using

_derivations.

Thanks again and I hope you enjoy working with _derivations.

 291

VVideo 3: Output Modules 82

Hi and welcome to the third installment of our video documentation. In this video we

will be discussing each of _derivations' output modules in depth, so that we can

understand how the system makes use of our recorded improvisations during

performance. We'll also discuss how we can customise various processing options during

a rehearsal session with the software. In the next video I'll delve deeper into how

_derivations makes it's decisions upon which phrase to process or re-synthesise, and how

the autonomous triggering of these modules works during an improvisation.

In _derivations, phrases segmented from our recorded improvisations are used as source

material for processing by three separate modules, namely our bank of phase vocoders,

the sound file granulator and through spectral re-synthesis in Pitch Models. Each of

these modules accesses the global phrase database for its material, which is then

processed or re-synthesised automatically following a range of processing options that

are preset using the interface.

So, each time a phrase is chosen for output, the chosen output module processes or re-

synthesises the original sound - injecting a new musical gesture into the improvised

dialogue with the musician. Because our database contains information on the length of

each phrase, each new gesture is performed for a length of time that is proportional to

the original length of each phrase stored in the database.

Although _derivations is designed to be an autonomous system, the user interface has

been designed so that the range of processing capabilities available in each module are

accessible for testing and fine-tuning during rehearsals. Each of our output modules

contains its own graphical interface with access to a number of settings that will affect

the sonic output during performance. The control tab then allows you to set the range of

parameters you have settled upon globally, so that they can be stored as a preset setup in

an initialisation file. More on this control tab a little later.

Let's turn first to look our phase vocoder module.

82 Video 3 permalink: https://vimeo.com/69728069

 292

Simply put, a phase vocoder enables a sound to be sped-up or down in time, without

changing its pitch. Conversely, it enables a sound to be transposed, without changing it's

length. In _derivations, four independent phase vocoders are used to access individual

phrases from our database for output. Each time a phrase is triggered by one of our 4

PVOCs, the player will scrub through the source file at a constantly varying speed, until

the triggered gesture ends. The speed range of this scrubbing can be set individually for

each PVOC using the range slider in each tab, or globally by setting the range of PVOC-

1.

Transposition of the individual phase vocoders can also be set using a global range, this

can be found within the Mix-Transpose tab - but is also found in the control tab. If

Transpose On is checked within the control tab, any phrase triggered by the pvocs in

performance will be transposed to a fixed random interval within this chosen range.

Another global option available in the control tab is 'Glide Probability'. This option

determines the probability that transposition will be fixed or whether a Random

glissando amount is applied to the triggered phrase upon output. You can test this type

of transposition using the transposition drop-down menu.

Next we move across to our sound file granulator.

The granulator creates new gestures from our source phrases by rapidly outputting small

grains of sound that overlap to create abstract textures. The granulator scrubs from one

side of the file to another in the same way as with our phase vocoders, following a speed

range that can be set in the module. As it scrubs through the file, the granulator outputs

grains of our source at a given rate and duration. Changing these two parameters can

vary a sound from sparse clicks to dense, drones - depending upon the source phrase.

Transposition of the grains can be enabled or disabled in the control tab, which also

provides a probability for global transposition within the set range, or transposition per

grain. The latter option causes the most radical change to the source sound, giving the

effect of blurring the pitch centre of the gesture.

Probably the most important parameter to experiment with is the density range, which is

also reflected in the control tab. Density in the granulator can be expressed as a function

of either the grain duration, or the grain rate. Grain density is also scrubbed throughout a

 293

gesture, which can create a variety of morphing textures throughout the output of a

single phrase. Most of the other parameters should be experimented with by hand in

rehearsal and then set for performance.

Let's now move on to our final output module, pitch models:

Pitch Models also takes phrases from our database as source material, though unlike the

other two output modules, it is not directly reliant upon these recordings to create its

gestures. Rather than processing recorded phrases, pitch models makes use of a further

layer of analysis to generate purely synthesised sounds derived from the phrases stored in

the database. The module does this by continually taking snapshots of the spectrum of

the improviser's sound during performance, and then grouping these snapshots together

to be indexed alongside each of the phrases stored in the database.

Pitch models uses then these snapshots to re-synthesise new gestures using additive

synthesis, which takes the individual frequency and amplitude pairs of a spectrum and

then synthesises them using banks of sine wave oscillators. This type of re-synthesis

contributes a very different sound to the other two modules, whilst still being derived

from the sonic content of our source. It's also a very flexible way of re-interpreting our

source phrases, as these snapshots are manipulated in a number of ways before being

synthesised.

Taking a look at the Pitch Models interface, we notice that there are a number of control

options for this module. Before we discuss the re-synthesis stage, let's begin briefly with

two important options that are also available in the control tab - namely the storage type,

and the output type. Under the input tab, we are able to choose the way in which pitch

models stores our snapshots, whether continuously, upon a pitch detection, or following

our input thresholds. This final method is the default option, as we want our models

stored alongside our phrases.

The output type controls how the models are output by the module. Let's go through

them briefly. Random sweep treats the entire database of models as a space to scrub

through, disregarding phrase boundaries; random range will output models within a

specified range; this model will output the most recent models collected during an

 294

improvisation, which can be interesting as it effectively shadows the input with

synthesised versions of itself; random phrase simply outputs models linked to a random

phrase upon triggering of the module, and finally, one shot, which is the default option,

will output models according to the phrase chosen by the latest comparison with our

database.

Let's quickly take a look some ways in which pitch models re-synthesises our stored

snapshots. A snapshot is manipulated by altering the amplitudes of each of the sinusoidal

components of that model, changing the timbre of an otherwise static sound over time.

This is achieved by swapping the amplitudes of the first few partials over a period of

time. Under the transformations tab, the scramble parameter sets the number of these

partials to be swapped, and the random range allows you to set a subset of the

amplitudes to scramble. The rate parameter then sets the time in milliseconds for this

scrambling to occur. In addition, once the models are synthesised they are then sent

through a sweeping formant filter, further altering their spectrum. Under this tab the

formant filter can be turned on or off, its rate and transition time altered, as well as the

sharpness of it's filtering adjusted.

A synthesised gesture triggered from pitch models is in itself polyphonic, as multiple

synthesised models overlap to make up the final output gesture. Looking once more at

the output module, let's take a look at how the individual components we've just

discussed are output. When a gesture is triggered from pitch models, the module

activates a rhythmic envelope that triggers the individual models throughout the gesture.

In one shot mode, pitch models scans through the models grouped alongside the chosen

phrase, outputting a model each time the rhythmic envelope sends a trigger. Each trigger

activates the global ADSR envelope, just as in any polyphonic synthesiser. You can

modify this envelope, and it's output length and interval range within this tab.

As we can see however, pitch models is the most complex of the three output modules,

with many variables combining to control the resulting output gestures. To simplify the

many complex variations possible within the module, the majority of these parameters

are set and manipulated globally through a bank of presets. Let's briefly look at the

Phrase-Presets tab to understand this further. The presets represent a variety of different

output states of the module, and _derivations includes 7 of these by default. You can

 295

preview the various presets by choosing a preset number from the recall number box.

The preset-params tab displays all available parameters being controlled. If you'd like to

change or add a preset, add the preset number you wish to store into the store number

box, then click 'write-preset'.

Most importantly however, the presets are designed to be interpolated between, allowing

a smooth transition from one preset to the next. During the output of a gesture from

pitch models, _derivations automatically interpolates between two of the stored presets.

In the control tab, we can select the type of preset interpolation that is triggered upon

the output. Adjacent interpolation activates a drunken walk that moves between adjacent

presets. So for example, in one gesture we may move between presets 2 and 3, whilst the

following gesture will either remove between either presets 3 and two, or choose to

move from preset 3 to preset 4. 'Any' mode allows interpolation between any two of

these presets, regardless of their position in the preset list.

So, that concludes our round up of the three output modules within the software. Let's

finish by looking once more at the control tab. Although not al of the parameters in

_derivations are included in the control tab, the most important variables are available to

be preset prior to a rehearsal or performance with the software. Once you've decided

upon the settings that you would like to use during a performance, you can save these as

an initialisation file by clicking Save as INIT, on any of the 4 tabs available in this

window. Make sure to save this file in your 'init-files' folder, which should be in either

your application directory in the standalone application, or in your Max folder if you're

running _derivations in Max. Once you reset the _derivations interface, you should see

this new file appear in the drop down menu at the top of the main window. Choosing

the file will initialise all of your saved settings.

Make sure to watch the next video, where I'll be discussing how both phrase

comparisons and autonomous triggering work within the software.

Thanks again and I hope you enjoy working with _derivations.

 296

VVideo 4: Comparisons and Trigger ing83

Hi and welcome to the fourth installment of our video documentation for _derivations.

In this short video we will be discussing how _derivations' output modules make their

decisions about which phrases reference from the database during performance. We'll

then go on to unpack the process of autonomous triggering to understand how the these

modules become activated during an improvised performance.

In the fifth and final video, we will be looking at the process of saving and loading

session databases made using _derivations, which allow you to make use of the software

cumulatively from rehearsal to rehearsal, and of course, from rehearsal to performance.

This will also include discussion about the merging of previously recorded databases,

which enables you to pre-define the sonic vocabulary of _derivations in it's entirety prior

a performance.

Without going into the technical details, let's talk briefly about how phrase comparisons

work within _derivations.

As we've learned from earlier videos, _derivations decision-making is based upon

comparisons between the analysis of an incoming signal and a database of segmented

phrases recorded during an improvisation. Looking again at the Input Monitor module,

we see that as well as tracking the volume of our signal, _derivations also analyses the

spectral content of the improviser's sound.

The system analyses our sound by gathering data called Mel-frequency cepstral

coefficients - or MFCCs. This type of analysis is used in a wide variety of signal

processing and machine listening tasks, and is often used in speech recognition

technology.

_derivations calculates statistics on streams of MFCC's that are captured throughout the

length of each phrase, and it is these statistics that are then stored alongside each phrase

index in our database. It is from these statistics that the system is able to make

83 Video 4 permalink: https://vimeo.com/69733871

 297

comparisons between one phrase and another, as it can then find phrases in the database

that are the most similar or different to the latest input.

Let's now take a look at how this process plays out in the triggering of _derivations'

output modules.

The autonomous triggering of _derivations' output modules relies upon a continual cycle

of comparison between both the improviser and the phrase database, as well as between

the phrases chosen by the modules themselves and this database. In other words, as well

as listening outside to the performer's contribution, _derivations also makes decisions by

listening inwards - that is, by self-referencing.

Let's take a look at the following graphic to understand this flow of control and influence

further:

Analysis of the improviser's latest phrase is picked up for comparison by the first module

that is free and available for output. In this first example, the first phase vocoder - pvoc-

1 - makes a comparison between the latest analysis of the improviser and the phrase

database, and outputs its chosen phrase. This phrase chosen is then picked up for

comparison with the database by the pitch models module, whose subsequent output is

then evaluated by pvoc-3, continuing the cycle of comparison.

As we can see, this cyclical pattern of comparisons can become quite complex, as the

musician's contribution sets off a chain of events of which the outcome is difficult to

predict in advance. Because the length of each phrase being output by the modules may

vary, the output of the modules will often overlap, creating a complex polyphony of

processed and synthesised material.

This also means that the system is unlikely to follow the same direction of influence

upon each analysis of the improviser. In addition, once this chain of events is set in

motion, the system is able to continue self-referencing without waiting for the input.

This enables a fully-autonomous state of performance for the system, allow the

performer the freedom to rest and listen to the system as it generates material based

upon the current database.

 298

It goes without saying that during a performance with _derivations this process is

handled automatically by the software. However, if we want to observe as well as manage

some of the high-level decisions of this triggering, this is possible within the 'Triggering'

tab. This simple interface displays the 6 interacting components of our output modules,

and the phrases they receive for comparison and output during a performance. We can

simulate an autonomous interaction between these players in this tab by sending 'seed'

phrases to the players to start a chain of comparisons. There are a number of options for

choosing these seed phrases in the drop down menu at the top right of the window.

Of course, simulating an interaction in this way is only possible if you have a phrase

database from a prior improvised session loaded within the software. In the next video

we'll go into depth about managing these databases, however for now we'll work with a

multi-session database loaded from disk. To begin testing autonomous triggering, click

the auto trigger button in the top left of the window. The system should begin generating

phrases on its own, and passing chosen phrases amongst the various components.

As I mentioned previously, the length of the gestures performed by our output modules

is tied to the length of the original phrases stored in the database. This doesn't mean

however that the two are identical. Instead, each gesture's output length is modulated by

a roaming length factor that controls the final output length of a gesture. You can set a

range within which the length factor can roam, ranging from 8 times shorter than the

original phrase, to 8 times longer.

Finally, I wanted to briefly discuss the concept of density as it applies to the sonic

gestures performed by our output modules. As I mentioned earlier, the 6 individual

players from our 3 output modules create a polyphony of sonic gestures that often

overlap. To enable high-level control of the level this polyphony, _derivations relies

upon a density control measure, which can either be fixed, or changed over time

throughout a performance.

In this sense, density is the extent to which phrases overlap during a performance. To do

this, _derivations evaluates the current lengths of our output gestures, and modifies the

time delay between the triggering of one gesture and the next. Essentially, the higher the

density, the more modules are active at any one time, and the lower the density, the more

space between the triggering of one gesture and another.

 299

The density tab is accessible from within both the triggering tab and the main window of

_derivations. The toggle in the top left of this window determines whether a density

value is fixed throughout an improvisation, or whether the software follows a preset

density trajectory. When set to a fixed value, you can adjust the overall density value

using the slider on the right, with 0 being the highest and 999 the highest density value.

Switching the toggle to 'follow curve' tells _derivations to modulate the density level

according to the curve drawn in the window. You can also set the length of this curve in

minutes, allowing you to pre-determine a density trajectory for your performance. If you

find a trajectory that you like, you can save it in the preset box in the top right of the

window. Alternatively, 'random on start' will generate a new, random density curve upon

each new, improvised session. You can also set and save these settings globally in the

control tab under global settings.

That concludes our look at the autonomous interaction of _derivations output modules.

Hopefully now you understand a little more about what _derivations is up to during a

performance, and you're able to simulate the flow of information from one module to

the next during rehearsal. Now that you have a handle on the output modules as well,

don't forget that you can simulate an entire performance with the software using the

simulation option in the main window, as mentioned in the overview video. In this mode

_derivations works identically to how it would with a live input, the only difference being

that an improviser is replaced with a sound file.

In the next video I will round up our discussions by explaining session databases in

depth, including some tips on how to make the most of your recorded sessions during

rehearsal.

Thanks again and I hope you enjoy working with _derivations.

 300

VVideo 5: Sess ion Databases84

Hi and welcome to the fifth and final instalment in our series of videos on _derivations.

In this video we'll be discussing how you can make use of the information stored during

an improvisation with _derivations to build your own performance environments for

future performances using session databases.

A session database is a saved collection of both audio and analysis files recorded by

_derivations during a performance. The analysis files contain all the information

_derivations has captured about the recorded improvisation, including the stored

sinusoidal models used in pitch models, as well as the MFCC analysis. After an

improvised performance, we can save all of this information to disk and recall this at a

later date for use in your next performance, or for merging with other pre-recorded

sessions. Let's take a look at how this is managed using the main _derivations interface.

Here I have a full database of material accumulated during an interaction with the

software. As we saw in the overview video, clicking 'save session' and naming the

database will save this information to your 'session' directory, creating a new session

database. Taking a look in our session directory in the finder, we see that _derivations

has created a named folder containing an audio file, and a bunch of analysis files. This is

our saved database.

After resetting the software, we can re-load this database by choosing load session, and

navigating to this folder. Upon load, a splash screen appears to give you some

information on the database you're loading. We can see here that this current database

contains 117 phrases from one session, which means that there is only one audio file in

the database. There is also some stored information about our threshold levels, and an

indication of phrases that may have been disabled. More on this in a minute.

So at this point, you may be wondering why such a feature is useful for a real-time

interactive system. First off, saving a database is very useful in our testing and fine-tuning

of _derivations' output modules, as we saw in our previous video. This allows us to

84 Video 5 permalink: https://vimeo.com/70767558

 301

observe and interact with the output modules by tweaking individual parameters by hand

during rehearsal. Recalling saved sessions allows you to get better acquainted with the

system's possible range of behaviours, because you're working with material that is

familiar to you from a previously improvised session. With a database loaded, we can

choose individual phrases to process with the output modules by typing in the phrase

index in the number box, or in the case of the granulator and pvocs you can call a

random phrase to test by clicking the button next to this number box.

As we saw in our overview video we can also use the audition tab to audition the

unprocessed phrases segmented during the saved session. This may be useful in further

fine-tuning the type of segmentation you choose to use for your next performance, but it

also allows you to disable unwanted phrases, or even entire sessions. After choosing a

phrase index from the drop-down menu, we can audition the phrase to hear how it

sounds. If we don't like this particular phrase, we can disable it's appearance in the

database by selecting 'disable'. Disabled phrases are indicated by a dot next to their index

in the menu. So without deleting the phrase, _derivations simply no longer references

this phrase when making comparisons during performance. Clicking save will tell

_derivations to remember your choice for the next time you load the database.

Conversely, you can re-enable a disabled phrase by selecting the phrase and clicking

enable.

The most powerful feature of session databases however is their ability to enable both a

cumulative and non-linear approach to defining _derivations' sonic vocabulary in

advance of a performance. Using a cumulative approach, saved sessions can be recalled

and built upon from one rehearsal session to the next, allowing the software to begin an

improvised session with an already rich database of material captured from cumulative

interactions with the software. So in this way, each performance with the software adds

material to the database, expanding the material the software has to reference from one

performance to the next.

Working with derivations in this way is identical to that of a standard performance, with

the addition of loading a database at the outset. Firstly load a saved database from disk,

then initialise the system the way you normally would in a 'fresh' performance, and

simply press start. _derivations decisions of which phrases to reference are still made in

 302

the same way, however the phrase could be taken equally from either the current

performance, or the phrases already contained in the database loaded at the outset. To

save the database, simply press save and name the database. If you would like to replace

the original database with this new cumulative database, simply type the name of the

original database you loaded. Alternatively you can create a separate cumulative database

by typing a new name and hitting save. So looking again in the finder, we see that our

database now contains two audio files; the original file, and the most recent recorded

improvisation.

You can also pre-define multi-session databases in a non-linear fashion, by merging

previously saved sessions into a single, fixed database. Once you have created such a

database for use in a performance, you can disable real-time recording of your input,

allowing the system to interact solely with what has been pre-defined in advance. You

can disable input recording by unchecking the 'Analysis Storage' toggle in the phrase

database. This approach treats _derivations sonic vocabulary as fixed, which means that

although the system is still feeding off analysis of the performer, it is responding with

musical gestures derived from it's own, pre-defined pool of possible phrases. This ability

fundamentally changes the interactive paradigm that the system represents, moving from

a live-sampling based system, to a system based on a corpus of pre-analysed material.

To merge pre-existing databases, firstly load an initial database using the load session

button. After loading, move on to the merge sessions button, where you can choose a

second database to merge with the already loaded database. It's worth noting that either

database can be a single or multi-session database, allowing us to create large, complex

databases in one operation. Here I'm choosing to merge a database containing three

sessions with our original single-session database. The result should be a merged

database containing 4 sessions. Once you have chosen the database to merge,

_derivations asks whether you would like to merge only the loaded session, or the buffer

from a current improvisation as well. If you have just finished performing a cumulative

session with the software, you can choose the first option to include the current

improvisation in the merged session. In our case, we only want to merge two, loaded

databases, so we'll choose the second option. Finally, name you merged session, and wait

whilst _derivations moves items to place in your sessions folder. A quick look in the

finder confirms that our sessions have been correctly merged into a new, multi-session

 303

database. Once we load this database into _derivations our splash screen will further

confirm the contents of the database. For a performance with this new database, we can

disable input recording, and begin an interaction with our pre-defined corpus of

material.

So finally, I'd like to let you know about the session databases page on derivations.net.

Because of this flexible database feature of the software, I've opened up the possibility

for collaboration between users on the website. On the session databases page of

derivations.net you'll find a small repository of pre-recorded sessions that can be

downloaded for use in _derivations. The general idea is that users may benefit from

sharing and making use of unique session databases contributed by other performers. So,

if you'd like to build a unique database for use in performance, you may be interested in

making use of material provided by other interested performers using _derivations from

around the world. Sessions uploaded to the site are free to download, and contact details

of the contributors are provided so you can get in contact with a fellow user if you

intend on using their material in your own performance. If you'd like to submit sessions

to be used by others in their performances, send me a link to a zipped session database

you wish to share and I'll upload it to the site.

So that concludes our series of video documentation on _derivations. Hopefully you

now have all the information you need to get going with interacting with the software in

rehearsal and performance. If you plan to make use of it in a performance, or have a

recording of an interaction with the software on stage or in the studio, please drop me a

line as I'd love to hear how the software is used by others.

Thanks again, and I hope you enjoying working with _derivations.

 304

Appendix K - Publications

Refereed publications describing work discussed in this thesis are listed below:

Bown, O., Eigenfelt, A., Martin, A., Carey, B. & Pasquier, P. 2013, 'The Musical

Metacreation Weekend: Challenges arising from the live presentation of musically

metacreative systems', paper presented to the Artificial Intelligence and Interactive

Digital Entertainment (AIIDE’13) Conference, Santa Cruz, California.

Carey, B. 2012, 'Designing for Cumulative Interactivity: The _derivations System', paper

presented to the 12th International Conference on New Interfaces for Musical Expression,

Ann Arbor.

Carey, B. 2013, '_derivations: Improvisation for Tenor Saxophone and Interactive

Performance System,' Proceedings of the 2013 ACM Conference of Creativity and

Cognition, Sydney Australia

Carey, B. 2014, 'Artefact Scripts and the Performer-Developer, ' Workshop on Practice-Based

Research, Conference on New Interfaces for Musical Expression, London, UK.

Carey, B. 2016, 'Artefact Scripts and the Performer-Developer, ' Leonardo, Vol. 49, No. 1

London, UK, pp. 74-75.

 305

 306

Bibliography

Akrich, M. 1992, 'The De-scription of Technical Objects', in W. Bijker (ed.), Shaping

Technology / Building Society: Studies in Sociotechnical Change (Inside Technology), The

MIT Press, pp. 205-24.

Akrich, M. & Latour, B. 1992, 'A Summary of a Convenient Vocabulary for the

Semiotics of Human and Nonhuman Assemblies', in, Shaping Technology / Building

Society: Studies in Sociotechnical Change (Inside Technology), The MIT Press, pp. 259-64.

Allauzen, C., Crochemore, Maxime, Raffinot, Mathieu 1999, 'Factor oracle: a new

structure for pattern matching', in, SOFSEM’99: Theory and Practice of Informatics

Lecture Notes in Computer Science, vol. 1725, Springer- Verlag, pp. 295-310.

Ames, C. 1989, 'The Markov process as a compositional model: a survey and tutorial',

Leonardo, pp. 175-87.

Assayag, G., Bloch, G. & Chemillier, M. 2006, 'OMax-Ofon', paper presented to the

Sound and Music Computing Conference, Marseille.

Assayag, G., Bloch, G., Chemillier, M., Cont, A. & Dubnov, S. 2006, 'Omax brothers: a

dynamic yopology of agents for improvization learning', paper presented to the

Proceedings of the 1st ACM workshop on Audio and music computing multimedia.

Bailey, D. 1993, Improvisation: Its Nature And Practice In Music, Da Capo Press, Cambridge,

MA.

Bastien, D.T. & Hostager, T.J. 1992, 'Cooperation as communicative accomplishment: A

symbolic interaction analysis of an improvised Jazz Concert', Communication

Studies, vol. 43, no. 2, pp. 92-104.

Beilharz, K., Jakovich, J. & Ferguson, S. 2006, 'Hyper-shaku (Border-crossing): Towards

the Multi-modal Gesture-controlled Hyper-Instrument', paper presented to the

Conference on New Interfaces for Musical Expression, Paris.

Blackwell, T. & Young, M. 2004, 'Self-organised music', Organised Sound, vol. 9, no. 2.

Blackwell, T. & Young, M. 2005, 'Live Algorithms', Artificial Intelligence and Simulation of

Behaviour Quarterly, no. 122, pp. 7-9.

Blankertz, B., Jacucci, G., Gamberini, L., Freeman, J. & Spagnolli, A. 2015, Symbitoic2015

- International Workshop on Symbiotic Interaction, viewed July 8th 2015

<http://symbiotic2015.org/>.

 307

Bloch, G., Dubnov, S. & Assayag, G. 2008, 'Introducing video features and spectral

descriptors in the omax improvistaion system', paper presented to the International

Computer Music Conference, Belfast.

Boden, M.A. 2004, The creative mind : myths and mechanisms, 2nd edn, Routledge, London ;

New York.

Boehm, B. 2006, 'A view of 20th and 21st century software engineering', paper presented

to the International conference on Software engineering (ICSE '06), New York, NY.

Bongers, B. 2000, 'Physical Interfaces in the Electronic Arts - Interaction Theory and

Interfacing Techniques for Real-time Performance', in M.M. Wanderly & M.

Battier (eds), Trends in Gestural Control of Music, IRCAM-Centre Pompidou, Paris,

pp. 1-30.

Bown, O. 2011, 'Experiments in Modular Design for the Creative Composition of Live

Algorithms', Computer Music Journal, vol. 35, no. 3, pp. 73-85.

Bown, O., Carey, B. & Eigenfeldt, A. 2015, 'Manifesto for a Musebot Ensemble: A

platform for live interactive performance between multiple autonomous musical

agents', paper presented to the International Symposium on Electronic Arts,

Vancouver, Canada.

Bown, O., Eigenfelt, A., Martin, A., Carey, B. & Pasquier, P. 2013, 'The Musical

Metacreation Weekend: Challenges arising from the live presentation of musically

metacreative systems', paper presented to the Artificial Intelligence and Interactive

Digital Entertainment (AIIDE’13) Conference, Santa Cruz, California.

Bown, O., Eldridge, A. & McCormack, J. 2009, 'Understanding Interaction in

Contemporary Digital Music: from instruments to behavioural objects', Organised

Sound, vol. 14, no. 02, p. 188.

Bown, O. & Lexer, S. 2006, 'Continuous-Time Recurrent Neural Networks for

Generative and Interactive Musical Performance', in, Applications of Evolutionary

Computing, Lecture Notes in Computer Science, vol. 3907, pp. 652-63.

Bown, O. & Martin, A. 2012, 'Autonomy in Music-Generating Systems', paper presented

to the International Workshop on Musical Metacreation at AIIDE, Stanford, Palo Alto.

Butcher, J. 2003, CD, Invisible Ear, Fringes Recordings.

Butcher, J. & Nakamura, T. 2004, CD, Cavern With Nightlife, Weight of Wax.

Candy, L. 2006, 'Practice Based Research: A Guide', pp. 1-19, viewed 17/10/10,

<http://www.creativityandcognition.com/research/practice-based-

research.html>.

 308

Cardew, C. 1967, Treatise, Gallery Upstairs Press, Buffalo, New York.

Carey, B. 2012, 'Designing for Cumulative Interactivity: The _derivations System', paper

presented to the 12th International Conference on New Interfaces for Musical Expression,

Ann Arbor.

Carey, B. & Hyde, J. 2014, Integrated Records, Sydney, viewed 6th of December 2014,

<http://interecords.com>.

Casey, M. 2009, 'Soundspotting: A New Kind of Process', in R.T. Dean (ed.), The Oxford

Handbook of Computer Music, Oxfrord University Press.

Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C. & Slanley, M. 2008, 'Content-

Based Music Information Retrieval: Current Directions and Future Challenges',

paper presented to the IEEE, April 2008.

Chadabe, J. 1984, 'Interactive composing: An overview', Computer Music Journal.

Chadabe, J. 2005, 'The Meaning of Interaction, a Public Talk Given at the Workshop on

Interactive Systems', paper presented to the HCSNet Conference, Sydney, Australia.

Ciufo, T. 2005, 'Beginner's mind: an environment for sonic improvisation', paper

presented to the International Computer Music Conference, Barcelona.

Coessens, K. 2013, 'The Score Beyond Music', in P. de Assis, W. Brooks & K. Coessens

(eds), Sound & Score: Essays on Sound, Score and Notation, Leuven University Press,

pp. 178-81.

Collins, N. 2005, 'Drumtrack: Beat induction from an acoustic drum kit with

synchronised scheduling', paper presented to the International Computer Music

Conference, Barcelona.

Collins, N. & Escrivan Rincón, J.d. 2007, The Cambridge companion to electronic music,

Cambridge University Press, Cambridge ; New York.

Cycling '74 2014, Max, Software, <http://cycling74.com/products/max>.

De Cheveigné, A. & Kawahara, H. 2002, 'YIN, a fundamental frequency estimator for

speech and music', The Journal of the Acoustical Society of America, vol. 111, no. 4, pp.

1917-30.

Dobrian, C. 2004, 'Strategies for Continuous Pitch and Amplitude Tracking in Real-Time

Interactive Improvisation Software', paper presented to the Sound and Music

Conference, Paris.

Drummond, J. 2009, 'Understanding Interactive Systems', Organised Sound, vol. 14, no. 02,

p. 124.

 309

Dudas, R. & Lippe, C. 2006, The Phase Vocoder - Part I, viewed 16th April 2011,

<https://cycling74.com/2006/11/02/the-phase-vocoder---part-i/>.

Dudas, R. & Lippe, C. 2007, The Phase Vocoder - Part II, viewed 16th April 2011,

<https://cycling74.com/2007/07/02/the-phase-vocoder-part-ii/>.

Edmonds, E., Muller, L. & Connell, M. 2006, 'On creative engagement', Visual

Communication, vol. 5, pp. 307-22.

Eigenfeldt, A., Bown, O. & Carey, B. 2015, 'Collaborative Composition with Creative

Systems: Reflections on the First Musebot Ensemble', paper presented to the

International Conference on Computational Creativity, Park City, Utah.

Eldridge, A. 2005, 'Fond Punctions: Generative Processes in Live Improvised

Performance', paper presented to the Generative Arts Practice Symposium, Sydney.

Eldridge, A. 2008, 'Collaborating with the behaving machine: simple adaptive dynamical

systems for generative and interactive music', University of Sussex, Brighton.

Fischer, R. 2008-13, TouchOSC, viewed July 17 2015

<http://hexler.net/software/touchosc>.

Foucault, M. 2005, The Order of Things, Routledge.

Freed, A. & Wright, M. 1997, 'Open Sound Control: A New Protocol for

Communicating with Sound Syntheisizers', paper presented to the International

Computer Music Conference, Thessaloniki, Greece.

Fricke, D. 1979, 'Electronic Music and Synthesizers', Synapse Magazine, Summer 1979.

Gifford, T. & Brown, A. 2008, 'Stochastic Onset Detection: An approach to detecting

percussive attacks in complex audio', paper presented to the Australasian Computer

Music Conference, Sydney.

Gifford, T. & Brown, A. 2009, 'Do androids dream of electric chimera?', paper presented

to the Australasian Computer Music Conference Brisbane, Australia.

Google Inc 2015, Google Analytics, viewed 8th of June 2015,

<https://www.google.com/analytics>.

Gray, C. 1998, 'Inquiry through Practice: developing appropriate research strategies',

paper presented to the No Guru No Method Conference Proceedings, Helsinki.

Gray, C. & Malins, J. 2004, Visualizing Research: A Guide To The Research Process In Art And

Design, Ashgate Pub Ltd.

Grinstead, C.M. & Snell, J.L. 1997, Introduction to probability, 2nd rev. edn, American

Mathematical Society, Providence, RI.

 310

Hamman, M. 1999, 'From Symbol to Semiotic: Representation, Signification, and the

Composition of Music Interaction', Journal of New Music Research, vol. 28, no. 2,

pp. 90-104.

Holmes, A. 2006, 'Reconciling Experimentum and Experientia: Ontology for Reflective

Practice Research in New Media', Speculation and Innovation: applying practice led

research in the creative industries.

Hsu, W. 2005, 'Using timbre in a computer-based improvisation system', paper presented

to the International Computer Music Conference, Barcelona.

Hsu, W. 2006, 'Managing gesture and timbre for analysis and instrument control in an

interactive environment', paper presented to the Conference on New interfaces for

Musical Expression, Paris.

Hsu, W. 2008, 'Two Approaches for Interaction Management in Timbre-Aware

Improvisation Systems', paper presented to the International Computer Music

Conference, Belfast.

Hsu, W. 2010, 'Strategies for Managing Timbre and Interaction in Automatic

Improvisation Systems', Leonardo Music Journal, vol. 20, pp. 33-9.

Hsu, W. & Sosnick, M. 2009, 'Evaluating Interactive Music Systems: An HCI Approach',

paper presented to the Proceedings of New Interfaces for Musical Expression, Pittsburgh.

Huberman, A. 2004, 'Artists in Conversation - Kaffew Matthews by Anthony

Huberman', BOMB Magazine.

IRCAM 2015, IRCAM Forumnet, IRCAM, Paris, France, viewed 8th of June 2015,

<http://forumnet.ircam.fr/>.

Jacucci, G., Gamberini, L., Freeman, J. & Spagnolli, A. 2014, 'Symbiotic Interaction: A

Critical Definition and Comparison to other Human-Computer Paradigms', in,

Symbiotic Interaction, vol. 8820, Springer International Publishing, Switzerland, pp.

3-20.

Jefferies, J. 2012, 'Mangling practices: Writing reflections', Journal of Writing in Creative

Practice, vol. 5, no. 1, pp. 73-84.

Jehan, T., Freed, A. & Dudas, R. 1999, 'Musical Applications of New Filter Extensions

to Max/MSP', paper presented to the International Computer Music Conference,

Beijing, China.

Jehan, T. & Schoner, B. 2001, 'An Audio-Driven Perceptually Meaningful Timbre

Synthesizer', paper presented to the International Computer Music Conference, Havana,

Cuba.

 311

Johnston, A. 2009, 'Interfaces for musical expression based on simulated physical

models', University of Technology, Sydney.

Johnston, A., Marks, B. & Edmonds, E. 2005, ''Spheres of Influence': an interactive

musical work', paper presented to the Proceedings of the second Australasian conference

on Interactive entertainment, Sydney.

Kanga, Z. 2014, 'Inside the Collaborative Process: Realising New Works for Solo Piano',

PhD thesis, Royal Academy of Music.

Kimura, M. 1996, 'Computers for Performers: Crossing Boundaries for the Future',

Computer Music Journal, vol. 20, no. 4, pp. 25-6.

Kimura, M. 2004, 'Creative process and performance practice of interactive computer

music: a performer's tale', Organised Sound, vol. 8, no. 03, pp. 289-96.

Klingbiel, M. 2009, 'Spectral Analysis, Editing, and Resynthesis: Methods and

Applications', PhD thesis, Columbia University.

LaFosse, A. 1996, Looper's Delight, viewed 6 June 2015, <http://www.loopers-

delight.com/>.

Latour, B. 1990, 'Technology is society made durable', The Sociological Review, vol. 38, no.

S1, pp. 103-31.

Latour, B. 1992, 'Where Are the Missing Masses? The Sociology of a Few Mundane

Artifacts', in W.E. Bijker & J. Law (eds), Shaping Technology/Building Society: Studies

in Sociotechnical Change, MIT Press, Cambridge, Mass., pp. 225-58.

Latour, B. 1994, 'On Technical Mediation - Philosophy, Sociology, Geneology ', Common

Knolwedge, vol. 3, no. 2, pp. 29-64.

Lévy, B. 2013, 'Principles and Architectures for an Interactive and Agnostic Music

Improvisation System : principes et architectures pour un système interactif et

agnostique dédié à l’improvisation musicale', UPMC.

Lewis, G. 2000, 'Too many notes: Computers, complexity and culture in voyager',

Leonardo Music Journal, vol. 10, pp. 33-9.

Lexer, S. 2010, 'Piano+: An Approach towards a Performance System Used within Free

Improvisation', Leonardo Music Journal, pp. 41-6.

Licklider, J.C.R. 1960, 'Man-computer symbiosis', Human Factors in Electronics.

Lindell, R. 2012, 'Code as Design Material', paper presented to the Participatory Materialities

Invited Workshop at Aarhus University, Aarhus, Denmark.

Logan, B. 2000, 'Mel Frequency Cepstral Coefficients for Music Modeling', paper

presented to the International Symposium on Music Information Retrieval.

 312

Malt, M. & Jourdan, E. 2008, 'Zsa.Descriptors: a library for real-time descriptors

analysis', paper presented to the Sound and Music Computing Conference, Berlin.

Malt, M. & Jourdan, E. 2009, 'Real-Time Uses of Low Level Sound Descriptors as Event

Detection Functions Using the Max/MSP Zsa.Descriptors Library', paper

presented to the Brazilian Symposium on Computer Music, Recife, Brazil.

Martin, A. 2014, 'Methods to Support End User Design of Arrangement-Level Musical

Decision Making', University of Sydney, Sydney.

Martin, A., Jin, C., Carey, B. & Bown, O. 2012, 'Creative Experiments Using a System for

Learning High-Level Performance Structure in Ableton Live', paper presented to

the Sound and Music Computing Conference, Copenhagen.

Mattozzi, A. 2012, 'Rewriting the script. A methodological dialogue about the concept of

‘script’ and how to account for the mediating role of objects', paper presented to

the Department of Philosphy-STePS joint seminar, University of Twente.

Maturana, H. & Varela, F. 1980, Autopoiesis. The Realization of the Living, Springer

Netherlands.

McAulay, R.J. & Quartieri, T.F. 1986, 'Speech Analysis/Synthesis Based on A Sinusoidal

Representation', IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34,

no. 4, pp. 744-54.

McLean, A. 2011, 'Artist-Programmers and Programming Languages for the Arts',

Department of Computing, Goldsmiths, University of London.

McLean, A. & Wiggins, G. 2010, 'Bricolage programming in the creative arts', paper

presented to the 22nd Psychology of Programming Interest Group, Madrid.

Moura, L. & Pereira, H.G. 2004, Symbitic Art Manifesto, viewed 21st of January 2014,

<http://www.leonelmoura.com/manifesto.html>.

Moura, L. & Pereira, H.G. 2011, Istanbul Manifesto, viewed 21st of January 2014,

<http://www.leonelmoura.com/manifesto_istanbul.html>.

Oxford English Dictionary 2015a, - "interpretation, n.", OED Online, Oxford University

Press, viewed June 25th 2015.

Oxford English Dictionary 2015b, - "symbiosis, n.", OED Online, Oxford University Press,

viewed June 25th 2015.

Pachet, F. 2002, 'The continuator: Musical interaction with style', paper presented to the

Proceedings of the International Computer Music Conference, Gotheborg, Sweden.

Paine, G. 2002, 'Interactivity, where to from here?', Organised Sound, vol. 7, no. 03, pp.

295-304.

 313

Penha, R. 2013, Spatium - tools for sound spatialization, viewed 10th of October 2013,

<http://spatium.ruipenha.pt/>.

Penha, R. & Oliveira, J.P. 2013, 'Spatium, tools for sound spatialization', paper presented

to the Sound and Music Computing Conference, SMC 2013, Stockholm, Sweden.

Pickering, A. 1995, The Mangle of Practice: Time, Agency, and Science, University of Chicago

Press.

Pickering, A. & Guzik, K. 2008, The mangle in practice : science, society, and becoming, Duke

University Press, Durham.

Pressing, J. 1988, 'Cognitive Processes in Improvisation', in W.R. Crozier (ed.), Cognitive

Processes in the Perception of Art, Elsevier Science Publications, Holland.

Pressing, J. 1990, 'Cybernetic issues in interactive performance systems', Computer Music

Journal, vol. 14, no. 1, pp. 12-25.

Puckette, M., Apel, T. & Zicarelli, D. 1998, 'Real- time audio analysis tools for Pd and

MSP', paper presented to the International Computer Music Conference, San Francisco.

Roads, C. 1996, The computer music tutorial, MIT Press, Cambridge, Mass.

Robson, C. 2002, Real world research: a resource for social scientists and practitioner-researchers,

Second edn, Blackwell, Oxford.

Roche, H. 2011, 'Dialogue and Collaboration in the Creation of New Works for Clarinet',

PhD thesis, University of Huddersfield.

Rose, J. & Jones, M. 2005, 'The double dance of agency: A socio-theoretic account of

how machines and humans interact', Systems, Signs & Actions, vol. 1, no. 1, pp. 19-

37.

Rowe, R. 1992, Interactive Music Systems: Machine Listening and Composing, The MIT Press,

Cambridge, MA.

Rutherford-Johnson, T. 2011, A Journey to Aaron Cassidy's Second String Quartet, viewed 20

September 2012, <http://www.newmusicbox.org/articles/A-Journey-to-Aaron-

Cassidys-Second-String-Quartet/>.

Sarath, E. 1996, 'A New Look at Improvisation', Journal of Music Theory, vol. 40, no. 1, pp.

1-38.

Schön, D. 1983, The Reflective Practitioner: How Professionals Think in Action, 1995 edn,

Ashgate Publishing Ltd, Aldershot.

Schulz-Schaeffer 2006, 'Who Is the Actor and Whose Goals Will Be Pursued? Rethinking

Some Concepts of Actor Network Theory', in B. Wieser, S. Karner & W. Berger

 314

(eds), Prenatal Testing: Individual Decision or Distributed Action?, Profil, München, pp.

131-58.

Scrivener, S. 2000, 'Reflection in and on action and practice in creative-production

doctoral projects in art and design', Working Papers in art and design, vol. 1.

Serra, X. 1989, 'A System for Sound Analysis/Transformation/Synthesis based on a

Deterministic plus Stochastic Decomposition', PhD thesis, Stanford University,

Stanford, CA.

SoundCloud 2015, SoundCloud, viewed 8th of June 2015, <http://soundcloud.com>.

Stephen, D. & Stanley, S. 2015, Interpretation, Grove Music Online. Oxford Music Online.,

Oxford University Press, viewed June 26 2015,

<http://www.oxfordmusiconline.com/subscriber/article/grove/music/13863>.

Stiegler, B. 1998, Technics and time, Stanford University Press, Stanford, Calif.

Stucke, A. 2011, 'Embodying Symbiosis: A Philosophy of Mind in Drawing', MFA thesis,

California College of the Arts.

Taruskin, R. 2009, Music in the Late Twentieth Century: The Oxford History of Western Music,

Oxford University Press, p. 610.

Telestream, Inc., 2012, ScreenFlow, viewed 20th of June 2013,

<http://www.telestream.net/screenflow/overview.htm>.

Todoroff, T., Daubresse, E. & Fineberg, J. 1995, 'Iana∼ (A Real-Time Environment for

Analysis and Extraction of Frequency Components of Complex Orchestral

Sounds and Its Application within a Musical Context)', International Computer Music

Conference, International Computer Music Association, San Francisco, pp. 292-3.

Turkle, S. & Papert, S. 1992, Epistemological pluralism and the revaluation of the concrete, vol. 11,

Journal of Mathematical Behavior.

Vimeo, LLC 2015, Vimeo, viewed 8th of June 2015, <http://vimeo.com>.

Wiggins, G.A. 2006, 'A preliminary framework for description, analysis and comparison

of creative systems', Knowledge-Based Systems, vol. 19, no. 7.

Winkler, T. 2001, Composing Interactive Music: Techniques and Ideas Using Max, The MIT

Press, Cambridge, MA.

Wolff, C. 1964, For 1, 2 or 3 people, Edition Peters, New York.

Wordpress Foundation 2015, Wordpress, viewed 8th of June 2015,

<http://wordpress.org>.

Young, L.M. (ed.) 1963, An Anthology of Chance Operations, La Monte Young and Jackson

Mac Low, New York City.

 315

Young, M. 2008, 'NN Music: Improvising with a `Living' Computer', in K.-M. Richard,

S, Y. lvi & J. Kristoffer (eds), Computer Music Modeling and Retrieval. Sense of Sounds,

Springer-Verlag, pp. 337-50.

Young, M. 2009, 'Creative Computers, Improvisation and Intimacy', paper presented to

the Dagstuhl Seminar Proceedings, Dagstuhl, Germany.

Young, M. & Lexer, S. 2003, 'FFT Analysis as a Creative Tool in Live Performance',

paper presented to the Conference on Digital Audio Effects London, UK.

Zicarelli, D. 1987, 'M and jam factory', Computer Music Journal, pp. 13-29.

Zils, A. & Pachet, F. 2001, 'Musical Mosaicing', paper presented to the COST G-6

Conference on Digital Audio Effects, Limerick, Ireland, December 6-8, 2001.

Zorn, J. 1984, Cobra, Hathut, Switzerland.

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Contents
	List of Figures
	Abstract
	Chapter 1. Introduction
	1.1 Introduction
	1.2 The _derivations software
	1.3 Performer-developer context
	1.4 Background and context for the research
	1.5 Self-reflective practice
	1.6 Structure of the thesis

	Chapter 2. Literature Review - Interactive Music Systems
	2.1 Introduction
	2.2 Definitions, models and metaphors
	2.3 Design strategies – key concepts and approaches
	2.3.1 Relationship between input analysis and generation
	2.3.2 Timbral awareness
	2.3.3 Sonic and algorithmic derivation
	2.3.4 Live algorithms and musical autonomy
	2.3.5 Rehearsal and performance practice

	2.4 Conclusion

	Chapter 3. Methodology
	3.1 Practice-based and creative-production research projects
	3.1.1 Practice-based research
	3.1.2 Creative-production vs. problem-solving research projects
	3.1.3 The reflective practitioner

	3.2 Reflective practice as research methodology
	3.3 Introducing the mangle of practice
	3.3.1 The mangle and reflective practice
	3.3.2 Connecting the mangle to creative arts research

	3.4 Bricolage programming and reflective practice
	3.5 Bricolage programming and the mangle of practice
	3.6 Data Collection
	3.6.1 Research memos
	3.6.2 Max patches
	3.6.3 Audio recordings
	3.6.4 Data excluded from the research

	3.7 Conclusion

	Chapter 4. Wayfinding Part 1: Formative Software
	4.1 Introduction
	4.2 Formative development approaches
	4.2.1 Input analysis and segmentation
	4.2.2 Temporal pattern recognition
	4.2.3 Data sampling techniques
	4.2.4 Probabilistic Methods

	4.3 Reflections
	4.3.1 Reconciling analysis with generation
	4.3.2 Balancing control, influence and derivation in interactive systems
	4.3.3 Hearing vs. Listening

	4.4 Conclusion

	Chapter 5. Wayfinding – Part 2: Synthesis and sampling
	5.1 Introduction
	5.2 Synthesis and processing methods
	5.2.1 Four buffer phase vocoder
	5.2.2 Pitch Models

	5.3 Towards integrated systems
	5.3.1 Live-processing-1
	5.3.2 Phrase Player

	5.4 Reflections
	5.4.1 Co-evolving systems with practices
	5.4.2 Connections between data and generativity

	5.5 Conclusion

	Chapter 6. Wayfinding – Part 3: _derivations
	6.1 Introduction
	6.2 The phrase database
	6.3 Upgrading and expanding output modules
	6.4 Phrase triggering and selection
	6.5 Phrase matching in _derivations
	6.5.1 Multi-descriptor phrase matching using analyzer~
	6.5.2 The common match algorithm
	6.5.3 Limitations of the multi-descriptor and common match approaches
	6.5.4 User-defined descriptor weighting
	6.5.5 User-defined descriptor filtering
	6.5.6 Automatic similarity metric
	6.5.7 Evaluating multi-descriptor phrase matching
	6.5.8 MFCCs in _derivations

	6.6 Self-referencing
	6.7 Evaluating live sampling and generation in _derivations
	6.8 Session databases
	6.8.1 Cumulative databases
	6.8.2 Merged databases
	6.8.3 Phrase disabling
	6.8.4 Performing with multi-session databases

	6.9 Reflections
	6.9.1 Evaluating session databases
	6.9.2 Performing with a stabilised artefact

	6.10 Conclusion

	Chapter 7. Findings: Reflections of a performer-developer
	7.1 Introduction
	7.2 Artefact scripts and the performer-developer
	7.2.1 Artefacts as instruments of sociotechnical knowledge
	7.2.2 Performer-developer context
	7.2.3 An artefact’s ‘episteme’
	7.2.4 Stabilised and non-stabilised artefacts
	7.2.5 Attributing agency
	7.2.6 Models of ‘invisibilisation’
	7.2.7 Conclusion

	7.3 Interpretation in improvised human-machine performance
	7.3.1 Free-improvisation and interpretative performance
	7.3.2 Freedom and constraint
	7.3.3 Extra-musical constraint
	7.3.4 Interactive systems and improvisational performance
	7.3.5 Development as sociotechnical curation
	7.3.6 Software as musical text
	7.3.7 Conclusion

	7.4 Symbiosis in human-machine performance
	7.4.1 Metaphors for interactivity
	7.4.2 Symbiosis in art and technology
	7.4.3 Defining symbiotic musical interaction
	7.4.4 Symbiosis and _derivations
	7.4.5 Template for the design of a musical symbiont

	7.5 Conclusion

	Chapter 8. Conclusions, Ongoing and Future Work
	8.1 Contributions of the research
	8.2 Performances, collaborations and releases
	8.3 Software distribution and communication
	8.4 Ongoing and Future Work
	8.5 Final thoughts

	Appendices
	Appendix A - _derivations software
	Appendix B - Musical releases
	Appendix C - Performance documentation
	Appendix D - Website
	Appendix E - _derivations Video Documentation73
	Appendix F - Event and Patch Timelines
	Appendix G - Formative Software
	Appendix H - Third-party produced releases
	Appendix I - Online content
	Appendix J - Video Documentation Transcripts
	Appendix K - Publications

	Bibliography

