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Abstract 
 

Rehabilitation is the process of training for someone in order to recover or improve their 

lost functions caused by neurological deficits. The upper limb rehabilitation system 

provides relearning of motor skills that are lost due to any neurological injuries via motor 

rehabilitation training. The process of motor rehabilitation is a form of motor learning via 

practice or experience. It requires thorough understanding and examination of neural 

processes involved in producing movement and learning as well as the medical aspects that 

may affect the central nervous system (CNS) or peripheral nervous system (PNS) in order 

to develop an effective treatment system. Although there are numerous rehabilitation 

systems which have been proposed in literatures, a low cost upper limb rehabilitation 

system that maximizes the functional recovery by stimulating the neural plasticity is not 

widely available. This is due to lack of motivation during rehabilitation training, lack of 

real time biofeedback information with complete database, the requirement of one to one 

attention between physiotherapist and patient, the technique to stimulate human neural 

plasticity.     

    Therefore, the main objective of this thesis is to develop a novel low cost rehabilitation 

system that helps recovery not only from loss of physical functions, but also from loss of 

cognitive functions to fulfill the aforementioned gaps via multimodal technologies such as 

augmented reality (AR), computer vision and signal processing. In order to fulfill such 

ambitious objectives, the following contributions have been implemented. 

    Firstly, since improvements in physical functions are targeted, the Rehabilitation system 

with Biofeedback simulation (RehaBio) is developed. The system enhances user’s 

motivation via game based therapeutic exercises and biofeedback. For this, AR based 

therapeutic games are developed to provide eye-hand coordination with inspiration in 



 

 xix 

motivation via immediate audio and visual feedback. All the exercises in RehaBio are 

developed in a safe training environment for paralyzed patients. In addition to that, real-

time biofeedback simulation is developed and integrated to serve in two ways: (1) from the 

patient’s point of view, the biofeedback simulation motivates the user to execute the 

movements since it will animate the different muscles in different colors, and (2) from the 

therapist’s point of view, the muscle simulations and EMG threshold level can be 

evaluated as patient’s muscle performance throughout the rehabilitation process.  

    Secondly, a new technique that stimulates the human neural plasticity is proposed. This 

is a virtual human arm (VHA) model that driven by proposed continuous joint angle 

prediction in real time based on human biological signal, Electromyogram (EMG). The 

VHA model simulation aims to create the illusion environment in Augmented Reality-

based Illusion System (ARIS). 

    Finally, a complete novel upper limb rehabilitation system, Augmented Reality-based 

Illusion System (ARIS) is developed. The system incorporates some of the developments 

in RehaBio and real time VHA model to develop the illusion environment. By conducting 

the rehabilitation training with ARIS, user’s neural plasticity will be stimulated to re-

establish the neural pathways and synapses that are able to control mobility. This is 

achieved via an illusion concept where an illusion scene is created in AR environment to 

remove the impaired real arm virtually and replace it with VHA model to be perceived as 

part of the user’s own body. The job of the VHA model in ARIS is when the real arm 

cannot perform the required task, it will take over the job of the real one and will let the 

user perceive the sense that the user is still able to perform the reaching movement by their 

own effort to the destination point. Integration with AR based therapeutic exercises and 

motivated immediate intrinsic and extrinsic feedback in ARIS leads to serve as a novel 

upper limb rehabilitation system in a clinical setting. 

    The usability tests and verification process of the proposed systems are conducted and 

provided with very encouraging results. Furthermore, the developments have been 

demonstrated to the clinical experts in the rehabilitation field at Port Kembla Hospital. The 

feedback from the professionals is very positive for both the RehaBio and ARIS systems 

and they have been recommended to be used in the clinical setting for paralyzed patients. 



 

 

 

Chapter 1  
Introduction 

 

Functional limitation or paralysis refers to loss of muscle function for one or more muscles 

in part of the body. This is most often caused by damage in the nervous system: central 

nervous system (CNS) or peripheral nervous system (PNS) which is the way passes the 

messages pass between the brain and muscles. This damage may be due to traumatic brain 

injury (TBI), spinal cord injury (SCI), cerebrovascular accident (CVA) or any other 

neurological disorders. The paralysis can be either localised or generalised where the 

former affects a particular part of the body while the latter affects a wider area depending 

on which level of the nervous system is damaged. This limitation has effects in three 

domains of function: physical, psychological, and social as depicted in Figure 1.1 (adopted 

from [1]). Physical function is the intended focus of most physical rehabilitation 

assessments and interventions. Although physical rehabilitation professionals focus 

primarily on physical functioning, researchers from [1] appropriately points out that 

rehabilitation impacts on all three domains. In order to recover from physical loss functions 

and to improve quality of life, the “Physical Therapies” or “Rehabilitation Therapies” are 

conducted in rehabilitation care. The main purpose of rehabilitation is aimed to improve, 

maintain or restore physical strength, cognition and mobility with optimal results and a 

return to normal social life. To facilitate the maximum recovery outcomes, diverse teams 

of clinical experts blend many specialties for the best rehabilitation treatment plan such as 
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physical therapy for increased strength and mobility, occupational therapy for improved 

daily life skills and cognitive functions and so forth. 

    This chapter covers a basic background on physical rehabilitation technique for any 

neurological disabilities by means of traditional approach and technology approach. This 

background provides the reader with the foundation for further knowledge of an effective 

rehabilitation system with advanced technology. To this end, three main areas are carefully 

reviewed to provide effective and rapid recovery from limitation of upper limb 

movements. The review analyses the merits and deficiencies of these areas to enhance the 

best recovery outcome for paralyzed patients, which ultimately form the research 

objectives for this thesis. In this chapter, the structure of the thesis is also outlined to 

simplify the reading and understanding.   

1.1. Background 
In order to provide the best rehabilitation treatment for paralysis patients due to any 

neurological deficits, American Physical Therapy Association APTA proposes a patient 

management cycle [2] involving Examination, Evaluation, Diagnosis, Prognosis, 

Intervention elements for the physical rehabilitation process. Examination is the very first 

element in rehabilitation process to collect data such as intensity of muscle strength, 

limitation level in range of motion and ability of functional activities. After the initial 

examination, the collected data are then organized and analyzed in Evaluation element to 

identify the causative factors. Based on the process and end result of evaluating 

 
Figure 1-1 Healthcare Continuum from Disease to Handicap 
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examination data, physical therapists organize into clusters, syndromes or categories in 

Diagnosis element. After a thorough analysis of data in Diagnosis element has been 

evaluated, suitable timing and frequency of the interventions to reach the optimal level of 

improvement is defined in Prognosis element. The Intervention is the physical therapy 

procedures which include coordination, communication, restorative interventions, 

compensatory interventions and preventative interventions which are chosen based on the 

evaluation of the examination, medical and physical therapy diagnosis, prognosis, 

anticipated goals and expected outcomes. The outputs from the Intervention are evaluated 

for efficacy of treatment. Reexamination of the patient is ongoing and involves continuous 

checking toward anticipated goals basedt on the outputs of Intervention. If the patient 

attains the desired level of competence, discharge is considered. If the patient fails to 

achieve the stated outcomes, the therapist must determine the reasons and modifications 

are sought until the desired goal is achieved. Therefore, the design of the Intervention 

plays a major role in the rehabilitation process along with the requirements of individual 

condition. The intervention can be manual based physical therapy or technology based 

physical therapy. In the context of manual based therapy or traditional therapy, 

rehabilitation exercises are provided by physiotherapist with one-to-one attention between 

therapist and patient. This practice leads to exhaust the physiotherapist in the long run. In 

addition to this, ongoing rehabilitation costs and labor costs are too high for the patients 

and their families all over the world.  

    In Australia, 4.2 million or 18.5% of Australians are living with disability in 2012 

according to the Australian Bureau of Statistics [3]. Among those people with disability, 

3.7 million (88%) had a specific limitation or restriction that has an effect on mobility, 

daily live activities, communication or limits social and community participation. Among 

these 3.7 million, only 184,700 disable people are living in cared-accommodation. 

Furthermore, the rest of the people with disability are living in private and non-private 

dwellings without the help from professionals. This can be due to the lack of local 

rehabilitation facilities or patients are unable to travel to rehabilitation facilities. However, 

one of the main reasons for this is the “Cost” of caring. Based on the Deloitte Assess 

Economics calculations [4], the estimated cost of disability in Australia for each individual 

is almost 130,000 AUD which is very expensive and become a burden for the patients and 

their families. According to the physiotherapy registrant data in 2012 [5], there are a total 

of 24,304 physiotherapists in Australia. This is almost 8:1 (patients: physiotherapist) ratio 

in cared-accommodation and obviously there is a high chance of fatigue for 
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physiotherapists in the long run. Therefore, the shortage of rehabilitation therapists in 

rehabilitation sectors is one of the major shortfalls in Australia. In addition to this, 

repetitive traditional rehabilitation exercises lead easily to bore and demotivate in long 

term rehabilitation training. 

    Due to these limitations, technology based physical rehabilitation therapy becomes a 

favourable option. Employing the technology in rehabilitation provides several advantages 

as follows. In the environment in which labor costs continue to rise and the costs of 

technology are falling, employing technology will certainly be cost-effective in the long 

run. Moreover, only technologically based therapies are able to provide motivated 

exercises repetitively without risking therapist fatigue. In addition to this, only technology 

based rehabilitation treatment is able to stimulate brain plasticity for fast recovery of motor 

functions. Therefore, the aim of this thesis is to develop technology based rehabilitation 

system that it will close the gap of current shortfalls such as high cost, shortage of 

manpower and boring traditional rehabilitation exercises.                     

1.2. Technology based Rehabilitation Systems 
In terms of technology based rehabilitation therapy, rehabilitation robotic systems, Virtual 

Reality (VR) systems and Augmented Reality (AR) systems have been proposed as 

innovative technologies that significantly contribute in physical rehabilitation. These 

technologies contribute in the rehabilitation area not only to enhance the quality, 

consistency, and documentation of the care received, but also to extend the reach of 

medical rehabilitation service to remote areas so that every disabled person is able to 

receive effective rehabilitation care.  

1.2.1. Robotic Systems 

The very first conference on medical manipulators was presented in 1978 at Rocquencourt, 

France [6] by specialists from all over the world. This was where industry robots merged in 

the medical field. Since then, they have been grown significantly as assistive devices or 

rehabilitation robots in the rehabilitation field. The use of robots in rehabilitation has been 

proposed as a labor-saving approach for the provision of physiotherapy. Strictly speaking, 

a rehabilitation robot is not intended to replace the mechanical function of weak or missing 

human limbs; instead it is integrated into the rehabilitation field to enhance in restoration 

of lost functions. It can enhance rehabilitation exercises provided under direct guidance by 
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a physiotherapist. The robot can be interactive and alter the therapy provided based on 

patient’s immediate reaction or response to treatment over time such as movement pattern, 

number of repetitions, the forces exerted by the robot. Hence, it can provide more 

consistent results to achieve the ultimate goals of the treatment. In the context of 

rehabilitation, robotic devices can be conceived as (1) fixed-based or end-effector systems 

[7] and as (2) exoskeleton systems [8] as depicted in Figure 1.2. It is suggested that for the 

limb segment movements requiring less than 45 degrees, end-effector system appear more 

appropriate while larger joint excursions are more suitable with exoskeleton. And 

whenever a portable solution is expected, exoskeletal structures are likely more convenient 

than end-effector systems. In any case, both of the systems have close physical interaction 

with human user through smart sensors, actuators, algorithms and control strategies to 

detect the complex human expressions or physiological phenomena and translate this 

information as commands for the rehabilitation robot. This information is crucial to 

identify a good rehabilitation robot for both clinician and patients. The notable evidence 

based rehabilitation robot systems that are currently available in the market and 

rehabilitation care for upper limb are InMotion Arm, InMotion Wrist and InMotion Hand 

[9] which are clinical version of MIT-manus [10]and ArmeoPower and ArmeoSpring [8] 

which are clinical version of the ARMin rehabilitation robot [11].            

1.2.2. Virtual Reality Systems 

From 1980s, Jaron Lanier [12] first introduced “Virtual Reality” and become popular and 

started to employ VR in many applications. VR is a human-computer interface technology 

that permits the user to experience and interact within a virtual environment (VE) and 

experience it as if it were happening in real environment (RE). VE is the artificial 

 
(a) End-effector system    (b) Exoskeleton system  

Figure 1-2: Rehabilitation Robotic Systems 
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environment that has developed with special software for the user to immerse and operate 

within this environment. It provides an easy, powerful, intuitive way of human-computer 

interaction through the use of goggles, gloves, body suits or headsets. The user can see and 

manipulate the simulated environment in the same way that works in the real world. The 

very first attempt of VR application was when it was employed as a visualization tool for 

an architect [13]. Since then, VR became more and more popular and has been widely used 

for many other applications such as healthcare, education, military, entertainment and so 

forth. Among these applications, healthcare is one of the biggest areas that employ VR 

technology to encompass the treatment, training, robotic surgery and simulation due to its 

safe environment and motivation. In the context of rehabilitation, VR systems have proven 

that they provide motivating training that can be superior to the training in the real world 

due to enriched environments, highly functional and task-oriented practice environments 

that are normally limited to the actual training environment[14] . In additional to this, VR 

can be employed to create different types of therapeutic environment specifically to a 

particular disability and different types of feedback. Moreover, it can also be used for 

setting up an automatic schedule for training, testing and recording the user’s motor 

performances. Based on these advantages, researchers have integrated VR in rehabilitation 

robotics to provide a better rehabilitation platform. To create the VR environment, it 

requires additional hardware devices other than personal desktop system such as head-

mounted display (HMD) or projector, tracker, manipulation device (three-dimensional 

mouse or data glove) as shown in Figure 1.3 (adopted from [15]). The examples of VR 

system for upper limb rehabilitation are portrayed in Figure 1.4 (adopted from [16]). 

However, the interactive devices that are required to be worn by the user in VR system 

 
Figure 1-3: Components of Virtual Reality Application  
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leads to one of the major issues in rehabilitation therapy. The limitations include: 

1) Device weight that affects on paralyzed patients especially when worn on an 

impaired limb. 

2) Fully immersive environment in HMD may lead to dangerous prone mobility in 

real environment.  

3) Lack of feeling of “presence” due to being immersed in a computer generated 

environment.  

4) The requirement of mapping the movements of real arm/hand to the movement of 

the avatars in VE.  

    Therefore, researchers were looking for a new technology that could provide a safe 

training environment yet be able to provide the same or better motivations and benefits as 

VR for rehabilitation therapy. This new technology is termed as “Augmented Reality”, 

AR. 

1.2.3. Augmented Reality Systems 

AR is a combination of real world and virtual world where virtual objects lay on top of the 

real world objects. In other words, AR allows the overlay of digital information on the 

physical world where you “remain” as shown in Figure 1.5 (adopted from [17]). The 

interaction of the AR experience is in real-time without the need of any interactive devices 

as in VE. One of the first works on AR started at Boeing in 1990 and another work 

occurred in 1992 for the US air force [18]. In late 1990’s Hirokazu Kato released AR 

toolkit to develop AR systems and this is when researchers begun to employ AR in various 

 
Figure 1-4: Virtual Reality based Upper Limb Rehabilitation Exercise 
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applications [19]. Although AR is still in the exploratory stage in many applications 

including the rehabilitation field, it provides additional advantages such as the user can 

view the real world and real objects can be employed as stimuli for the therapy. In 

additional to this, as a rehabilitation therapy, the physical movements for treatment and 

interacting activities are able to be kept consistent in AR environment. Since the research 

in AR rehabilitation application is relatively new, there is room for improvement in several 

areas such as display, depth perception and trackers to become more accurate, lighter, 

cheaper, and less power consuming. 

1.2.4. Feedback in Rehabilitation System 

The role of feedback in rehabilitation therapy is vital to promote motor learning. Feedback 

can be conceived as (1) intrinsic (inherent) feedback and (2) extrinsic (augmented) 

feedback. The former represents a natural result of the movement such as visual, vestibular 

and proprioception while the latter incorporates additional sensory cues that are not 

normally received naturally during the treatment such as visual cues, verbal cues, tactile 

 
Figure 1-5: Augmented Reality based Upper Limb Rehabilitation Exercise  
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cues and biofeedback devices. In general, feedback provides the information of initial 

position before the movement, error detection during the movement, and movement 

outcomes. In other words, feedback is monitoring posture and balance, control of slow 

movements or precision movements in order to maintain a desired treatment outcome. 

They can be represented with visual feedback, audio feedback, tactile feedback and 

biofeedback. In most of the rehabilitation systems, wide ranges of visual, audio and tactile 

feedback are employed to increase the quality of rehabilitation training. In terms of 

biofeedback, EMG based biofeedback is the most commonly used in motor rehabilitation 

as this is the self-generated biological signal that directly explains the performance of the 

muscles. EMG biofeedback is used for either increasing the activity in weak or paretic 

muscles or reduction in tone of the spastic muscles. According to the literature [20], it 

appears to be promising in both musculoskeletal and neurological rehabilitation although 

only a limited number of randomized controlled trials are reported.       

1.3. Limitations of Technology based Rehabilitation 
Systems 
Although technology based rehabilitation provides the ultimate goal of rehabilitation 

training which is to maximize the patient attention and effort with maximum repetitions 

and long term engagement. Nevertheless, there are several shortcomings with respect to 

this technology in rehabilitation due to the following aspects. From the clinical point of 

view:   

 The absence of education about technological advancements and apprehensions by 

clinicians. 

 The absence of consultation between the rehabilitation system developers 

(engineers) and rehabilitation professionals to provide efficient human-machine 

interface, user friendly, effective for specific disabilities. 

 The rehabilitation professionals are uncomfortable with technology and have a fear 

of losing communication with patients not only in home-based rehabilitation care 

but also in clinical settings. 

From a technology point of view: 

 The funding challenges to developed technological based rehabilitation systems 

especially for the cost of robotic based systems.  
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 The lack of values and motivations to the proper treatment program that enhance 

movement recovery. 

 The lack of feedback enhancements that not only emphasise error reduction, but 

also emphasise user’s own kinematics.  

 The lack of effectively augmenting the individual’s own residual sensory 

perceptions into the treatment program. 

 The lack of effectively stimulating to exhibit neural plasticity to recover faster from 

limited physical functions. 

    In summary, the effective therapeutic interventions based on rapid development of new 

technologies require a multimodal process. The knowledge sharing between clinicians and 

developers, efficient trained experts, usage of latent signals from individual as much as 

possible, enhanced motivations in treatments with real-time augmented feedback and 

clinical trials that demonstrate the value of near-term and future rehabilitation applications 

are the main ingredients to develop the successful intervention.      

1.4. Objectives and Contributions 
After analyzing the gaps in rehabilitation systems associated with current technologies, it is 

obvious that there are several gaps for a novel rehabilitation system that effectively 

benefits motor rehabilitation. In effort to close these gaps, the research objectives of this 

thesis are given as below.  

- To provide a novel low cost home-based rehabilitation system that requires 

minimum supervision by physiotherapists. 

- To create the safe training environment for paralysed patients.  

- To integrate with rich biofeedback information in the novel rehabilitation system to 

provide higher motivation especially for long term training. 

- To stimulate the human neural plasticity effectively for fast recovery in motor 

functions.    

    In order to fulfill the defined objectives, the following contributions, novel upper limb 

rehabilitation systems are designed and developed in order to recover faster from limited 

functions of upper limb.  The specific research contributions for this thesis are as follows;  
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1. Introduce two novel rehabilitation systems namely Rehabilitation Biofeedback 

(RehaBio) system and Augmented Reality based Illusion System (ARIS) for upper 

limb rehabilitation to overcome the limitations that stated in aforementioned.     

2. Develop motivated rehabilitation exercises based on AR technologies in a safe 

environment along with the complete database for physiotherapist. This 

development aims to close the gap by reducing the requirement of one to one 

attention between patient and therapist with different forms of eye-hand 

coordination, cognitive training, motivation and challenge for long term 

rehabilitation training. In addition to this, design a database that provides easy 

tracking of individual physiological data, performance history, as well as related 

personal information during the period of treatment. This is to reduce the manual 

data entry and inspection time of clinical professionals. In order to manipulate all 

the developed exercises, only personal computer with built in webcam and four 

color markers are required. Therefore, the proposed technique is very low cost and 

effective for every patient and even he/she can perform the rehabilitation exercises 

at home under professional guidance without travelling to rehabilitation hospitals or 

centers.     

3. Develop both intrinsic and extrinsic feedback based on utilizing the EMG 

biofeedback in real-time. This design aims to close the current gap in lack of proper 

evaluation and analyzing of patient’s performance during the rehabilitation process.   

4. Develop a continuous joint angle prediction model in real time via user own 

biosignal to simulate the developed virtual arm. This is to excite the human brain 

neural plasticity and provide self-motivation based on user’s latent EMG signals 

via novel proposed algorithm.  

5. Develop a virtual arm that can be used in the illusion environment as an artificial 

visual feedback. The real time simulation of this visual feedback is based on user 

intention via EMG signal. This new technique outperform than traditional mirror 

therapy for rehabilitation by without needing the additional apparatus and hardware 

attachments to the patients.    

6. Develop the complete novel upper limb rehabilitation system by integrating all of 

the above developments which is the ultimate goal of this thesis.   
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1.5. Organization of Thesis 
This thesis is structured as follows; 

Chapter two: Introduce the literature review about human nervous system and its possible 

deficits due to numerous reasons. After that, the available recovery methods through 

neuroplasticity were reviewed. This includes technological based rehabilitation systems, 

available augmenting feedbacks in terms of both intrinsic and extrinsic for better 

motivations and the importance of biosignal in motor rehabilitation by assessing their 

benefits and limitations thoroughly.  

    The chapters, three to five, discuss the development of a novel system that closes the 

current gaps in the rehabilitation field for this research, as follows: 

Chapter three: Present the first contribution of this thesis represented by a novel 

rehabilitation system with biofeedback (RehaBio) system for upper limb rehabilitation. 

The proposed tracking and collision detection methods are used to employ in RehaBio 

exercises. The custom built upper limb rehabilitation exercises in RehaBio are allied with 

actual rehabilitation exercises in rehabilitation settings through value added services such 

as a rich supply of immediate feedback. The new method of biofeedback in RehaBio 

system induces self-motivation and fast recovery from limited arm articulations. The 

developed system is thoroughly considered and developed with ten basic principles of 

experience-dependent neural plasticity which detailed in Chapter 2. To assess the efficacy 

of the RehaBio system, the usability tests are conducted and results are evaluated by data 

analysis, performance analysis and questionnaire.  

Chapter four: Present the second and third contribution of this thesis represented by a real 

time biosignal driven virtual human arm. Firstly, two machine learning based real time 

joint angle prediction models are proposed and one of them was selected as an optimal 

controller for virtual human arm (VHA) model simulation. This is to predict the user’s 

intended motions in real time which is reflected in VHA model. Secondly, the 

development of VHA model in a virtual environment is detailed by mimicking the human 

arm articulations. The corresponding mathematical computations used to derive the VHA 

model are also provided. The experimental results are also reported to evaluate the 

effectiveness of the developed model and controller.        

Chapter five: Presents the fourth contribution which is the ultimate goal of this thesis. The 

novel upper limb rehabilitation system named Augmented Reality-based Illusion System 
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(ARIS) for upper limb rehabilitation is presented in this chapter. ARIS creates the illusion 

scene for the patients to stimulate neural plasticity for fast recovery in both physical 

functions and cognitive functions via motivated exercises and enriched intrinsic and 

extrinsic feedback. The effectiveness of the developed system is evaluated via data 

analysis, performance analysis and questionnaire. In addition, the demonstration for 

clinical specialists in Port Kembla Hospital has been performed and the feedbacks and 

clinical advices have been implemented in ARIS and have made it ready for clinical trials. 

The demonstration of the system has been performed at Port Kembla Hospital and 

responses are discussed in this chapter.   

Chapter six: Provides a conclusion and summary of the thesis, and suggests future 

directions for research. 

1.6. Peer-Reviewed Publications 
The contents of this thesis are based on the following papers that have been published, in-

pressed, or submitted to peer-reviewed journals and conferences. 

 

Book Chapter: 

[1] Y. M. Aung and A. Al-Jumaily, "Effective Physical Rehabilitation System," in Virtual 

Reality Enhanced Robot Systems for Disability Rehabilitation, In-press, 2015. 

Journal Papers: 

[1] Y. M. Aung and A. Al–Jumaily, "Augmented reality–based RehaBio system for 

shoulder rehabilitation," International Journal of Mechatronics and Automation, vol. 4, 

pp. 52-62, 2014. 

[2] Y. M. Aung and A. Al-Jumaily, "Estimation of Upper Limb Joint Angle Using 

SurfaceEMG Signal," International Journal of Advanced Robotic Systems, vol. 10, pp. 

1-8, 2013. 

[3] Y. M. Aung and A. Al-Jumaily, "Neuromotor Rehabilitation System with Real-Time 

Biofeedback," International Journal of Computer Information Systems and Industrial 

Management (IJCISIM), vol. 5, pp. 550-556, 2013. 
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[4] Y. M. Aung and A. Al-Jumaily, "sEMG Based ANN for Shoulder Angle Prediction," 

Procedia Engineering, vol. 41, pp. 1009-1015, 2012.* 

*Best Paper Award Finalist 

Conference Papers (full paper, 4 pages or more): 

[1] Y. M. Aung, K. Anam, and A. Al-Jumaily, "Continuous Prediction of Shoulder Joint 

Angle in Real-Time," in 7th International IEEE EMBS Neural Engineering 

Conference, Montpellier, France, 2015, pp. 755-758. 

[2] Y. M. Aung, A. Al-Jumaily, and K. Anam, "A Novel Upper Limb Rehabilitation 

System with Self-Driven Virtual Arm Illusion," in 36th Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, 

2014, pp. 3614-3617. 

[3] Y. M. Aung and A. Al-Jumaily, "Real Time Biosignal-Driven Illusion System for 

Upper Limb Rehabilitation," in The 11th IASTED International Conference on 

Biodmedical Engineering (BioMed 2014), Zurich, Switzerland, 2014, pp. 286-293. 

[4] Y. M. Aung and A. Al-Jumaily, "Augmented Reality based Illusion System with 

biofeedback," in Biomedical Engineering (MECBME), 2014 Middle East Conference 

on, 2014, pp. 265-268. 

[5] Y. M. Aung and A. Al-Jumaily, "Illusion Approach for Upper Limb Motor 

Rehabilitation," in International Congress on Neurotechnology, Electronics and 

Informatics (NEUROTECHNIX 2013), Vilamoura, Algarve, Portugal, 2013, pp. 99-

105. 

[6] Y. M. Aung and A. Al-Jumaily, "Shoulder rehabilitation with biofeedback simulation," 

in Mechatronics and Automation (ICMA), 2012 International Conference on, 2012, pp. 

974-979.** 

**Awarded as “Best Conference Paper”. 679 papers were submitted for the IEEE 

ICMA 2012 conference and 454 papers were accepted for oral or poster presentation 

at the conference after a rigorous full-paper review process, achieving an acceptance 

rate of less than 67%.  ICMA 2012 marks the 9th edition of the IEEE ICMA annual 

conference series. 
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[7] Y. M. Aung and A. Al-Jumaily, "AR based upper limb rehabilitation system," in 

Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS 

International Conference on, 2012, pp. 213-218. 

[8] Y. M. Aungand A. Al-Jumaily, "Rehabilitation Exercise with Real-Time Muscle 

Simulation based EMG and AR," in 11th International Conference on Hybrid 

Intelligent Systems (HIS), Malacca, Malaysia, 2011, pp. 641-646. 

[9] A. Dinevan, Y. M. Aung, and A. Al-Jumaily, "Human computer interactive system for 

fast recovery based stroke rehabilitation," in 11th International Conference on Hybrid 

Intelligent Systems (HIS), 2011, pp. 647-652. 

[10] C. Kaluarachchi, Y. M. Aung, and A. Al-Jumaily, "Virtual games based self 

rehabilitation for home therapy system," in 11th International Conference on Hybrid 

Intelligent Systems (HIS), 2011, pp. 653-657. 

[11] Y. M. Aung and A. Al-Jumaily, "Augmented Reality Based Reaching Exercise for 

Shoulder Rehabilitation," in 5th International Convention on Rehabilitation 

Engineering & Assistive Technology, Bangkok, Thailand, 2011. 

[12] Y. M. Aung and A. Al-Jumaily, "Development of Augmented Reality Rehabilitation 

Games Integrated with Biofeedback for Upper Limb," in 5th International Convention 

on Rehabilitation Engineering & Assistive Technology, Bangkok, Thailand, 2011. 

1.7. Summary 
This chapter has provided an introduction to the upper limb rehabilitation system. Among 

the several approaches available in rehabilitation techniques, the safest and most effective 

approach has been chosen and studied to implement as a novel upper limb rehabilitation 

system. The limitations of current rehabilitation systems have also been assessed and these 

limitations have inspired this doctoral research study. This research study aims to provide 

best rehabilitation exercises with lots of motivations, provide fast recovery via stimulation 

brain neural plasticity nature and making used of user’s latent EMG signals as 
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biofeedback. These ambitious aims are implemented in two novel rehabilitation systems: 

the RehaBio and ARIS systems. 

 



 

Chapter 2  
Literature Review 

 

2.1. Introduction  
    This chapter covers a basic introduction to human nervous system and related damages 

to the nervous system. The recovery method from these damages will be reviewed via 

available advanced technologies particularly for upper limb rehabilitation. Additionally, 

the chapter will also review the biological driven rehabilitation systems via machine 

learning approach. The chapter will also highlight the shortfalls in the current available 

systems that this research aims to overcome.   

2.2. Human Nervous System 
Human nervous system is made up of specialized cells called neurons. It is responsible for 

controlling all the biological processes and movements in the body. It consists of two main 

parts: Central Nervous System (CNS) and Peripheral Nervous System (PNS). CNS consists 

of brain and spinal cord. It is the center of the nervous system and also responsible for 

receiving and interpreting signals from the PNS. PNS contains nerve fibers bundled into 

cables called nerves which leave and enter the CNS. These can be either afferent nerves or 

efferent nerves. In the nervous system, afferent sensory nerves convey the information 

towards the CNS. In contrast, efferent motor nerves carry the signals from CNS to the 

cells.  
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    The efferent fibres can be divided into the somatic nervous system and the autonomic 

nervous system. The somatic fibres are responsible for the voluntary movement of the 

body. The autonomic nervous system incorporates all the impulses that are done 

involuntarily, such as breathing, heartbeat etc. However this type of system can further be 

broken down into the sympathetic and parasympathetic systems which keep one another in 

check in a form of negative feedback such as the release of insulin and glucagon in sugar 

control in the blood. All of the actions executed by the autonomic nervous system are 

unconsciously done. These informational pulses executed in nervous system allow us to do 

our daily functions.  

    The anatomy of the nerve cell, neuron, consists of a nucleus situated in the cell body and 

a number of processes called dendrites. One process, usually much longer than the rest, is 

the axon or nerve fibre which carries the outgoing impulses. At the axon terminal or 

synaptic terminal, rapid transmission of signals occurs. The incoming signals from other 

neurons are conveyed via junction regions known as synapses. Synapses may be electrical 

or chemical. Electrical synapses make direct electrical connections between neurons. The 

cell that sends signals is called presynaptic and the cell that receives signals is called 

postsynaptic. The presynaptic area consists of large numbers of tiny spherical vessels 

called synaptic vesicles, neurotransmitter. When the presynaptic terminal is electrically 

stimulated, an array of molecules embedded in the membrane are activated, and cause the 

contents of the vesicles to be released into the narrow space between the presynaptic and 

postsynaptic membranes, called the synaptic cleft. The neurotransmitter then binds to 

receptors embedded in the postsynaptic membrane, causing them to enter an activated 

state. Depending on the type of receptor, the resulting effect on the postsynaptic cell may 

be excitatory, inhibitory, or modulatory in more complex ways. For instance, release of the 

neurotransmitter acetylcholine at a synaptic contact between a motor neuron and a muscle 

cell induces rapid contraction of the muscle cell. The entire synaptic transmission process 

takes only a fraction of a millisecond, although the effects on the postsynaptic cell may last 

much longer. The structure of a typical neuron is depicted in Figure 2.1 (adopted from 

[21]). 

    There are two main types of nerve fibre: the large fast conducting axons being 

myelinated and the small slow conducting axons being non-myelinated. The myelin sheath 

is a layer of phospholipids formed by glial cells (oligodendrocytes in the CNS, and 

Schwann cells in the PNS) that increase the conductivity of the electrical messages that are 
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sent through the cell, which enable them to conduct impulses 50 times faster than non-

myelinated fibre of the same overall diameter. Regular intermittent gaps in the myelin 

sheath are called nodes of Ranvier. The speed with which an axon conducts information is 

directly proportional to the size of the axon and the thickness of the myelin sheath [22]. 

    In general, there are three main types of neurons which form the basic impulse-

transmission pathway of the entire nervous system. These neurons include sensory neurons 

for sensory input such as sight, sound, feeling, etc., interneurons for integration and motor 

neurons for skeletal muscles, brachial muscles, cardiac muscles or smooth muscles as 

shown in Figure 2.2 (adopted from [23]). Sensory neurons gather information from the 

sensory receptors and transmit these impulses to the CNS (brain and spinal cord). The 

interneurons are found entirely within the CNS. They act as a link between the sensory and 

motor neurons. They process and integrate incoming sensory information and relay the 

outgoing motor information. The motor neurons transmit information from the CNS to the 

muscles, glands and other organs (effectors). An example of basic neural transmission 

pathway is illustrated in Figure 2.3 (adopted from [24]).  

2.2.1. Neurological Disorder   

Any injury or damage within the above mentioned nerve impulse pathway will lead to 

neurological disorder in which structural, biochemical or electrical abnormalities are 

caused in brain, spinal cord or other peripheral nerves. These abnormalities can result in 

range of symptoms as follows: 

 
Figure 2-1: Structure of Typical Neuron  
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 Paralysis or loss of muscle movement: Due to reduced blood flow to the brain, a 

person can become paralyzed on one side of the body or lose certain muscle 

movements. 

 Memory loss or difficulty in understanding: People who experienced stroke may 

suffer from some memory loss or difficulty in judgments, understanding and thinking 

concepts. 

 Seizures: Abnormal electrical impulses from the brain causing convulsions. 

 Limb contractures: Muscles become shortened in an arm or leg owing to lack of 

exercise or reduced range of motion. 

 

Figure 2-2: Human Nervous system  

 

Figure 2-3: Overview of the Neurons in a Nerve Impulse Pathway      
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 Difficulty in swallowing, talking and eating: A stroke person may experience less 

control over mouth and tongue movements, making it difficult to swallow, talk and 

eat. 

 Limb and joint pain: It may occur due to hemiplegia or lack of mobility or exercise 

for a long time. 

 Depression: People who have a stroke may become depressed and less social. They 

may need a caregiver for their daily activities. 

These will affect the person’s quality of life as well as their daily life activities. 

Neurological disorders can be classified into two main categories: CNS disorders and PNS 

disorders. The former disorders affect either the brain or spinal cord in which the damage 

is caused by trauma, infections, degeneration, structural defects, tumors, autoimmune 

disorders and stroke. The latter disorders damage the nerves due to systemic diseases, 

vitamin deficiency, traumatic injury, immune system disease or viral infection. Among 

these disorders, stroke or Cerebrovascular Accident (CVA), traumatic brain injury (TBI) 

and Spinal Cord Injury (SCI) are most common disorders all over the world.  

2.2.1.1. Cerebrovascular Accident or Stroke 
Stroke or CVA occurs due to the formation of plaque in the blood vessels. Plaque is built 

up of fat, cholesterol, calcium and other substances from blood. It will precipitate to the 

lumen of blood vessels and become thicker and harden over a period of time, and then it 

starts to restrict the blood flow as shown in Figure 2.4 (adopted from [25]). There are three 

 

Figure 2-4: Normal Artery vs. Atherosclerotic Artery 
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types of stroke: (1) ischemic stroke when blood flow is interrupted by blood clot which 

breaks into small pieces from any part of the body and reaches the brain causing blockage 

to the brain blood vessels, (2) hemorrhagic stroke when the blood vessel is ruptured and 

fills the blood between skull and brain which causing too much pressure on the brain, and 

(3) transient ischemic attack (TIA) which is defined as a focal neurological deficit due to 

cerebral ischemia, lasting less than 24 hours. In any cases, as a result, the supply of oxygen 

to the brain will be disturbed causing the death of brain cells. Due to dead brain cells, some 

of the brain functions cannot work properly depending upon which part of the brain is 

damaged. The illustrations of ischemia stroke, hemorrhagic stroke and TIA are portrayed 

in Figure 2.5 (adopted from [26]).   

Motor impairments: Following CVA there will be some degree of paralysis from both 

lower and/or upper motor neuron disorders, upper motor neuron conditions usually being 

associated with concurrent hyperreflexia, depending on the affected location. 

Cognitive dysfunctions: Cognitive dysfunction may be present with lesions involving the 

 
(a) Ischemic stroke   (b) Hemorrhagic stroke 

 
(c) Transient Ischemic Attack 

Figure 2-5: Three Types of Cerebrovascular Accident or Stroke  
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cortex and includes impairments in alertness, attention, orientation, memory, or executive 

functions. 

2.2.1.2. Traumatic Brain Injury 
Traumatic brain injury (TBI) occurs when an external force traumatically injures the brain 

by sudden acceleration/deceleration within the cranium or by a complex combination of 

both movement and sudden impact such as vehicle accidents, violence or falls. In addition 

to the initial injury, it causes secondary injury which is the leading cause of inhospital 

deaths after TBI [27]. Most secondary brain injury is caused by brain swelling, with an 

increase in intracranial pressure and a subsequent decrease in cerebral perfusion leading to 

ischemia [28]. TBI is graded as mild, moderate, or severe on the basic of the level of 

consciousness after resuscitation (panel). Mild TBI is in most cases a concussion and there 

is full neurological recovery, although many of patients suffer short term memory and 

concentration difficulties [29]. In moderate TBI, patient is lethargic or stuporous, and in 

severe injury, patient is comatose and unable to open his/her eyes or follow commands. 

The illustration of such TBI is shown in Figure 2.6 (adopted from [30]).  

Neuromuscular impairments: Individuals with TBI commonly exhibit impaired motor 

function. Upper extremity (UE) and lower extremity (LE) paresis, impaired coordination, 

impaired postural control and abnormal tone may be present as life-long impairments. 

Abnormal, involuntary movements such as tremor and chorea form and dystonic 

movements are less common. Patients may also present with impaired somatosensory 

 

Figure 2-6: Example of Traumatic Brain Injury  
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function, depending on the location of the lesion [31-33]. 

Cognitive impairments: Cognition is the mental process of knowing and applying 

information. Owing to the complex nature of many cognitive processes it is difficult to 

localize the exact neuroanatomical structures responsible for many different cognitive 

functions. However, many cognitive functions are controlled in the frontal lobes. This 

makes people with TBI particularly susceptible to the cognitive impairments. Cognition 

includes many complex neural processes, including arousal, attention, concentration, 

memory, learning, and executive functions [34, 35]. Executive functions can be 

categorized into the following main areas: planning, cognitive flexibility, initiation and 

self-generation, response inhibition, and serial ordering and sequencing [36]. 

Neurobehavioral impairments:  Patients can exhibit profound behavioral changes as they 

progress through recovery. These impairments can be closely linked to the cognitive 

impairments and are often more debilitating in the long run than physical disability. 

Common behavioral sequelae include low frustration tolerance, agitation, disinhibition, 

apathy, emotional lability, mental inflexibility, aggression, impulsivity, and irritability 

[36]. 

2.2.1.3. Spinal Cord Injury  
Spinal cord is the extension from the brain stem and out to the body through peripheral 

nerves. The sensory stimuli are carried from peripheral nerves through the spinal cord to 

the brain to enable tactile perception and coordinated movements. Hence the injury or 

damage to the spinal cord can result in loss of communication between the brain and the 

parts of the body that are innervated at or below the lesion. The lesion may be complete in 

which no nerve fibers are functioning below the level of injury or incomplete in which one 

or more nerve fibers are secure. The cord need not be completely severed to result in a 

complete injury; the nerve cells may be destroyed as a result of pressure, bruising or loss of 

blood supply.  The amount of functional loss depends on the level of injury: the higher the 

damage occurs, the more of the body that is affected. The example of SCI is illustrated in 

Figure 2.7 (adopted from [37]). 

Motor and Sensory impairments: Following SCI there will be either complete (paralysis) 

or partial (paresis) loss of muscle function below the level of the lesion. Disruption of the 

ascending sensory fibers following SCI results in impaired or absent sensation below the 

level of the lesion. The clinical presentation of motor and sensory impairments depends on 
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the specific features of the lesion. These include the neurological level and the 

completeness of the lesion. 

    In any neurological disorders, as mentioned above, the most common effects that 

victims experience is the significant motor and cognitive disabilities which are the interest 

of this thesis. In the context of motor disabilities, a person’s physical functioning, mobility, 

dexterity or stamina is limited and this leads to prohibit the performance of daily life 

activities. In the context of cognitive disabilities, a person may lose memory and/or speech 

which may greatly affect the victim’s interaction in social activities. These effects will lead 

the victim to depression and this is common and occurs in most of the victims. It is 

characterized by persistent feelings of sadness accompanied by feelings of hopelessness, 

worthlessness, and/or helplessness. Depressed patients may also experience a loss of 

energy or persistent fatigue, an inability to concentrate, and decreased interest in daily life 

along with changes in weight and sleep patterns, generalized anxiety, and recurrent 

thoughts of death or suicide. However there is a way to recover from their impaired 

conditions although the recovery rate is much dependent on how severe the damages are. 

This is through “Rehabilitation” therapy which has an important role in reducing 

permanent disability, recovering from minor disability and leading to promote an 

individual’s independence.  

 

Figure 2-7: Example of Spinal Cord Injury (SCI)  



2. Literature Review 
 

 26 

2.3. Rehabilitation  
Rehabilitation is the process of training someone to recover or improve his/her lost 

functions as a result of injury or illness and it should start as soon as the medical condition 

of the victim is stabilized. In order to achieve successful rehabilitation, team work is 

expected in which physiotherapists, occupational therapists, speech therapists, nurses, 

neuropsychologists, rehabilitation physician, and social workers contribute. In general, 

physiotherapists and occupational therapists work together to achieve the independent 

daily activities where speech therapists will focus on the patient’s production of motor 

function for speech, chewing and swallowing. Nurses and rehabilitation physicians work 

closely together to monitor and control patient’s health such as hypertension, diabetes, 

urinary system and their diets. Neuropsychologists are responsible to achieve to regain 

their lost memory, concentration, willpower and motivations. Social workers also help 

patients to achieve a better quality of life and hence play one of the major roles in the 

rehabilitation program.  

    There are three major settings for rehabilitation namely the acute hospital, the 

specialized rehabilitation unit and the community. The procedure for the patient is as 

follow: when patient is admitted to the hospital, he/she should be sent to a specialized unit 

where they are checked with magnetic resonance imaging (MRI) or computed tomography 

(CT) scan and their treatment decided upon. Patient will then receive the rehabilitation 

assessment within 48 hours and be under observation for any complications. Once the 

patient is medically stable, he/she can undergo rehabilitation at specialized rehabilitation 

units until his/her impairment has improved. Although the patient is in rehabilitation unit, 

regular reassessment must be done. Patient can receive rehabilitation as inpatient, 

outpatient or home-base services. All of these services provide a higher quality program. 

After improvement in patient mobility or there is no further functional improvement, 

patient can be discharged from rehabilitation unit and transferred into community where a  

general practitioner and carer take on the vital role of taking care of patients [38]. 

    Successful rehabilitation relies on intensive training and exercising, and repetitive 

practice of functional movement helps victims to develop skills for changing conditions 

that pose barriers in their lives [39]. Improvement is directly proportional to the effort put 

in by the patient into the training, and this effort is best evoked in traditional rehabilitation 

by the therapist [40]. In order to achieve such successful rehabilitation, one-to-one 
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attention between patient and therapist are required and this is current practice in most of 

the rehabilitation settings. This lead to therapist fatigue as generally, the numbers of 

therapists are usually much lower than the number of patients. For instance, the registered 

physiotherapists in Australia are about 25,000 people according to 2012 report by 

Physiothrapy Board of Australia [5] and this is about 8:1 (patients: therapist) ratio. This 

implies one physiotherapist has to take care of an average of 8 patients at a time and hence 

this leads to a shortage of therapists in rehabilitation settings. In addition, this greatly 

impacts on the outcome of rehabilitation as well as the wellbeing of physiotherapists. 

Generally, rehabilitation is mainly focused on patients’ progress in their recovery from 

impairments and therapist and caregivers’ burden has been neglected. That is why in 

rehabilitation context, this becomes one of the major issues. Additionally, the high cost of 

rehabilitation is a burden for both victims’ families as well as for the country. As a result, 

the duration of primary rehabilitation is getting shorter and shorter which leads to an 

increase in the prevalence of both moderate and severe disabilities in the population [41]. 

In order to overcome such limitations, technology based rehabilitation systems are 

introduced to lessen the fatigue of therapists and carers; these rehabilitation systems 

require minimum supervision during rehabilitation therapy.      

    Among the several areas of rehabilitation required for recovery from neurological 

disorders, in this thesis, upper limb motor rehabilitation and cognitive rehabilitation are the 

focus because these are the most important functions in order to improve the victim’s 

quality of life. In addition, the proposed systems in this thesis will also lessen the caregiver 

burden and allow the patient to perform the daily life activities independently by 

improving the upper limb functions. Therefore, in this literature, rehabilitation systems that 

improve upper limb motor functions and cognitive functions along with the recent 

available technologies are reviewed in section 2.5. One of the main reasons for recovery by 

physical rehabilitation is due to the excitation of human neuroplasticity which will be 

explained in the following section.      

2.4. Neuroplasticity 
Neuroplasticity refers to changes in neural pathways and synapses due to changes in 

behavior, environment, neural processes, thinking and emotions. It is the mechanism by 

which the brain encodes experience and learns new behaviors. It is also the mechanism by 

which the damaged brain relearns the lost behavior in response to rehabilitation. Learning 
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is an essential component of brain adaptation to brain damage even when there are no overt 

rehabilitation efforts. One of the most reliable behavioral consequences of brain damage is 

that individuals develop compensatory behavioral strategies to perform daily activities in 

the presence of lost functions [42]. These self-taught behaviors are potentially among the 

most significant behavioral changes of an individual’s life. However, they can also be 

maladaptive and interfere with improvements in function that could be obtained using 

rehabilitative training. For instance, after unilateral brain damage, although reliance on the 

less-affected body side is associated with major neuroplastic changes in the unaffected 

hemisphere, this reliance may also limit the propensity of individuals to engage in 

behaviors that improve function of the impaired body side [43]. 

    It has been observed by a remapping of the surrounding areas of the lesion [44]. To 

maximize the brain plasticity, several rehabilitation strategies have been proposed that rely 

on a putative promotion of activity within surviving motor networks. Those strategies 

include intensive rehabilitation [45], repetitive motor training [46], techniques directed 

towards specific deficits of the patients [47], mirror therapy [48], constraint-induced 

movement therapy [49], motor imagery [50], action observation [51], etc.  

    By understanding the basic principles of neural plasticity that govern learning in both 

intact and damaged brain, identification of the critical behavioral and neurobiological 

signals that drive recovery can begin. There are ten principles of experience-dependent 

plasticity which are proposed by [52] and detail of each principle is explained as follow: 

Principle 1: Use it or lose it 
This is an important principle in rehabilitation research for two reasons. The first reason is 

that failing to engage a brain system due to lack of use may lead to further degradation of 

function [53]. The second reason is that functional recovery may be supported in at least 

part of the lesion area by shifting novel function to residual brain areas. Therefore, by 

performing the rehabilitative training in a skilled reaching task may prevent such loss and 

functional reorganization is promoted [54]. 

Principle 2: Use it and improve it 
Training that drives a specific brain function can lead to an enhancement of that function. 

Several studies have proven how plasticity can be induced within specific brain regions 

through extended training [55-57].  
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Principle 3: Specificity 
Specific forms of neural plasticity and associated behavioral changes are dependent upon 

specific kinds of experience [58]. The implication for rehabilitation is that training in a 

specific modality may change a limited subset of the neural circuitry involved in the more 

general function and hence influence the capacity to acquire behaviors in non-trained 

modalities. 

Principle 4: Repetition Matters  
The role of repetition in stimulating plasticity and associated learning may be critical for 

rehabilitation. Simply engaging a neural circuit in task performance is not sufficient to 

excite the nature of plasticity. Therefore, repetition of a newly learned or relearned 

behavior may be required to induce lasting neural changes. It has been proven that some 

forms of plasticity require not only the acquisition of a skill but also the continued 

performance of that skill over time [59]. 

Principle 5: Intensity Matters  
In addition to the repetition, the intensity of stimulation or training can also affect the 

induction of neural plasticity. The experiment on this principle was conducted and proven 

by [60, 61]. However, one potential negative side effect of training intensity after brain 

damage is that it is possible to overuse impaired extremities in a manner that worsens 

function. Therefore it is important for the therapist to observe the patient performance and 

set the proper intensity during the rehabilitation therapy.  

Principle 6: Time Matters  
The neural plasticity underlying learning can be best thought of as a process rather than as 

a single measurable event. Certain forms of plasticity appear to precede and even depend 

upon others. Thus, the nature of the plasticity observed and its behavioral relevance may 

depend on when one looks at the brain. The stability of the plastic change may also depend 

upon the time after training. Stimulation experiments have shown that enhanced synaptic 

responses are more susceptible to degradation during early phases of stimulation than later 

[62]. The time factor may be even more critical after brain damage given the dynamic 

changes in the neural environment that are occurring independent of any rehabilitation 

[60]. 

Principle 7: Salience Matters 
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Saliency is already an important consideration in the treatment of many neurological 

disorders, including aphasia and motor speech disorders. However, a better understanding 

of the neural processes underlying the modulation of recovery processes by saliency may 

be useful for optimizing treatment. Several experiments have demonstrated that there is a 

neural system that mediates saliency and that engaging this system is critical for driving 

experience-dependent plasticity [59-61]. 

Principle 8: Age Matters  
It is clear that neuroplastic responses are altered in the aged brain [63]. Experience-

dependent synaptic potentiation, synaptogenesis and corticalmap reorganization are all 

reduced with aging. In addition, cognitive decline may reflect the progressive failure of 

plasticity processes in compensating for age-related impairments. However, the aging brain 

is also clearly responsive to experience, even though the brain changes may be less 

profound and/or slower to occur than those observed in younger brains [64]. 

Principle 9: Transference  
Transference refers to the ability of plasticity within one set of neural circuits to promote 

concurrent or subsequent plasticity. This phenomenon has been recently demonstrated in 

human motor cortex with skill learning and transcranial magnetic simulation (TMS). When 

TMS was applied to motor cortex synchronously during skill training, it enhanced skill 

acquisition [65].  

Principle 10: Interference 
Neural plasticity often has a favorable connotation in the context of recovery of function. 

However, plasticity can also serve to impede behavioral change. Interference refers to the 

ability of plasticity within a given neural circuitry to impede the induction of new, or 

expression of existing, plasticity within that same circuitry. This, in turn, can impair the 

learning. Although some types of noninvasive cortical stimulation applied during or shortly 

before skill training may enhance motor learning [65], other forms can be disruptive of 

learning. For example, transcranial direct current stimulation given after training reduced 

the training-dependent increases in cortical excitability [66]. Another reason to consider 

interference effects is that a therapy that benefits one skill may interfere with performance 

of another. Furthermore, as brain injury may change the neural response during learning, it 

may also change sensitivities to interference effects. For example, providing explicit 

instruction on how to perform a motor sequence task was found to improve implicit motor 



2. Literature Review 
 

 31 

learning in healthy controls, whereas the same instructions interfered with learning in 

subjects with strokes [67].  

    By understanding the above mentioned basic principles to exhibit the neuroplascitiy 

nature, there is a higher chance to develop novel rehabilitation system to optimize 

functional recovery. However, such systems are very limited due to lack of one or more 

principles to incorporate in current available rehabilitation systems in the literature which 

will be reviewed in the following sections.   

2.5. Robot based Rehabilitation Systems 
Rehabilitation robot is the combination of industrial robotics and medical rehabilitation 

where collaboration of clinicians, therapists and engineers helps physical or cognitive 

impaired patients. Robotics has been envisioned as technology for restoration and 

functional compensation of people suffering from physical disability and disorders. There 

are two main application fields where robotic devices stand out: (1) support to perform the 

activities of daily life (ADLs) and to provide the physical training. Although the ultimate 

goal of the rehabilitation is the former one, the latter is the first step of rehabilitation 

therapy to achieve the ultimate goal. The use of the rehabilitation robot can be either in 

specialized therapeutic institutes or home-based conditions. Most of the proposed robotic 

rehabilitation systems in literature are mainly suitable for therapeutic institutes since they 

require supervised assistance from qualified personnel. The cost of such devices is also 

often prohibitive for personal use due to their complexity. Therefore, the demand for 

home-based therapy is expected to increase by most patients. However, Dijkers, et al. [68] 

pointed out that most of the therapists may stop using the rehabilitation devices if the set-

up time takes more than 5 minutes. This is one of the major factors to consider when 

developing any rehabilitation system in which the new development should be intuitive, 

easy and fast to set-up with a reasonable and affordable price.    

    Among the various types of rehabilitation robotic devices available in the field, in this 

literature, the robotic devices are categorized based on their mechanical structures that are 

dependant on the movement. As mentioned in chapter one, there are two main basic types 

of rehabilitation robots, (1) end-effector or fixed-based type and (2) exoskeleton or 

wearable robot type. The difference between these two types is how the movement is 

transferred from the device to the patient’s upper limb. Selection of robot type is dependant 
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on rehabilitation goal such as range of motions, kinematics criteria of the human limb, 

ambulatory and portability [69]. It was claimed that exoskeleton provides wider range of 

movement and it is portable compared to an end-effector robot. However, both of them 

require physical interaction with the device user. Physical interaction implies that there is a 

physical coupling between human and robot leading to the application of controlled forces 

between them. Thus, the action of both human and robot must be able to be coordinated 

and adapted reciprocally to avoid severe injuries. Therefore the designing of such device is 

one of the most exciting and challenging aspects with several constraints and requirements 

especially in the development of an exoskeleton as a human being is an integral part of the 

design.  

2.5.1. End-Effector Robots 

The end-effector based rehabilitation robots are usually connected to the patient upper limb 

with single point. Since early 1960, clinical community has been using continuous passive 

motion (CPM) machines, which had a simple motor-driven linkage, and were used to 

rehabilitate the joints following surgery [70]. It helped to regain the range of motion, 

reduce stiffness and the need of medication and reduce the length of stay in hospital [70, 

71]. However, these machines were not able to reprogram, presence of design issues in 

joints with fixed axes of rotation and required lengthy setup time. Therefore, more and 

more effective rehabilitation devices (robots) and control techniques have been developing 

until now so as to accommodate the patients and therapists requirements. CPM robot was 

developed by Khalili and Zomlefer [72] for therapeutic applications. However, their 

developed robot was not fulfilled with patients and therapists requirements in terms of 

design and performance. The first in-depth study on the acceptance of robot technology in 

occupational therapy for both patients and therapists was carried out by [68]. His 

development provided successful repetitive reaching movements. However, the 

development was down by boring exercise, was expensive and lacking in monitoring of 

patient cooperation. Thus, the implementation of Rao et al. [73] used a 6-DOF Puma-260 

robot to train the patient upper limb via end-effector with low cost motivated real-time 

visual feedback exercise. The system was controlled by two different modes: passive and 

active. In passive mode, robot controlled the patient’s arm via specified trajectory. In 

active mode, patient own movement guided the robot via predefined path according to the 

graphical interface similar to a tunnel. In his development, the robot end-effector was able 
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to be traced and monitored with real-time visualization by the user. This visualization 

offered immediate feedback to the users to react and correct their limb motions. However, 

it was limited to a single plane and did not provide full entertainment as a three-

dimensional game-like therapy for long term training. The first two unmodified industrial 

robots working simultaneously to practice passive physiotherapy of spastic hemiparetic 

patients was developed by [74] called REHAROB. The rehabilitation purpose of 

REHAPROB was to increase the range of motion, maintain proprioception and reduce 

muscle hypertonia. However, the system was not safe enough to employ as a therapeutic 

system after clinical trials had been done. Another serial manipulator, MIT-MANUS [75, 

76], which is an impedance controlled five bar linkage planar robot, assisted shoulder and 

elbow therapy. After the successful clinical trial with this manipulator, it was extended 

from planar robotic therapy to spatial arm movements against gravity [13]. The therapeutic 

goal of this development was targeted for functional reaching movements. To extend the 

treatment envelope beyond the shoulder and elbow, additional wrist module was invented 

[3, 77] to complete a whole-arm rehabilitation system. However, the development was 

characterized by high back-driveability with high cost. Reinkensmeyer et al., [78] had 

developed a low cost rehabilitation robot to replace the high cost manipulator. It was a 

simple mechanical structure with no back-driveability. Inspired by Reinkensmeyer et al., 

development, a simple mechanical structure with low cost robot system, MEMOS [79] was 

developed for upper limb rehabilitation. It was a planar robot in a Cartesian configuration 

with a rectangular shape work place for patient movement. 

    Other than end-effector based robotic rehabilitation therapy alone, integrating with 

haptic feedback had shown improvement in the efficacy for cognitive training [80] and 

dynamic task [81, 82]. Several haptic displays [83, 84] were developed as an effective 

interaction aids for providing the sense of force or moment feedback to the user. Many 

haptic devices have been built and commercialized [85-88] with different features and have 

been used for upper limb rehabilitation training. Work in the context of haptic feedback in 

the rehabilitation of the upper limb was carried out by R. Loureiro [89, 90]. A haptic 

device named GENTLE/s which is based on 3-DOF HapticMaster [91] was developed. It 

was a low cost modular home based system with haptic and virtual reality system for 

upper-limb stroke rehabilitation. Alternative haptic-robotic platform was designed by Paul 

Lam et al. [92]. This development was inspired by Assisted Rehabilitation and 

Measurement (ARM) Guide [93]. The aim of ARM Guide was to provide an improved 
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diagnostic tool for assessing arm movement tone, spasticity and coordination after brain 

injury. However, the system was bulky and heavy. The control system of ARM Guide was 

not user friendly as well. Thus, Paul Lam had designed the system, a lighter and more 

compact version with more intuitive and simpler hardware design. The control system for 

the new system was generated to make decisions with respect to the type of exercise 

automatically based on real-time feedback from the system and user.  

    In the frame work of bimanual training for upper limb, Johnson et al. [94, 95] had 

developed SEAT (Simulation Environment for Arm Therapy) which was one-degree-of-

freedom robotic device for constraint-induced therapy to promote the bilateral movement 

coordination. The system can be utilized in three modes: passive, active and normal mode. 

During passive mode, non paretic arm was guided by the servomechanism to compensate 

for the weight of the paretic arm. The active mode was used after patient had shown the 

improvement of paretic arm voluntary control. In this mode, only paretic arm was 

controlling the car steering wheel while non paretic arm was relaxing. The normal mode 

was used to access distribution of force and limb’s co-ordination.  Same concept was used 

in MIME [96, 97], Mirror-image motion enabler, to produce the repeatable movement 

patterns in the paretic arm. MIME was able to perform either in pre-programmed position 

and orientation trajectories or slave configuration where it mirrored the motions of the non- 

paretic arm. The system enabled the subject to practice bimanual shoulder and elbow 

movements in the horizontal movement. However, MIME system was hampered by 

expensive cost with mechanism complexity.  

     A precursor version, reported by Lum et al. [98] was a robotic assist device for the 

bimanual practice of wrist flexion and extension. The robotic aid could substitute 

completely for one hand in a bimanual task but clinical data were not reported for this 

development. Arm Trainer Robot [99] enabled bilateral passive and active training for 

elbow and hand movements. This development was suitable for severely affected stroke 

survivors but there were no clinical data to verify the effectiveness of the developed 

system. The improved design and system configuration of bimanual robot compared to 

Arm Trainer Robot was developed by [100]. This system was targeted to decrease muscles 

spasticity, increase power and motor control and relieve pain in the arm of chronic 

hemiparetic patients. The additional feature that compared to Arm Trainer Robot was that 

the patient was able to realize the force feedback for real-time dynamic sensation of the 
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paretic hand by healthy hand. Another bilateral force-induced isokinetic arm movement 

trainer (BFIAMT) was invented by Jyh-Jong Chang et al. [101] to improve arm movement. 

There are four different treatment modes which are applicable in this system namely 

bilateral passive, bilateral reciprocal, bilateral active-passive and bilateral symmetric arm 

movement. Patient was asked to perform bilateral symmetric push for shoulder flexion and 

elbow extension and bilateral symmetric pull for shoulder extension and elbow flexion 

with constant velocity. Load cells will detect pull and push forces applied by patient. 

Although the outcome of the training with BFIAMT shows improvement in upper limb 

motor function, the system did not monitor for trunk muscle activities and thus trunk 

movement compensation during maximal isometric push and pull tests could be present.   

Alternative self-controlled robot was developed by Chunguang Li et al. [102]. This 

intervention consists of two identical motors, master and slave, which directly connect with 

wire. The methodology of this system is realized by generating of electrical energy from 

master motor by healthy limb where slave motor receives as power to drive mirror 

movements of impaired limb. Master motor worked in generating state whereas slave 

motor worked in electromotive state. Both motors were constructed as close-loop circuit 

and energy recycling method had been attempted.    

2.5.2. Exoskeletons or Wearable Robots 

The exoskeleton robots are group of wearable robots with very remarkable applications in 

rehabilitation field. The main aspect of the exoskeleton kinematic compliance is one-to-one 

correspondence between human anatomical joint and robot joint. The interaction between 

the human limb and exoskeleton can be attained via external force or internal force system. 

In the context of external force system, the force is grounded and mechanical structure acts 

as a load-carrying device. Thus, only a minimum amount of force is acting on the subject. 

In contrast to an external force system, in an internal force system, the force and power is 

transmitted by means of exoskeleton between segments of human limb. Furthermore, the 

force is not grounded and it is applied only between human limb and exoskeleton.  

2.5.2.1. External Force Exoskeleton System 
The first development of the exoskeletons began in the early 1960s. Several external force 

exoskeleton systems [21, 103-105] were developed, but all those developments were 

lacking in one or more of the following features: low-inertia links, high stiffness 

transmissions, open mHMIs, low-backlash gearing, backdrivable transmissions or 



2. Literature Review 
 

 36 

physiological range of motions. The first active implementation of functional upper-limb 

orthosis was developed by [106]. It was an external force exoskeleton system which 

provided a sense of floatation. It was made up of two links and 4-DOF and was mounted 

on a wheelchair. It operated by gravity-balancing the entire arm for all positions in 3-D 

motions, therefore required minimal effort to move the arm.  

     The 5DOFs upper limb rehabilitation robot system has been developed by Qingling Li 

et al [94]. 5 DOF have been defined at shoulder joint flexion-extension and abduction-

adduction, elbow joint flexion-extension, wrist joint flexion-extension and pronation-

supination. The idea of this system is to train the impaired limb with the aid of robot by 

making use of healthy limb’s sEMG signals. The rehabilitation robot was made up of 

duralumin with a two-side structure which caters for tough and rigid design. The sEMG 

data that was obtained from mid-deltoid, front-deltoid, biceps brachii and brachioradialis 

were classified into six upper limb motions to drive rehabilitation robot to perform the 

same action with moderate speed. However, there was no report of performance and 

effectiveness of the system. In the development of ARMinII rehabilitation robot [69], a 

semi-exoskeleton structure was employed. It used 7 DoFs for whole arm and hand motion. 

The system used mechanical coupling concept between shoulder elevation actuation and 

elevation axis. Although the implemented concept provided safety even in control failure 

or power failure, this design reduced the range of motion in arm elevation. The design of 

the 3DoFs robotic exoskeleton, MEDARM [107] for rehabilitation is made up of cable-

driven actuation unlike other development. In this design, the shoulder joint motion is 

realized by a curved track system which can be described as a 4-bar linkage with 

backdriveable facility, light weight and low friction. The major advantage of this system is 

the robot is placed beneath of the user arm which will reduce vertical compliance as the 

weight of the arm will be directly supported by the carriage near the elbow joint. To attain 

full motion capability, four cables are driven by electric motors.  

     The development of 6DOFs exoskeleton robot which was also known as SUEFUL-6 

robot [108] for upper limb motion was done by R. A. R. C. Gopura et al. It was made up of 

6 different types of harmonic drive which were used for shoulder vertical and horizontal 

flexion-extension motion, elbow flexion-extension motion, forearm pronation-supination, 

wrist flexion-extension and wrist radial-ulnar, pulleys, gears, potentiometers, sliders and 

other mechanism for moving and rotating parts. The axes offset and centre of rotation for 

movement are key points to build up the exoskeleton robot. sEMG driven 3DOFs 



2. Literature Review 
 

 37 

exoskeleton for upper-limb motion assist was done by Kazuo Kiguchi et al [109]. The 

development was aimed for shoulder vertical flexion-extension motion, horizontal flexion-

extension motion and elbow flexion-extension motion. Like other developments, the robot 

is made up of motors, pulleys, potentiometers and other mechanisms for moving centre of 

rotation. Making use of force sensor-based controller (FBC) and EMG-based controller 

(EBC) coupled to obstacle avoidance controller (OAC), a fully automatic power-assist 

controller was built up. When EMG level of user is high, EBC was use to control the 

system whereas when the EMG level of user is low, FBC would used to control the system. 

When muscles activity is in intermediate level, both EBC and FBC would be used 

simultaneously. OAC is to avoid accidental collision between user’s upper limb and robot 

frame. The instantaneous force vectors which were derived from output of EBC at robot 

end-effector was to achieve user’s natural and smooth hand trajectory for rehabilitation.   

     IntelliArm 8+2 DOF robot was developed by Yupeng Ren et al. [110] to rehabilitate the 

upper limb for stroke patients navigated with virtual reality. This is to diagnose the 

biomechanical changes and abnormal couplings at the shoulder, elbow, wrist and finger 

joints of the impaired arm. The system included four active DOFs and two passive DOFs at 

shoulder, 4-DOFs for elbow and one active DOF for hand opening-closing motion which 

were adapted in this system to imitate the real upper limb. Four-bar linkage with single 

motor was designed based on available space, weight and moment of inertia of the robot. 

Sliders, multi-motors, cables and pulleys, force sensors and torque sensors were utilized to 

develop the robot. In this robotic therapy strategy, four types of control were used namely 

intelligent stretch control, back-driven control, assistive control and resistive control. The 

error vector based on the difference between desired position and current arm position was 

used to decide either to assist or resist control to employ during training. According to the 

experiment result, IntelliArm provides accurate and quantitative diagnosis but the complete 

system is very bulky and it is a stationary system.  

     An articulated rehabilitation robot has been developed for upper limb physiotherapy and 

training [111]. This robot has 9 DoFs. The system is different from other exoskeletons in 

terms of motion principle. It employed parallel-motion principle instead of solving inverse 

kinematic solutions which is normally employed by most of the robots. The idea behind 

this is to find the position trajectories of the essential joint pivots of the robot given the 

knowledge of those of various joints of the human arm. The shoulder mechanism design 

[112] was designed for stroke rehabilitation. It has 6 DoFs, 3 for shoulder girdle movement 
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while the other 3 DoFs provide conventional ball and socket joint movement thus it allows 

the alignment of CGH (center of glenohumeral joint) position and orientation of humerus. 

The design followed RPRPRR (Revolute-Prismatic-Revolute-Prismatic-Revolute-

Revolute) joint sequence to overcome the problem of being insufficient for rehabilitation 

tasks due to collision of components with each other which is normally faced by other 

robots. 

    Other than the use of motor driven exoskeleton as reported in above literatures, 

rotational hydroelastic actuator was used to drive the powered exoskeleton in Arno H. A. 

Stienen et al. proposed system, Limpact [113, 114]. Series elastic actuation (SEA) and 

rotational hydraulic actuators were directly mounted on exoskeleton joints. The system was 

driven by symmetric torsion spring, high-precision quadrature encoders and potentiometer 

and strain gauges. There are three rings that were attached to rHEA. Making use of these 

rings, actuator torque will eventually be achieved due to angular difference during 

movements. Both compliant impedance control and stiff admittance control were used in 

the Limpact system. Although the system was suitable for rehabilitation therapy, the 

requirement of pump, noise issues and hydraulic leakage became a problem in clinical 

settings.  

    As far as pneumatic based exoskeleton is concern, bi-articular muscle type HBSA 

(Hydraulic Bilateral Servo Actuator) [115] is presented. This design mimics the 

antagonistic pairs of actuators in human joints. It has proven to be able to reduce the 

number of actuators by having bi-articular type actuators to operate two joints with light 

weight and high output. The control architecture of the system is that the motion control 

system of the arm is determined by pressure sensors that detect the patient’s movements. 

The pressure analog signal is converted to digital data and sent to a microcomputer to drive 

the motor. The control of the trajectory used linear interpolation in three dimensions using 

DDA (Digital Differential Analyzer) method. Pneumatic driven upper limb exoskeleton, 

Salford Rehabilitation Exoskeleton (SRE), was developed by S. Kousidou et al. [116] to 

provide upper limb rehabilitation. It had 7-DOF and controlled shoulder flexion-extension, 

shoulder abduction-adduction, shoulder medial-lateral rotation, elbow flexion-extension, 

forearm pronation-supination, wrist flexion-extension and wrist abduction-adduction 

movement. With the aid of position valves and torque valves, switching sequences of 

exoskeleton pneumatic valves will be followed by regulating the amount of required air 

which will be pumped into the pneumatic muscle actuators which will achieve exoskeleton 
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motion. However, current pneumatic actuated exoskeleton rehabilitation system could 

perform only very limited tasks and future research in this area is required. 

2.5.2.2. Internal Force Exoskeleton System 
In the framework of an internal force exoskeleton system, RUPERT (Robotic Upper 

Extremity Repetitive Therapy device) has been implemented by [109]. In this design 

pneumatic muscle (PM) has used as a robot actuator. It used four pneumatic muscles to 

provide 5 DoFs: 2 at shoulder, 2 at elbow and 1 at wrist. To provide both extension and 

contraction of the pneumatic muscle, springs have been incorporated into pneumatic 

muscle. The control method of the robot is using pressure data and joint data which will be 

sent to SimMechnics to determine the joint velocities, accelerations and inertia. Making 

used of inverse dynamics calculations, required torque can be estimated to drive the 

RUPERT arm. Once dynamic torque is estimated, torque supplied by PMs can be 

determined. Therefore robot arm can estimate the voluntary muscle activity at each joint by 

subtracting estimated dynamic torque from torque supplied by PM. The significant design 

specification of RUPERT was non-gravity compensation in 3D workspace. However, this 

system had limited workspace and catered for simple movements of daily life activities. 

Alternative design of internal force exoskeleton system was 5 DoFs arm exoskeleton for 

shoulder rehabilitation system which was reported by [117]. This system allows for 

scapula motion and first order approximation of shoulder translation by means of single 

rotary joint. The intention was to place singularity at an azimuth and elevation so that can 

avoid interference with rehabilitation tasks. Shoulder elevation and depression movements 

are accomplished by single rotary joint perpendicular to the back.  

     Another upper limb exoskeleton with internal force system has been developed by 

[118]. The aim of this design is that no residual forces can be created in the human joints if 

misalignments of the mechanism to the human joints exist. It only required minimum time 

for dressing on and off. The mechanism that interacts with shoulder girdle is comprised of 

6 DoFs in order to avoid singular positions and collide with human body during 

articulation such as shoulder circumduction. As for elbow interaction, 3 DoFs mechanism 

has been used to eliminate the misalignment problem for elbow flexion-extension. Since 

misalignment of forearm pro-supination axis is not critical, 1 DoF mechanism is designed 

for forearm pro-supination motion. For the interaction of wrist to be smooth with eccentric 

motion dedicated by the ellipsoid radio-carpal joint, 6 DoFs mechanism is required.  
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     The 4 axis ABLE exoskeleton for upper limb has been developed by [119]. The unique 

design of this robot is that it allows hybrid force-position control without requiring any 

force sensors. Like other exoskeletons it is back-drivable, has a high efficiency with low 

inertia actuators. Moreover, the system permits high performance of mechanical 

transmissions via screw and cable patented arrangement. The use of cable transmission 

concept provided the advantages in shock absorption and smoothness. The design of the 

shoulder joint is a spherical articulation made up of three orthogonal pivots which have a 

common intersection which approximately coincides with the centre of the human 

shoulder. To eliminate singularity at shoulder joint, the second joint which takes care of 

internal and external rotation of shoulder is designed with a circular guide. Another design 

of internal force exoskeleton system for elbow and forearm movements has been reported 

by Rahman [97]. This is a 2 DoFs ExoRob that requires to be worn on the lateral side of 

the forearm and provides naturalistic range of movements: elbow flexion-extension and 

forearm pronation-supination motions. The new gear mechanism design where power is 

transmitted from anti-backlash gear to meshing ring gear which is rigidly attached to the 

forearm cup is introduced. The control algorithm for this developed system is based on 

non-linear sliding mode control technique. This development is currently working towards 

7 DoFs motion assisted robotic exoskeleton.  

     The 3 DoFs wearable handling support system for a paralysed patient is developed by 

[69]. In this system, three rotation angles of patient’s head namely pitch, yaw and roll are 

used to control the 3 DoFs support system which are angle of elbow joint, angle of wrist 

joint and hand close/open. Patients were required to wear a cap with accelerometer on it 

and power assistive hand and arm support system during training. The support system was 

controlled by the detecting of three motions of patient’s head including pitch, roll and yaw 

motions. Then there were six DC motors to drive finger mechanism and it can be separated 

into two drive parts: three motors for index finger and three motors for the three coupled 

fingers. They were connected via universal joint that allowed fingers to adduct and abduct 

and permits a palm to deform for finger opposition. The thumb mechanism was driven by 

two links, two wires and two actuators. The test results reveal that the system had enough 

working angles of each joints and assistive force to carry out specified exercise. Wrist 

exoskeleton has been developed for neurorehabilitaion [120]. The mechanism is based on 

two cables passing through two guides placed laterally on the chain-like mechanism. 

During flexion-extension motion, the displacements of the cables are symmetric and during 
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radial-ulnar deviation, it will become asymmetric. Therefore, it can determine the flexion-

extension and radial-ulnar deviation angles. However the developed system is affected by 

errors due to external crosstalk on which future work needs to be done. 

    However, most of the above literatures from exoskeleton or wearable robot met with the 

problems related to the alignment or singularity of robot and human joints: shoulder, elbow 

and wrist either in external or internal force system. Thus, researchers have started to 

investigate and invent the alignment free exoskeleton and literatures are reported in below 

section.  

2.5.2.3. Alignment-Free Exoskeletons 
As far as singularity problem in upper limb exoskeleton design is concerned, proper 

control method to avoid misalignment at elbow joint has been studied by [118]. This is a 4 

DoFs (two rotational and two translatinal) passive self-aligning mechanism, NEUROExos, 

which allows the actuated joint axis to be always aligned with the instantaneous human 

joint rotation axis. The double-shell link structure is employed in this development to 

reduce the pressure on the user’s skin compared to other exoskeleton designs. It is powered 

by a variable impedance antagonistic actuator which provides the exoskeleton with 

software controllable passive compliance [121]. The 7DOFs cable-actuated dexterous 

exoskeleton for neurorehabilitation (CADEN)-7 was created by Joel C. Perry et al [90]. 

The unique design concept of this exoskeleton is proximal placement of motors and distal 

placement of cable-pulley reductions which will provide low inertia, high stiffness link 

with zero backlash. Seven single-axis revolute joints were use in this intervention. To take 

care of alignment problem, singularity placement was carefully considered at shoulder 

joint. To limit the robot joints range of motion, motion capture system (Vicon, 10 cameras) 

were used to capture joints positions of 19 activities of daily living in this intervention. 

Another elbow exoskeleton design with correct dimensioning to avoid singularity problem 

is currently being developed by [14]. In his study, elbow topology, singularities, torques 

transmitted to exoskeleton joints, and influence of soft tissues and cuffs compliances have 

been investigated. An alignment free 2 DoFs rehabilitation robot for shoulder complex 

called shouldeRO has been developed by [122]. This robot is specially designed to 

minimize the requirement of tedious and accurate alignment of robot and patient joints. It 

was composed of poly-articulated structure whose actuation is deported and transmission is 

realized by Bowden cables. The constant tension in the cables is completed by mechanical 
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inverter. The proximal end of the robot is rigidly fixed using rucksack structure while 

distal end is fixed to the patient through splint. Based on the test result, due to the reaction 

forces at the shoulder, subject feels uncomfortable while training and this has to be 

addressed in future work.  

     Alternative compliant exoskeleton device for elbow joint rehabilitation has been 

implemented by [123, 124]. In his design, one passive rotational joint and one passive 

translational joint are added based on one active rotational joint to solve the centre 

disparity of elbow joint during flexion and extension. Kinematic function of the new 

mechanism has been proposed and used to calculate the position of elbow joint axis. Two 

force sensors were used to detect the angle and displacement of two passive joints. The 

experiment has been done and results have revealed that this design can solve centre 

disparity at elbow joint axis. Another development has been reported to compensate for the 

migration of Instantaneous Centre of Rotation (ICR) at joint and avoid mismatches during 

users’ movements [125]. It is a dynamic servo adaptation based on three active DoFs 

mechanism design which can accommodate different anthropometric arm or leg 

measurements. The proposed design can be applied to any joints that produce movements 

in the sagittal plane. His developed algorithm permits the system to adapt itself to any ICR 

variation, maintain the initial adjustment of the orthosis and avoid any offset between 

device and user’s limb. However, his development cannot cater for portable, lightweight 

and autonomous exoskeleton design. The exoskeleton robot for shoulder joint motion assist 

has been developed [126]. The unique feature of this exoskeleton is the centre of rotation 

(CR) of the shoulder joint of the exoskeleton uses a moving mechanism. The mechanism is 

made up of links and a slider. This design permits the CR of robot shoulder joint to move 

behind in accordance with shoulder vertical flexion angle during vertical flexion 

movement, and move inward in accordance with shoulder horizontal extension angle in the 

case of horizontal extension movement.  

     The 5 DoFs MAHI Exo II [84] exoskeleton has been developed for elbow, forearm and 

wrist rehabilitation. The mechanism design consists of a revolute joint at elbow, a revolute 

joint for forearm and 3-RPS (Revolute-Prismatic-Spherical) serial-in-parallel wrist. In his 

design, wrist mechanism uses Hephaist-Seiko SRJ series high precision spherical joints 

with inclined surface design on the wrist ring to improve range of motion. This will solve 

the minor misalignments of the wrist rotation axes with the device. As for forearm 

mechanical design, cable driven mechanism is employed for high torque output with 
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simple mechanism and low cost. As for elbow design, two high torque DC motors with 

cable drives mechanism is assembled in such a way that enable it to change the 

transmission from one side to the other side easily and quickly for both left and right 

rehabilitation. This is achieved by coupling or decoupling of the capstans with the driving 

motor shaft via removable taper pins. To maintain better posture during rehabilitation, 

tilting mechanism as a passive DoF is implemented in the developed system. Some other 

developments of alignment-free robot were reported as in previous section internal force 

exoskeleton system [71, 117, 119].  

    Nevertheless, all of the rehabilitation robots were very bulky, heavy and especially the 

external force exoskeleton system requires a stationary platform to attach the robot arm 

which will make the user feel very uncomfortable. Although high safety paradigm is set for 

robotic rehabilitation system, it is still a high risk for the patient. In addition, most of the 

robotic approaches only focus on the movement training without any motivation.  

Therefore the robotic approach may lighten the burden of physiotherapist but will be still 

similar to the traditional rehabilitation therapy in which patient becomes bored after some 

period of time due to repetitive training manner. In order to overcome the limitations 

related to the robotic approach, virtual reality (VR) or augmented reality (AR) technologies 

are increasingly attracting much attention in the rehabilitation field due to its safer training 

environment with many motivational ways through gaming system as well as low cost 

training settings.     

2.6. Game based Rehabilitation Systems 
The Rehabilitation Gaming System (RGS) is based on VR or AR and is targeted for the 

induction and enhancement of functional recovery after lesions to the nervous system using 

non-invasive multi-modal stimulation. 

2.6.1. Virtual Reality System 

Virtual reality (VR) is a set of computer technologies that provides an interactive interface 

to a computer generated environment. In this environment, the individual can see, hear and 

navigate in a dynamically changing scenario in which he or she participates as an active 

user by modifying the environment according to his or her actions. VR has also been 

deployed in different rehabilitation contexts with a number of distinguishing features. First, 

they can be used as training tools to promote intensive training directed towards specific 
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deficits. Second, training can be defined within scenarios that allow the patients to engage 

in task-oriented activities. Third, it is a real-time high-resolution monitoring tool, allowing 

for the quantitative assessment of relevant properties of deficits, performance and 

recovery. Fourth, the versatility of VR technologies can play an important role in engaging 

motivational factors, a key factor in recovery [127]. Fifth, VR based rehabilitation systems 

easily transfer from clinic-based training to at-home applications for telerehabilitation, 

creating a continuum of diagnostic and training possibilities [35, 128]. Attention and 

motivation are two major factors in neuroplasticity rehabilitation. Research studies have 

confirmed that virtual reality based rehabilitation therapy provides such sustained 

attention, motivation and self-confidence [29, 129]. It provides rich controllable multi-

modal simulation and the possibility for individualization. It is a computer based 

interactive, multisensory simulation environment that occurs in real time. VR can be two 

types, immersive and non-immersive. Under fully immersive VR rehabilitation systems, 

large screen projection (LSP) [130], head-mounted display (HMD) [131]or cave (BNAVE) 

[132]were used for rehabilitation therapy. In a non-immersive VR system, interface 

devices such as computer mouse, cyberglove/cybergrasp [133, 134], joystick [135]or force 

sensor were utilized for rehabilitation training. 

    Some researchers have developed the combination of biofeedback and VR to rehabilitate 

the upper limb. The researchers from [126] have developed EMG biofeedback based VR 

system to train the hand rotation and grasping. The inputs for the system will be EMG 

system and magnetic motion tracking system while the output will be PC monitor where 

VR engine, software and database are installed. VR engine is used to create the VR 

environment for the system where the data base in which is also stored the results of each 

patient is to provide respective feedback and display via I/O driver. Polhemus Fastrak 3-

SPACE magnetic motion tracking system which provides 6DOFs measurements is to 

detect the position and orientation of the patient’s hand so as to achieve real time motion in 

VR environment. MP100, BIOPAC system Inc. EMG biofeedback system will detect 

patient muscle activity and it will convert analogue data to digital data via DATA 

TRALASION, DT9816. Desktop monitor will provide the VR visual output. The balloon 

shooting has been developed in this system as a rehabilitation task to improve patient hand 

rotating and grasping rehabilitation. VR system is developed by XNA game studio and 

programmed in C#. In VR environment rotation of the hand will be detected from motion 

tracker while grasping will be detected from processed EMG signal. The orientation of the 
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hand data will be sent to VR engine via tracker next to PC and receiver at the patient’s 

hand. In balloon shooting task, hand rotation will be represented as control of missile 

launcher head pointing direction. The raw EMG data which is collected from EMG system 

will be rectified, filtered by fourth order Butterworth band-pass filter to be represented as 

firing the missile in VR balloon shooting task. Both visual and audio feedback will be 

provided throughout the task. Adjusting of training task level will be available in this 

system based on patient’s motor performance. Future work will focus on deep impression 

stereoscopic view with head-mounted display and will develop various rehabilitation tasks. 

    Hands-Up game was designed by Odle et al. [136]. It was implemented for children with 

orthopaedic disabilities. The system aims to improve finger control, grasp strength and 

bilateral hand coordination. The system was developed under Matlab’s Simrobot toolbox 

and electromagnetic position/rotation sensor was used to track the current position of the 

hand in 3D space. It uses markers: paper cup, shirtsleeve and plastic spoon, to define the 

games based on therapeutic goals. The colour detection method was used to locate the 

position for one of the three coloured markers in gaming environment via webcam to start 

the game. The avatar hand which representing patient’s real hand will appear in display 

screen to interact with virtual object in VR game environment. Participants demonstrated 

improvements in reaching movements ability and completing the functional tasks during 

usability study. 

    Another VR based video game was developed for rehabilitation of the pronation and 

supination movements of children with CP [137]. The game was implemented with 

LabVIEW and MATLAB for analysing the results. The game is a formula one racecar on a 

racetrack. The objective of the game is to keep the car inside the racetrack’s limits. The 

pronation and supination movements of the user’s forearm control the car’s horizontal 

position on the screen.  

2.6.2. Augmented Reality System 

Although VR based rehabilitation systems have strong advantages over traditional methods 

or using any mechanical assist device, the system does not allow the patients to observe 

and communicate with the real world. In other words, virtual reality based rehabilitation 

system can be completely immersed in the synthetic environment or required head mount 

display for some of the developments. Moreover, the attachment of bulky tracking device, 

cyber glove, data glove or any haptic device to user arm, especially in non-immersive 
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environment, becomes inconvenient for disabled patients due to its size and weight. Thus, 

alternative technique called augmetned reality (AR) has been studied and developed as a 

rehabilitation tool by researchers recently. AR allows patients to communicate with real 

world and it supplements reality rather than replaces it. Azuma in [138] defined AR as “ a 

variation of Virtual Environments (VE) and let the virtual and real objects coexist in the 

same space”. This new technique does not require any extra devices to track the subject’s 

arm position except light weight marker which is appropriate for physical rehabilitation. 

Augmented reality is the combination of real world and virtual world that enhances the 

user perception of reality.  

     According to Ronald Azuma et al.[139], AR system must have the following properties: 

combines real and virtual objects in real environment, runs interactively and in real time, 

and registers (aligns) real and virtual objects with each other.     There are two basic types 

of display for AR system namely see-through AR display and monitor based AR display 

[140]. In the context of see-through display, user can see the display medium directly to 

the real world surrounding whereby perceiving both the maximal possible extent of 

presence and the ultimate degree of image replacement. In monitor based display, user can 

view the computer generated virtual world which is overlaid on top of real environment via 

captured real-time video images. Most of the recent developments for AR based 

rehabilitation system were based on monitor based display due to its safer training 

environment. Due to its safe interaction environment, especially for children who are more 

sensitive to total immersive virtual world than adults, AR has been widely used in 

rehabilitation therapy. Moreover, AR provides a more real feeling than VR as it combines 

the real world and the virtual world seamlessly.  

    Such AR based rehabilitation was invented by J. W. Burke et al. [141, 142] with several 

games for upper-limb stroke patients. This development let them use real objects which 

will interact with virtual environment. His development is implemented in Microsoft XNA 

programming environment with C# and .NET Framework, and uses DirectShow library for 

image processing from webcam. The colour tracking method of the marker in this 

development is done in 2D space with segmentation algorithm. In this algorithm, RGB 

colour model was chosen as a colour space due to it being more effective than HIS and 

CMYK according to previous research. A short calibration was conducted to track the 

defined colour. The technique to track the colour is defining mean colour vector which is 

calculated from the pixels within the calibration square. During the game running, pixel’s 
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colour in each frame was being checked within a cuboid centred on the mean vector with 

three equations. If the component of each pixel satisfies all the equations, it is segmented 

as being same colour as marker and will be represented as a marker. Several augmented 

reality games such as Rabbit Chase, Arrow Attack and Brick’a’Break, were designed in 

this development by making use of marker-based augmented reality. This rehabilitation 

aim of these games is to regain the patient’s motor functions such as grasp, reach, lift and 

release and cognitive skills. 

    Another AR based upper limb rehabilitation exercise, AR-REHAB, was developed by 

Atif Alamri et al. [143] for post stroke patient rehabilitation. The system was based on 

augmented reality games to improve patient’s arm reaching and hand grasping ability. The 

system developed the framework which consists of patient subsystem and therapist 

subsystem. Under the patient subsystem, six components: sign-on, AR rendering, patient 

interface, tracking interface, session recorder and exercise adaptor are developed. Patient is 

required to sign into the system so that the appropriate AR exercise will be rendered. The 

rendering will take place by patient interface and tracking interface. The movements will 

be recorded with session recorder that applies some filters to reduce the amount of data and 

store it in the database. The exercise adapter is used to manipulate by therapist interface to 

modify the patient profile or treatment plan. Under therapist system, three components: 

session evaluator, decision support engine and therapist interface are available. The session 

evaluator will extract the useful data and store it as patient’s performance data. Patient’s 

performance will then be checked by decision support engine and this sends the 

recommendation messages via therapist interface as performance result. The system was 

developed in C++. The AR rendering was done with ARToolKit API, CHAI 3D API, Open 

Dynamics Engine (ODE) and VirtualHand SDK. ARToolKit API was used to detect the 

suspected marker pattern which is a preidentified image label via webcam. CHAI 3D API 

was used to overlay the scene graph of the virtual environment onto the real scene based on 

computed marker pose. Collision detection between objects and computer responses was 

computed with ODE. Although VirtualHand SDK provides the pose of hand, the system 

only used ARToolkit API to track the hand pose.  

     The development aimed to treat patient without the need of direct supervision of an 

occupational therapist. There are four games which were developed as AR-REHAB 

exercises namely shelf, cup, cannonball, air-hockey and block. The system has already 

conducted the usability test and provided positive results. However, occlusion problem and 
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deterioration of depth perception need to be improved. Moreover a vision-based finger 

measurement system is needed to measure the position of the object in real time. 

    Alternative AR rehabilitation exercises were developed by [144]. AR drink, AR dance 

and AR fold were developed to improve the coordination of stroke patients. The system 

has been developed to train the patients’ upper limb for daily life activities such as 

drinking, dancing and folding via virtual objects. The system is still under development 

towards orthopaedic conditions and management of chronic illness by controlling devices 

using body gesture and to provide validation results.  

    Dunne et al. [145] describe the rehabilitation system with multitouch display for age 

seven to eleven children with CP. The system is made up of multitouch display, tangible 

object input and wearable accelerometer. One of the main features of this system is the 

ability to track the trunk position of patient and discourage the compensatory movement 

which promotes the maximum effectiveness for this therapy. The tracking is made by 

accelerometer via Bluetooth connection and the processed data is sent to the display screen 

as a feedback.  The system aims for stretching and coordination of upper-extremity using 

one or both hands and is integrated with three rehabilitation games: Find the bone, Spelling 

and Catch the butterflies to serve as a complete system. However, the measurement of 

range of motion progress is not so effective due to compensatory feedback alone.  

    To prove the advantages of AR technique in child rehabilitation, the preliminary study 

of augmented reality based rehabilitation system for cognitive disabled children has been 

conducted [146]. In this system, the non-immersive recreational and educational 

augmented reality application ARVe (Augmented Reality applied to Vegetal field) has 

developed. The ARVe helps cognitive disabled children in decision making by matching 

task of plant entities. Sensory cues such as visual, auditory and olfactory feedback were 

displayed in order to provide the correct decision by children. The system consists of 

laptop, webcam, video projector and Magic-Book like user interface where markers are 

attached on it. The main framework of this application is developed in C++ and Open GL 

library while augmented reality environment is built up using ARTag software library. The 

experimental study was conducted to investigate the children performance in using AR 

technique as well as to examine specific attitudes of cognitive disabled children. The study 

proved that the use of AR technique by disabled children promoted positive emotions and 

high motivation.  
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    Other than proof of motivation with AR technique, various AR based rehabilitation 

systems help to improve the disabled children. The researchers from [147] have developed 

two augmented environments (AEs) for paediatric rehabilitation to improve motor control 

via music playing AE and topographical orientation training to relearn the community 

mobility skills through decision making AE. The system used USB webcam to capture the 

child movements and received images were processed by custom software. Movement 

tracking, detection and filtering are deployed when necessary by particular application. 

When collision of virtual objects is detected, software will send out visual and acoustic 

feedback to the user. In the framework of music playing AE, children with cerebral palsy 

(CP) or those with hypotonia are expected to move their fingers, hands, arms, head or body 

to create the music within AE.  The child is not required to hold or touch any physical 

devices to create the music. When the child interacts with virtual objects via his 

movements, the virtual musical notes will disappear with appropriate acoustic feedback. 

The presence of adjustable dwell time and sensitivity of each note to move in this 

development prevent the sporadic involuntary movements during exercise. The pilot study 

results reveal that musical AE promote the visual-perceptual and motor planning skill. In 

the framework of decision making AE, there are a sequence of scenes such as 

topographical orientation, personal safety, personal preference and money management. 

The technology is decision making by brain injured adolescents to train their judgment. If 

the correct decision is being made at a given scene, the next scene will be appear to 

continue until the given task is finished. This will train the relearning of community 

mobility skills. However, the pilot studies disclose that there is no significant improvement 

compared to conventional therapy and this lead to the development of the wearable AE 

system for actual community excursions.  

    The alternative augmented reality based rehabilitation musical system has been 

developed by [148]. It was developed for children with CP to rehabilitate the arm 

movement via computer assisted music therapy. The rehabilitation aim is to improve the 

extension of arm exercises, flexion exercise of the wrist, repetitive motor training, visual 

perception exercises, auditory perception exercises and reproduction and development of 

more sophisticated music. The application was implemented based on augmented reality 

technique using colour markers which represent the keyboard for musical composition by 

users. The detecting of the coloured markers has been done by image processing via 

webcam. The positions of the coloured markers are calculated by computer graphics, visual 
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computing and image processing techniques so as to render coloured virtual cubes. The 

flexibility of arranging the markers position allows the therapists to prepare motor planning 

for individual patients. The developed system is aiming to extend the conventional 

rehabilitation process and not to replace it. Therefore, this system is only for additional 

training of relearning cognitive, motor, psychological and social activities. The detail 

comparison of the literature can be found in Appendix A1.  

2.7. Biosignal in Rehabilitation 
Another rapidly advancing area of technology for rehabilitation is the application of the 

individual’s own residual sensory and motor signals to augment function. In the context of 

biosignal, in this thesis, surface electromyography (sEMG) is used to record and 

manipulate in rehabilitation system.  

2.7.1. Electrical Signals from Muscles – the Electromyogram 
(EMG) 

The electrical signal associated with the contraction of a muscle is called an 

electromyogram (EMG). The study of EMGs, known as electromyography, provides the 

basic information of muscle activities such as contracting of the muscles, rate of tension 

build-up, fatigue, and reflex activities. Muscle is made up of many motor units, and each is 

controlled by a motor neuron through special synaptic junctions called motor end plates. 

Muscle activation is initiated by an action potential that travels along an axon and is 

transmitted across the motor end plates in to the muscle fibers, resulting in muscle twitch. 

The schematic diagram of the basic motor control mechanism is shown in Figure 2.8. 

EMG electrodes usually collect the muscle electrical activity from these muscle fibers by 

means of either surface electrode or concentric needle electrode. Surface electrodes are 

attached to the patient’s skin while concentric needle electrodes are inserted through skin 

into muscle tissue to detect the abnormalities and activation level of human movement by 

analysing the shape, size, and frequency of the motor unit action potentials generated by 

muscle fibers. Komi [149] has reported EMG amplitude increased tension during muscle 

lengthening, eccentric contraction and remained constant in spite of decreased tension 

during shortening, concentric contraction. During muscle fatigue, EMG measurements 

increase in amplitude and decrease in its frequency spectrum. In rehabilitation field, sEMG 

can be utilized in two forms: controller and biofeedback.  
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2.7.2. Biosignal Driven Rehabilitation Systems 

In general, the amplitude of the sEMG signal reflects the muscles activity levels which are 

related to the motion intention of the human. Therefore, the signals may detect the human 

intention of movement in real time. Based on this property, researchers have proposed 

several approaches to control the rehabilitation system to achieve the user intended motion.   

    One of the available approaches to study the human movement based on human 

intention is EMG-based forward dynamics. Several studies have been done to estimate 

moments about the knee [150], wrist [151] and elbow [152]. However, the developed 

forward dynamics algorithm faced several difficulties such as estimation of muscle 

activation due to high variability in EMG signals especially during dynamic conditions and 

transformation from activation to muscle force. These algorithms are based on 

phenomenological model [153] which is derived from Hill’s classic work [154], 

biophysical model of Huxley [155, 156] or Zahalak’s models [157-159]. To overcome 

these difficulties, optimization methods were used to predict the muscle forces directly by 

selection of muscles that will maximize jumping height or minimize the metabolic energy 

have been used in forward dynamic models [160, 161]. However, optimization-based 

models are only able to predict forces and they do not account for differences in an 

individual’s neuromuscular control system. Thus, [162] developed four step models to 

 
Figure 2-8: Schematic representation of basic motor control mechanisms and its 

components 
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estimate the forces and joint moments and movements from measurements of neural 

command. First step accounted for muscle activation dynamics and the input to the model 

is neural command (EMG) which will specify the magnitude of muscle activation followed 

by the second step of determining the muscle contraction dynamics. Third step characterise 

the musculoskeletal geometry followed by the final step of equation of motion that permit 

joint moments to transform muscle forces to joint moments. 

    Another prediction method was developed by [116]. In his system, myoprocessor 

algorithm was proposed to extract the predicted muscle moments generated by the muscles 

on the elbow joint based on the algorithm implemented by [163]. First, developed 

algorithm for estimating the normalized muscle activation level (NAL) obtains the raw 

EMG signals from patient’s muscles and then this passes through high-pass filter followed 

by full signal rectification. The result which is an absolute value will then feed into a low-

pass filter and finally will perform the signal normalization to achieve muscle activation 

level. Myoprocessor algorithm which solved the Hill-based state equation was 

implemented in the direct modelling approach in which muscle activation levels along with 

joint kinematics were fed into myoprocessor to obtain the muscle moment. The moment-

based control system was developed and integrated with myoprocessor to control the 

exoskeleton. 

    Alternative sEMG based intention control system of articulated rehabilitation robot 

[164] is based on position and torque controller method. In his development, PID 

controller was used as a positional controller to minimize the position error between 

current position and target position. Impedance controller as a torque controller is used to 

measure the force interaction between rehab-robot and human arm to achieve human 

volition movement. EMG signals were extracted and processed via customized algorithm 

to select either active mode in which robot arm is driven by patient or passive mode which 

is driven by predefined motion trajectory. However, several literatures have pointed out 

that by using of positional feedback control it is difficult to assess patient’s muscle 

condition. Therefore, sliding mode control was implemented and proposed by [83]. The 

concept of the new algorithm was to reduce the effect of chattering due to holding of 

sliding surface with infinite frequency. It was realized by replacing the discontinuous term 

with continuous approximation and adding the saturation function to realize this effect. 

The complete control system included data acquisition module, signal processing module, 

EMG to torque conversion to estimate the joint torque and send to sliding mode control. 
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    In addition, user’s intention is able to predict from sEMG by means of machine learning 

approach.  In the development of [109], the intended movement of the human was 

achieved by fuzzy control. In his control system, there were three controllers: force sensor-

based controller (FBC), EMG based controller (EBC) and obstacle avoidance controller 

(OAC) to become a total automatic power-assist controller. FBC was carried to make the 

generated wrist forces become zero and the output torque was input for shoulder and elbow 

joint of the exoskeleton. In the EBC, multiple neuro-fuzzy controllers were used to detect 

the intended movement of the user. The control was carried out based on muscle activity 

level: EBC was activated when the user’s muscle activity level was high; otherwise control 

was taken over by FBC. Collision between the exoskeleton arm and frame of the 

wheelchair on which the exoskeleton was mounted were avoided by integrating with OAC. 

Another method, Fuzzy-Neuro control method with sEMG signals is proposed by K. 

Kiguchi et al.[126]. In his development, the exoskeleton employed fuzzy-neuro controller 

to assist shoulder joint motion based on surface electromyography (sEMG). However, the 

muscle activity level and each muscle activity of individual are different. Therefore, 

adaptive neuro-fuzzy controller was developed to adapt itself to the user’s EMG levels 

[165]. The adaptive neuro-fuzzy controller used the error back-propagation learning 

algorithm to minimize the amount of evaluation function. 

2.7.3. Control Algorithms in Rehabilitation Systems     

Although various control algorithms are available to drive rehabilitation systems, Artificial 

Neural Network (ANN) is the most popular and effective technique with low computation 

cost. In this section, ANN based control methods is detailed. It is defined as a family of 

statistical learning models inspired by biological neural network. It is used to approximate 

the functions based on a large number of inputs which are generally unknown. In 

biological neural network, neurons receive electric and chemical signals via synapses 

located on the dendrites or membrane of the neuron. When strong signals are received 

above a certain threshold, the neuron is activated and emits a signal to the axon. This signal 

will be sent to another synapse and activate other neurons as shown in Figure 2.9. By 

mimicking the idea of biological neural network, ANN is made up of inputs which act as 

synapses, the weights which detect the strength of the respective signals by computing the 

mathematical function to determine the activation of the neuron, another function to 

compute the output of the artificial neuron as shown in Figure 2.10. In ANN, the weight 
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plays a major role as depending on the weight, the computation of the neuron will be 

different. The higher the weight of an artificial neuron is, the stronger the input which is 

multiplied by it. By adjusting the weights of an artificial neuron, the output can be obtained 

as desired. This process of adjusting the weights is called learning or training. The learning 

is executed by providing the training set consisting of a group of examples from which the 

neural network can learn. These examples are also known as training patterns that are 

represented as vectors which can be taken from images, signals, sensor data, arm 

movements and so on.   

    Supervised learning is the most common training scenario during which the network is 

presented with the input pattern together with the target output for that pattern. The target 

output usually consists of the correct answer or correct classification for the input pattern. 

In response to these input-output paired examples, the ANN adjusts the values of its 

 

Figure 2-9: Biological neural network 

 

Figure 2-10: Artificial neural network 
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internal weights. If the training is successful, the internal parameters are then adjusted to 

the point where the network can produce the correct answers in response to each input 

pattern. Generally the set of training examples is presented many times during training to 

allow the network to adjust its internal parameters gradually.  

    Although several regression or prediction models such as support vector machine 

(SVM), regularized least squares linear regression model (OLS) and physiological based 

model (PBM), the literatures have proven that ANN provides better prediction accuracy 

than other prediction models [166]. Therefore, in this thesis, ANN based prediction model 

is chosen to predict the shoulder joint angle. There are two famous regression models in 

the ANN context which are BPNN based regression model and ELM based regression 

model which will be compared and analysed in this thesis.   

2.7.3.1. Back Propagation Neural Network (BPNN) 

Back propagation (BP) was originally introduced by Bryson and Ho in 1969 [167] and it 

was independently rediscovered by Werbos in 1974 [168], Parker in mid 1980’s [169] and 

PDP group in 1988 [170].  BP algorithm is a method to train or teach the ANN. It utilizes 

the mean square error and gradient descent to realize the modification to the connection 

weight of network. The modification to the connection weight of network is aimed at 

achieving the minimum error sum of squares and the training begins with random weights. 

The BPNN algorithm employs supervised training as the example inputs and outputs are 

provided to train the network and then the error is calculated. In general, BP learning 

algorithm can be decomposed into three steps: (1) forward propagation (2) backward 

propagation and (3) weight updates.  

     In the case of forward propagation, the input signal is propagated from the input layer, 

via the hidden layer, to the output layer. During this propagation, the weight and offset 

value of the network are maintained constant and the status of each layer of neuron will 

only exert an effect on the status of the next layer of neuron. If the expected output cannot 

be achieved as targeted output in the output layer, it will be switched to the backward 

propagation of error signal which is the difference between the real output and expect 

output of the network. In the backward propagation, the error signal is propagated from the 

output end to the input layer in a layer-by-layer manner. During the backward propagation, 

the weight value of network is regulated by the error feedback. The continuous 

modification of weight value and offset value is applied to make the real output of network 
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closer to the expected output. The detail mathematical models of such propagations and 

weight updates are explained in chapter 4, section 3. 

2.7.3.2. Extreme Learning Machine 

Extreme learning machine (ELM) is similar to the BPNN but with a generalization of 

single-hidden layer feedforward networks (SLFNs) in which the hidden layer’s nodes 

implement the random computational process and are not required to be tuned [171]. In 

contrast to the traditional learning algorithms, it provides not only the smallest training 

error but also the smallest norm of the output weights that provides better generalization 

performance of the networks [172]. The algorithm has proven that it has higher scalability 

and less computational complexity, hence, it becomes the most attractive for nonlinear 

modeling [173]. The mathematical formulation of ELM is given in chapter 4, section 4. 

2.7.4. Biofeedback 

Biofeedback is also known as augmented or extrinsic feedback which provides the 

additional information beyond the naturally available sensory or intrinsic feedback from 

user’s various intrinsic sensory receptors [174]. It is the technique that is able to provide 

the biological information to the patients in real time. It usually involves measurement of a 

target biomedical variable and relaying it to the user by means of one or two strategies: 

 Direct feedback: measurement of heart rate where a numerical value is displayed on 

the device. 

 Transformed feedback: the measurements are used to control an adaptive auditory 

signal, visual display or tactile feedback method. 

    Traditional biofeedback is presented to the patient and the clinician via visual displays, 

acoustic or vibrotactile feedback. However, recent development in rehabilitation is based 

on a virtual reality based system and hence providing a novel form of immersive 

biofeedback and realistic impression to the patient. The biofeedback measurements are 

frequently used in physical rehabilitation. sEMG biofeedback is a method of retraining 

muscle by creating new feedback systems as a result of the conversion of myoelectrical 

signals in the muscle into visual and auditory signals [175]. sEMG uses surface electrodes 

to detect a change in skeletal muscle activity, which is then fed back to the user usually by 

a visual or auditory signal. The sEMG biofeedback can be used to either increase activity 

in weak or paretic muscle or it can be used to facilitate a reduction in tone is a spastic one. 
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Therefore, sEMG biofeedback has been shown to be useful in both musculoskeletal and 

neurological rehabilitation. One of the pioneers, George Whatmore, in the use of surface 

Electromyography (sEMG) as a biofeedback tool highlighted how problems could emerge 

when an individual muscle performing efforts were too high or too low. He categorized a 

large number of representing efforts to describe in many ways in which person’s emotions 

are reflected in the patterns of muscle activity [176]. The clinical applications in sEMG 

were studied in greater depth by Kasman et al. [177].  

2.8. Summary 
In this chapter, a background on the human nervous system and related trauma or diseases 

of the nervous system was given. The chapter considered the detailed literature review on 

the recovery methods due to these trauma or diseases through rehabilitation systems with 

current available technologies. Various technologies were utilized in rehabilitation 

environment in order to overcome specifically physical and cognitive limitations in the 

literature. However, it was found that there were certain limitations in the available 

rehabilitation systems and these were all pointed out in this chapter. Additionally, where 

possible the need for the contributions proposed in this thesis was justified. In the next 

chapters, these contributions are considered in more detail with the corresponding 

concepts, experiments and results. 

 



 

Chapter 3  
Augmented Reality based Upper 
Limb Rehabilitation System 

 

3.1. Introduction 
An important aspect of motor rehabilitation is what kind of approach to be conducted in 

order to achieve optimal functional outcome for fast and effective motor recovery. There 

are two types of approaches namely the traditional approach which employs direct 

neuromuscular re-education techniques and Task Oriented Therapy (TOT) approach. In 

general, traditional therapy only permits the use of compensatory behaviors rather than 

optimizing function within the context of maximal utilization of the impaired anatomy. 

Moreover, it places much emphasis on the impairment level of disablement without 

considering adequately the implications or relevance of voluntary participatory behaviors. 

In contrast to traditional therapy, TOT approach aims to achieve a goal or a task with 

consistency, flexibility, and efficiency. TOT is also known as a top-down approach or 

cognitive approach where the therapy emphasis is upon assisting a patient to identify, 

develop and utilize cognitive strategies to manage particular tasks more effectively [178]. 

Winstein and Wolf [179] proposed a minimum of three active ingredients for effective 

TOT to promote post-stroke upper limb recovery. First ingredient is Challenging that 

defines the therapy should provide challenge in attention to acquire new learning through 

solving the motor problem. Second ingredient is Active Participation that identifies that 

the therapy should motivate enough for active involvement and long term engagement. 

Final ingredient, Progressive and Optimally Adapted such that over practice, the task 

demand is optimally adapted to the patient’s capability being neither too simple to not 
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challenge enough nor too difficult to cause a low sense of competence. The evidence of 

long-lasting cortical reorganization of the corresponding areas in the brain being used due 

to TOT in motor rehabilitation has been shown in several clinical reports [180, 181]. 

    This chapter starts with an introduction to therapeutic therapy in upper limb 

rehabilitation to understand its importance and effectiveness to post-stroke patients. 

Secondly, the design consideration based on biological targets and fundamentals of serious 

game design theory for fast recovery, motivation and repetitive training without losing 

interest are thoroughly analyzed. Thirdly, the importance of biofeedback in upper limb 

rehabilitation is discussed and fourthly, the significance of Augmented Reality (AR) in 

upper limb rehabilitation is detailed. Finally, the upper limb rehabilitation system, RehaBio 

system, is proposed and thoroughly explained in this chapter. The effectiveness of the 

development has been evaluated with Data Analysis, Performance Analysis and 

Questionnaire via non-clinical trials and the demonstration of the developed system has 

been performed in Port Kembla Hospital. 

3.2. Design Considerations 
The design of effective TOT for upper limb rehabilitation focuses on two main 

considerations: Biological Targets and Serious Games and Design Theory. The former 

aims to induce neuroplastic adaptations in the CNS and reduce the alterations in skeletal 

muscles while the latter intends to provoke high levels of engagement and self-motivation. 

3.2.1. Biological Targets 

During the development of therapeutic exercise for motor rehabilitation, biological targets 

such as the central nervous system (CNS) and skeletal muscles are the most important 

factors to consider for cure at the origin of the disease. As stroke damages the central 

nervous system (CNS), it becomes the prime target for recovery in the context of motor 

rehabilitation. One of the properties in the organization of CNS allows for plastic recovery 

called Neuroplasticity which produces changes in neural pathways and synapses due to 

changes in behavior, environment, neural processes, thinking, emotions, as well as changes 

resulting from bodily injury. The adaptation of neuroplasticity in the CNS can be induced 

by conducting specific training therapies that offer multiple tasks to train attention and 

distractibility combined with a motivational approach offering rewards and emotional 
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support. Therefore, TOT came into the picture as this is the most suitable therapy to 

achieve improvements in functional outcomes and overall health-related quality of life. 

    Another major concern as a result of stroke is disuse of skeletal muscles. Skeletal 

muscles are the voluntarily controlled actuators for movements by receiving neural 

commands from the brain via motor neurons. However, in stroke survivors, such neural 

commands are disturbed and muscle fibers do not receive any signals or very less signal 

from the brain for muscle contractions and this results in disuse of skeletal muscles. Disuse 

of skeletal muscle will eventually lead to muscle alterations such as muscular atrophy and 

increase intramuscular adiposity, fiber phenotype shift, and changes in muscle metabolism 

that could propagate disability [182]. To prevent such muscle alterations, TOT, which 

allows a wide range of motion should be introduced during motor rehabilitation. 

    After the biological targets are properly analyzed and defined, the next step is to define 

what kind of motivating technologies to employ for low esteem stroke patients. 

3.2.2. Serious Game Design Theory 

In general, stroke patients suffer from psychological effects and “Depression” is one of the 

most significant results for a person’s post-stroke condition. This becomes one of the major 

concerns and an obstacle to rehabilitation. Therefore, motivation plays a major role while 

stroke survivors are in a rehabilitation program. It has been suggested that the integrating 

of games into rehabilitation therapy enhances patient motivation even for long term 

training with repetitive mode [127]. Among the various type of game systems, computer 

games are often highly engaging and addictive in nature; as a result this may therefore 

offer high quality motor rehabilitation.  

    Designing a computer game can be as simple as creating with just story, art and 

software. However, within the context of rehabilitation, a game should develop with 

pedagogy that makes a game serious: a serious game that allows the player to achieve 

specific skills through entertainment and engagement for rehabilitation purpose. They can 

be developed for any platform and can be of any genre as long as the content permits the 

user to develop the intended skills. There are three core concepts: meaningful play, 

iterative design and challenge that are essential for the development of serious games for 

motor rehabilitation.  
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Meaningful Play: The goal of a successful game design is the creation of meaningful play 

[183]. In a serious game, meaningful play emerges from the relationship between a 

player’s action and the  system’s outcome where interaction is both discernable, a player 

can perceive how his action is affecting the game immediately via feedback and integrated, 

his action does not only have an effect instantaneously but also has an effect at the later 

stage of the game. In the context of player’s actions, it is important to identify what kind of 

action is needed to deliver to the player as an upper limb rehabilitation exercise. These 

actions include shoulder flexion (SF), shoulder extension (SE), shoulder hyperextension 

(SHE), shoulder adduction (SAD), shoulder abduction (SAB), outward rotation (OR), 

inward rotation (IR) elbow flexion (EF), elbow extension (EE), forearm pronation (FP), 

forearm supination (FS), wrist flexion (WF), wrist extension (WE), wrist hyperextension 

(WHE), ulnar flexion (UF) and radial flexion (RF) as shown in Figure 3.1. Feedback in a 

serious game enables a player to measure his performance in achieving goals or 

progression in their skills over time. Hence, it is central to creating and maintaining 

meaningful play. Feedback can be in many forms such as visual, aural or/and haptic in a 

game. As far as feedback in rehabilitation is concerned, failure as a feedback from the 

player action can be an important issue as rehabilitation feedback should be to encourage 

and reward all engagement with success. Hence, it is very important to consider how to 

present motivated feedback in serious game. In general, stroke patients also suffer from 

cognitive disabilities; thus, it is important to show the feedback clearly and obviously. 

Iterative Design: To achieve a rigorous and effective game design, an iterative 

methodology is required. This starts with fundamental game rules and core mechanics as it 

is impossible to fully anticipate the experience of the game. They can be only found out by 

way of play, for instance, seeing where it excels and where it grinds to a halt. During the 

process of designing the game, it is played, evaluated, adjusted, and played again, 

permitting improvement on the successive versions of the game which include aesthetic, 

understanding and ease of manipulation.       

Game Challenge: Game challenge plays one of the major roles in rehabilitation exercise. 

This is to monitor the patient’s performance as well as match the game level of difficulty to 

the patient’s ability. In addition to that, the challenge of the game makes the user engage 

for a longer time in rehabilitation. To enable the optimal challenge, it is necessary to 

continuously adapt the game levels by matching the patient’s existing skills without the 

feeling of depression or loss of interest. 
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3.3. EMG Biofeedback for Upper Limb 
Rehabilitation 
Muscle dysfunction may be caused by many reasons, some of them having to do with 

pathology of muscle tissue, some of them are due to trauma or injury, and some of them 

having to do with patterns of use or misuse. One of the pioneers, George Whatmore, in the 

use of surface Electromyography (sEMG) as a biofeedback tool highlighted how problems 

could emerge when an individual muscle performing efforts were too high or too low. He 

categorized a large number of representing efforts to describe in many ways in which 

 
Figure 3-1: Human Upper Limb Articulations 
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person’s emotions are reflected in the patterns of muscle activity [184]. The clinical 

applications in sEMG were studied in greater depth by Kasman et al. [185].  

   The sEMG biofeedback techniques fall roughly into three clinical entities: down-training, 

up-training and coordination training. The down-training techniques are used to facilitate a 

reduction in muscles which are overactive. Up-training is to learn how to turn on a 

particular muscle or muscle group. It is commonly conducted when working with inhibited 

muscles, or muscles that have been weakened due to disuse or injury. Coordination 

training is considered an advanced level of training and usually follows successful up- or 

down-training. This will teach the patient how to obtain the correct balance of agonists or 

antagonists. However, this is difficult due to cooperation of muscles involves in all three 

domains: posture, movement and emotions. The common techniques that are used to train 

the muscles are isolation of target muscle activity [186], relaxation-based down-training 

[187-189], threshold-based up-training or down-training, threshold-based tension 

recognition training [190] and sEMG-triggered neuromuscular electrical simulation[191]. 

It has been proven that integrating with biofeedback system provides improvement in 

retraining of muscles strengthening and improves motor skills [192, 193].  

    A key factor in promoting recovery of motor function is the degree of sparing of the 

contralateral sensorimotor cortex and corticospinal tract [105, 194]. By integrating the 

sEMG biofeedback in rehabilitation therapy, the sensory information returning to the 

somatosensory area may assist in establishing voluntary movement control associations 

with the adjacent primary motor cortex [72]. In addition to this, functional recovery can be 

facilitated by visually substituting for impoverished proprioceptive input from the paretic 

limb [195]. The action and perception involved in executing voluntary movements 

activates the neural mechanisms in the association areas of the cerebral cortex, and these 

association areas integrate sensory and motor functions [72]. Therefore, sEMG 

biofeedback plays an important role not only in induction of neural plasticity but also in 

motivational aspect [20].        

3.4. Augmented Reality for Upper Limb 
Rehabilitation 
Aforementioned in literature, augmented reality is increasing research interest in many 

clinical applications due to its simplicity and motivating ability especially in the 

rehabilitation field with multi-disciplinary fusing technologies of computer vision, wireless 
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communication, etc. In the context of rehabilitation, AR offers the advantages of being 

able to use real objects to interact within virtual environments or games. These real objects 

can vary in size, shape and mass which may result in players acquiring muscle strength and 

motor skills which are more transferable to everyday life than those associated with 

activities in pure virtual environments, where the user is typically not holding any physical 

object. In addition to this, AR allows the players to see the live view of real world 

environment, augmented by computer-generated imagery which is virtual object. There are 

six key ingredients to include while developing any AR environment. These ingredients 

include AR application, content, interaction, technology, the physical world and 

participant(s). 

3.4.1. AR Applications  

It is important to know how to develop a good AR application and there are two core 

questions for this as follows: 

1) What makes a good candidate for an AR application? 

2) What makes a good AR application? 

The first question refers to how well matched the candidate application is to the 

affordances offered by AR whereas the second one addresses how well the AR application 

is executed and meets the needs of the user of the application. In the context of 

affordances, AR allows one to superimpose digital information onto the real world in such 

a way that the user perceives the digital information as part of the real world. Keeping 

these affordances in mind, then, a good candidate for an AR application is one that exploits 

those affordances in a positive way to solve a problem of one sort or another. For the 

second question, to be able to accomplish a good AR application, it is important to perform 

an evaluation to find out what aspects of an application are working, what are not, why that 

is, and how to remedy or improve on it. The evaluation can include “Does the application 

fulfill the goal that drove the creation of the application?”, “Is the target audience actually 

using the application and using it in an effective way?” and “Is AR the right medium to use 

for the application?” . In this way, an effective and enjoyable AR application will be 

achieved. 

3.4.2. Contents  

“Contents” in an AR environment is vital to any AR applications. It refers to all the 

elements in the virtual world which interact with the user to provide an augmented reality 
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experience. There are many different types of content and different ways to represents that 

content in AR environment. It can be the representations that are perceived by our senses, 

the differentiation between the real world and virtual world, realistic representation vs 

abstract representation, representations meant to convey physical attributes vs 

representations to communicate emotion and the idea of representing content to tell a 

story. Without good content an AR application is nothing more than a technological 

novelty. Therefore, the contents of the AR application must work together to communicate 

the desired content to the users, and their actions must communicate to the AR application 

their intent and goal. 

3.4.3. Interaction  

In Augmented Reality, interaction plays a key role in the overall user experience. There are 

a number of interaction methods by which a user can communicate with the virtual world, 

AR application, or other user in the experience by means of physical buttons, keys, sliders, 

or any other manipulators to interact in an AR experience. In the context of the virtual 

world, the interaction can be direct user control in which a user manipulates the virtual 

world in a manner that is directly analogous to how they do it in the physical world, 

physical control where users use a physical device that they can hold and touch, virtual 

control such as virtual button that users can manipulate in the virtual world and agent 

control where users issue commands to some agent in the VR world to carry out the action 

on behalf of the users. 

3.4.4. AR Technologies  

In Augmented Reality (AR) every experience involves several technologies such as 

computer vision technology to track the location and orientation of virtual objects, some 

form of computation to integrate the virtual elements of the experience with the real world, 

some mechanism to display the virtual elements of the experience and some techniques or 

engine to detect the collision between virtual objects. 

3.4.4.1. Objects Tracking in AR  
Augmented Tracking of virtual object is one of the most important tasks in computer 

vision applications such as motion based recognition, video games, human computer 

interaction, automated surveillance, traffic monitoring and vehicle navigation. However, 

the tracking can be limited due to loss of information caused by projection of virtual 
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objects in 3-Dimension world, complex object movements, partial or full object occlusions, 

complex object shapes and real-time processing requirements. Therefore, numerous 

tracking approaches to tackle these limitations have been proposed according to the block 

diagram in Figure 3.2. 

    There are four main categories to consider for detecting the objects in the scene [196]. 

They are object representation, feature selection, object detection and object tracking. 

Object representation is to represent their shape and appearance. It can be point or 

centroid, geometric shapes such as rectangle, ellipse, etc, boundary of an object, articulated 

objects in which body parts are held together with joints and skeletal models as shown in 

Figure 3.3.  

    Feature selection plays a major role in tracking as this will distinguish the uniqueness of 

the objects in the feature space. Feature selection can be based on colors, edges, optical 

flow or texture depending on the application domain. In color feature selection, RGB (Red, 

Green, Blue) where dimensions are highly correlated, L*u*v (L for lightness, u and v for 

the calculated values from chromaticity coordinates) and L*a*b (a and b for the color-

opponent dimensions) which are perceptually uniform color spaces and HSV (Hue, 

Saturation, Value) color space which is an approximately uniform color space are available 

for tracking. Edges feature selection is able to identify the changes in image intensities and 

it is less sensitive to the illumination changes compared to the color features [197]. Optical 

Figure 3-2: Different Categories for Object Tracking Algorithm 
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flow in feature selection is computed based on the brightness constancy of corresponding 

pixels in consecutive frames [198]. Texture feature selection is a measurement of the 

smoothness and regularity and this requires processing step to generate the descriptors such 

as steerable pyramids [199], wavelets [200], etc.  

    Object detection mechanism is required in every tracking method. Generally, single 

frame information approach is used in object detection. However, temporal information 

from a sequence of frames is used in some object detection methods to reduce the false 

detections. The popular detection methods include point detectors [201], segmentation 

[202], background modelling [203] and supervised classifiers [204]. 

    Point detectors are used to locate the point of interest in images which have an 

expressive texture in respective localities. Segmentation method is the process of 

partitioning the image into multiple segments to simplify and make it easier to analyze. To 

be more exact, segmentation is the process of assigning the same label to the pixel that 

shares certain characteristics in an image. Background modelling is the object detection 

method that is based on finding deviations from the model for each incoming frame. If 

there is any significant change in an image region from the background model, it signifies 

a moving object. Supervised classifiers method is achieved by learning different object 

views automatically from a set of examples by means of learning mechanisms such as 

neural network, support vector machines and adaptive boosting. 

    Object tracking is to create the trajectory of an object over time by locating its position 

in every frame of the video. This can be achieved via point tracking, kernel tracking or 

silhouette tracking method. Point tracking method detects the object in consecutive frames 

by points and it can be further divided into two methods: deterministic method [205] which 

 
Figure 3-3: Object representation  
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uses qualitative motion heuristics and probabilistic method [206] which takes the object 

information and uncertainties into account to establish the correspondence to tackle the 

occlusions, misdetections, objects’ entries and exits problems. Kernel tracking is achieved 

by computing the motion of the object which is generally in the form of parametric motion 

such as translation, conformal, affine, etc or dense flow field computed in subsequent 

frames [207]. Silhouette tracking method [208] is to provide the accurate shape description 

for the objects with complex shapes and to find the object region in each frame by a color 

histogram, object edges or the object contour by the previous frames.  

    However, assumptions are made to constrain the tracking problem in the context of a 

particular application. These can be minimal amount of occlusion, high contrast with 

respect to background, illumination constancy, smoothness of motion, etc. To minimize 

such assumptions, a customized tracking algorithm has been developed for RehaBio 

system which is part of the contributions of this thesis. 

3.4.4.2. Collision Detection in Augmented Reality 
Collision detection is essential in many applications such as computer games, physical 

simulations, robotics, virtual prototyping and engineering simulations to ensure realistic 

appearance. In AR environment, collision detection is one of the essential aspects to 

generate on how the interaction between the virtual objects and real objects which capture 

by webcam occurs. It is generally refers to detecting of a seemingly simple problem: 

detecting of two or more objects which are intersecting. More specifically, collision 

detection concerns the problems of determining whether or not the objects intersect, when 

the collision will occur or has already occurred and how the objects are coming into 

contact each other. To answer such questions efficiently, the collision system or algorithm 

should be designed by considering several factors such as application domain 

representation, different types of queries, environment simulation parameters, 

performance, robustness and ease of manipulation and use [209]. 

    Application domain representation: The geometrical representations such as polygonal 

representation or constructive solid geometry representation of the scene and its objects 

play the important role in developing the collision detection algorithms. In any AR 

environment, it is possible to pass rendering geometry directly into the collision system; 

however, it is better to have separate geometry to simplify and speed up the detection. In 

addition to that, it is also often wise to provide specialized collision systems for specific 

scenarios rather than having one all-encompassing collision detection system. 
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    Types of Queries: Interference detection or intersection testing are the most 

straightforward collision queries in the AR experience. This is to check whether two static 

objects are overlapping at their given positions and orientations.  

    Environment Simulation Parameters: There are several parameters of a simulation that 

have a direct effect in collision detection system such as how the number of objects and 

how the objects move relate to collision processing. Higher number of objects in AR 

experience will become expensive and hence it will require speeding up the process by 

reducing into two phases: the broad phase and the narrow phase. Broad phase identifies the 

smaller groups of objects that have potential of colliding and excludes those that definitely 

are not, are as shown in Figure 3.4. The narrow phase is responsible for determining the 

exact collisions by performing the pairwise tests within the subgroups. Another factor that 

can affect computational effort and accuracy of the detection is depending on the type of 

motions which are discrete (static collision detection) and continuous motion (dynamic 

collision detection). Static collision detection is detecting the intersection between the 

objects which are stationary at their current positions with zero velocities. In contrast, 

dynamic collision detection considers the full continuous motion of the objects over the 

given time interval which can detect the exact time of collision and the point of first 

contact. However, these tests are much more costly than static tests. Therefore, it is 

important to choose a proper detection test to suit AR application.        

    Performance: It has been suggested that the best possible visual games must run at 60 

fps. Therefore, the processing time for collision detection may only allow for a few micro 

seconds and this is where speed optimization comes into the picture for faster processing in 

the collision detection system. One of the inexpensive optimization methods is performing 

the bounding volume tests which will be discussed in the following section. 

 
Figure 3-4: Broad Phase  
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    Robustness: Robustness in an AR application refers to a program’s capability of dealing 

with numerical computations and geometrical configurations. The former problems arise 

from the use of variables of limited precision during computations while the latter 

problems arise from topological errors and overall geometrical inconsistency that lead to 

the unreliable numerical calculations. Therefore, to avoid such runtime errors, robustness 

should be considered throughout both design and development of the collision detection 

system. 

    Ease of Implementation and Use: It is important to look into the overall complexity as 

well as how many and what type of special cases are involved, how many tweaking 

variables are involved, how much time is required in the build process to construct the 

collision-related data structures and how often the model changes throughout the 

development. All of these important points define the implementation complexity and 

manipulation in AR experience, therefore, it is very important to consider these points 

properly while developing a fast and effective collision detection system for specific AR 

application. 

3.4.4.3. Bounding Volumes (BV) 
Direct collision detection testing based on geometry is often very expensive, especially if 

there are hundreds or thousands of polygons. To minimize such cost, bounding volumes 

(BV) are usually tested for overlap before the geometry intersection test is performed. It is 

a single simple volume encapsulating one or more objects of more complex nature and it 

allows for fast overlap rejection tests as shown in Figure 3.5. In some cases the collision 

can be determined by the BV of the object itself. 

    Many geometrical shapes have been suggested as bounding boxes. However not all the 

 

Figure 3-5: Overlap rejection test between Bounding Volume  
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geometric objects have effective bounding volumes and only if the BV has a simple 

geometric shape with the following properties: inexpensive intersection tests, tight fitting, 

inexpensive to compute, easy to rotate and transform, use little memory and will provide 

the less expensive test. Some of the most common bounding volume types are illustrated in 

Figure 3.6. The figure also depicts the level of faster detection test with less memory and 

more precise bound. 

    Sphere Bounding Box: The sphere is the common type of bounding volume that has an 

inexpensive intersection test with most memory-efficient bounding volume. It also has the 

benefit of being rotationally invariant, which means that they simply need to be translated 

to new position. Sphere bounding boxes are defined in terms of a center and a radius.  

    AABBs: The axis-aligned bounding box (AABB) is one of the most common bounding 

volumes. It is rectangular in shape, six-sided for 3D and four-sided for 2D objects. AABB 

are aligned with both X and Y axis and are un-rotatable. The best feature of the AABB is 

its fast overlap check, which simply involves direct comparison of individual coordinate 

values.   

    OBBs: Oriented bounding box (OBB) is very similar to AABB but with an arbitrary 

orientation. Therefore, there are many possible representations for an OBB. The most 

common representation is a centre point plus an orientation matrix and three halfedge 

lengths which are based on the separating axis theorem.  

    Sphere-swept Volumes: These bounding volumes are in a cylindrical shape and of 

course the overlap tests for these are quite expensive due to complex mathematical 

 
Figure 3-6: Common Types of Bounding Volumes 



3. Augmented Reality based Upper Limb Rehabilitation System 
 

 72 

calculations. However, if the object of interest is cylindrical in shape, cylinder volume 

becomes a more attractive bounding volume. The cost of the test is totally dependent on 

the cost of the distance function. To make the test as inexpensive as possible, the inner 

primitives are usually limited to points, lines or rectangles resulting in sphere-swept points 

(SSPs), sphere-swept-lines (SSLs) and sphere-swept rectangles (SSRs) respectively. These 

sphere-swept volumes are illustrated in Figure 3.7. 

    k-DOPs: Discrete-orientation Polytopes (k-DOPs) are convex polytopes with general 

number of dimensions “k”. For instance, 8-DOP has faces aligned with the eight directions 

as depicted in Figure 3.6. The overlap test for k-DOPs is much faster than OBB overlap 

test due to the fixed direction planes and the memory requirement for an OBB is equivalent 

to a 14-DOP. This test is the best when few dynamic objects are being tested against many 

static objects. However, the major drawback of the k-DOP is that even if the volumes are 

rarely colliding the k-DOP must still be tumbled or updated.    

    Convex Hull: Except from the sphere, most of the bounding volumes are convex 

polyhedral which are representable as the intersection of a set of halfspaces. For example, 

AABBs and OBBs are both the intersection of six halfspaces. It provides better fitting 

results if there are more halfspaces as shown in Figure 3.6. However, with more 

halfspaces, the test becomes more expensive, computationally complex and takes large 

amounts of memory to represent.   

    In addition to these BV, there are two collision detection methods: discrete and 

continuous. In the discrete collision detection method, the objects’ positions are updated in 

every frame and then checked for interpenetration or contact. The continuous collision 

 

Figure 3-7: Sphere-swept Volumes 
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detection is a method to prevent interpenetrating from each other. Such detection methods 

are shown in Figure 3.8.   

    In any collision detection method, it is important to know how much of the two bodies 

have already penetrated into each other and this can be defined by several cases based on 

Circle, Axis Aligned Bounding Box (AABB), Oriented Bounding Box (OBB) and 

Polygons. It can be Sphere vs. Sphere, AABB vs. AABB, Sphere vs. AABB, Sphere vs. 

OBB, OBB vs. OBB and Poly vs. Poly. Among the possible collision cases, AABB vs. 

AABB has been chosen to check for necessary collision detection in developed exercises 

due to their fast detection and less memory usage. 

3.4.5. The Physical World 

The physical world is the place in which every AR experience takes place. This is taken by 

the camera and displayed in real time and the virtual objects are laid on top to create the 

AR environment. For instance, AR experience is to display the cat on top of the desk. 

However in reality only the desk is available which is in real physical world and the 

(virtual) cat is added onto the physical world to create the desired AR experience.  

3.4.6. Participants 

The role of AR technology is to provide the artificial stimuli to cause the participants to 

perceive that something is happening that really is not. Participants in AR environment 

have an active role in AR experience as all of their motions, activities and actions affect 

how the system responds. Therefore, they are the ones that can evaluate how good or bad 

the AR experience is. If there are multiple participants in one AR experience, the 

 
Figure 3-8:  Collision Detection Methods 
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interaction will be more complex to develop. 

3.5. Thesis Contribution-1: Augmented Reality 
based RehaBio System 
The first contribution of this thesis is detailed in this section which is the development of 

low cost home based upper limb rehabilitation exercises with real time biofeedback 

simulation. The developed system is integrated with motivational upper limb rehabilitation 

exercises to surpass the boring traditional exercises and biofeedback to stimulate the nature 

of human brain plasticity for fast recovery. The results of this work had been published in 

[210, 211]. The system is named as a RehaBio which stands for Rehabilitation system with 

Biofeedback simulation. After all the important ingredients have been thoroughly 

considered and defined as previously mentioned, the architecture of the RehaBio system is 

organized  and developed as depicted in Figure 3.9. The system is incorporated with game 

based upper limb therapeutic exercises and real-time active muscle simulation to motivate 

the patient interest for long term therapy. The complete system consists of three modules: 

Input, Framework and Output module. The input module consists of hardware devices 

while the framework module is RehaBio software development which is constructed by 

several sub-modules that communicate the commands among each other. The last module, 

the output module, of the system is a monitor display in which the final display of virtual 

objects and augmented environment with interaction and feedback are presented. 

3.5.1. System Input 

In RehaBio input, there are three main components which are USB webcam, color markers 

 
Figure 3-9: Architecture of RehaBio System 
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and EMG acquisition device for the system to commence. The first component: USB 

webcam is a 2-megapixel Logitech Webcam C600 with standard RGB colour space 

profile. This is used to capture the real time video image background to create the AR 

environment. As for the second component, colour markers, it can be any wearable glove 

or cloth with a different colour from the background so that the webcam will be able to 

track in real time easily. These markers are attached to the shoulder, elbow, hand and 

finger for manipulation of the virtual objects in AR environment. The colour marker in the 

RehaBio system serves as two-fold manner: one is responsible for tracking the current 

position of user’s arm and the other purpose is to manipulate the virtual objects in AR 

environment. The tracking is executed by custom built Colour Tracking Algorithm while 

manipulation of virtual objects is executed by custom made Collision Detection 

Algorithm. The third component, data acquisition device, is used to collect the EMG data 

by FlexComp Infiniti™ System from Thought Technology [212] with four EMG 

MyoScan™ T9503M Sensors which are attached to the user’s upper limb muscles. 

3.5.2. System Framework 

The overall framework (Figure 3.9) of RehaBio system consists of level 2 sub-module 

which is made up of Physiotherapist Interface and Patient Interface to access the level 3 

sub-modules: Database Module, Therapeutic Exercise Module and Biofeedback 

Simulation Module (Figure 3.10). The Physiotherapist Interface allows the therapist or 

 
Figure 3-10: The GUI of RehaBio system (Level 2 & Level 3) 
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carer to access and edit the patients’ information and medical records, therapeutic exercises 

and biofeedback module while Patient Interface only allows for the patient to access the 

exercises and biofeedback module. 

3.5.2.1. Database Module 
Database module is where patient profiles and training information are stored to track the 

patient performance along the rehabilitation period. This module is a restricted module 

which only can be accessed by registered physiotherapist or carer by entering their staff 

identification (ID) number into the system. It stores all the information of old and current 

patients’ particulars and by choosing an appropriate patient’s name from the drop down 

list, respective patient’s particular and clinical information such as history of EMG 

threshold level throughout the rehabilitation process, training sessions with respective date 

will be displayed. This is also the place that new patients’ information is registered and 

recorded. After the particular patient’s clinical data has been reviewed, therapist/carer is 

able to decide on an appropriate new EMG threshold level to set and exercise for that 

patient for the next appropriate training. Once the new EMG threshold level has been set, 

the new value will be updated in several places such as Database Module and Biofeedback 

Simulation Module. The line graph option is also available for the history of EMG 

threshold values to monitor the patient muscle performance along the rehabilitation period. 

The screenshots of Database Module is depicted in Figure 3.11. 

 
Figure 3-11: Database Module in RehaBio  
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3.5.2.2. Therapeutic Exercise Module 
Therapeutic exercise module stores all the therapeutic exercises for upper limb 

rehabilitation. The exercises include Transfer Objects Rehabilitation (TOR), Circular 

Motion Rehabilitation (CMR), Feeding Animal Rehabilitation (FAR), Ping Pong 

Rehabilitation (PPR) and Balloon Collection Rehabilitation (BCR) as depicted in Figure 

3.12. All the exercises are developed according to the serious game design theory which is 

presented in section 3.2.2. This module is able to be accessed by both physiotherapist or 

carer and patient. They are developed in Adobe Flash Professional platform where 

ActionScript API is utilised to create the AR environment, look for the suspected markers 

and detect collision between colour marker and virtual objects during the exercise. As AR 

is the combination of real world and virtual world, the virtual objects in this module will 

lay on top of the video image which is fed via webcam to create the AR environment. 

Detail development of individual exercise, rehabilitation purpose, relationship between 

traditional rehabilitation exercises and RehaBio therapeutic exercises, custom made Colour 

Tracking Algorithm and fast Collision Detection Algorithm will be discussed later in 

section 3.5.4.  

3.5.2.3. Development of Biofeedback Simulation Module 
Biofeedback simulation module provides real time muscle performance of the user while 

performing a specific rehabilitation exercise. This module employs FlexComp data 

acquisition system from Thought Technology to acquire the sEMG data in real time and 

then processes it in Matlab platform to integrate with developed rehabilitation exercises. 

The raw signal from the user is acquired by pre-amplified EMG MyoScan sensor 

 
Figure 3-12: Augmented Reality based Rehabilitation Exercises in RehaBio 



3. Augmented Reality based Upper Limb Rehabilitation System 
 

 78 

permitting input range of 0–2000 μV and channel bandwidth of 10 Hz to 1 kHz. The raw 

signal is first processed by band-pass filtering (20Hz - 500Hz) to remove both low and 

high frequency noise. The valuable features are then extracted from these signals with root 

mean square (RMS) based on the following equation:  

    (1) 

where sEMG(i) is the amplitude of the signal in ith sampling, N is the number of samples. 

The sampling rate of 2048 Hz was used in this work. Although there are many other 

feature extraction methods such as integrated absolute value (IAV), autoregressive (AR), 

zero crossing (ZC), etc., which are available, RMS method is employed as it provides good 

real-time information. The value of EMGrms is then compared with predefined threshold 

value to activate the muscle animation as muscle contribution.   

    The locations of the EMG sensors are as depicted in Figure 3.13.  Total of four sEMG 

signals are recorded from four upper limb muscles: AD, PD, BB and PM muscles, while 

performing the rehabilitation exercises. The choice of the muscles is based on the most 

contributing muscles while performing the developed exercises. This is achieved via 

experiment and details of such experimental results are discussed in section 3.5.5. In the 

context of software development for this module, it is made up of  several  sub-modules to 

read the live data of EMG, extract EMG features by RMS, display the real-time signals and 

perform the simulation of active muscles in real-time via Graphical User Interface (GUI). 

By controlling of “START” and “STOP” button in biofeedback simulation GUI, the user is 

able to manipulate the acquisition and termination of EMG signals for simulation. The 

individual sub-module of biofeedback simulation and its functions are explained as 

follows: 

 Initialisation: This sub-module is responsible to initialise the activeX control in the 

figure window and initialize the Thought Technology encoder to be ready for live 

data collection. 

 Setups: This module is in-charge of setting up the encoder and channels’ 

properties; in this work one encoder and four channels are utilised. 

 Live data: This module provides the collecting of all the four sEMG data live from 

specified muscles through Thought Technology Myoscan EMG sensors. 

 Plot data: All the processed data will then live-tream and plot in real-time by this 

sub-module. 
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 Simulation: This is responsible for simulation of muscle by displaying the different 

colours for different muscles according to the EMG threshold value (amplitude). 

Different muscles have different threshold value and that value will be defined by 

the physiotherapist in charge. If the threshold value of a particular muscle is above 

the predefined values, that muscle’s colour will change. This is an indication of that 

particular muscle contribution in a specific movement. The series of threshold 

values are stored in this sub-module and is able to be retrieved and evaluated by the 

physiotherapist in future. After evaluation of previous muscle performance through 

threshold values, the physiotherapist has to set the new value for current training 

session.   

 Stop connections: This module will release the handle to ActiveX objects and then 

stop the connection from all the channels and save all the collected sEMG data of 

muscles’ performance. 

 
Figure 3-13: Biofeedback Simulation GUI with Electrode Sites 
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The screen shot of biofeedback simulation module is portrayed in Figure 3.13.  

There are two muscle windows for biofeedback simulation and four line graphs 

representing Channel A: anterior deltoid, Channel B: posterior deltoid, Channel C: biceps 

brachii and Channel D: pectoralis major muscle signals. Four sEMG electrodes are 

attached to the muscles of interest in order to detect the EMG threshold level in real time 

for the activation of muscle simulation which will be displayed in two muscle windows. 

Simulation will activate when recorded sEMG signals are above the predefined threshold 

value. When the recorded sEMG signals are above predefined activation level, the muscle 

colour will change so that patient and therapist can observe the current active muscle 

during specific exercise movement. This module provides two-fold benefits in RehaBio 

system: one for patient motivation where patient is able to observe the performance of 

muscle contribution during performing the therapeutic exercise as immediate visual 

feedback and another benefit is the evaluation of muscle performance by physiotherapist 

just by tracking or plotting the history of sEMG data contributed throughout the training 

sessions. The overall steps of developed biofeedback simulation module are listed in the 

flowchart in Figure 3.14. 

3.5.3. System Output 

The output module of the system consists of computer monitor and speaker. The monitor is 

a device providing real-time view of the real-world environment that has been enhanced by 

adding virtual computer generated information to it. In other words, this is the place to 

perceive the visual feedback such as manipulation and action of the user in real-time 

through this monitor. In additional to that, audio feedback is also integrated in all exercises 

for user motivation. 

3.5.4. Development of AR based Therapeutic Exercises 

Therapeutic exercises are developed within the context of movement and mind-focused 

therapies. These developments had published in [8, 213, 214]. The basic principles of 

neural plasticity that govern learning in damaged brain are thoroughly considered for the 

developed exercises in RehaBio system. In order to meet the first two principles; Use it or 

lose it and Use it and improve it, the therapeutic exercises must be motivated enough for 

the patients to engage in the exercises for long term training. As previously discussed in 

Chapter 2, Augmented Reality (AR) and in rehabilitation field and biofeedback provide 
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Figure 3-14: Flow Chart of Biofeedback Simulation Module 

more benefit than conventional rehabilitation therapy; all the exercises in RehaBio system 

are developed in AR environment by augmenting the virtual objects on the real scene 

which provides better motivation with long term engagement and faster recovery. In 

addition to this, all the exercises are developed in an iterative approach in such a way that 
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they are developed, tested and improved to achieve better game design theory, user-

friendly interaction and meet the user requirements and expectations. This is to meet the 

neural plasticity principles of Specificity, Time Matters, Salience Matters, and Age 

Matters to drive the fast recovery. In addition to this, the Intensity and Interference of the 

exercises must be considered properly so that the developed exercises can affect the 

induction of neural plasticity. Therefore, the exercise attributes are properly considered to 

suit all stage of paralysed patients and to induce the best eye-hand coordination therapy in 

motivating way and this detailed in the following section.  

3.5.4.1. Therapeutic Exercise Attributes  
Game attributes is one of the important factors to consider during game development 

especially for rehabilitation purpose. These attributes consist of motivation, type of motion 

and cognitive challenge. The important aspect of the motivation is the availability of 

opportunities of treatment and re-training in the longer term. The type of motion in 

rehabilitation therapy can either be focused on a simple motion with single muscle 

contraction or coordinated motion with multiple muscle contractions. In terms of cognitive 

challenge in rehabilitation exercise, it can be a very simple game design to understand and 

play easily in starting point and then slowly increase the difficulty level to enhance the 

recovery after some period of rehabilitation time. This is to induce the Transference 

principle to promote in induction of neural plasticity. In addition to this, all the therapeutic 

exercise can be played repetitively without losing the interest which is one of the important 

principles for neural plasticity. The concept of developed therapeutic exercise attributes is 

depicted in Figure 3.15.  

    From Figure 3.15, it can be clearly seen the overall motivation pathway with type of 

motions and level of cognitive challenge for each therapeutic exercise in RehaBio system. 

The lower left corner represents the movement of the exercise with basic motion and easy 

recognition while the top right corner represents the exercise which required random 

movement of arm via advanced recognition. Basic motion in RehaBio is defined as only 1 

Degree of Freedom (DOF) being required to perform the exercise whereas random motion 

is made up of several DOFs to complete the exercise. The types of upper limb movement 

in RehaBio exercises are developed according to the HOPE: The Stroke Recovery Guide 

by National STROKE Association [193]. The clinical guidelines of HOPE and 

corresponding exercises in RehaBio system are tabulated in Table 3.1. In addition to the 

guidelines, RehaBio exercises are developed with customizable movement types, different 
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level of challenges with motivational biofeedback. The detailed developments of 

individual therapeutic exercise are explained in the following section.  

3.5.4.2. Game Design for Ping-Pong Rehabilitation (PPR) 
The PPR exercise is designed to maintain the bouncing ball within the display screen by 

moving the player’s arm ‘up’ and ‘down’ as shown in Figure 3.16. The idea of the exercise 

is adopted based on the clinical exercise 1 from both mildly and moderately effected by the 

stroke stated in Table 3.1. It requires 1 DOF of movement at shoulder joint with simple 

recognition to complete the exercise. However, player requires playing against the 

computer with either affected left or right arm. In PPR exercise, the ball moves within the 

display screen with upper and lower boundary of the monitor. One side of the display 

screen border is limited by moving a block which is controlled by computer system 

according to the ball movement direction to restrict the ball from moving out of the 

display. The other side of the stage is to be controlled by the player arm where the colour 

marker is attached at the player’s thumb to prevent the ball from moving out of the display. 

If the ball is successfully hit by marker, user will earn the score and be provided with the 

audio and visual feedback. When the score reaches to certain value, the speed of the ball 

will increase and move to the next level to increase the challenge and motivation. In every 

level change, the system will provide a warning message as a visual feedback for the 

player. The performance of the player is evaluated by comparing the overall score within 

 
Figure 3-15: Therapeutic Game Attribute in RehaBio System 
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the given time among the therapy sessions. By performing of PPR exercise, shoulder 

flexion and extension movements will be induced by contracting of Anterior Deltoid (AD), 

Posterior Deltoid (PD), Biceps Brachii (BB) and Pectoralis Major (PM) muscles. In this 

way, player’s eye-hand coordination will be trained and will increase the user visual motor 

skill.  

3.5.4.3. Game Design for Circular Motion Rehabilitation (CMR) 
The aim of the CMR is to collect the virtual objects from the same location and place them 

on respective transparent virtual objects that are indicated by an animated arrow along the 

semicircle trajectory as portrayed in Figure 3.17. The player needs to be able to recognize 

the different objects to be placed at the predefined location. The CMR exercise requires 

basic motion with 1 DOF in shoulder abduction and adduction motion and can be played 

by either left or right arm. It is developed based on the concept of clinical exercise 2 in 

Table 3.1 for both mildly and moderately paralysed patients. However, CMR integrates 

Table 3.1: Clinical Exercises vs. RehaBio Exercises 
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with additional features such as auto level increments that become wider degree in 

shoulder abduction and adduction angle to engage the player in exercise for the long term 

with immediate feedback to make the player action discernable. In the exercise, there are a 

total of four virtual objects that user requires to pick and place at the respective positions. 

Collision detection algorithm defines the pick and place and also increases the scoring 

engine for successful pick and place actions with audio and visual feedbacks. By 

performing CMR exercise the player’s arm will achieve a wider range of motion in 

shoulder abduction and adduction and their associated muscles will strengthen.  

3.5.4.4. Game Design for Feeding Animal Rehabilitation (FAR) 
FAR is the exercise that a player requires to recognize between pick and place locations 

based on the indicators. To perform the arm movement in FAR, it requires a combination 

of multiple DOFs at the shoulder joint which resemble the arm movement of clinical 

exercise 2 from Table 3.1 but wider in joint angle at shoulder joint. The objective of the 

FAR exercise is to pick up the food and place it in the located food plate. The pickup 

position is indicated by an animated red arrow and the placed in the food plate position is 

indicated with a green arrow. Therefore player is expected to distinguishable between pick 

and place positions as well as being required to organize self path planning for arm 

movement. The player is required to finish placing all the food into the plate within a 

defined time. Upon successful placement player will be awarded by scoring up and 

immediate feedbacks. The outcome of the score will evaluate the performance of the player 

throughout the training sessions. The different height and width of the location of pick and 

     
(a) Left Arm Training                               (b) Right Arm Training 

Figure 3-16: Ping Pong Rehabilitation Exercise 
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place will train the shoulder movement in 2 DOFs: shoulder flexion, shoulder extension, 

shoulder abduction and shoulder adduction by contracting the associated muscles. The 

FAR exercise is displayed in Figure 3.18. 

3.5.4.5. Game Design for Transfer Object Rehabilitation (TOR) 
TOR exercise requires advanced recognition with multiple DOFs of arm movement to 

perform the exercise by following the indicated trajectories. There are five different solid 

virtual objects which are located at the bottom row of the screen. At the top row of the 

screen, the same shape but hollow virtual objects are located in different order. The object 

that player requires to pick will be displayed as a blinking object and to be placed at the 

correct hollow shape as depicted in Figure 3.19. The successful placement will be awarded 

by scoring system and there won’t be any misplacement done by the player as this is the 

misplacement free exercise. However, player has to play against the timer and within the 

given time player has to complete all the placements to earn the highest score. The 

performance of the player will be evaluated by the score achieved during training sessions. 

By collecting and placing the virtual objects in TOR exercise, shoulder abduction, 

adduction motion and minimum contribution of shoulder flexion and extension motion is 

achieved. Like in other exercises, immediate audio and visual feedbacks are integrated for 

motivation and long term engagement purposes. 

3.5.4.6. Game Design for Balloon Collection Rehabilitation (BCR) 
The aim of BCR exercise is to catch the dropping balloon at a time with colour marker that 

is attached to the player’s thumb and place it into the box which is located at the centre of 

the screen as depicted in Figure 3.20. This game is designed to spawn the balloons 

randomly and therefore, player is expected to move his/her arm in various directions to 

  
(a) Left Arm Training                      (b) Right Arm Training 

Figure 3-17: Circular Motion Rehabilitation Exercise 
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catch the dropping balloon. There are two types of colour balloons available. The player 

requires to choose only one colour (either pink or green) and place it into the box. This is 

to induce the player’s ability to distinguish among the falling balloons. Correct selection 

will be rewarded by increasing the score with applause feedbacks. There is no penalty for 

wrong picking but a warning message will be displayed to the player as a reminder for 

future selection. When the score reaches a certain value, the speed of the balloon falling 

will be increased automatically and transfer to the next level which will be indicated with 

message box. In this way, player’s muscles will become stronger unknowingly over the 

period of time. By performing BCR exercise, a wide range of motions at shoulder joint 

such as flexion, extension, abduction, adduction and some motion at elbow joint such as 

flexion and extension will be achieved and the associated muscles will strengthen. 

3.5.4.7. Colour Tracking Algorithm 
In RehaBio system, a single webcam is utilized as a tracking device to track the colour 

marker which is worn by the user. As discussed in section 3.4.1, there are several methods 

to develop the object tracking algorithm according to the application. In the development 

of RehaBio system, the object of interest is tracked based on colour feature selection 

method. The algorithm of chosen method is proposed in Figure 3.21 flowchart: 

1. Initialization: 

 Choose the colour of interest in terms of pixel on the display screen by clicking 

the mouse (input device) on the colour marker. 

          
(a) Left Arm Training                               (b) Right Arm Training 

Figure 3-18: Feeding Animal Rehabilitation Exercise 
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 Detect input/output device colour model for RehaBio system for best tracking 

result. Most of the display screen such as computer monitor, projector are built 

in with Red (R), Green (G), Blue (B) colour space for their best display. RGB 

colour space also has the advantage of being less sensitive to noise [215] and 

that is why it is very useful in tracking applications. 

2. Once colour model, RGB colour space, is detected, the algorithm starts finding the red, 

green and blue components of the colour of interest. 

3. The 24 bit RGB values are assigned into respective variables to create a byte array as in 

the following manner where Red sample in the highest 8 bits, followed by the Green 

sample and Blue sample in the lowest 8 bits as shown in Figure 3.22.    

      
  (a) Left Arm Training                               (b) Right Arm Training 

Figure 3-19: Transfer Object Rehabilitation Exercise  

  
(a) Left Arm Training                               (b) Right Arm Training 

Figure 3-20: Balloon Collection Rehabilitation Exercise 
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4. User chosen pixel from webcam feed image will convert into RGB values from 24 bit 

hexadecimal by moving the bits to the right by a certain amount with bitwise right 

shift. 

 

Figure 3-21: Flowchart of the proposed Colour Tracking Algorithm 
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5. Return back the selected RGB values as a new byte array with bitwise left shift 

operator. This new byte array will be continuously finding in every incoming frame as 

tracking the select pixel. 

6. The rectangular region that fully encloses all pixels of a specified colour within the 

webcam fed image will be created. 

7. This rectangular region will represent either rectangular or circle virtual object for post 

processing such as detection of collision or manipulation.   

3.5.4.8. Collision Detection Algorithm 
As aforementioned in section 3.4.4.2, the development of collision detection algorithm 

should be based on the following factors: application domain representation, different 

types of queries, environment simulation parameters, performance, robustness and ease of 

manipulation and use. In RehaBio system, with thorough consideration with above 

mentioned factors, custom built Collision Detection Algorithm is proposed as follows. 

Application domain representation: In RehaBio system, the representation of the domain 

is based on AABB method due to its inexpensive computation and faster test. There are 

three common types of AABB representations: (1) min-max (2) min-widths, and (3) 

center-radius as shown in Figure 3.23.  

First representation type specifies the bounding region of the object and is based on the 

two opposite corner points: minimum and maximum coordinate values along each axis. 

The second type defines the bounding volume of the object and is based on minimum 

corner point and the width or diameter extents dx, dy, and dz from this corner. The last 

representation type defines the AABB as a center point C and halfwidth extents or radii rx, 

ry, and rz along its axes. Among these three types of representations, the virtual objects in 

RehaBio employ center-radius types due to it being the most efficient in storage 

requirement as halfwidth values are able to be stored in fewer bits than other types of 

representation methods. Although there are several collision cases available, the test 

 

Figure 3-22: Arrangement of Red-Green-Blue Values in RehaBio system 
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between AABBs (AABB-AABB intersection) has been chosen due to its fast detection and 

less memory usage. Overlapping test between AABBs in RehaBio follows the rules based 

on the algorithm 3.1 and the example of AABB test in Balloon Collection Rehabilitation is 

portrayed in Figure 3.24. 

Types of Queries: After defining the representation and checking for rough collision 

detection, it is necessary to find the penetrating depth to proceed to the action. This is 

where types of queries come into the picture. In RehaBio exercises, approximation queries 

are employed under intersection testing for its fast and easy implementation. After the 

bodies have checked based on the algorithm 3.2, penetration depth is computed by finding 

the shortest movement vector that would separate the objects. When that movement vector 

is less than given tolerance, the bodies are intersecting. Below is the algorithm to define 

the approximation queries in developed exercises.  

Environment Simulation Parameters: To speed up the detection process in RehaBio 

exercises, broad phase is conducted to separate into smaller groups of objects that have the 

potential to collide and remove those that definitely are not colliding. Total numbers of 

bodies that are required to be checked for collision detection in PPR exercise are 3, CMR 

exercise are 6, FAR exercise are 13, TOR exercise are 11 and BCR exercise are 4.    

Performance, Robustness, and Ease of manipulation and use: The results of these factors 

are mainly and directly reflected from the above decision and choice of representation, 

type of queries, optimization and the simulation parameters. 

3.5.5. Experiments and Results 

There are three phases of experiments with RehaBio system and the results had been 

published in [92, 115, 216]. The first phase is carried out to verify the significant 

 
(a)                                        (b)                                    (c) 

Figure 3-23: Common types of Axis Aligned Bounding Box representations  
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contribution of the muscles for every articulation in shoulder and elbow joint followed by 

the muscle contribution in each exercise which had been published in [217]. The second 

phase of the experiment is to determine the effectiveness of developed therapeutic 

exercises in RehaBio system. These results had been published in [216, 218]. The final 

phase of the experiment is to conduct the efficacy of complete RehaBio system where it 

integrates with database module, therapeutic exercise module and biofeedback simulation 

module.  

3.5.5.1. Participants 
In all phases, ten participants with normal eyesight and sense of touch were recruited to 

participate in all the experiments. All of the participants were students from the University 

of Technology Sydney and all participants signed an informed consent document. Among 

them, nine of the participants were right handed and one of them were left handed.  

3.5.5.2. Setting and Apparatus 
Before starting the experiment, hardware set up was performed. Desktop personal 

computer (PC) (Windows 7, 64 bit, Intel Core i5, 2.70 GHz, 64 GB of memory), webcam 

and FlexComp EMG data acquisition device from Thought Technology were utilised in all 

experiments. Four MyoScan sensors from Thought Technology were connected to four 

channels of FlexComp Infiniti encoder. The encoder was then connected to TT-USB 

 
Figure 3-24: Axis Aligned Bounding Boxes in Balloon Collection Rehabilitation 
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interface unit via fibre-optic cable and the interface connected to a USB port of the 

computer. Four MyoScan sensors were attached to the four upper limb muscles. Before the 

sensors were attached, proper skin preparation was performed to receive a good signal and 

minimize the artefacts. The skin was cleaned by applying the alcohol wipe and letting it 

dry for a few seconds and then sensors were attached as depicted in Figure 3.13. The raw 

sEMG signals from anterior deltoid, posterior deltoid, biceps brachii and pectoralis major 

muscle were recorded via channel A, channel B, channel C and channel D of FlexComp 

Infiniti encoder, respectively. 

3.5.5.3. Experiment 1: Analysis of Muscles Contribution during 
Shoulder Articulation 
As first phase of experiment, the contributions of the muscles based on types of movement 

were analysed. During the experiment 1, all the participants or subjects were requested to 

perform four types of arm movements: 1) shoulder flexion and extension, 2) shoulder 

abduction and adduction, 3) elbow flexion and extension, and finally 4) shoulder flexion 

followed by shoulder abduction, adduction and then shoulder extension which were 

required to perform in RehaBio exercises. Each subject was requested to perform each 

movement for 10 trials with resting time of 10 seconds in each trial. During data collection, 

all the participants were requested to move their upper limb with a constant speed as much 

as possible so that the data will be consistent and able to be analysed easily. The raw EMG 

data was recorded at 2048 sampling rate and was band-pass filtered with cut-off 

frequencies of 20 and 500Hz to minimize noise owing to motion artefacts and the EMG 

amplifier. The filtered EMG was used to extract the important features with Root Mean 

Square (RMS) method to analyse the muscle performance and contribution during the 

specific movement.  

     The processed data are portrayed in Figure 3.25 to Figure 3.28 according to the type of 

movement. The figures illustrate each muscle performance in each type of movement of 10 

trials with their sEMG value (also known as threshold level or activation level). The grey 

shaded areas represent the quantile of the EMG distribution across 10 trials. This analysis 

is important as muscle activation level or threshold value of each contracted muscle is able 

to be determined from these figures in which this threshold value will be used to control 

for biofeedback simulation in RehaBio system. Figure 3.29 represents the most contributed 

muscles in specific type of movement across 10 trials from 10 random subjects. From all 

trials, it was observed that muscle performances are quite consistence except some 
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variation in sEMG activation value. Although all the muscles from the upper limb are 

involved in upper limb articulation, in this experiment, four major muscles performance 

are analysed for four types of movements: shoulder flexion-extension motion, shoulder 

abduction-adduction, elbow flexion-extension and shoulder flexion-adduction-abduction-

extension motion.  

    During shoulder flexion-extension motion, anterior deltoid, posterior deltoid and biceps 

brachii muscles are contracted more than the rest of the muscles for all subjects. This 

indicates that performing of shoulder flexion-extension motion will increase the strength of 

anterior deltoid and posterior muscles mostly. During shoulder abduction-adduction 

motion, it was found that anterior deltoid, posterior deltoid and biceps brachii muscles 

were contracted and pectoralis major muscle were almost at resting value. Although 

anterior and posterior deltoid muscles were contracted the most in both movements, in 

most of the trials, the activation value of both muscles was higher in shoulder flexion-

  

  

Figure 3-25: The performances of 4 shoulder muscles during shoulder flexion-

extension articulation from one subject.  The grey areas represent the 0.68 quantile 

(i.e. mean+s.d.) of the EMG distribution. 
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extension movement. During elbow flexion-extension movement, anterior deltoid, 

posterior deltoid and pectoralis major muscles were almost at resting point and only biceps 

brachii was contracted the most. Therefore, the activation of biceps brachii muscle is 

highly related for elbow flexion-extension motion. The last motion, shoulder flexion-

adduction-abduction-extension was attained due to all muscles: anterior deltoid, posterior 

deltoid and biceps brachii muscles and pectoralis major, contracted. Among these muscles, 

pectoralis major was significantly contracted. Therefore, to summarise the relationship 

between motion and muscle contribution, anterior and posterior deltoid muscles are trained 

during shoulder flexion-extension motion while elbow flexion-extension motions train 

biceps brachii muscles. The last motion will train and strengthen the anterior deltoid, 

posterior deltoid, minimum effect of biceps brachii and finally pectoralis major muscles.  

3.5.5.4. Experiment 2: Therapeutic Rehabilitation Exercises 

  

  
Figure 3-26: The performances of 4 shoulder muscles during shoulder abduction-

adduction articulation from one subject. The grey areas represent the 0.68 quantile 

(i.e. mean+s.d.) of the EMG distribution. 
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In the second phase of experiment, all the participants were requested to perform 

therapeutic exercises: PPR, CMR, FAR, TOR, and BCR. The procedures to follow all the 

rehabilitation exercises are as follows:  

 Physiotherapist, carer or player is expected to choose the appropriate rehabilitation 

exercise from AR rehabilitation exercises GUI. 

 Subsequently, the intro page of the exercise will display and ‘How to Play’ 

instruction will present to the user for easy understanding. 

 For some exercise, the duration of the exercise is expected to be defined by 

physiotherapist or carer or player before the game play.  

 Choose either left or right arm to be trained. 

 After choosing left or right arm exercise, the system will ask for the permission to 

access the webcam to prepare the AR environment. 

   

   

Figure 3-27: The performances of 4 shoulder muscles during elbow flexion-extension 

articulation from one subject. The grey areas represent the 0.68 quantile (i.e. 

mean+s.d.) of the EMG distribution. 
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 Once access to the webcam is granted, the webcam will feed the video image on the 

display screen and the instruction ‘Please Click on the Marker’ will be displayed on 

top of that video image. 

 When the user clicks on the colour marker which is worn by the user’s thumb, five 

seconds of countdown timer will start. This countdown will allow the user to be 

ready to start the rehabilitation exercise. 

 When five seconds timer is up, the chosen rehabilitation exercise will display and 

the patient will need to start the rehabilitation exercise. 

 Once the exercise is started, the second timer will start counting down the duration 

of the training (in some cases, this is defined by the user). At the same time 

immediate visual and audio feedback will be provided according to the 

performance of the player.  

   

   

Figure 3-28: The performances of 4 shoulder muscles during shoulder flexion 

followed by abduction-adduction and then shoulder extension articulation from one 

subject. The grey areas represent the 0.68 quantile (i.e. mean+s.d.) of the EMG 

distribution. 
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Figure 3-29: Muscle contributions in respective upper limb movement across 10 trials 

from 10 subjects 
 When the second timer is up, the summary page will display with ‘time’s up’ 

notification and total score of the user achievement.  
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After completion of the exercise, the important data such as threshold level, trajectory 

performance, score, and exercise duration are saved in the database for physiotherapists to 

analyse the player’s performance. There are three types of analysis which have been 

performed in this experiment 2 namely 1) Data Analysis where the muscle contribution are 

analysed during each exercise, 2) Performance Analysis where arm trajectories are 

recorded and analysed, and 3) Questionnaire for each therapeutic exercise.  

    In Data Analysis, the muscle performance in each exercise is analysed. After analysing 

muscle performance by all the subjects in this experiment 2, the similar pattern of the EMG 

signals are found with minimum variation in activation values as sEMG contributions of 

individuals are different from one another. The examples of muscle performance in each 

exercise are illustrated in Figure 3.30. During PPR exercise, the subject only needs to 

move in shoulder flexion-extension movement and therefore, his anterior and posterior 

deltoid movements contribute the most with the minimum contribution of biceps brachii 

muscle as shown in Figure 3.30(a). The muscles’ performance of CMR exercise is also 

very similar to that of PPR exercise with difference in sEMG activation level as anterior 

and posterior deltoid muscles are the main contributors for shoulder abduction-adduction 

motion as shown in Figure 3.30(b). Therefore, performing PPR and CMR will help to 

strengthen the anterior and posterior muscle as well as to achieve a wider range of motion 

in shoulder flexion, extension, adduction and abduction motion. In FAR and BCR 

exercises, all the muscles are contracted during the whole exercise duration as shown in 

Figure 3.30 (c) and (d). This indicates that to perform FAR and BCR exercises, anterior 

deltoid, posterior deltoid, biceps brachii and pectoralis muscles are required to contract 

during the exercise. Therefore, both exercises provide a wide range of movements in 

shoulder flexion-adduction-abduction-extension and strengthen all the studied muscles. 

During TOR exercise, anterior and posterior deltoid muscles are most contracted due to 

shoulder diagonal flexion and extension movement as illustrated in Figure 3.30 (e). Hence, 

TOR will train for the wider range of shoulder articulation with stronger associated muscle 

activities.  

    After Data Analysis has been performed, the Performance Analysis is conducted to 

analyse the player performance. This is necessary as EMG data alone cannot assess the 

performance of the player. The EMG data are one of the indications in muscle contribution 

of the particular exercise, determining the threshold level at the time of training period and 

giving indication of muscle fatigue. The actual performance is still based on the trajectory 
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performance to determine whether the players are able to reach the destination point or 

only up to the half way of the trajectory.  

 
(a) Ping Pong Rehabilitation Exercise 

 
(b) Circular Motion Rehabilitation Exercise 

 
(c) Feeding Animal Rehabilitation Exercise 

 
(d) Balloon Collection Rehabilitation Exercise 

 
(e) Transfer Object Rehabilitation Exercise 

Figure 3-30: Muscle Performance in each Exercise  
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    In RehaBio, all the trajectories are recorded in real-time during the exercises. Some of 

the trajectory results from the experiment 2 are portrayed in Figure 3.31. These trajectory 

results demonstrate clearly the performance of actual arm movements. In PPR exercise 

(both left and right exercises), flexion-extension movements were well performed as 

shown in Figure 3.31 (a). Similarly, CMR exercises for both left and right exercise were 

able to move properly without much out of trajectory in Figure 3.31 (b). From FAR 

   
                 (a) Ping Pong Rehabilitation Exercise               (b) Circular Motion Rehabilitation Exercise 

 
(c) Feeding Animal Rehabilitation Exercise 

 
(d) Balloon Collection Rehabilitation Exercise            (e) Transfer Object Rehabilitation Exercise 

Figure 3-31: Trajectory Performances of each Exercise 
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trajectory graph (Figure 3.31 (c)), it can be clearly seen that on the right side of the graph is 

the completed exercise while on the left side of the graph is the time out during the 

exercise. In this way, the performance of the player can be easily traced and evaluated. 

There are three trials of TOR trajectories which are portrayed in Figure 3.31 (d). It can be 

clearly seen that only one of the trials completed the exercise and the other two trials were 

out of time. The last exercise, BCR requires random motion of the upper limb. Hence, the 

wider the trajectory spread on the trajectory graph, the better recovery for the patient as 

shown in Figure 3.31(e). 

     To evaluate the effectiveness in terms of user motivations and enjoyment, a 

questionnaire was answered by all the participants at the end of each exercise. The set of 

questions from the questionnaire are describes in the Appendix A3. The score ranking from 

‘1’ to ‘4’ where ‘1’ refers to strongly disagree and ‘4’ refers to strongly agree is required to 

be answered for each question which is stated in the questionnaire. The results from the 

questionnaire are as shown in Figures 3.32. According to the result, most of the 

participants found that all the therapeutic exercises were interesting and they enjoyed the 

exercises without any major discomfort. They all were well informed of the aim and 

purpose of every exercise before the game play. Most of the participants agreed that all the 

exercises were very easy to understand with motivating feedbacks. Almost all participants 

felt that the tracking of the colour marker was good except some of the participants felt that 

the colour marker was fluctuating but still accomplished the work without any problem. 

However, some of the participants felt muscle fatigue due to not enough rest between 

exercises. Most of the participants agreed with the duration of the exercises which were 

predefined. However some of them requested the custom defined timer and this 

improvement has been done in the RehaBio system.   

3.5.5.5. Experiment 3: Real-Time Muscle Simulation 
In the third phase of experiment, the evaluation of real-time muscle simulation was 

conducted. In this experiment, the EMG data that was collected by the FlexComp EMG 

acquisition device defined each user’s muscle threshold level to perform the muscle 

simulation. Each of the participants in this experiment was treated as physiotherapist and 

given the full authority to access both Physiotherapist Interface and Patient Interface in 

RehaBio system. 
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    After having been given the training on how to access the complete RehaBio system the 

participants found that the manipulation of the RehaBio GUI such as manipulation of 

database, AR-based rehabilitation exercises and biofeedback simulations is very user 

friendly. They could manipulate the whole system after one or two training sessions 

without much problem. In addition to this, the user data under RehaBio database are able 

 
(a) Ping Pong Rehabilitation Exercise 

 
(b) ) Circular Motion Rehabilitation Exercise 

 
(c) Transfer Object Rehabilitation Exercise 

 
(d) Feeding Animal Rehabilitation Exercise 

 
(e) Balloon Collection Rehabilitation Exercise 

Figure 3-32: Questionnaire results from each Exercise 
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to be saved and deleted easily via ‘patient profile’ GUI while physiotherapists/carer are 

able to retrieve the patients’ performance information via ‘performance result’. 

‘Rehabilitation exercises’ under patient interface GUI allows the choices of AR-based 

rehabilitation exercises easily recommended by the physiotherapist/carer. The participants 

found that START and STOP buttons from biofeedback simulation were a one touch 

activation interface that let them manipulate easily for reading and stopping of sEMG data, 

displaying of real-time sEMG amplitude data and muscle simulation as shown in Figure 

3.33. The overall feedback from participants is very encouraging and this motivates us to 

demonstrate our developments in Port Kembla Hospital to improve our system with the 

help of clinical specialists which will be discussed in Chapter 5.  

3.6. Summary 
In this chapter, a novel RehaBio system for upper limb rehabilitation was proposed and 

developed for paralyzed patients due to any neurological disorder which is the first 

contribution of this thesis. It was developed by considering ten basic principles of neural 

 

Figure 3-33: Real Time Muscle Simulations Module Graphical User Interface 
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plasticity that govern learning in both intact and damaged brain. In contrast to robotic 

based rehabilitation systems or Nintendo Wii based rehabilitation systems, the proposed 

system in this thesis is very low cost due to the requirements of personal computer and four 

color markers, any low cost sEMG acquisition device only. In addition to these, patients 

can practice rehabilitation exercises at home under carer supervision without travelling to 

rehabilitation hospital and this will help the patients’ family on travelling cost especially 

who are living at rural areas. The complete system was made up of three modules: 1) 

Database module where patient information and data are stored and able to be tracked 

easily for their performance along the rehabilitation period, 2) AR based rehabilitation 

exercises module which is enriched with motivations, feedbacks and information, 3) a real-

time biofeedback simulation module where the muscle simulation is set according to the 

level of muscle activities (threshold level). The detailed developments of each module 

were thoroughly explained in this chapter with the concept behind the rehabilitation 

exercise which reference to practical practice where applicable. To evaluate the 

effectiveness of the developed system, usability tests were conducted and the results were 

carefully analyzed in terms of Data, Performance (Trajectory) and Questionnaire. From the 

literatures, the best existing rehabilitation systems only provide either virtual environment 

with biofeedback system and data glove or pure augmented reality based rehabilitation 

exercises without any biofeedback to the patients/physiotherapists. Only our proposed 

rehabilitation system provides complete motivational aspects in terms of augmented reality 

environment for long term rehabilitation therapy with real-time biofeedback simulation in 

safe environment and complete database and therefore we cannot benchmark with other 

current existing system. The complete RehaBio system was demonstrated to the clinical 

professionals in Port Kembla Hospital. The responses and feedback from the professionals 

were very promising and encouraging for the neurological disorder patients. As this is the 

ongoing research, to provide an effective rehabilitation product for professionals and 

patients, clinical trials are on the way to validate the effectiveness of the RehaBio system. 

 



 

Chapter 4  
 

Real Time Biosignal Driven 
Virtual Human Arm 

 

4.1. Introduction 
Myoelectric signals from surface electromyography (sEMG) are very useful and important 

signals to extract the intention of oneself because the signal is able to indicate the intention 

of movement even before the actual movement is happening [219].Therefore, numerous 

sEMG based rehabilitation systems especially to predict the intention of oneself movement 

have been the focus of research in recent years. In this context, various prediction control 

methods based on sEMG have been proposed such as joint torque prediction, force 

estimation and joint angle prediction. Some of the prediction methods were developed with 

additional inputs such as sensors and/or commercially available consoles . Among these 

prediction methods, joint angle prediction is the most direct estimated output to drive the 

rehabilitation system. One of the major challenges in developing such predicted controllers 

is estimating the user intention continuously based on sEMG signal in real time. Common 

issues related to this challenge are degradation of model accuracy along with computation 

time, electrode placements and alteration of limb posture. In order to accommodate these 

issues, signals processing and statistical modeling for estimation of joint angles based on 

sEMG are essential. In this context, machine learning regression methods have proven to 

be viable methods for estimating or predicting the user actions by means of sEMG signals. 

Among several possible approaches for estimating the joint angle in real time, artificial 

neural (ANN) network is the most popular method. From literatures, it is shown that 
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extreme learning machine (ELM) tends to be outperformed by any other machine learning 

methods in terms of generalization performance and learning speed.   

    The objectives of this chapter are twofold. Firstly, the motions of a virtual human arm 

(VHA) model are controlled in real time by a user’s own biological signals. In other words, 

the optimal controller for VHA is necessary to be developed in which it can predict the 

user intention by converting the recorded sEMG signals into joint angles in real time. This 

objective is achieved via thorough selection of muscle parameters and neural-muscle 

activation coefficients which are discussed in detail in section 4.2. Secondly, the realistic 

VHA model is developed so that the kinematic and kinetic behavior of the VHA is 

mimicking the user’s arm articulations. In addition, the simulation of the VHA model must 

update with the new position on the display screen within an interval of time near to or less 

than that governed by the flicker fusion frequency. This is to ensure that movement 

between frames appears smooth without noticeable transitions. Therefore, all the 

calculations from the optimal controller and updating of the new pose of VHA must be 

completed in less than 40 ms for the semblance of real time, smooth and life-like motion 

[152].             

4.2. Relationship between Neural Command and 
Muscle Activation   
Motor tasks are usually commanded by the nervous system which generates an appropriate 

temporal pattern of muscle activations. This is done via a dynamical neuronal system 

where a static representation of the sensory information translates into time varying muscle 

activations. Therefore, it is important to study and understand the relationship between 

neural command and muscle activation in order to develop the neural-muscle activation 

(NMA) model to use in a control algorithm. With respect to this relationship, 

electromechanical delay (EMD) is one of the important parameters to consider as this 

greatly impacts on the performance of a biosignal driven control algorithm.      

4.2.1. Electromechanical Delay 

For any neural command to generate the activation on the muscle there is a motor 

execution time, which is known as EMD. It has been considered to be influenced by 

several structures and mechanisms such as the propagation of the action potential and the 

excitation-contraction coupling processes (E-C coupling) and the muscle force 
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transmission along the series elastic component(SEC) [220]. The studies have shown 

significant changes in EMD by experimental manipulation of the tension in SEC and hence 

this is the primary determinant of the EMD [221]. In addition, all the structures of SEC, 

classically composed of an active part (which is located in myofibrils) and a passive part 

(mainly aponeurosis and tendon) could contribute differently to EMD [222]. There are 

three major areas of study in terms of EMD. The first area is the changes in reaction time 

based on the performance of different tasks [223, 224]. The second area is to study the 

significant changes of EMD in muscles under different tasks [221, 225]. The last area is to 

study the differences in EMD for different populations [226, 227]. From literatures, the 

rate of force production is the parameter that determines the changes in reaction time as 

well as the EMD value and is much dependent on types of contractions such as isometric, 

isotonic, fatigued and non-fatigued contraction. In addition to that, the EMD is also 

different in male, female, neurologically impaired and normal populations. Therefore, 

EMD is a user dependent parameter and it is necessary to be analysed individually for 

specific task; in general it varies between 10 and 100 ms for skeletal muscles [228] 

depending on the intended task. The mathematical formula for EMD (d) can be defined as 

the time between the first discernible electrical activity in a muscle (temg) and the first 

detectable mechanical response (tmr) as follow: 

  (4.1)  

4.2.2. Muscle Activation Model  

After considering the EMD, the next step is to find out the activation model in the form of 

a mathematical model. The transformation of EMG to muscle activation is modeled by 

Zajac using the first-order linear differential equation as follow [222]: 

 
 (4.2)  

where u(t) is muscle activation, e(t) represents input EMG, act represents time delay for 

muscle activation and  is the coefficient that defines the first-order system. However, 

sEMG are generally acquired at discrete time intervals and these discretized data work 

more efficiently with a second-order relationship. Therefore, a discrete version of second-

order differential equation was proposed with an additional step, neural activation, , 

between input EMG and muscle activation by Buchanan et al., as follow [229]:  
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  (4.3)  

where emgk (t - d) is processed sEMG signal of muscle k at time t, d is EMD and , 1, and 

2 are the recursive coefficients with constraints to ensure the stability of the equations as 

follow: 

 1 = 1 + 2 

2 = 1 . 2 

| 1| < 1, | 2| <1 

(4.4)  

    In addition to that, equation (4.2) can be seen as a recursive filter and thus, this filter 

should have unit gain for its maximum neural activation value. Therefore, the following 

constraint is imposed:  

  (4.5)  

    Although some muscles have linear isometric between EMG and muscle activation, 

there are nonlinearity conditions for other muscles. This nonlinear action between neural 

activation, n(t) and muscle activation, u(t) can be modeled as: 

 
 (4.6)  

where ui(t) is muscle activation for muscle “i” at time “t” and the Ai coefficient is a 

nonlinear shaping factor specific to muscle “i”. Ai is varied between -3 and 0 where Ai = -3 

means highly exponential and Ai = 0 means a linear relationship.  

    The output of the activation model is input for the biosignal driven controller. In this 

chapter, two control methods are studied and developed and one is chosen as an optimal 

controller for virtual model simulation. These control methods are based on 

backpropagation neural network (BPNN) and extreme learning machine (ELM).   

4.3. Description of BP Algorithm in Mathematics 
First step: Forward Propagation 
The three-layered BP network with x input sites, y hidden, and z output units are 

considered to describe the mathematical computations. The weight between input site i and 

hidden unit j will be called wji and the weight between hidden unit j and output unit l will 

be called vlj. This three-layered network is illustrated in Figure 4.3.  

The output of the note of hidden layer is defined as:  
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  (4.7)  

where  . 

The output of output node is defined as:  

  (4.8)  

where . 

The square error function in BPNN is given as: 

 

 

 (4.9)  

where E is the square error, t is the target output for a training example, z is the actual 

output from the output neuron and  is the activation function. The factor  is added to 

cancel the exponent when differentiating.  

Second step: Backward Propagation 

 

Figure 4-1: Notation for three-layered network 
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In this propagation, the weight value is regulated for all layers. The calculation of the 

partial derivation of output node by means of error function is done using the chain rule as 

follows: 

 
 (4.10)  

Although E is a function containing several zk, only zl is related with vlj and therefore all 

the zk are independent from each other and this becomes: 

 
 (4.11)  

The last term of the right-hand side can be rewritten using the chain rule as follows: 

 
 (4.12)  

The first term of the right-hand side is straightforward to evaluate as follows: 

 
 (4.13)  

Therefore, by substituting equation (4.12) and (4.13) to (4.11), it becomes:  

 
 (4.14)  

Lets the error of input node be l which is defined by 

  (4.15)  

By substituting equation (4.15) to (4.14), it becomes: 

 
 (4.16)  

After finding the error function of the output node, the error function of the hidden layer 

can be computed as follows: 

 
 (4.17)  
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where E is the error function which consists of several zl; it is targeted at certain wji, 

corresponding to one yj. From equation (4.17),   can be calculated as: 

 
 (4.18)  

By substituting equation (4.18) into (4.17) and solving it, the output will give as follows:  

 

 
(4.19)  

Let the error of hidden layer node be ’j with given equation (4.20) as follows: 

  (4.20)  

By substituting equation (4.20) into (4.19), the final outcome will be given as equation 

(4.21): 

 
 (4.21)  

Third Step: Weight updates 
After computing all the partial derivatives the network weights are updated in the negative 

gradient direction in order to update in the direction of the minimum of the error function. 

The learning constant  defines the step length of the correction. The corrections for the 

weights are given by 

 
 (4.22)  

and 

 
 (4.23)  

It is very important to perform the corrections to the weights only after the backpropagated 

error has been computed for all units in the network. Otherwise the corrections become 
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intertwined with the backpropagation of the error and the computed corrections do not 

correspond any more to the negative gradient direction.  

4.3.1. Limitations and Improvements 

Although BP network is adopted in most of the NN models, there are still inevitable 

defects in its algorithm such as the convergence rate is rather slow, the network tends to 

have more redundancy and the gradient descent algorithm converges to local minima as 

illustrated in Figure 4.2. In order to tackle these limitations, several tricks and methods 

have been proposed including momentum term [230] and variable learning rate [231-233].  

4.3.2. Momentum terms 

When the minimum of the error function for a given learning task lies in a narrow valley, 

following the gradient direction can lead to wide oscillations of the search process. 

Therefore, the weight behaves as if it had some inertia or ‘momentum’. By introducing the 

momentum term,   it could help to avoid excessive oscillations in narrow valleys of the 

error function which will result in preventing the learning process from settling in a local 

minimum. Furthermore, it will accelerate the learning process by encouraging the weight 

changes to continue in the same direction with larger steps. The example of a network 

without and with momentum is depicted in Figure 4.3 [234]. The gradient of the error 

function is computed for each new combination of weights instead of just following the 

negative gradient direction; a weighted average of the current gradient and the previous 

correction direction is computed at each step. The adjustment of weight value that includes 

the additional momentum coefficient is given by  

 

Figure 4-2: Local minima 
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  (4.24) 

where  and  represent the weight corrections after the tth and (t+1)th 

iteration,  is the momentum coefficient with the value of between 0 and 1 and  

represents the gradient of the error sum of squares to weight in the BP algorithm.   

4.3.3. Variable Learning Rate 

The performance of the network is very sensitive to the proper setting of the learning rate. 

If the rate is too small, the algorithm will take too long to converge. If the rate is too high, 

it may oscillate around minimum point and become unstable. Therefore, the optimal 

learning rate method is necessary to adapt during the training process in such a way that 

larger learning rate shall be selected for the areas whose error surfaces are very smooth, 

and the smaller learning rate shall be selected for the areas whose error surfaces are very 

precipitous. Although many algorithms have been proposed to deal with the problem of 

appropriate weight update, most of the approaches lead to the problem of ‘blurred 

adaptivity’ due to the size of the actually taken weight step, w is not only depended on the 

adapted learning rate, but also on the partial derivative, . In order to overcome this, 

Riedmiller and Braun [233]proposed resilient propagation (RPROP) learning scheme that 

performs a direct adaptation of the weight step based on local gradient information. In their 

proposed algorithm, the adaptive value evolves during the learning process based on the 

following learning rule:  

 

Figure 4-3: Backpropagation network (a) without momentum term and (b) with 
momentum term 
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  (4.25) 

where . 

The first term on the right hand side of equation (4.25) represents the situation if the total 

error sum of squares at (t+1)th, E(t+1) increases by less than total error sum of squares at 

tth, E(t), the weight update is accepted. In this case, the learning rate is increased by some 

factor, i.e., inc > 1 and the momentum term is reset to its original value if it has been set to 

‘0’. The second term represents the situation if the error E(t+1) increases by more than 

E(t), the weight update is discarded and the learning rate is decreased by some factor (0 < 

dec < 1) with momentum term ‘0’. In the third case, if the error decreases, the weight 

update is accepted and both learning rate and momentum term are unchanged. However, if 

the partial derivative changes sign, i.e., the previous step was too large and the minimum 

was missed, the previous weight update is reverted as follows: 

    (4.26) 

In this method, the number of learning steps is significantly reduced and computation 

expense of the RPROP adaption process is considerably smaller which leads to an efficient 

and transparent adaption process for BPNN.   

4.4. Description of ELM Algorithm in Mathematics 
In order to train the SLFN, popular BP learning algorithm where gradients can be 

computed efficiently by propagation from the output to the input can be used as shown in 

section 4.3.1.1. However, it was found that there are some limitations due to gradient-

based algorithms. Although the limitations of the BP learning algorithm were improved by 

several methods, in some cases, the network performance is still affected. In order to 

overcome this, ELM algorithm was introduced to tackle the BPNN limitations. The overall 

ELM algorithm can be summarized as in algorithm 4.1. 

The output function of the ELM for generalized SLFNs is given by  
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  (4.27) 

where  is the vector of the output weights between the hidden layer of N 

nodes and the output node and  is the hidden layer output matrix 

the hidden layer with respect to the input x. The h(x) actually maps the data from the d-

dimensional input space to the N-dimensional hidden-layer space H, and therefore, h(x) is 

indeed a feature mapping. In contrast to BP learning algorithm, in ELM, the input weights 

wi and the hidden layer biases bi are not necessarily tuned and randomly assign in the 

beginning of learning which is given by 

 
 

(4.28) 

If the number  of hidden nodes is equal to the number of  of distinct training samples, 

i.e., , the matrix H is square and invertible when the input weight vectors wi and the 

hidden biases bi are randomly chosen and thus SLFNs can approximate these training 

samples with zero error. However, in general, the number of hidden nodes is much less 

than the number of distinct training samples, and hence H is not a square matrix and there 

may not exist wi, bi, I and this becomes  

  (4.29) 

where T is the target. The objective of ELM is to minimize the error and the norm of 

weight:  

 Minimize:  and  (4.30) 

For regression purpose, the output function of the ELM in equation 4.27 can be modified 

into the following equation: 

  (4.31) 

where h(x) is a random feature mapping which is given by  
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  (4.32) 

where  is a nonlinear piecewise continuous function satisfying ELM universal 

approximation capability and it is randomly generated according to any continuous 

probability distribution. Such functions can be as follows: 

1) Sigmoid function  

   (4.33) 

 

 

2) Gaussian function 

  (4.34) 

3) Hard-limit function 

  (4.35) 

4) Multiquadric function 

  (4.36) 

Among these available functions, Sigmoid and Gaussian functions are the major hidden 

layer output functions used in feedforward neural networks. In the case of unknown feature 

mapping, kernels can be used in ELM with the output function of the ELM becoming as 

follows:  

 

 

 

(4.37) 

 where  

 and K is a kernel function with  
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  (4.38) 

    In the following sections, the two prediction models based on BPNN and ELM are 

proposed to predict the real time joint angle continuously. In the proposed attempts, firstly, 

the best activation model for the neural to muscle activation transformation is proposed as 

an input for the joint angle prediction model. Secondly, two joint angle prediction models 

are developed based on BPNN and ELM and the best prediction model is chosen as an 

optimal controller for the virtual model, VHA in the AR environment. Finally, the 

development of the VHA model is detailed and simulation of VHA with chosen optimal 

controller is performed.         

4.5. Thesis Contribution-2: Continuous Joint Angle 
Prediction  
The second contribution of this thesis is to develop the joint angle prediction model in real 

time. Two prediction models are proposed and developed based on well known machine 

learning regression methods: back propagation neural network (BPNN) and extreme 

learning machine (ELM). The proposed BPNN based prediction model and ELM based 

 

Figure 4-4: The overall concept of proposed real time virtual arm simulation 
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prediction model had been published in [235, 236] and respectively and [121]. The overall 

flow-chart that describes the processing steps of the real-time virtual arm is portrayed in 

Figure 4-4. The real time sEMG signals from user’s muscles and actual joint angle data 

measured from shoulder abduction-adduction and flexion-extension via webcam are inputs 

for the prediction model. The signals are then feed into the neural-muscle activation model 

to define the intensity of the muscular contraction. The prediction model then predicts the 

joint angle values in real time in a continuous manner. Under prediction model, both 

BPNN and ELM are studied in offline and online mode and the accuracy results are 

evaluated. Based on the accuracy from the two models, the highest accuracy model is 

chosen as an optimal controller for VHA model to drive in real-time. The real time results 

are then fed into the kinematic model to update the current joint position of the virtual arm 

in the virtual environment.   

4.5.1. Neural-Muscle Activation Model 

Four sEMG signals from anterior deltoid (AD), posterior deltoid (PD), biceps brachii (BB) 

and pectoralis major (PM) are chosen to be utilized for angle prediction as these muscles 

make the most contribution during performing the developed exercises. These finding are 

based on the experimental results from Chapter 3. The raw signals from the data 

acquisition device are first pre-processed by band-pass filtering (20Hz – 500Hz) to remove 

both low and high frequency noise.  Afterward, the valuable features are then extracted 

from these signals with root mean square (RMS) as in chapter 3, equation (1). The 

sampling rate of 2048 Hz was used in this work. The extracted features are then rectified 

and normalized by maximum voluntary contraction (MVC). The normalized data are then 

down-sampled to match the joint angle data which is 200Hz recorded under the motion 

recording block in Figure 4-4.  

The processed data are then sent to equation (4.3) and then to equation (4.6) to compute the 

neural activation to muscle activation level. Before applying equations, there are several 

parameters to consider. These parameters include EMD value and recursive coefficients. 

Since EMD, d, value is user and is task dependent, the measurement of d is based on 

individual muscles from each individual participant which is detailed in the experiment 

section. The selection of the best parameters of recursive coefficients from equation (4.3) 

is computed by optimization toolbox in Matlab with custom built model.    
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4.5.2. Motion Recording 

The motion of the arm is recorded with Logitech QuickCam E3560 which is attached to 

the same PC as for the data processing. The markers which are attached to the subject 

shoulder joint and elbow joint were registered via webcam to track the current position of 

the subject arm by making use of multi color tracking algorithm which was developed in 

Chapter 3. From the recorded motion trajectory, the desired joint angle at the shoulder was 

then calculated. The angle data recording took place in Adobe Flash Professional platform 

and was recorded in two dimensional (2-D) form as this is adequate to calculate the angles 

for both shoulder abduction-adduction and flexion-extension motion. The current locations 

of both the markers were being tracked in every frame and hence, the locations of point A 

and C from Figure 4.5 were recorded in real time. From these points the absolute length 

values of AB and BC can be considered.  Therefore, the desired joint angle,   can be 

calculated by means of trigonometric function which is given by 

  (4.39) 

The trajectories are sampled at 200Hz with measured units in millimeters. Along with the 

positions of both markers which are continuously recorded, the shoulder joint angle is 

calculated continuously.        

 
Figure 4-5: Schematic drawing of joint angle recording during shoulder abduction-

adduction movement 
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4.5.3. Proposed Prediction Model with BPNN 

The three layers of BPNN controller were developed in Matlab 2013b [237]. The overall 

structure of the constructed BPNN is portrayed in Figure 4-6. The first layer is an input 

layer which consists of four nodes for sEMG signals from anterior deltoid (AD), posterior 

deltoid (PD), biceps brachii (BB) and pectoralis major (PM) muscles. In contrast to 

traditional BPNN, the input signals of the BPNN are the outputs of the NMA model or 

traditional time-domain feature (TDF) extraction method.  

    The second layer is a hidden layer and the performance was evaluated with various 

numbers of hidden neurons, ranging from 20 to 250 by using fixed training data. In 

general, the higher the number of neurons in the hidden layer, the higher the accuracy of 

prediction will be achieved but result in higher computational cost. However, when the 

accuracy reaches a plateau, only little improvement will be achieved. Therefore the 

preliminary experiments were performed and it was found that the developed network 

worked well with 50 neurons. In addition, in order to avoid the overfitting, 70% of the total 

dataset was used for training and validation and an early stopping method was applied 

during training iterations [238]. In this layer the Levenberg-Marquardt algorithm was 

applied due to its fast iteration speed with compatible error result. This algorithm is the 

combination of Gauss-Newton algorithm and the steepest descent method to take over the 

speed benefit of the Gauss-Newton algorithm and stability of the steepest descent method. 

 

Figure 4-6: Structure of proposed BPNN model 
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The equation of the Levenberg-Marquardt algorithm is given by  

  (4.40) 

During the training process, this algorithm will switch between the steepest decent and the 

Gauss- Newton algorithm depending on the combination coefficient, μ, as shown in the 

following equation. 

  (4.41) 

If μ is very small, the Gauss-Newton algorithm is used. If μ is very large, the steepest 

decent method is employed. The equations of the Gauss-Newton algorithm and steepest 

decent method can be found in equation (4.42) and (4.43).  

  (4.42) 

  (4.43) 

 

where w is the weight factor, k is the index of iterations, J is the Jacobian matrix, e is a 

training error and α is the learning constant. The last layer, the output layer, provides the 

estimated shoulder joint angle for the upper limb. The overall sequence of the BPNN based 

prediction model is illustrated in Figure 4.7. The developed BPNN was predicted in both 

offline and online fashion and the experimental results are discussed in section 4.4.5. 

4.5.4. Proposed Prediction Model with ELM 

Another joint angle prediction model is developed based on the ELM algorithm. The input 

of the ELM is sEMG signals which are processed by NMA model or traditional feature 

extraction method. Similar to the BPNN, in this prediction model, four channels from four 

muscles are employed to predict the user intended motion. In this context, non-kernel 

based output function (equation (4.31)) is chosen as the feature mapping, h(x) is known in 

the developed model. In order to find the best feature mapping for the given inputs to the 

targets, all the available nonlinear piecewise continuous functions are evaluated in 

advance. According to the preliminary investigation, the sigmoid function provided a 

better prediction result compared to other activation functions such as hard-limit, Gaussian 

and multiquadric. Therefore, the sigmoid function from equation (4.33) is chosen as a 
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feature mapping in proposed prediction model. The parameters in the sigmoid function will 

be randomly generated based on any continuous distribution. Once the parameters are 

generated, they can be used until the number of input features and number of hidden nodes 

is changed. After the hidden layer output function has been decided, the number of hidden 

node (N) and the regularization parameter (C) are then selected empirically. Similar 

approach to BPNN model is performed with 20 to 250 hidden neurons to find the best 

performance for ELM model. Although the large value of N is able to provide high 

accuracy until it reaches plateau, little improvement can be achieved beyond this point. 

However, the larger the N is, the more memory is required and hence, it is one of the 

important parameters to identify proper optimal value of N. In the case of parameter C, the 

optimal range is found to be between 22 and 28 for this application. Therefore, in this 

development, the selected values for N and C are 45 and 24 respectively and they are used 

throughout the experiment. In offline mode, 7 out of 10 trials data are trained and validated 

and the rest are used for testing. In online mode, the trained result from the offline is 

utilized for real-time prediction. The results from both offline and online testing are 

 

Figure 4-7: Detail sequence of BPNN based prediction model 
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discussed in the following sections. The sequence of ELM based prediction model is 

portrayed in Figure 4.8. 

4.5.5. Experiments and Results  

In this section, three experiments were conducted to realize the optimal controller for the 

joint angle prediction. Firstly, the best parameters for the neural-muscle activation model 

were investigated and then the effectiveness of this model was compared with other 

traditional time-domain features of EMG via developed BPNN and ELM in offline mode. 

After that, the performance between BPNN and ELM in online mode was compared to find 

out the optimal controller for the VHA model.  

4.5.5.1. Participants  
Fifteen healthy subjects with normal eyesight, sense of touch with mean age of 40 years 

participated in the experiment. Among them, 14 participants were right handed and one 

was left handed. All the participants signed an informed consent document to participate in 

the experiment protocol, volunteering in this study. 

 

Figure 4-8: Detail sequence of ELM based prediction model 
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4.5.5.2. Data Collection 
A commercial sEMG acquisition system, FlexComp, from Thought Technology [212] was 

used to acquire signals from four channels. Each channel was connected to pre-amplified 

MyoScan sensors with triode electrodes. It has been shown in Chapter 3 that four extrinsic 

muscles namely anterior deltoid (AD), posterior deltoid (PD), biceps brachii (BB) and 

pectoralis major (PM) muscle of upper arm make a large contribution to upper limb 

articulation for the developed exercises. Therefore, these muscles were targeted as muscles 

of interest in this study. The skin preparation procedure for non-invasive sEMG was 

outlined in [239] and was followed to maximize the signal quality in this experiment. The 

FlexComp system and the locations of the electrode sites are illustrated in Figure 4.9.  Two 

color markers were attached to the user shoulder and the elbow joint. The subjects were 

requested to sit in front of the desktop to which the webcam was attached at a comfortable 

height with shoulder 0° abduction, 0° extension and 0° external rotation.  

    As a very first step, data of both sEMG signals and joint angles were collected from 

isotonic contraction of studied muscles in offline and online mode. The offline data were 

used to find out the best parameters and then train the developed prediction models. Based 

on the offline trained model, offline testing for both prediction models was conducted to 

choose the optimal model for joint angle prediction. Based on the outcome of testing 

results from the offline model, the online model was developed to predict the joint angle in 

real time for the VHA model.    

    In all modes, all the participants were instructed to move the upper limb at constant 

velocity in shoulder abduction-adduction from 0° to 170° or up to comfort zone for 10 

 
(a)                                                         (b) 

Figure 4-9: (a) FlexComp System from Thought Technology (b) Locations of the 
Electrode Sites 
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cycles for 10 trials. Similarly, shoulder flexion-extension from 0° to 180° or up to comfort 

zone for another 10 cycles for 10 trials were performed. All the participants were allowed 

to rest anytime between the trials to avoid any muscle fatigue. The data were collected 

without change in electrode locations in order to maintain consistency between the two 

different motions. Among the recorded data, 7 trials were used to train and validate the 

prediction models and 3 trials were used to test in offline mode. As for the online testing, 8 

cycles for 5 trials were performed.   

4.5.5.3. Experiment-1: Neural-Muscle Activation Model  
Before the experiment was conducted, the objective of the experiment was explained to the 

subjects and a few sessions of training were also given. After that, the data were collected 

from all the subjects according to the protocol which was described in the data collection 

section. The collected data were then analysed for EMD value as well as the recursive 

coefficients for neural-muscle activation (NMA) model. The example EMD result of one 

subject during isotonic contraction is illustrated in Figure 4.10. The magenta colour is the 

joint angle measurement and this is when the actual movement of the arm is taking place. 

As can be clearly seen from the figure, there were some delays between the starting point 

of activated signals and actual angle: dAD, dPD, dBB and dPM although the intensities of these 

values were varied. The average EMD values across 15 subjects from two different tasks 

(abduction-adduction and flexion-extension) are portrayed in Figure 4.11 and Figure 4.12. 

 
Figure 4-10: Electromechanical delay of one subject during isotonic contraction  
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From the graph, the higher EMD values were found during shoulder abduction-adduction 

compared to that of flexion-extension movement. The one-way ANOVA tests were 

conducted to compare any significant differences in EMD between different tasks, 

different muscles and as well as in different subjects. The statistical results from the 

different tasks revealed that there was significant difference (p < 0.05) between the two 

tasks and hence EMD is actually dependant on the intended task. The analysis from studied 

muscles showed that there was significant difference across different muscles (p < 0.005). 

This reveals that different muscles possess different EMD values and hence it is important 

to analyse them individually to attain an accurate prediction model. However, the test 

results from different subjects provided no significant difference for EMD values during 

the abduction-adduction task (p = 0.71) and flexion-extension (p = 0.27) task as all the 

subjects were requested to perform the tasks at constant speed across the trials and they 

tried to do so.         

 
Figure 4-11: Average electromechanical delay value from 15 subjects during shoulder 

abduction-adduction motion 

 
Figure 4-12: Average electromechanical delay value from 15 subjects during shoulder 

flexion-extension motion 



4. Real Time Biosignal Driven Virtual Human Arm 
 

 128 

    After finding the d value, the best coefficients for both  and  were investigated via 

curve fitting tool with custom made equation based on equation 4.3. The effectiveness of 

the developed neural-muscle model in the prediction process was also evaluated via 

comparing with traditional time-domain feature (TDF) extraction methods and these will 

be discussed in the following section. 

4.5.5.4. Experiment-2: Prediction Models in Offline Mode 
In this experiment, the offline predictions methods were carried out for both BPNN and 

ELM model by comparing NMA, and TDF method. Both BPNN and ELM model were 

trained and tested with the same samples from recorded data. Firstly, NMA model was 

employed using the best parameters found in the previous section. The outputs of the NMA 

model were fed into the developed BPNN to train the network for estimation. The trained 

networks were then used to predict the joint angle based on the testing data. The same 

training and testing methods were carried out with TDF. In this TDF, four traditional 

features, namely Mean Absolute Value (MAV), Waveform Length (WL), Variance (VAR) 

and Willison Amplitude (WA) were chosen due to better estimation performance [240]. 

The length of the sliding window was 100ms with 20ms overlap and was employed in this 

experiment. After BPNN model was tested, the ELM model was trained and tested in a 

similar fashion. The outputs from the NMA model were fed into the developed ELM 

model followed by outputs from the TDF were feed into the ELM model. After training 

and testing for all the studied models and methods had been conducted, the results were 

evaluated via statistical analysis.  

    A 5-fold cross-validation procedure was used to evaluate the overall statistical 

performance for two different prediction models with different feature extraction methods. 

Two performance indices were chosen to compare the performance of the different models 

with different input features. These indices include normalized root-mean-squared error 

(NRMSE) and the adjusted coefficient of determination ( ) [241]. The NRMSE is a 

dimensionless metric expressed as RMSE over the range of measured angle values for each 

subject which is given by 
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  (4.44) 

where a and e are the normalized actual measured and estimated joint angles respectively 

for sample i, and n corresponds to the total number of tested samples. The R2 is the 

measurement of the percentage of variation in the dependent variable, in this case angle, 

explained by the independent variables, in this case sEMG signals and this is given by  

  (4.45) 

where  and  are the normalized actual measured and estimated angles at ith sample to 

nth samples. However, R2 has a tendency to overestimate the regression when more 

independent variables are added to the model. Therefore, adjusted R2 is introduced for 

more independent variables which is given by 

  (4.46) 

The results of NRMSE and  test from both BPNN and ELM are illustrated in Figure 

4.15 to Figure 4.18. As can be clearly noticed from the figures, the results indicate that the 

performance of the developed NMA model provides a lower NRMSE value than that of 

traditional time-domain feature extraction method in both estimation models.  

     In order to prove the statistical significance of this result, one-way ANOVA test was 

carried out between developed NMA model and TDF extraction method. The test reveals 

that there is a significant difference for NRMSE between studied methods (p < 0.001). 

Therefore, the developed model NMA can significantly improve accuracy for joint angle 

prediction. It was also found that the average value of Ra
2 from Figure 4.13 and Figure 

4.16 were significantly higher in the ELM model (0.9 ± 0.035) than in the BPNN model 

(0.85 ± 0.03) with p-value (p < 0.05). This proves that the developed ELM has better 

prediction performance in studied motions. The average accuracy between actual angle and 

estimated angle by ELM is computed and the result reveals that the estimated angle is as 

high as 96.13% in offline mode. In addition to that the offline computational time for both 

training and testing of BPNN and ELM models are illustrated in Table 4.1. It was clearly 
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seen from the table that during the network training period, ELM has better computational 

cost than BPNN although there is a compatible duration during testing or prediction with 

trained network.  

Table 4.1: Average offline computational time between BPNN and ELM  

Motions 

Average Training Time (s)   Average Testing Time (s) 

BPNN ELM   BPNN ELM 

NMA TDF NMA  TDF   NMA TDF NMA TDF 

Abd-Add 16.00 19.00 0.17 0.17 0.03 0.04 0.02 0.03 

Flex-Ext 15.00 17.00 0.18 0.18   0.03 0.05 0.03 0.03 

 

    According to the statistical results, it can be concluded that ELM model with proposed 

NMA model provides better performance in terms of NRMSE and Ra
2 although 

 
Figure 4-13: NRMSE results of BPNN model during offline estimation 

 
Figure 4-14: Adjusted coefficient of determination of BPNN during offline estimation 
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computational time in testing mode is compatible. Therefore, the online prediction model 

with ELM has potential to serve as an optimal controller for VHA model in this thesis. To 

validate this hypothesis, the online experiments were carried out and results were 

compared which will be discussed in the following section.    

4.5.5.5. Experiment-3: Prediction Models in Online Mode 
During the online prediction experiments, the real time data from the subject were sent to 

the trained BPNN and ELM models which were conducted beforehand and predicted the 

shoulder joint angle in real time continuously. In this experiment, all the participants were 

requested to perform 8 cycles of shoulder abduction-adduction motion followed by 

flexion-extension motions with random angles from 0° to 180° with constant velocity for 5 

trials. The subjects were free to rest between the trials to avoid muscle fatigue. The offline 

training was conducted just before the online testing while electrodes were intact. This is to 

minimize the error due to electrodes position reattachment which will affect the prediction 

 
Figure 4-15: NRMSE of ELM model during offline estimation 

 
Figure 4-16: Adjusted coefficient of determination of ELM during offline estimation 
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accuracy. Therefore, the computational time for the offline training was also important in 

this experiment.  

    The 5-fold cross-validation of the online testing was performed and the result from one 

subject in one of the trials was portrayed in Figure 4.17. It was clearly seen form the figure 

that the developed ELM model (red colour dash line) can predict closer to the targeted 

angles (blue solid line) than the BPNN model (green solid line). This was because, ELM 

has better generalization performance than the BPNN in which ELM produces a same 

result always and therefore consistent and has got better generalization. In addition to this, 

ELM tends to reach the solutions straightforward without facing several issues such as 

local minima, improper learning rate and overfitting, etc. In contrast to the requirement of 

random weights in BPNN algorithm which results in different outputs after each training, 

ELM always provides same output for a particular input sample. Additionally, NRMSE 

and Ra
2 were calculated in this experiment to prove the better performance of ELM 

prediction model over BPNN model and the results are tabulated in Table 4.2. It can be 

clearly seen from the table that the ELM prediction model provided a better performance 

than BPNN because error rate of the ELM model is less than that of BPNN model in both 

shoulder motion cases. Similar to the offline mode estimation, the average accuracy of the 

predicted joint angles by ELM is computed and it reveals that the estimated angle is as 

 
Figure 4-17: Graphical representation of 5-fold cross-validation online result from one 

of the trials by one subject 
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high as 93.71% during online mode.   

In order to analyse the statistical significance between two regression models, one way 

ANOVA was carried out across all the trials for all the subjects. The results revealed that 

there is a significant difference in Ra2 (p < 0.001) and NRMSE (p <0.001). According to 

the calculated error results and ANOVA results, it can be concluded that the developed 

ELM model provides the better prediction results and hence, it is chosen to drive the VHA 

model from user’s sEMG signals. 

Table 4.2: Average online prediction results ELM Vs. BPNN 

Shoulder Motion Prediction 
Model 

Model Prediction Testing 
Time 
(ms) Ra

2 NRMSE(%) 

Abduction-
Adduction 

ELM 0.82 (0.02) 15.69 (2.8) 29 

BPNN 0.72 (0.03) 24.33 (1.5) 30 

Flexion-Extension 
ELM 0.83 (0.05) 14.99 (3.5) 31 

BPNN 0.74 (0.02) 27.15 (1.4) 31 

         

4.6. Thesis Contribution-3: Development of Virtual 
Human Arm Model 
The third contribution of this thesis is the development of a virtual human arm (VHA) 

model that allows to be utilized for evaluation and verification of theoretical concepts, 

product designs, analysis and human related pilot operations. In order to simulate the 

model in a virtual environment, it is important to reproduce a human motion in the 

computer. In general, there are three major approaches to replicate the human motion in a 

computer: 

1) Motion capture by a real human with a number of sensors that are installed over the 

entire human body [238];  

2) Digital human modeling and motion creation based on pure mathematical algorithms 

[166];     

3) Data insertion between the live motion capture data using a mathematical 

interpolation [172]. 

    Among the available approaches mentioned above, in this thesis, the combination of 

motion capture data and mathematical interpolation is employed in order to simulate the 
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virtual model.  In addition to this, the biological signals are also employed for simulation 

of the VHA model to enhance the fast recovery during rehabilitation process. Since the 

rehabilitation context of this study is focussed on the human upper limb, only virtual 

human arm (VHA) is developed in this research.  

   In order to develop the complete upper limb and further to produce a realistic motion, the 

first step is to understand the upper limb biomechanical information. Human upper limb 

can be modeled as a set of rigid segments which consists of four segments and these 

segments are linked by the joints with a total of 7 degrees of freedom (DOFs). Based on 

this biomechanical information, three-dimensional (3D) graphical representation of the 

human arm, in this case a VHA model, is developed. Since the purpose of the VHA model 

is to replicate the articulation of a human arm in realistic form, it is necessary to create two 

distinct models namely (1) kinematic model and (2) virtual reality model.  The detailed 

descriptions of each model are discussed as follows. 

4.6.1. Kinematic Model 

In order to model the correct kinematics for the upper limb, actual joints of a human arm 

are properly investigated. The upper limb can be recognized as a biomedical system which 

is made up of four rigid links namely humerus, radius, ulna and hand. The connections 

between these links are shoulder joint, elbow joint and wrist joint. In the case of VHA, 

these four rigid links are represented as follows: humerus as shoulder, radius and ulna as 

forearm and hand as hand bodies. In the context of VHA joints, the shoulder joint is 

represented as a spherical joint which consist of 3DOFs (degrees of freedom): flexion-

extension (Flex-Ext), abduction-adduction (Abd-Add) and Medial-Lateral (Med-Lat) 

rotation, the elbow joint is constructed with a cylindrical joint which allows 1DOF in 

flexion (Flex) and the wrist joint is constructed with a spherical joint with 3DOFs: flexion-

extension (Flex-Ext), abduction-adduction (Abd-Add) and Pronation-Supination (pron-

supin) for the forearm. Therefore, the VHA model in this thesis is made up of 7DOFs for 

its articulations which align and are limited within the normal range of motion as in a real 

upper limb [242] which is tabulated in Table 4.3. The kinematics of the VHA is modeled 

with Denavit- Hartenberg (D-H) procedure which is commonly called the D-H convention 

[243]. In order to calculate the D-H convention in VHA model, a total of four independent 

parameters: joint angle “ ”, joint offset “d”, link twist angle “ ”, and the link length “a” 

are defined in VHA kinematic chain which is portrayed in Figure 4.18 and Table 4.4. 
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Table 4.3: Average joint ROM and its comfort zone of human upper limb 

Joint 
Motion 

ROM 
(Max°/Min°) 

Confort Zone 
(Max°/Min°) Conditions 

Shoulder 
Flex-Ext 

188 / -61 65.8 / -21.35 Elbow neutral 0° 
170 / -30 59.5 / -10.5 Elbow flexes 90° 

Shoulder 
Abd-Add 

198 / -50 69.3 / -17.5 Elbow 0° and Shoulder neutral in 
vertical 

134 / -48 46.9 / -16.8 Elbow 0° and Shoulder neutral in 
horizontal 

130 / 0 45.5 / 0 Elbow 0° and Shoulder neutral 0° 
120 / -30 42 / -10.5 Elbow 0° and Shoulder flexes 90° 

Shoulder 
Med-Lat 

90 / -45 31.5 /-15.75 Elbow 0° and Shoulder neutral 0° 
97 / -34 34 / -11.9 Elbow 90° and Shoulder flexes 90° 
90 / -90 31.5 / -31.5 Elbow 90° and Shoulder abducts 90° 

Elbow 
Flexion 

142 49.7  Shoulder neutral 0° 
<142 < 49.7 Shoulder flexes 90° 

Joint 
Motion 

ROM 
(Max°/Min°) 

Confort Zone 
(Max°/Min°) Conditions 

Elbow 
Pron-
Supin 

113 / -77 39.55 / -27  Elbow neutral 0° 

<113 / -77 < 39.55 / -27 Elbow flexes 90° 

Wrist 
Flex-Ext 90 / -81 45 / -40.5 N/A 

Wrist 
Rad-Uln 27 / -47 13.5 / -23.5 N/A 

 

Table 4.4: The D-H parameters for a VHA model 

D-H parameters of VHA model 
Joint Name  i (rad) i (rad) di (cm) ai (cm) 

Shoulder Flex-Ext 90 0 0 
Shoulder Abd-Add 90 0 0 
Shoulder Med-Lat -90 l3 0 

Elbow Flex 90 0 0 
Elbow Pron-Supin 90 l5 0 

Wrist Flex-Ext -90 0 0 
Wrist Rad-Uln -90 0 0 
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4.6.1.1. Forward Kinematics 
Based on the D-H parameters from Table 4.4, forward kinematics (FK) of VHA is 

calculated. This is to find the hand position and orientation in terms of the joint variables 

by determining a homogeneous transformation  and this is a product of four basic 

transformations: 

 

 

 
(4.47) 

According to the equation (4.47), the homogeneous transformations of VHA can be found 

as follows:  

 

 

 

Figure 4-18: Kinematic Chain of Virtual Human Arm 



4. Real Time Biosignal Driven Virtual Human Arm 
 

 137 

 

 

 

 

 

  (4.48) 

where “c” represents the cosine of  and “s” represents sine of . To compute F-K of the 

VHA, multiply the  together and this yields 

 

 

 
(4.49) 

in which 
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4.6.1.2. Inverse Kinematic 
After the FK of VHA is completed, the motion of the VHA model is considered based on 

the inverse kinematics (IK) to solve each joint value in terms of a desired Cartesian 

position or orientation or both. To derive the IK of the VHA, the following equation (4.50) 

is computed first based on first four joints: 

  (4.50) 

where 

(4.51) 
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                  (4.52) 

 

From the equation (4.52), there are four variables on the left hand side,  with 

three known values on the right hand side which are x, y and z. From VHA kinematic 

chain,  is the shoulder med-lat rotation and therefore, assumed to be fixed at the home 

position, i.e., . Hence, the equation is reduced to  

  (4.53) 

To find out the rest of the joint angles, ,  and , square every element in the matrix 

and add them together. This will yield 

  (4.54) 

From equation (4.54), it can be re-written into the following equation which is the law of 

cosine. 

  (4.55) 

 

Therefore,  at elbow joint can be found as follow: 

  (4.56) 

where  and the range of motion at elbow joint is limited between (0°, 

180°), i.e., . After  has been found,  can be calculated from z-component from 

the equation (4.53). This will give 

  (4.57) 

The  is the shoulder abduction and adduction with maximum range of motion between  

(-50°, 198°) and hence it can be either  or   as follows: 
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  (4.58) 

After  and  have been solved,  can be calculated by means of x and y components 

from equation (4.53) and this will yield 

  (4.59) 

From equation (4.59),  and  can be solved and after solving both,   can be 

determined by 

  (4.60) 

There are two possible values for  as well due to the shoulder flexion and extension 

range of motion which is within (-61°, 188°). After shoulder orientation and elbow joint 

angle have been determined, the next step is to find the wrist orientation of the VHA model 

and this is done based on further derivation as in the following equations: 

  (4.61) 

 

  (4.62) 

From above equations  with wrist flexion and extension range of motion at (-

81, 90) and therefore  can be calculated based on equation (4.63). 

  (4.63) 

From equation (4.61& 4.62),  can be found from  and  as follows: 

  (4.64) 

Similarly,  can be found from  and  as follows: 
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  (4.65) 

After finding all the joint angles as discussed above, the next step is to create the 3D virtual 

model of the arm and this is discussed in the following Section 4.5.2.  

4.6.2. Virtual Human Arm Model 

The model of VHA is developed in a 3D Blender which consists of 18 segments: each 

segment at upper arm, forearm and palm, three segments at thumb: metacarpals, proximal 

phalanges and distal phalanges, and three segments each for the rest of the fingers: 

proximal phalanges, intermediate phalanges and distal phalanges as shown in Figure 4.19. 

From the figure, the orange dot represents the joint between each segment and there are a 

total of 18 joints. In the developed VHA model, there are 3DOFs at shoulder joint, 1DOFs 

at elbow joint, 3DOFs at wrist joint, 5 DOFs at the thumb and 4DOFs each for the rest of 

the fingers with a total of 28DOFs in the construction. However, in this thesis, only 

shoulder joint articulations are considered for upper limb rehabilitation. After defining the 

segments and joints in the Blender for VHA model, the arm structure is constructed based 

on the parent-child arrangement. This is completed by rearranging the note tree so that 

parent link pointed to the child link, i.e., the upper arm is the parent link to the forearm 

child link and the forearm is the parent link to the wrist child link and so on to the end link; 

the last link of the finger digits. The digits are arranged in such a way that they are brother 

links as they had the same parent link. Each finger is separated into three parts: the distal, 

intermediate and proximal phalanges with the thumb having distal, proximal phalanges and 

 

Figure 4-19: Hierarchy structure of Virtual Human Arm Model 
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metacarpals. They are rearranged so that the proximal phalange is the parent to the 

intermediate phalange child link which is parent to the distal child link. As for the thumb, 

the metacarpal is the parent to the proximal phalange child link which is parent to the distal 

child link. This parent-child relationship is incorporated to ensure any motion of the parent 

link will have an effect on the child links during simulation. After all the segments and 

joints are properly defined in the Blender, the model is exported as collada (.dae) format to 

maneuver in Flash CS6. From Flash CS6, the model is imported via Papervision3D 

(PV3D) which is an open source, 3D graphics engine for Flash platform [173]. The 3D 

model is then loaded in .dae format for all the segments and joints with default colour and 

then rendered on the computer screen. The fragments of code that are responsible for VHA 

model loading and skin color updating in Flash are defined in Appendix A2.  

4.6.3. Experiment and Results 

In order to evaluate the performance of VHA, two types of experiment were conducted. 

The results from the experiments had been published in [244]. The experiments included 

Manual Articulations and FK & IK Articulations. Manual Articulation was to make sure 

that the links, joint angles and parent-child relationships were properly assigned to the 

model. After confirming the Manual Articulation, the model was imported into Flash 

Platform to validate the model articulations with developed FK and IK algorithm in both 

random trajectory data and CMR exercise trajectory data.  

4.6.3.1. Manual Articulation 
To verify the arm structure, the rotation of each joint was tested manually by specifying the 

particular angle value at each and every joint in both Blender and in Flash as shown in 

Figure 4.20 and Figure 4.21. It was found that the parent-child links at every joint level 

were properly defined and it was able to rotate as desired orientation at desired joint level. 

During this testing, the ROM constraints of the model were not defined to mimic the real 

arm articulations and it was only defined during FK and IK articulations. Although the 

finger articulations were not used in ARIS at this time, they were tested and catered for 

future manipulations, for instance hand rehabilitation.    

4.6.3.2. FK and IK Articulation 
After confirming the segments, joints and their connections of VHA model, it was tested 

for FK and IK articulations. First of all, the difference between Flash coordinate system 
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and model coordinate system were studied to ensure the imported model was located in 

correct orientation and position in Flash platform. In Flash, the origin or the registration 

point is located at the corner of the top left point of the stage, +y is pointing downward 

unlike in Cartesian coordinate space in which the y-axis is increasing “up” while +x is 

pointing towards the right and +z is into the paper and as for the imported model 

coordinates, +x is pointing towards right, +y is pointing up and +z is into the paper which 

are shown in Figure 4.22.  

    After the model had successfully rearranged the coordinates, developed FK and IK 

algorithms were tested. Initially, Prediction Mode or FK was tested where the joint angles 

were given in the model randomly followed by the joint angles for CMR exercise. In 

Prediction Mode, the joint angles were achieved by prediction model which is proposed in 

section 4.4. These joint angles were then sent to FK algorithm and drive the VHA model. 

The actual hand locations were evaluated by comparing with desired hand positions and 

 

Figure 4-20: Manual Articulation of VHA model at different positions and orientations 

in Blender 

    
Figure 4-21: Manual Articulation of VHA model at different positions and orientations 

in Flash Professional CS6 
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part of the results are shown in Table 4.5 and Table 4.6. From the trajectory results, it was 

found that the end-effector error is less than 1.32 mm which is within the allowance of 

collision detection to perform pick and place actions in the exercise. The computational 

time for simulation was also very fast as it was completed within 0-1ms per iteration. The 

results from the graphical simulations of the VHA model in Prediction Mode are as 

portrayed in Figure 4.23. 

Table 4.5: Iteration time and norm error results from random trajectory motion in 

Prediction Mode with 1 vary from 45° to 55° and 2 vary from 30° to 40° while the rest 

of the angles remain at 0° 

 

1 ° 2 ° ||e|| in mm Iteration 
Time (ms) 

45 30 0.3976 0 

46 31 0.3981 0 

47 32 0.4052 0 

48 33 0.4134 0 

49 34 0.4289 0 

50 35 0.4296 0 

51 36 0.4311 0 

 

Figure 4-22: Coordinate space of game stage in Flash and VHA model 
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1 ° 2 ° ||e|| in mm Iteration 
Time (ms) 

52 37 0.4332 0 

53 38 0.4367 1 

54 39 0.4382 0 

55 40 0.4386 0 

 

Table 4.6: Iteration time and norm error results from CMR exercise in Prediction Mode 

with 2 vary from -80° to -90° and 3 vary from 80° to 90° while the rest of the angles 

remain at 0° 

2 ° 3 ° ||e|| in mm Iteration 
Time (ms) 

-80 80 0.2443 0 

-81 81 0.252 1 

-82 82 0.26 0 

-83 83 0.2884 0 

-84 84 0.2953 0 

-85 85 0.3028 1 

-86 86 0.3154 0 

-87 87 0.3231 0 

-88 88 0.3469 0 

-89 89 0.3623 0 

-90 90 0.37 0 

 

After Prediction Mode had been tested, Threshold Mode or IK algorithm was tested by 

    

Figure 4-23: Graphical simulation of Prediction Mode in CMR exercise 
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experiments in both random positions and CMR exercise positions. In the Threshold Mode, 

the desired hand positions were given in terms of X, Y and Z coordinates and the required 

joint angles were calculated by IK algorithm to simulate VHA model. In the case of 

random positions, the experiment was carried out with variation of Y values while both X 

values and Z values were fixed at zero. Similar to the Prediction Mode, the error-norm of 

the joint angles and iteration duration were calculated and the results of Y values from -

70mm to -60mm are as shown in Table 4.7. In the experiment of CMR exercise positions, 

the values were calculated for X and Y while Z values were fixed at zero. The calculated 

results of X values from -100mm to -110mm are tabulated in Table 4.8. From the results of 

Threshold Mode, the error-norm values were less than 1° and hence, the calculated joint 

angles are sufficiently accurate as desired joint angles that mimic the human arm 

articulation. The graphical simulations of VHA articulations in Threshold Mode are 

portrayed in Figure 4.24.    

Table 4.7: Iteration time and norm error results of random motion in Threshold Mode with 

Y-axis vary from -70mm to -60 mm while X and Z remains at zero 

Y(mm) ||e|| in degree Iteration 
Time (ms) 

-70 0.4386 0 
-69 0.4382 0 
-68 0.4367 1 
-67 0.4332 0 
-66 0.4311 0 
-65 0.4296 1 
-64 0.4289 0 
-63 0.4134 0 
-62 0.4052 0 
-61 0.3981 1 
-60 0.3845 0 

    
Figure 4-24: Graphical simulation of Threshold Mode in CMR exercise 
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Table 4.8: Iteration time and norm error results of CMR motions in Threshold Mode with 

X-axis vary from -100mm to -110 mm, Y-axis vary from -90mm to -80mm while Z 

remains at zero 

X(mm) Y(mm) ||e|| in degree Iteration 
Time (ms) 

-100 -90 0.3863 0 
-101 -89 0.3673 1 
-102 -88 0.3593 0 
-103 -87 0.3529 0 
-104 -86 0.3462 0 
-105 -85 0.317 1 
-106 -84 0.2693 0 
-107 -83 0.2371 0 
-108 -82 0.2183 0 
-109 -81 0.1952 0 
-110 -80 0.1773 0 

   

    After the experiments of VHA model had been conducted and verified, Augmented 

Reality-based Illusion System (ARIS) for upper rehabilitation system was developed in 

which VHA model is employed to perform as a real arm. The details of the developments 

of the system and experiments are explained in the following chapter.    

4.7. Chapter Summary 
In this chapter, the second and third contribution of the thesis is discussed. Firstly, a 

neural-muscle activation model was proposed to find the actual muscle activation level 

during the performance of the task by considering the best parameters for the model. The 

proposed model was then compared with the traditional time-domain feature extraction 

method to show its effectiveness. Secondly, two joint angle prediction models based on 

BPNN and ELM were proposed in both offline and online modes. The comparisons were 

performed between these two prediction models in both offline and online mode. From the 

experiment results, it was found that the proposed NMA model with ELM provided the 

best accuracy with better computational cost. Hence, this model was chosen as an optimal 

controller to control the VHA model in real time. Finally, the development of the VHA 

model was detailed in this chapter. The experiments on VHA model simulation were also 
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performed with both manual and chosen optimal controller. The results from the 

experiments showed that real time biosignal driven VHA model had successfully acquired 

data, processed data and simulated the model in less than 40ms which the user perceived as 

a real time simulation of the VHA model. 

 



 

Chapter 5  
Illusion based Upper Limb 
Rehabilitation System 

 

5.1. Introduction 
Neural plasticity is the ability to compensate for loss of function and reorganize the 

nervous system to make other parts of the CNS take over some of the functions that were 

lost from the destruction of neural tissue due to any neurological disorders. Therefore, this 

is the most important function to stimulate in order to restore the lost functions in the 

context of rehabilitation. To exhibit the neural plasticity, learning is the most important 

matter because learning can produce changes in synapses, neurons, and neuronal networks 

within specific brain regions. Through learning, the brain will encode new experiences and 

enable behavioral change [245]. Taking advantage of neural plasticity, there is 

overwhelming evidence of increase in motor cortex excitability which significantly 

improves dexterity depending on motor experiences such as forced-use therapy [246], 

constraint-induced movement therapy (CIMT) [49] and bilateral movement therapy [247]. 

However, most of these interventions are labor intensive due to one-to-one attention and a 

manual approach between patient and therapist throughout the rehabilitation period. 

Moreover, the therapeutic effects are diminished for those who suffer from severe 

impairment as they are reluctant to perform physical exercise. In order to close this gap, 

mirror therapy (MT) is introduced in rehabilitation therapy as this is a patient-oriented 

therapeutic intervention that focuses on intact limbs by means of visual illusion via a 

conventional mirror. The studies have reported that the effects of MT on the upper limb 

rehabilitation are improved in terms of ROM, increased muscle strength, improvement in 
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speed and accuracy of the movements and enhancement in motor recovery and self-care 

ability [48, 248, 249]. Although there is overwhelming evidence of MT providing motor 

recovery, it is not adequate to provide as a novel rehabilitation system as there are several 

aspects that still need to be addressed. These include limitations on type of movements, 

only available on certain parts of the limb to rehabilitate, mundane physical exercise and 

absence of biological feedback that motivate the patient in long term engagement.  

    This chapter is oriented toward the development of an Augmented Reality-based Illusion 

System (ARIS) based on the concept of MT on upper limb rehabilitation. This is driven by 

the fact that there is a lack of integration of all the possible aspects that enhance motor 

recovery in current upper limb rehabilitation systems. Hence, ARIS is proposed to close 

the gaps by integrating together AR environment, biofeedback and motivated therapeutic 

exercises that lead to induce neural plasticity change. In order to proceed with the 

development of a novel rehabilitation system, ARIS, an introduction to MT in upper limb 

rehabilitation will be given first followed by how to integrate visual illusion or mirror 

visual feedback (MVF) to provide “Fool-the-Brain” concept.   

5.2. Mirror Therapy in Upper Limb Rehabilitation 
Mirror Therapy (MT) is a drug free treatment that is used to provide MVF by utilizing 

mirrors to trick patients’ brains into thinking that they were moving their hand or limb. In 

order to perform the MT, a mirror box was developed which consists of an optical mirror 

placed vertically in the middle of the box without a roof with two holes in front as shown 

in Figure 5.1. The patient’s hands are inserted in the box through these two holes where the 

mirror is faced the healthy limb. The patient is then requested to view the reflection of the 

  
Figure 5-1: Schematic diagram of MT (left) and actual MT box (right) 
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normal hand in the mirror to create the illusion of observing two hands, when in fact the 

patient is only seeing the mirror reflection of the intact hand. It was introduced in 1996 by 

Ramachandran and Roger –Ramachandran [250] to treat phantom limb pain after 

amputation and since then it has been applied in several fields such as stroke rehabilitation 

[195], phantom limb pain [251], complex regional pain syndrome [252], limb rehabilitation 

[253] and neuropathic pain [254].  

    In the context of limb rehabilitation, MT is widely employed to restore the normal limb 

functions via graded exercises with a conventional mirror box and the positive effect of 

visual feedback in the form of bilateral symmetrical movements have been reported. 

However, it was found that these movements do not affect the coordination movement of 

both upper limbs[255]. In addition to this, different neural networks in the brain might be 

engaged when looking at oneself in a mirror compared to when one looks at oneself 

directly [256] and the experimental manipulations are rather constrained with the use of the 

mirror box to test the precise nature of observed effects. To overcome these limitations, 

VR and AR environments are introduced to extend the use of mirror visual feedback which 

enhances motor recovery through neural plasticity. To investigate this idea, Dong Jin Lee 

and his research group has developed the virtual reality reflection system to mimic the 

conventional MT concept in VR environment [257]. With the aid of VR environment, the 

limitations of bilateral symmetrical movements are overcome and an asymmetric training 

program was introduced and studied on the effect on hand function. The study has 

confirmed that the repeated asymmetrical movements with both hands are more effective 

than symmetrical movements and improved the spatially coupled motion. Another study 

based on AR environment was performed by [258]. They have developed the augmented 

reflection technology (ART) system which consists of augmented mirror boxes and two 

display screens. The ART system mimics the MT by mirroring the real hand in the box, 

i.e., flipping in the horizontal direction, displaying on the computer screen on real hand and 

flipped hand, and manipulating the hand therapeutic game. Although the system has 

provided promising results, the requirements of hardware setups, total immersion of 

forearm and hand in the enclosed box and manipulation in that box, lack of biofeedback in 

the system could lead to a less effective rehabilitation system.  

    In the context of MT in VR and AR environment, the ownership of the virtual arm or 

artificial arm that is created in VR and AR environment plays a vital role for the user to 

perceive this virtual arm or artificial arm as one of his/her own arms; this is termed the 
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“Fool-the-Brain” concept. This is to replace the reflected arm by a conventional mirror and 

create the MVF in VR and AR environment. The detailed concept of “ownership” feeling 

and research on the perception of ownership illusion is described in the next section.  

5.2.1. Ownership Illusion 

Ownership illusion is to perceive the ownership of virtual or artificial limbs as one of the 

body parts in either real world or virtual world. In the context of rehabilitation, this is one 

of the important factors to stimulate neural plasticity during motor recovery stage. In order 

to measure the feeling of ownership illusion, the rubber hand illusion (RHI) was first 

introduced by Botvinick and Cohen [259] in 1998. In contrast to MT, RHI was 

experimented by placing the actual human arm size rubber hand next to the participant’s 

occluded hand. In their work, two types of measurements were conducted to evaluate the 

effect of ownership. First, rubber hand and occluded hand were stroked synchronously to 

evoke the proprioceptive feeling of the own hand and the questionnaire results found that 

the ownership illusion was perceived when the stroking was synchronous. In the second 

experiment, the displacement of participant’s left index finger was measured by an inter-

manual reaching task in the darkness. It was found that the movement occurred during the 

synchronous stimulation. This displacement effect was termed the “proprioceptive drift” 

which interacts between vision, touch and proprioception [260] and the study concluded 

that the feeling of ownership is correlated with the proprioceptive drift. Several similar 

works had also demonstrated the ownership illusion with rubber hand and proven with 

positive results by measuring the ownership effect via stimulation in synchronous actions 

[261] as well as in proprioceptive drift [259, 262, 263]. Another type of ownership 

measurement can be made by evaluating skin-conductance response (SCR) where SCR is a 

measurement of ownership that reflects fear and anxiety when the owned body part is 

under physical threat; for instance, the artificial arm is stabbed by a knife [264]. This 

approach had been experimented on [265] and his results had shown that there was a 

significant response when the rubber hand was in threat immediately after the synchronous 

condition. This showed that the participants’ perceptual and emotional systems treated the 

rubber hand as part of their bodies. In addition to rubber hand experiments, similar 

experiments were conducted with VR setup in VR environment. In the work of Hagni et 

al.,[258] , the virtual forearm and hand were developed in VR environment and the 

ownership feeling was evaluated by creating the scenario in such a way that the virtual arm 

was threatened. Their results also showed that virtual visual feedback together with mental 
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imagery may induce the ownership perception as part of the body. Additional 

investigations into virtual hand illusion were carried out by Raz et al. [266]. From their 

experiments, it was found that there was a strong sense of perception of ownership during 

the synchronous conditions when both the real hand and virtual hand moved at the same 

time. In addition, they also found that the addition of haptic feedback to both real and 

virtual hand provided greater sense of ownership perception.   

Overall, the literature suggests that there is considerable potential to fool our perceptions 

by considering the factors as follows and develop the perception of ownership of the 

artificial arm as part of the body. 

 The illusion is stronger and more prevalent when single arm is presented to user. 

Therefore, it is important to hide the real arm from the user’s point of view when 

importing the artificial arm to the user. 

 The artificial arm must be replaced at the site of the real arm as close as possible so 

that it resembles the user’s own arm.        

 The stimulation must be applied to both artificial and real arm synchronously to get 

the experience that artificial arm belonged to user’s body.   

 The articulation of artificial arm and real arm must be in an identical way with the 

real arm ROM.     

5.2.2. Limitation of Existing MT Rehabilitation System      

To be able to provide a novel rehabilitation system, it is necessary to integrate different 

aspects of manipulative controls that maximize both physical and mental recovery as well 

as to provide an affordable and convenient system to the patient. Although numerous MT 

rehabilitation systems for upper limb had developed to enhance upper limb motor 

recovery, such novel systems are very limited not only due to lack of one or more features 

such as effective visual feedback that induce brain plasticity to enhance the fast motor 

recovery and motivation but also the requirements of hardware apparatus.  

    In the context of traditional MT rehabilitation, although a low cost conventional mirror 

is required to perform the upper limb exercise, only up to the elbow joint can be placed in 

the mirror box and hence only hand and forearm are reflected from the mirror during 

rehabilitation process. In addition to this, the placement of the mirror between the intact 

and impaired arm leads to limit the ROM in elbow articulation especially in horizontal 

movements. To overcome these limitations, VR was introduced for MT system by creating 
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the virtual arm to mimic the idea of mirror reflection. Although the limited ROM issue is 

solved by manipulating of virtual arm model in VR environment, the requirements of 

additional communication devices and full immersion in VR environment are still major 

issues to the patient. In addition, the feeling of ownership of the virtual arm has come into 

the picture so that virtual arm in VR mimics exactly the physiological concept behind MT. 

However, up to date existing MT systems that are proposed through VR environment are 

still lacking in biofeedback which is one of the most important features in the rehabilitation 

field, employing of the patient’s own biosignal to enhance the stimulating of neural 

plasticity as well as the motivational therapeutic exercises as a physical therapy.  

    In an attempt to close this gap, a novel AR based illusion system (ARIS) is proposed. 

The proposed system is developed by employing the virtual human arm (VHA) that was 

developed in Chapter 4 to induce ownership perception in AR environment and integrating 

the AR based therapeutic exercises with a richness of immediate audio and visual 

feedback. Two types of EMG biofeedback mode are employed to stimulate the ownership 

illusion (1) Prediction Mode: self biosignal to predict the joint angle in real time to drive 

the VHA in synchronous motion with real arm to perform therapeutic exercise, (2) 

Threshold Mode: compare the measured EMG signals from real arm with predefined value 

to drive VHA model to perform exercise. These contributions are presented in the 

following sections.                                              

5.3. Thesis Contribution-4: Augmented Reality-
based Illusion System (ARIS) 
The fourth contribution in this thesis is the development of Augmented Reality-based 

Illusion System (ARIS) which adapts the MT concept to perceive artificial visual feedback 

to improve impaired arm movements by taking advantage of human brain plasticity nature. 

This work had been published in [267]. In contrast to conventional MT, ARIS only 

requires a PC with a cheap webcam and any colour as a marker to track the motion of the 

arm. ARIS aims not only to provide recovery from physical activities but also to stimulate 

neural plasticity in an effective way. To fulfill such ambitious objectives, several fields are 

combined under one roof of ARIS such as AR technology, computer vision, virtual 

modeling and machine learning. Employing of AR technology in ARIS aims to motivate 

the patients’ willpower to perform the long term rehabilitation therapy. In addition to AR 

technology, EMG biosignal is employed in ARIS to detect the intention of the user to 
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manipulate the VHA in ARIS. User intention is detected based on EMG threshold level 

according to the continuous prediction algorithm developed in Chapter 4. The main 

framework of ARIS is developed in Adobe Flash Professional CS6 platform while 

collection of EMG data and detection of EMG threshold is developed in the Matlab 

platform. The schematic diagram of the ARIS is illustrated in Figure 5.2. ARIS is 

comprised of several modules namely database module, illusion environment module, 

multiple colour tracking module, therapeutic exercise module and real-time data 

acquisition module.  

5.3.1. Database Module 

Database module in ARIS is similar to the RehaBio system which stores the patients’ data 

and training information. The information includes patient’s particulars, maximum EMG 

threshold value at the beginning of the training, the coordinates of the real arm trajectory at 

the initial stage as well as the maximum angle at shoulder or elbow joint. These are 

important data to evaluate the performance of patient improvement along the training 

period. The initial data will be collected and saved in the database module before the very 

first therapy session by manual entry. After that all the necessary data will be automatically 

saved at the end of every therapy session. This will look for the EMG threshold value from 

 

Figure 5-2: System Architecture of the ARIS, red dot represents the location of colour 

markers and green dot represents the site of electrodes 
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real-time data acquisition module, save all the x, y and z coordinates of the hand marker 

trajectory from multiple colours tracking module and take all the joint angle data from 

illusion environment module and send the information into database module as shown in 

the block diagram, Figure 5.3. All of these data will be the reference data for the next 

training session which will be loaded automatically in ARIS according to the particular 

patient.       

5.3.2. Multiple Colour Tracking Module 

In ARIS, four colour markers are attached to identify the current location of the real arm 

joints: shoulder, elbow, wrist and fingertip (Figure 5.2) in every frame by means of a single 

webcam. Based on the single tracking algorithm that was proposed in Chapter 3, 

multicolour tracking algorithm is implemented as portrayed in Figure 5.4. The colour 

marker at each joint is defined by user one by one. The selected colour pixels are then 

stored in separate classes to calculate the new pixels to track in every frame that is captured 

by webcam. After successful tracking of every colour, width and height of the real arm is 

calculated. The width of the real arm is extracted by the width of the colour marker 

whereas the length of the real arm is calculated by Pythagoras’s Theorem based on the 

absolute values of coordinates between colour markers. The calculated dimensions of the 

real arm are used to create the coverage object for artificial visual illusion in illusion 

 

Figure 5-3: Database Module in ARIS 
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environment which will be explained in detail in the next Section 5.3.3. At the same time, 

shoulder, elbow and wrist joint angles of the real arm are also calculated by Trigonometric 

Ratios and stored in the system. This is to detect the real arm joint angles without the need 

of any inertial measurement unit (IMU) device. Once the coverage properties are defined, 

they are attached to the respective joint such as upper arm coverage attaches between 

shoulder and elbow joint, forearm coverage attaches between elbow and wrist joint and the 

hand coverage attaches between wrist and fingertip. These attachments of the coverage are 

perceived by user as hiding the real arm in every frame on the display screen.  

5.3.3. Illusion Environment Module 

The idea of this module is to create the visual illusion environment to the user/patient by 

hiding the real arm and importing the virtual arm seamlessly. This is done by overlaying 

the VHA model on top of the real impaired arm with the aid of multicolour tracking 

 

Figure 5-4: Architecture of Multicolour Tracking Module 
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module. From multicolour tracking module, the current location of the shoulder joint, 

elbow joint, wrist joint and fingertip are defined and this is where removal of real arm 

segments and attachment of VHA model taken place. The overlaid model, VHA will allow 

the user to perceive as his/her own arm on the display screen. To create such illusion 

environment, four layers are developed and each layer responsibility is depicted in Figure 

5.5. The very first layer is fed with live video via webcam to create AR environment. In the 

second layer, three coverage objects are developed based on the width and height of the 

user’s upper arm, forearm and hand captured by webcam as explained in Section 5.3.2. The 

 

Figure 5-5: Flowchart of Illusion Environment Module 
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inner area of the coverage objects are imported with webcam captured AR background 

from AR environment so that this will appear as removing of the real arm from the display 

screen.  

    The placement of the coverage objects are based on the current location of the colour 

marker at shoulder, elbow and wrist joint so that real arm will always overlap with 

coverage objects wherever user’s arm moves. In the third layer, VHA will be attached at 

the shoulder joint marker and overlaid on top of the coverage objects to create the illusion 

scene of the real arm. The rendering of the VHA is completed in Flash platform with 3D 

graphics engine named Papervision3D. To visualize as close as possible to the real arm of 

the user, the skin colour of the VHA mimics the skin colour of the real arm by selecting the 

user’s skin colour on the display screen. The selected skin colour pixel from webcam is 

then processed with colour tracking algorithm to coat the selected colour on the VHA 

model. One of the VHA functions in AIRS is to induce the ownership illusion and when 

user cannot accomplish the required task due to his/her limited motor movement, it will 

take over the job of the real arm as if user is still performing the reaching task. This 

appearance on the screen will fool the user scene that he/she is still able to perform the 

reaching exercise by his/her own effort to the destination point. The detailed functions of 

VHA in ARIS will be further discussed in section 5.3.4. In the fourth layer, the AR based 

upper limb therapeutic exercise is loaded to perform the rehabilitation therapy. The 

 

Figure 5-6: Graphical representation of illusion environment module 
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graphical presentation of each layer is portrayed in Figure 5.6. 

5.3.4. Real-time Data Acquisition Module 

There is overwhelming clinical evidence that by the integration of biological signal in 

rehabilitation enhances motor recovery [20]. The employment of EMG signals is one of the 

most important ingredients to provide an efficient upper limb rehabilitation system. 

Therefore, the data acquisition module in ARIS is developed in order to compare the user 

defined data with real-time data from processed signals or predict the user intention from 

his/her latent biological signal which is EMG signal, at the same time it also serves as a 

biofeedback to the user to promote the recovery from lost functions effectively. The 

concept behind data acquisition module is illustrated in Figure 5.7. This is the module in 

which two platforms communicate through universal datagram protocol (UDP) 

communication by setting up the internet protocol (IP) and port information for both 

sender (Matlab) and receiver (CS6). In Matlab platform, the EMG signals are recorded via 

FlexComp device and processed to remove noise and extract the muscle activation level or 

threshold level. The processed signals are then computed to predict the joint angles by the 

proposed algorithm which is the continuous joint angle prediction in Chapter 4. In CS6 

platform, there are two options to simulate the VHA model; threshold mode or prediction 

 

Figure 5-7: The concept of data transfer from Matlab platform to CS6 platform in real-

time via UDP communication represented by dashed arrows 
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mode. Threshold mode works by comparing the real-time data sent from Matlab at the 

level of real-time threshold value and user defined threshold value from ARIS GUI. If real-

time data is above the defined threshold value, predefined trajectory data of chosen 

exercise will be loaded and these data will drive the VHA model. This threshold mode is 

aiming for those who have a severe impairment and hence the simulation of VHA 

(artificial visual feedback) performs automatically. In prediction mode, the predicted joint 

angles calculated from processed EMG signals are imported to CS6 platform in real-time 

via universal datagram protocol (UDP) communication to update the respective kinematic 

data in VHA model. By updating the kinematic data, the pose of VHA model will be 

refreshed and the simulation of VHA in illusion environment will be visualized. In ARIS, 

the calculations for angle prediction, transferring data, updating of the kinematic data and 

refreshing for new pose of VHA are completed in less than 40ms which is required for 

resemblance of smooth and life-like articulation [152]. The prediction mode is aiming for 

both mild and recovery stage impairment. For mild stage impairment, predicted VHA 

simulation and real arm work simultaneously to complete the chosen therapeutic exercise. 

As for recovery stage, most of the movements in the exercise will be completed by the real 

arm and the predicted simulation will take over the job that the real arm cannot achieve.  

5.3.5. Therapeutic Exercise Module 

The available therapeutic exercises in ARIS are PPR and CMR which were described in 

Chapter 3. The predefined trajectory is necessary in ARIS for Threshold Mode for those 

who suffer from severe impairments with very limited upper limb movement. The exercise 

and rehabilitation aims of each exercise are also detailed in Chapter 3. In addition to the 

exercise development, the calibration stage is added to every exercise in ARIS. The 

purpose of calibration stage in ARIS is defining the exercise area by detecting the 

maximum range of motion that user is able to reach in terms of X-axis and Y-axis 

parameters. Based on these maximum parameters, therapeutic exercises are rendered 

within so that user will be able to perform the exercise conveniently. However, in the case 

of severe impairment, default exercise area will be displayed to the user. By integrating the 

AR based therapeutic exercises in ARIS the aim is to motivate the long term engagement 

of the training exercise in a safe environment while different control modes of VHA model 

by means of biosignal and whole arm illusion concept stimulate neural plasticity to 

enhance fast recovery from impairments. In addition to that, ARIS surpasses the existing 
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MT systems which are only available for the wrist and hand movements with extra 

hardware apparatus in fully immersed virtual world.  

5.3.6. Experiment and Results 

In this section, the above developed system is tested in order to show its efficiency and the 

results from the experiments had been published in [218, 268]. In the test, two phases were 

carried out: training phase and testing phase. In training phase, all the participants received 

several training sessions on how to manipulate the AIRS followed by the testing phase 

where participants were required to perform ARIS independently. The results from both 

training and testing phase are also analyzed and discussed in this section.       

5.3.6.1. Participants  
Fifteen participants with normal eyesight and sense of touch participated in the experiment. 

Among them, 14 participants are right handed and one is left handed. All the participants 

signed an informed consent document before the experiment has conducted. Seven 

participants were requested to perform “Left Arm Training” while the rest performed 

“Right Arm Training” of ARIS. 

5.3.6.2. Setting and Apparatus 
The experiments were conducted in a quiet environment as the concentration of the 

participant is important in the ARIS experiment. To perform the experiment, each 

 

Figure 5-8: Locations of Four Colour Markers 
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participant was asked to sit in front of the desk where the personal computer with webcam 

and FlexComp sEMG acquisition device were placed. After that, four colour markers were 

attached to the participant’s arm as illustrated in Figure 5.8. The four sEMG electrodes 

were also attached to the respective positions which were indicated with four green dots as 

shown in Figure 5.2. Subsequently, the participant was requested to move his/her arm in 

circular shape freely to detect the maximum range of motion of the training arm while 

collecting the EMG data before the experiments. The data collected from circular motion 

defined the exercise area on the display screen and from EMG data, muscle activation 

values of all muscles were defined for Threshold Mode. After all the settings had been 

completed, participants were informed of the ARIS procedures and then were ready to 

receive the training sessions for the training phase. 

5.3.6.3. ARIS Procedures 
This section describes the procedures during manipulating of the ARIS. Before starting the 

exercise, user requires to choose either left or right arm training depending on which side 

of the arm is paralysed (in this case is requested). In addition to that, three different levels 

of rehabilitation therapy: initial level (Threshold Mode), intermediate level (Prediction 

Mode) and advanced level (Prediction Mode) are available in the system and user needs to 

choose one of the levels based on his/her arm degree of impairment. Then, the appropriate 

level will be displayed to the user. Step by step information is provided to the user for ease 

of understanding on how to manipulate the system and exercise. Before starting the 

exercise, the system will ask user to capture the current background so that in the later 

stage, this background image will integrate in the coverage object to create the illusion 

scene. After that, user skin colour is requested to be chosen by just clicking on the user’s 

own skin colour which is seen on the display screen. At the same time, the VHA model 

which is coated with selected skin colour will be loaded in the system and be ready to be 

displayed to the user. Once the skin colour has been chosen and the colour markers have 

been attached to the shoulder, elbow and wrist joints and the finger tip, the participants will 

be asked to select the colour marker one by one to track the joint positions in real time and 

overlay the coverage object to remove the real arm on the display screen. After the real 

arm has been removed, VHA model will be displayed to the user by overlapping on top of 

coverage object. In simpler words, real arm is removed virtually and VHA is replaced to 

replicate the concept of mirror appearance in traditional MVF. The idea is to create the 

visual illusion scene to the user and “Fool-the-Brain” to stimulate neural plasticity while 
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performing the therapeutic exercise. The attachment of the VHA model depends on the 

choice of level by the user. In the case of initial level, the model attaches to the rectangular 

box which locates at the centre of the training trajectory and Threshold Mode will be 

activated. In the case of intermediate and advanced level, VHA model attached to the 

user’s shoulder colour marker and Prediction Mode will be activated. In both cases, user is 

required to adjust the real shoulder joint at the rectangular box in order to achieve the 

synchronicity between real and virtual arm. When user starts the exercise by pressing the 

start button, appropriate mode will be activated. In the case of Threshold Mode, the real-

time threshold value will be checked against user predefined value and if it is above user 

defined level, VHA model will continue simulating along the predefined trajectory 

automatically. In the case of Prediction Mode, the continuous prediction of joint angle will 

be calculated and the new pose of VHA in real-time will be updated. In all levels, the 

performance of the real arm can be observed in real-time under real-time trajectory graph 

as well as in X, Y and Z positions under real hand position. 

5.3.6.4. Training Phase 
During traditional mirror therapy, it is important to introduce mirror visual feedback 

(MVF) by first demonstrating how to perceive the limb differently via MVF [269] or to 

perceive the virtual arm as part of own body. After that, the mirror can be introduced as a 

device to “Fool-the-Brain” by providing the illusion of the normal limb. This may give 

insight into the function of motor planning pathways. After that the patient is requested to 

look at the mirrored limb, without movement, and try to believe that it is his/her limb. 

Once the patient feels engaged with the mirrored limb, invite him/her to perform slow and 

easy to achieve bilateral and synchronized movements by continuing to look at the 

reflected image and without stopping the movements. At the same time, the therapist will 

check the arm behind the mirror for any signs of motor extinction. Moreover, it is 

necessary to conduct several trials before the patient become used to it.     

In accordance with the guideline of MVF in a clinical setting as described above, during 

training phase of ARIS, every participant was introduced to the concept behind the ARIS, 

its procedures and how to perceive the VHA as his/her own real arm; these were explained 

so that the participant was familiar with the system. Figure 5.9 portrays the ownership 

illusion in ARIS. Afterwards, every participant was trained for several trials on how to 

manipulate the ARIS such as how to perform the therapeutic exercise, what would be the 

measurements and what types of measurements should be noted during the therapy session. 
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For those participants who were novice in the AR environment and illusion concept were 

provided more training sessions according to user self-confidence level. There was resting 

time between every training session to prevent muscle fatigue. Only when the participant 

felt confident to perform independently, testing phase was conducted. These confidence 

levels of participants were evaluated by comparing the positions of real arm and virtual 

arm between training sessions and results are explained in section 5.3.6.6.   

5.3.6.5. Testing Phase 
During testing phase, every participant was expected to perform the exercise independently 

which is exactly the same as in the training sessions. As advised in [269], this kind of 

illusion therapy should be conducted little and often to fully believe in the imaginary 

movements which requires concentration and it seems sensible. Hence, both training and 

testing were conducted in a quiet environment to enhance the user concentration. As a first 

step of the testing phase, the evaluation of the strength of ownership perception of VHA in 

ARIS was conducted. Hence, participants in ARIS experiment were instructed to align real 

arm and virtual arm as close as possible by making use of colour markers as a baseline 

judgment before each trial. After that, real arm was covered by vision technology leaving 

the marker location with colour dot on the screen at shoulder joint and wrist joint. Then, 

user was requested to perform trajectory of given therapeutic exercise as if real arm is 

picking and placing the virtual objects while the actual pick and place was performed by 

overlapped VHA model without any biofeedback. The picking and placing of the virtual 

 

Figure 5-9: Ownership Illusion in ARIS System 
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object was carried out by the detection of collision between virtual hand and virtual object. 

User was expected to move with the same speed as virtual arm’s speed that was defined in 

the system. This is to induce the synchronous motion between real and virtual arm for high 

ownership perception. During the experiments, virtual arm wrist coordinates and real arm 

wrist marker coordinates were recorded to analyze the significant effect on ownership 

perception and synchronized movements via statistical analysis. In order to verify these 

results, statistical results were again compared with questionnaire results that were taken at 

the end of the testing phase.  

    After the evaluation of ownership illusion had been conducted, the complete ARIS 

system was tested. In this test, both Threshold Mode and Prediction Mode were tested. As 

for Threshold Mode, participants were asked to pretend that one of the arms was unable to 

move, let’s say, beyond 90° in shoulder flexion and abduction. This is to mimic the 

condition of a patient with limited motion in shoulder ROM. After that, the maximum 

EMG threshold level of the participants’ arm muscle which is at 90° was recorded and the 

recorded value was assigned to the ARIS. When the therapy was started, the initial pick 

and place actions were done by real arm up to maximum threshold level and beyond this, 

VHA model took over the job of the real arm. In this mode, VHA was automatically 

simulated based on predefined trajectory. As for the Prediction Mode, the patients were 

 

Figure 5-10: The screen shot of one participant in “Right Arm Training” with Threshold 

Mode 



5. Illusion based Upper Limb Rehabilitation System 
 

 167 

instructed to perform pick and place actions by real arm and the simulation of the VHA 

model was driven by predicted joint angles. The simulation speed of VHA model in ARIS 

was manually defined to maximize the synchronicity between real and virtual arm. The 

screen shot of Testing Phase in ARIS is presented in Figure 5.10.  

5.3.6.6. Result Discussion 
In this section, there are four types of evaluation results which are discussed from both 

training and testing phase. From training phase, the confidence levels of participants were 

studied to make sure that the participants had received enough training sessions in order to 

move on to testing phase where they performed the ARIS independently. After that, the 

ownership effects in ARIS were evaluated which is one of the most important 

contributions in ARIS. After the ownership illusion effect has been discussed, the results 

from the testing phase which includes the results of Threshold and Prediction Mode were 

discussed. Finally, the overall effectiveness of the ARIS system was discussed via 

evaluating the Questionnaires results which were conducted at the end of the experiment.   

    Initially, from the training phase, the participants’ level of confidence was evaluated by 

one-way repeated measures analysis of variance (ANOVA). This tool can help us to 

evaluate the performance of repetitive training over time. The significance level was set to 

 = 0.05, and the corresponding results of this test are shown in Table 5.1. The ANOVA 

results clearly indicate that the repetitive training sessions enhanced the accuracy of the 

trajectory performance over time with PPR (F(1,15) = 10.627, p = 0.207x10-3) and CMR 

(F(1,15) = 10.143, p = 0.22x10-3). Therefore, the more training was provided, the better the 

accuracy of the results achieved as participants learnt from the experience. The 

corresponding error rates resulting from training sessions are shown in Figure 5.11. 

 

Figure 5-11: Error rates achieved via different training sessions in PPR and CMR  
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Table 5.1: Results of one-way repeated measures ANOVA on trajectory 

Method P-value 
PPR (across Trial 1, Trial 2, Trial 3) 0.207 x 10-3 

CMR (across Trial 1, Trial 2, Trial 3) 0.284 x 10-3 

 

In addition to that, trajectory performance of graphical representations was displayed on 

the monitor as an immediate feedback to the users and therapists as a part of motivation 

and immediate performance evaluations. The example of graphical representation in CMR 

is portrayed in Figure 5.12. From this visual feedback, it was clearly seen that after the 

third training session had been conducted, the trajectory became very smooth compared to 

the first one. During the first training session, the movement trajectory that was performed 

by subject 10 was scattered a lot as shown in Figure 5.12(a). However, the scatter range 

was improved during the second training and third training as the subject learned how to 

perform the exercise and able to control his own movement. This result shows that subject 

10 had achieved self-confidence after the third session of CMR exercise to proceed to the 

next phase; the testing phase. It also shows that the therapeutic exercise in ARIS is easy to 

understand and able to be adapted to quickly which will offer great benefit to the paralyzed 

patients. In additional to that, these visual feedback results agreed with the results from the 

ANOVA test and hence it can be concluded that the graphical presentation is a quick and 

reliable tool to evaluate patient performance immediately in the ARIS system by therapists.      

    Secondly, the ownership perception and synchronicity in ARIS was evaluated by 2x2 

repeated measures using ANOVA. The significance level was set to  = 0.05 with the 

 
Figure 5-12: Screen shots of right arm performance of subject 10 in CMR exercise 

during training phase (a) after 1st trial (b) after 2nd trial and (c) after 3rd trial 
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factors of ownership (real arm and virtual arm) and arm synchronicity (real arm and virtual 

arm). The results showed that significant main effect of ownership was found (p < 0.05) on 

most of the test results as well as significant main effect of arm synchronicity (p < 0.05) 

was found. It was also revealed that the interaction between the two factors was highly 

significant (p < 0.01) from the test. The overall test results across fifteen subjects for PPR 

and CMR exercises are plotted in Figure 5.13. From the figure, there were some 

participants that did not perceive the illusion as an own arm due to failing to track the 

marker or did not synchronize the movement between virtual and real arm. Due to the 

tracking error, the coverage of the real arm was lost and it was seen by the participant and 

this led to a disturbance of the concentration of imagination during the experiment. As a 

result, the synchronized movements between real and virtual arm was disturbed and the 

ownership feeling of the participant was lost. Overall, from the test results, it can be 

concluded that the illusion perception was induced when the synchronized movements 

were provoked and such illusion was able to be stimulated in the ARIS system.     

    After ownership illusion had been tested, the effectiveness of Threshold Mode and 

Prediction Mode were evaluated. In the case of Threshold Mode, it was found that 

simulation of VHA model was successfully performed in every exercise by comparing the 

predefined threshold value with real-time recorded threshold value from user’s muscles. It 

was also found that to be able to perform successful takeover job by VHA, synchronicity is 

important because if there is an error between real hand location and virtual hand location, 

the collision cannot be detected and therefore, the virtual object could not be transferred 

from real hand to virtual hand. This conclusion was affirmed by one-way ANOVA results, 

(F(1,15) = 16.389, p = 0.000412) where the synchronicity in both hands has significant 

effects on the takeover action.  

    During Prediction Mode, the continuous prediction of joint angles from user’s EMG 

were sent to the VHA model and with these predicted angles, the model is driven 

synchronously with real arm. The data for both real and predicted angles were taken at 

every 5° apart for evaluation. The real arm joint angle was calculated via webcam captured 

marker locations: shoulder, elbow and wrist joint. The average error between real and 

predicted angle for PPR and CMR is represented in Figure 5.14.  The result shows that the 

angles were able to be predicted with a very high level of agreement and the average time 

taken for updating the new pose of VHA model was 38 ms which is considered as a real-

time simulation. However, too much angle deviation may have an effect on the user’s 
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illusion perception and hence, the one-way ANOVA with  = 0.05 was carried out in all 

conditions to find out whether the angle deviations in ARIS were affected by the 

ownership illusion or not. It was found that there was no significant effect in all conditions: 

 
(a) Result of two-way repeated ANOVA on sense of ownership in PPR 

 
(b) Result of two-way repeated ANOVA on arm synchornicity in PPR 

 
(c) Result of two-way repeated ANOVA on sense of ownership in CMR 

 
(d) Result of two-way repeated ANOVA on arm synchornicity in CMR 

Figure 5-13: Results of two-way repeated ANOVA on sense of ownership and arm 

synchronicity in PPR and CMR exercises 
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flexion-extension in PPR (p = 0.3978) and abduction-adduction in CMR (p = 0.662). In 

other words, although some deviation of angles was found in Prediction Mode, the 

ownership perception was not affected and ARIS was able to perform as intended.   

    After the Testing Phase has completed, two sets of questionnaires were conducted. 

Questionnaire A was conducted for participants’ experience of their arm through the 

display screen [259]. Questionnaire B was conducted for overall ARIS experience. The 

answers for the questionnaires are in accordance with the visual-analogue likert scale 

where “5” refers to strongly agree and “1” refers to strongly disagree. The set of questions 

that were asked in the Questionnaires A and B are described in the Appendix A3.  

    The first part of the questionnaire, Questionnaire A, which accessed the feeling of 

ownership illusion result is depicted in Figure 5.15. From the results, as predicted, the 

responses are very much encouraging and these aligned with the evaluated results from 

ANOVA test on sense of ownership and synchronicity. During the exercise, most of the 

participants felt as if real arm was moving together with virtual arm. They also felt that 

when they had the intention to move their real arm, the virtual arm was moved at the same 

time. As a result, VHA movement encouraged the real arm to move again. In simpler 

words, synchronized motion was felt. Although the pick and place was done by VHA, 

participants felt as if the real arm was performing the exercise. Most of the participants felt 

VHA was part of their own body within a good illusion environment.  

    The second part of the questionnaire, Questionnaire B results are portrayed in Figure 

5.16. It can be clearly seen that all the participants found the experience interesting and 

enjoyable during the experiment. All the participants received adequate training sessions as 

 

Figure 5-14: Average error graph between real and virtual joint angle 
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well as information and procedure on how to perform and manipulate the ARIS. Most of 

the participants also found that the multiple colours tracking technique that developed in 

ARIS was good. Most of the time, all the colour markers were able to be tracked except 

sometimes in training phase, some colour markers were out of the webcam picture as some 

of the participants were not familiar with webcam applications and AR technology. They 

also felt that collision detection was good because it was very stable in picking and placing 

the virtual object. The exercise that was integrated in ARIS was also reported to be very 

easy to understand and manipulate and also participants felt a good sense of immersion in 

AR environment. The threshold level of anterior deltoid that was defined before training 

and testing phase was good and VHA model was receiving real-time activation commands 

to simulate the model. As far as muscle fatigue was concerned, none of the participants felt 

any muscle fatigue during training and testing phase as they were given enough rest 

between each session. Based on the different forms of analysis and evaluations in ARIS, 

the experience with ARIS was positive. These findings confirmed that the use of the ARIS 

system in clinical settings is feasible for upper limb rehabilitation therapy.       

5.4. Demonstration in Port Kembla Hospital  
One of the goals of our developed rehabilitation systems are intended to reduce 

physiotherapists’ work load by replacing with minimum supervised augmented reality 

based games. Therefore, several discussions and consultations with physiotherapists from 

Port Kembla Hospital were carried out for the best rehabilitative game design and their 

requirements. Our developed exercises give simple yet motivating feedback for the 

 

Figure 5-15: Results of “Questionnaire A” on feeling of ownership perception in ARIS 
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players’ performances, are difficult enough to induce personal effort during the movement 

for fast recovery without losing the engagement, and facilitate data collection during the 

game play for post processing. We have demonstrated our system to clinical professionals 

(Dr. Namuk Al-Khateeb, Senior Staff Specialist in Rehabilitation and pain Medicine, and 

his team, Dr. Geoffrey Murray, Divisional Director of Rehabilitation Medicine, and his 

team) at Port Kembla Hospital which specialises in rehabilitation, aged care and palliative 

care services located at Warrawong, New South Wales. Firstly, we presented our aims, 

comparison between traditional rehabilitation exercises and our exercises, the value-added 

services that are integrated in our system and benefits from our developed system. After 

the demonstration, clinical professionals responded with very positive feedback as follows:  

 The exercises are very motivating and would be very useful for paralysed patients 

due to any neurological deficits. 

 TOR exercise would be very suitable for SCI patients.   

 All of the exercises are well developed for eye-hand coordination that will provide 

great benefits for the patients. 

 Developments of different exercises with different level of motions and cognitions 

for different recovery stage of patient are appropriate.   

 Biofeedback simulation is very motivating for both patients and therapists. 

 Ability to track the EMG threshold level is a great advantage for therapists to 

evaluate the patients’ performance along the therapy sessions.  

 

Figure 5-16: Results of “Questionnaire B” for ARIS 
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 The developments seem likely to help in fast recovery for any level of paralysed 

patients but “how fast” is can be answered by the conduct of clinical trials.   

    Due to the above positive feedback from clinical experts, our developments have been 

considered as a recognized system that is suitable for all level of paralysed patients. In 

addition to that, clinical experts are happy to conduct the clinical trials with their patients 

and necessary administration requests are underway. 

5.5. Summary 
In this chapter, the development of ARIS was discussed as a fourth contribution of this 

thesis. In ARIS, all the factors that are defined as an effective rehabilitation system were 

integrated to serve as a complete novel system. These factors include decoupling, beliefs 

and interaction. The decoupling of physical from mediated domain is the main defining 

feature for the effectiveness of ARIS system. The user’s real arm was virtually 

disconnected by introducing a barrier (the coverage) and reconnected on the screen by 

overlaying the VHA to substitute for the real arm to perform the developed therapeutic 

exercises in AR environment. The user has to believe that the mediated experience is real, 

for instance, virtual arm, VHA, as part of user’s body to stimulate the user’s premotor 

cortex which plays a role in planning movement, spatial guidance of movement, 

performing specific tasks, sensory guidance of movement and understanding the actions of 

others. This stimulation will excite the nature of neural plasticity in the affected area. The 

decoupling and beliefs in ARIS was evaluated and its effectiveness proven statistically. 

Last, but not least, the interaction is one of the main aspects in manipulating the judgment 

and reality. It is determined by its ability to respond to user’s actions with immediate 

feedback, and in the case of ARIS, real time biofeedback, immediate visual and audio 

feedback and an enhancement in motivation and motor recovery. The developments were 

analyzed and evaluated by means of statistical methods, responses from immediate 

feedback and sets of Questionnaires with positive results. In addition to that, 

demonstrations have been conducted at Port Kembla Hospital and feedback has been very 

encouraging. These positive results encourage our developments to be employed in clinical 

settings as a novel upper limb rehabilitation system. 

  



 

Chapter 6  
Summary, Conclusion and Future 
Research 

 

In this chapter, the summary of the thesis and the major findings of the research performed 

are given. After that, the future research that may be conducted in relation to this thesis 

area of research is also described.  

6.1. Thesis Summary 
In this thesis, four novel contributions in the field of upper limb rehabilitation are 

proposed.  

    In Chapter three, the RehaBio system was developed as a first contribution of this 

thesis. The developed system was made up of five cost effective therapeutic exercises and 

real time biofeedback simulation. All the exercises in RehaBio were developed in an AR 

environment to enhance the motivation with a safer training environment for upper limb 

impaired patients. In addition to that, all the exercises can be performed under minimum 

supervision of therapists. Along with the guidelines for physical rehabilitation exercises in 

a clinical setting, the upper limb rehabilitation exercises were imitated in an AR 

environment with additional immediate audio and visual feedback. In AR environment, 

patients are required to interact with virtual objects with their impaired arm to accomplish 

the task where their arm movements enhance muscle strength and range of motion in the 

upper limb. Additionally, integrating the custom made real-time biofeedback simulation 

with therapeutic exercises in the RehaBio system enhanced user engagement to perform 

therapeutic exercises longer. The performance of the system was evaluated by data 
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analysis, performance analysis and questionnaire. The results and feedback from analysis 

and questionnaire were very encouraging. Therefore, RehaBio is able to close the major 

gaps such as expensive health care cost, requirement of one-to-one attention between 

patient and therapist and also boring traditional rehabilitation exercise in the rehabilitation 

field.   

    In Chapter four, the real time control algorithm based on biosignal was proposed along 

with the description of the development of the VHA model as a second and third 

contribution of this thesis. The controller is designed to predict the joint angle in real time 

which is based on the user’s sEMG signal to drive the VHA model. Two muscle activation 

methods namely NMA and TDF are considered and evaluated their accuracies in proposed 

prediction models; ELM based regression model and BPNN based prediction model. 

Subsequently, the outcomes from the proposed joint angle prediction models are evaluated 

in offline mode. The result showed that ELM based regression model with NMA activation 

method provided the best accuracy with better computational cost. Therefore, this model 

was chosen as an optimal controller for the VHA model in real time. The development of 

the VHA model along with its mathematical model is also described in this chapter. 

Forward and inverse kinematics was defined properly to perform the simulation according 

to the user’s biological signals. The simulation of real time biosignal driven model with 

VHA model is performed to evaluate the effectiveness. It was found that the accuracy of 

the joint angle prediction was higher with less computational cost than with the compared 

model. In addition, the predicted angles were able to be sent to simulate the VHA model in 

less than 40 ms which is required for real time applications.  

    In Chapter five, illusion or “Fool-the-Brain” concept was introduced to stimulate the 

neural plasticity which enhances in motor recovery as a fourth contribution in this thesis. 

Illusion concept was induced by accessing the ownership perception of the virtual model as 

part of the body. The idea is removing the impaired real arm virtually and attaching with 

the virtual arm on computer display screen which mimics the job of real arm. By 

introducing the VHA model virtually and simulation via technology, the job that cannot be 

performed by the impaired arm will appear as if the real arm is able to perform it and this 

perception will reorganize the neural circuitry to encode new experiences and enable 

behavioral changes. With this concept, the complete upper limb rehabilitation system, 

ARIS, was developed as a novel rehabilitation system. ARIS is made up of motivated AR 

based exercises as rehabilitation training, enriched with immediate audio and visual 
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feedback, stimulating the brain plasticity via the illusion concept by means of VHA model 

and integrate this with biofeedback to provide stimulus driven by unconscious body 

functions to make users aware of them and learn how to control them. Since the whole 

system was developed via computer vision technology, there is no additional hardware 

such as mirror box or head mounted display are needed and therefore the developed system 

is very low cost which can afford by every patient. The evaluation of the ARIS was 

conducted via statistical method, visual method and questionnaires method. In addition, all 

the developments have been demonstrated in Port Kembla Hospital and valuable feedback 

with very encouraging responses were received. From the analysis results, it was also 

found that very encouraging responses were received and therefore, ARIS is possible to be 

employ in clinical settings as a novel upper limb rehabilitation system.                          

6.2. Recommendation for Future Research 
From this research, a number of research tracks have been uncovered that may improve 

further in rehabilitation. The following issues are recommended for future research in the 

field of this thesis.   

 In the context of therapeutic exercise, it is necessary to develop more upper limb 

exercises that will be engaging in the long term via a motivational approach. This 

can be done via introducing the multiplayer games in which patients play together 

with friends and family members, creating the online communities that enable the 

patients to meet and interact with people in similar conditions, and enable them to 

play online games together. These approaches can help games be part of a social 

activity shared with family members and friends, and help patients to create social 

habits around them. 

 In the context of ownership illusion, although VHA model in this thesis is proven 

to induce the illusion perception, further improvement on the model is required for 

realistic appearance. This should be inexpensive and be reliable for large variations 

in shape, size and clothing worn by patients. This can be completed by developing 

the model based reconstruction of shape from silhouettes and creating the multiple 

views of real arm colour images. From reconstruction, a 3D generic humanoid 

model will be transformed to approximate to a person’s arm shape and anatomical 

structure. Also the realistic appearance will be achieved by color texture mapping 

from the captured images from multiple views of the real arm.      
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 To make a system more interactive with the patients, the interactive virtual 

therapist that will guide the rehabilitation therapist throughout the therapy can be 

added. This can serve as a personal professional trainer and greatly benefit the 

patients who are not comfortable to interact closely with strangers. The role of the 

virtual therapist is to explain the whole process of the particular training verbally. 

In addition, the virtual therapist will demonstrate how to perform the therapeutic 

exercises before the training as well as if the patients do not perform the exercise 

correctly during the training. However, monitoring of the individual performance 

and evaluation of the outcome will be still analyzed by professionals, therapists.      

 The developed home based system can be improved to operate in a tele-

rehabilitation setting. In order to create this setting, a web based library of status 

tests and performance results from rehabilitation exercises is required to be 

developed. In addition, low cost webcam can be incorporated to observe the user’s 

activities during the system use in real time via tele-conferencing software or post 

evaluation via recording and storing in the web based library. With this setting, 

clinical professionals can monitor the progress of the patients and manipulate the 

exercises as required and provide instructions remotely. This will provide several 

benefits to the paralysed patients by saving money and travel time to rehabilitation 

centers reducing the tiredness from travelling and the patient can perform the 

rehabilitation conveniently at home.   

6.3. Conclusion 
In this thesis, novel upper limb rehabilitation systems were developed and proven to 

enhance the recovery from limited motions in an upper limb. In contrast to other 

therapeutic exercises, effective and motivated AR based upper limb rehabilitation exercises 

were developed by integrating with real time biofeedback simulation. In addition to that, 

illusion concept was employed to stimulate the brain plasticity to enhance the motor 

recovery in a faster approach. The control method of the VHA model which creates the 

illusion concept, additionally enhanced the excitation of the brain plasticity nature by 

means of own biosignal, sEMG. The evaluation results, from statistical analysis, usability 

tests and feedback from clinical professionals were very encouraging to serve as a novel 

upper limb rehabilitation system in a clinical setting. The future research directions 
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discussed above are surely going to lead to improvements based on current contributions as 

a complete effective tele-rehabilitation system for upper limb rehabilitation.   
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Appendix A 

 

A.1 Comparison Table from Literature 
 

End-Effector based Rehabilitation System 

Author D.O.F Name Supported 
Movement 

Main 
Input 

Market 
Availability 

Motivation 
and Neural 
Plasticity 

Aspect 

One-to-
One 

Attention 

Costing 
Aspect 

M. P. 
Dijkers, et 

al. [68] 
6 N.A Shoulder, 

Elbow 
Predefined 
positions No None High High 

R. Rao, et 
al. [270] 6 Puma-260 Shoulder, 

Elbow 

Force, End 
point 

position 
Yes Medium High High 

A. Toth, et 
al. [74] 12 REHAROB Shoulder, 

Elbow 
Predefined 
positions Yes None High High 

H. I. Krebs, 
et al. [76, 

77] 
4 MIT-Manus 

Shoulder, 
Elbow, Wrist, 

Hand 

Joint 
positions, 
Angular 
Velocity, 
Torque 

Yes Medium Medium High 

D. J. 
Reinkensm
eyer, et al. 

[78] 

3 ARM 
Guide 

Shoulder, 
Elbow 

Forearm 
position 

and torque 
No None Medium Medium 

S. Micera, 
et al. [271] 2 MEMOS Shoulder, 

Elbow 

Torque, 
Handle 
position 

No Low Medium Medium 

G. Rosati, 
et al. [272] 5 MariBot Shoulder, 

Elbow 
Motor 

positions No Low High High 

F. Brooks, 
et al. [80]  3 GEOPE Shoulder Force, 

Torque No High High High 
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Author D.O.F Name Supported 
Movement 

Main 
Input 

Market 
Availability 

Motivation 
and Neural 
Plasticity 

Aspect 

One-to-
One 

Attention 

Costing 
Aspect 

J. T. 
Dennerlein, 
et al. [81] 

2 N.A Shoulder 
Force, End 

point 
position 

No High Medium Medium 

P. Gallina, 
et al. [83] 3 Feriba-3 Shoulder, 

Elbow Force No None High Medium 

J. Broeren, 
et al. [85] 6 N.A Shoulder, 

Elbow, Hand Force Yes Medium Medium High 

G. 
Shuxiang, 
et al. [86] 

6 PHANTO
M Omni 

Shoulder, 
Elbow, Hand Force Yes Medium Medium High 

T. H. 
Massie, et 
al. [273] 

6 N.A Hand Torque No Medium Medium High 

W. Harwin, 
et al. [89] 6 Gentle/S 

Shoulder, 
Elbow, 

Forearm 

End point 
torque, 

position, 
velocity 

Yes Medium High High 

M. J. 
Johnson, et 

al. [94] 
1 SEAT Shoulder Force No Medium Medium High 

C. G. 
Burgar, et 
al. [274] 

6 MIME Shoulder, 
Elbow 

Forearm 
position, 

orientation
, torque 

No Medium High High 

P. S. Lum, 
et al. [98]  1 N.A Wrist Force No None High Medium 

S. Hesse, et 
al. [99] 2 N.A Elbow, Wrist Force No None High Medium 

E. Rashedi, 
et al. [100] 2 N.A Elbow, Wrist Force No Low High Medium 

J.-J. Chang, 
et al. [101] 2 BFIAMT Shoulder, 

Elbow 

End point 
position, 
torque 

No None High High 

L. 
Chunguang, 
et al. [102]  

1 N.A Forearm Torque No None High Medium 

External Force Exoskeletons 

T. Rahman, 
et al. [275] 4 N.A Shoulder, 

Elbow Force No None High Medium 

M. J. 
Johnson, et 

al. [94] 
1 SEAT Shoulder Force No Medium Medium High 
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Author D.O.F Name Supported 
Movement 

Main 
Input 

Market 
Availab

ility 

Motivation 
and Neural 
Plasticity 

Aspect 

One-to-
One 

Attention 

Costing 
Aspect 

T. Nef, et 
al. [11, 276] 7 ARMin III 

Shoulder, 
Elbow, 

Forearm, 
Wrist 

Joint 
angles, 

grasp force 
Yes Low High High 

S. J. Ball, et 
al.[107] 3 MEDARM Shoulder, 

Elbow Force No None High Medium 

R.A.R.C.. 
Gopura, et 
al. [277] 

7 SUEFUL-7 

Shoulder, 
Elbow, 

Forearm, 
Wrist 

sEMG, 
Joint force, 

torque 
No None High High 

R. Yupeng, 
et al.[110] 10 IntelliArm 

Shoulder, 
Elbow, 

Forarm, Wrist, 
Fingers 

Joint 
angles, 
torques 

No None High  High 

B. C. Tsai, 
et al. [111] 9 N.A 

Shoulder, 
Elbow, 

Forearm, 
Wrist, 

EMG, 
Force No None High High 

D. Koo, et 
al. [278] 6 RPRPRR Shoulder Force No None High High 

A. H. A. 
Stienen, et 
al. [113] 

4 Limpact Shoulder, 
Elbow 

Joint 
angles, 
torques 

No None High High 

S. 
Kousidou, 
et al. [279] 

7 SRE 

Shoulder, 
Elbow, 

Forearm, 
Wrist 

Position, 
torque, 

Actuators 
pressure 

No None High Medium 

Internal Force Exoskeletons 

S. 
Balasubram
anian, et al. 
[280, 281] 

5 RUPERT 

Shoulder, 
Elbow, 

Forearm, 
Wrist 

Joint 
torques, 

Actuators 
pressure 

No High Medium Medium 

C. 
Carignan, et 

al. [117] 
5 MGA 

Shoulder, 
Elbow, 

Forearm 

Joint 
torques No None High High 

T. Lenzi, et 
al. [118, 

282] 
4 NEUROEx

os Elbow Joint 
torque No None High High 

P. Garrec, 
et al. [283] 7 ABLE 

Shoulder, 
Elbow, 

Forearm, 
Wrist 

Force, 
positions No High High High 

P. S. Lum, 
et al. [98]  1 N.A Wrist Force No None High Medium 
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Author D.O.F Name Supported 
Movement 

Main 
Input 

Market 
Availab

ility 

Motivation 
and Neural 
Plasticity 

Aspect 

One-to-
One 

Attention 

Costing 
Aspect 

Y. 
Hasegawa, 
et al. [69] 

3 N.A Elbow, Wrist, 
Fingers 

Head 
Motion No None High Medium 

M. C. 
Carrozza, et 

al. [120] 
2 N.A Wrist Positions No None High Medium 

Alignment-Free Exoskeletons 

T. Lenzi, et 
al. [118, 

282] 
4 NEUROEx

os Elbow Joint 
torque No None High High 

J.C. Perry, 
et al. [284] 2x7 CADEN-7 

Shoudler, 
Elbow, 

Forearm, 
Wrist 

sEMG, 
Joint 

angles, 
Angular 

velocities, 
Force/ 

Torques 

No None High High 

B. Dehez, 
et al. [285] 2 ShouldeRO Shoulder Force No None High N.A 

S. Zhibin, 
et al. [123] 1 N.A Elbow Force No None High N.A 

L. E. 
Amigo, et 
al. [125] 

3 N.A Elbow Force No  None High N.A 

A. Gupta, et 
al. [286] 5 MAHI 

Elbow, 
Forearm, 

Wrist 

Joint 
angles No None High High 

Virtual Reality based Rehabilitation Systems 

L. Yingzhu, 
et al. [287] 7 N.A 

Shoulder, 
Elbow, 

Forearm, 
Wrist 

Head 
Tracker, 

Hand 
Tracker 

No Medium Medium Low 

J. Jacobson, 
et al. [132] 

Not 
stated BNAVE Whole Body Sensors, 

trackers No Medium Medium Low 

S. 
Adamovich, 
et al. [133] 

27 N.A Fingers 
CyberGlov
e,CyberGr

asp 
Yes Medium High Medium 

P. Chan-
young, et 
al. [134] 

27 N.A Fingers 
Sensors, 

Joint 
angles 

No Medium Medium Medium 

G. Shuxian, 
et al. [86] 6 PHANTO

M Omni 
Shoulder, 

Elbow, Hand Force Yes Medium Medium High 

M. Sha., et 
al. [288] 2 N.A Wrist, Hand sEMG No Medium Medium Low  
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Author D.O.F Name Supported 
Movement 

Main 
Input 

Market 
Availab

ility 

Motivation 
and Neural 
Plasticity 

Aspect 

One-to-
One 

Attention 

Costing 
Aspect 

B. M. Odle, 
et al.[136] 2 Hands-Up Shoulder, 

Elbow Marker No Medium Low Low 

J. E. 
Cifuentes-
Zapien, et 
al. [137] 

1 N.A Forearm  Rotation 
angles No Medium High High 

Augmented Reality based Rehabilitation Systems 

J.W.Burke, 
et al. [141, 

289] 
4 N.A Shoulder, 

Elbow 
Colour 
Marker No High Medium Low 

A. Alamri, 
et al. [143] 7 AR-Rehab Shoulder, 

Elbow, Hand 

Tracking 
devices, 
Pattern 
marker 

No High Medium Medium 

A. Toh, et 
al. [290] 7 Rehab@Ho

me 
Shoulder, 

Elbow, Hand 
Pattern 
marker No High Medium Low 

Dunne et al. 
[145] 2 N.A Hand 

Multitouch 
display, 
tangible 
object, 

accelerom
eter 

No High Medium High 

E. Richard, 
et al.[146] 3 ARVe Shoulder Pattern 

marker No High Medium Low 

T. Chau, et 
al.[291] 6 N.A Shoulder, 

Elbow, Hand 

Motion  
detection 
sensors 

No High Medium Medium 

A. G. D. 
Correa, et 
al.[292] 

2 N.A Shoulder, 
Elbow 

Color 
pattern 
marker 

No High Medium Medium 
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A.2 Algorithms 
 

In this Appendix some fragments of code from proposed systems are presented and 

detailed about these algorithms are explained in respective chapters.  

Algorithm 3.1 AABB Vs. AABB 

Given four bodies with AABBs in BCR exercise are shown in Figure 3.24.  

Step 1: Define all the bodies’ coordinate system in the world space. 

Step 2: Transform world space to local space coordinate system to optimize the accuracy 

and computational load. 

Step 3: Define the centres (Cx) and their half-extents (HEx) of all the bodies. 

Step 4: Calculate the difference between centres (|C2-C1|) of interest bodies for all bodies:  

Case1: Body A vs. Body B;  

Case2: Body A vs. Body C; 

Case3: Body A vs. Body D; 

Case4: Body B vs. Body C; 

Case5: Body B vs. Body D; 

Case6: Body C vs. Body D; 

Step 5: Calculate the total half-extents for both bodies of interest (HE1 + HE2) for all 

bodies. 

Case1: Body A vs. Body B;  

Case2: Body A vs. Body C; 

Case3: Body A vs. Body D; 

Case4: Body B vs. Body C; 

Case5: Body B vs. Body D; 



 Appendix A 
 

 186 

Case6: Body C vs. Body D; 

Step 6: Calculate the difference D = | C2-C1 | - (HE1 + HE2) between bodies of interest for 

all bodies. 

Case1: Body A vs. Body B;  

Case2: Body A vs. Body C; 

Case3: Body A vs. Body D; 

Case4: Body B vs. Body C; 

Case5: Body B vs. Body D; 

Case6: Body C vs. Body D; 

Step 7: If Dx <= 0 && Dy <= 0, two bodies are “Collide” and do the following action! 

If  Dx <= 0 && Dy <= 0 for A vs. B 

 Do (nothing); 

If  Dx <= 0 && Dy <= 0 for A vs. C 

Do (nothing); 

If  Dx <= 0 && Dy <= 0 for A vs. D 

 Do (pick up action); 

If  Dx <= 0 && Dy <= 0 for B vs. C 

Do (nothing); 

If  Dx <= 0 && Dy <= 0 for B vs. D 

 Do (Pick-up Action); 

If  Dx <= 0 && Dy <= 0 for C vs. D with A pick up action 

Do (Wrong Choice Action!); 

If  Dx <= 0 && Dy <= 0 for C vs. D with B pick up action 

 Do (Placement Action!); 

Step 8: Loop from Step 4 to Step 7 to check all the collision in every frame captured by 

webcam.   
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Algorithm 3.2: Approximation Queries  

(Fragment of code is extracted from BCR exercise) 

……. 
var rectPoint:Point = new Point((rect.x+rect.width/2), (rect.y+rect.height/2)); 
var pinkBall:Point = new Point (pBalls[i].x, pBalls[i].y); 
var greenBall:Point = new Point (gBalls[i].x, gBalls[i].y); 
var box:Point = new Point (Box.x, Box.y); 
 
if (Point.distance(pinkball, rectPoint) < 5)  
{ 

Pick-up action! 
} 
 
if (Point.distance(box,rectPoint) < 5 && Point.distance(greenBall,rectPoint) > 10)  
{ 

 Placement Action! 
} ……..  
   

 

 

Algorithm 4.1: Simple learning algorithm for ELM [171] 

Given a training set  with activation function 

g(x) and hidden node number .  

Step 1: The input weight wi and bias bi are assigned randomly where .  

Step 2: Calculate the hidden layer output matrix H. 

Step 3: Calculate the output weight . 

 

 
Algorithm 4.2: Code Fragments to load the VHA model in Flash 

// importing of 3D graphic engine class 

import org.papervision3d.* 
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… 

//defining the related variables for VHA model, material and color 

private var _obj:DAE; 

private var material:GouraudMaterial; 

private var materials:MaterialsList; 

private var light:PointLight3D; 

private var renderer :BasicRenderEngine; 

private var scene:Scene3D; 

private var camera:Camera3D; 

private var viewport:Viewport3D; 

… 

// Get the user defined skin color for VHA 

skinColour = bmd.getPixel(this.mouseX, this.mouseY);   

…. 

// Apply the chosen color to the model  

light = new PointLight3D(true,false); 

material = new GouraudMaterial(light, skinColour, 0x666666, 150);  

materials = new MaterialsList( );  

… 

//Load all the segments and joints of the VHA model and adjust the orientation and scale to 

align with Flash orientation  

_obj = new DAE(false, "LeftArm"); 

_obj.load("leftArm.dae",materials); 

_obj.scale = 400;    

_obj.rotationY = 180; 

_obj.rotationX = -90; 

scene.addChild(_obj); 

… 
renderer.renderScene(scene, camera, viewport); 

… 

//Assign the variables in each joint,  for F-K & I-K calculation  

// for , ,  
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var humerus:DisplayObject3D = 

_obj.getChildByName("COLLADA_Scene").getChildByName("ShoulderJoint"); 

// for  

var ulna:DisplayObject3D = 

_obj.getChildByName("COLLADA_Scene").getChildByName("ShoulderJoint"). 

getChildByName("ElbowJoint"); 

// for , ,  

var hand:DisplayObject3D = 

_obj.getChildByName("COLLADA_Scene").getChildByName("ShoulderJoint"). 

getChildByName("ElbowJoint"). getChildByName("WristJoint"); 

// for VHA finger tracking in real time 

var finger:DisplayObject3D = 

_obj.getChildByName("COLLADA_Scene").getChildByName("ShoulderJoint "). 

getChildByName("ElbowJoint ").getChildByName("WristJoint "). 

getChildByName("MiddleFinger1"); 

… 

//Do this 

{ 

“Threshold Mode” or “Prediction Mode” 

ARIS Exercise 

} 
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A.3 Questionnaires  
The questionnaires utilized in this research to evaluate the effectiveness of the proposed 

rehabilitation systems are described in this appendix. There are two questionnaires in this 

thesis which are evaluated for RehaBio and ARIS system respectively. All the answers for 

the questionnaires are in accordance with the visual-analogue likert scale where ‘4’ refers 

to strongly agree and ‘1’ refers to strongly disagree. 

Below are the details for each questionnaire.  

A.3.1 RehaBio System 

A physical rehabilitation questionnaire is conducted for RehabBio system to analyze the 

effectiveness of the developed system. The set of questions in this questionnaire is 

described as follows. 

 

Questionnaire for RehaBio Rehabilitation System 

 

 

Subject ID: ________________________  Age: _______ Date: _____________ 

 

Please respond to the following survey questions according to the scale 1 to 4, where 4 

represents strongly agree and 1 represents strongly disagree. 

 

1. I have tried augmented reality games before. 

    

1 2 3 4 

2. The game is motivated and interested. 

    

1 2 3 4 
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3. The given information and guide are easy to understand. 

    

1 2 3 4 

4. It is comfortable to wear the marker. 

    

1 2 3 4 

5. The present of feedback such as timer and scoring system are motivating. 

    

1 2 3 4 

6. Tracking of the colour marker is good. 

    

1 2 3 4 

 

 

7. It can feel the arm muscles fatigue. 

    

1 2 3 4 

8. It is comfortable throughout the exercise. 

    

1 2 3 4 
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9. The training duration for healthy/stroke user is appropriate. 

    

1 2 3 4 

10. Please provide other feedbacks and suggestions if any. 

 

A.3.2 ARIS System 

There are two questionnaires in ARIS system. Questionnaire A is conducted in order to 

evaluate the user’s ownership illusion feeling whereas Questionnaire B is conducted for the 

subject’s feeling during performing the rehabilitation exercise with ARIS system.   

A.3.2.1 ARIS Questionnaire A 
 

Questionnaire A: Ownership Illusion 

 

Subject ID: ________________________  Age: _______ Date: _____________ 

 

Please respond to the following survey questions according to the scale 1 to 4, where 4 

represents strongly agree and 1 represents strongly disagree. 

1. Real arm moves due to virtual arm. 

    

1 2 3 4 

2. I feel like synchronized between real arm and virtual arm. 

    

1 2 3 4 
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3. I feel like picking the object with real arm. 

    

1 2 3 4 

4. I feel like virtual arm as my real arm. 

    

1 2 3 4 

5. It is a good illusion environment.  

    

1 2 3 4 

6. Please provide other feedbacks and suggestions if any. 

 

A.3.2.2 ARIS Questionnaire B 
 

Questionnaire B: ARIS rehabilitation System 

 

Subject ID: ________________________  Age: _______ Date: _____________ 

 

Please respond to the following survey questions according to the scale 1 to 4, where 4 

represents strongly agree and 1 represents strongly disagree. 
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1. I have Augmented Reality / Video Games experience.  

    

1 2 3 4 

 

2. The Graphical User Interface (GUI) is user-friendly and easy to adapt.  

    

1 2 3 4 

 

3. AIRS provide with enough information such as current hand position and joint angles.  

    

1 2 3 4 

 

4. During the training phase, I received enough information and training sessions.  

    

1 2 3 4 

 

5. The multiple colors tracking in ARIS is good.  

    

1 2 3 4 
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6. ARIS is easy to understand and manipulate.  

    

1 2 3 4 

 

7. ARIS can detect the threshold level of my sEMG signal (Threshold Mode).  

    

1 2 3 4 

8. When my arm move, the VHA model was move accordingly (Prediction Mode).  

    

1 2 3 4 

 

9. During training and testing phase, I felt that my upper limb muscles were fatigue.  

    

1 2 3 4 

 

10. The immediate feedbacks such as real-time trajectory tracking, threshold level, hand 

position and joint angles are very good and useful.  

    

1 2 3 4 
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11. As a whole, the ARIS is interesting, motivating and enjoyable.  

    

1 2 3 4 

 

12. Suggestion and improvements are welcome. 

 

A.4 Ethical Approval  
The ethical approval was attained to collect the EMG data for the purpose of this research. 

The reference number for clearance is UTS HREC REF NO. 2009-181A. 

 

A.5 Email Communication with Dr. Geoffrey 
Murray (Port Kembla Hospital) 

 
From: Adel Ali Al-Jumaily 
Sent: Friday, 11 December 2015 10:57 AM 
To: Geoffrey Murray 
Subject: Re: Robotic assisted uper extremity rehab for post-stroke patients - HE14/400 
Hi Geoff, 
I am going to submit application in our University and update you. 
Regards. 
Adel 
On 10/12/2015 1:35 am, "Geoffrey Murray" <Geoffrey.Murray@SESIAHS.HEALTH.NSW.GOV.AU> 
wrote: 
> 
>Hi Adel, 
> 
>We share the Ethics committee with UOW. If UTS Ethics approve it is a formality which I think I 
can take care of. 
> 
>Regards, 
> 
>Geoff. 
>________________________________________ 
>From: Adel Ali Al-Jumaily [Adel.Al-Jumaily@uts.edu.au] 
>Sent: Wednesday, 9 December 2015 5:35 PM 
>To: Geoffrey Murray 
>Cc: 'Yee Aung ( )' 
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>Subject: RE: Robotic assisted uper extremity rehab for post-stroke 
>patients - HE14/400 
> 
>Hi Geoffrey, 
>Thanks for your e-mail, I will take care about the University ethical approval. I have many ethical 
approvals for 
different projects. 
>I am just wandering if any ethical approval required for the hospital. 
>Regards. 
>Adel 
> 
> 
>Dr. Adel Al-Jumaily 
>Associate Professor, 
>Faculty of Engineering and IT 
>University of Technology, Sydney 
>City campus, 
>Building 11, level 9, Room 116 
>T +61 2 9514 7939 
>F +61 2 9514 2655 
>Address: PO Box 123 Broadway NSW 2007 Australia 
>Adel UTS Web Link 1, Adel Web Site link 2 
> 
>-----Original Message----- 
>From: Geoffrey Murray 
2 
>[mailto:Geoffrey.Murray@SESIAHS.HEALTH.NSW.GOV.AU] 
>Sent: Friday, 4 December 2015 4:54 AM 
>To: Adel Ali Al-Jumaily 
>Subject: RE: Robotic assisted uper extremity rehab for post-stroke 
>patients - HE14/400 
> 
> 
>Hi Adel, 
> 
>Sorry but I didn't read your email properly. You will need to put a proposal to the Ethics 
Committee at your 
university before we can do anything. Essentially you need to convince them that you will do no 
harm by 
experimenting on human subjects. UTS would have an Ethics Department who can provide you 
with advice. 
> 
>Regards, 
> 
>Geoff. 
>________________________________________ 
>From: Adel Ali Al-Jumaily [Adel.Al-Jumaily@uts.edu.au] 
>Sent: Tuesday, 1 December 2015 11:55 AM 
>To: Geoffrey Murray 
>Subject: FW: Robotic assisted uper extremity rehab for post-stroke 
>patients - HE14/400 
> 
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>Dear Geoff, 
>I hope you are fine and doing well, I sent you the included e-mail on 16 October regarding the 
test of the system in 
hospital. 
>Would you, please, inform me about any update. 
>Kind Regards. 
>Adel 
> 
>Dr. Adel Al-Jumaily 
>Associate Professor, 
>Faculty of Engineering and IT 
>University of Technology, Sydney 
>City campus, 
>Building 11, level 9, Room 116 
>T +61 2 9514 7939 
>F +61 2 9514 2655 
>Address: PO Box 123 Broadway NSW 2007 Australia 
>Adel UTS Web 
Link<http://datasearch2.uts.edu.au/feit/staff/listing/details.cfm?StaffId=6770#tab4> 1, Adel Web 
Site link 2<http://services.eng.uts.edu.au/~adel/index.htm> 
> 
>From: Adel Ali Al-Jumaily 
>Sent: Friday, 16 October 2015 12:10 PM 
>To: 'Geoffrey Murray' 
>Subject: RE: Robotic assisted uper extremity rehab for post-stroke 
>patients - HE14/400 
> 
>Dear Geoff, 
>Thanks for instant response. 
>We want to do a study in a hospital setting and have no problem to compare AR + usual 
treatment compared with 
usual treatment and measure differences. 
>About your suggestion to study patients after their usual therapy is completed in an outpatient 
setting; we are 
fixable and happy to do that and no problem to run the pilot study. 
>Regarding my expectations from AR based treatment use, it will make more motivation, fast 
recovery, minimum 
supervision, and can be used in or out of hospital (home). 
3 
>Please advise me how we can start. 
>Regards. 
>Adel 
> 
> 
>Dr. Adel Al-Jumaily 
>Associate Professor, 
>Faculty of Engineering and IT 
>University of Technology, Sydney 
>City campus, 
>Building 11, level 9, Room 116 
>T +61 2 9514 7939 
>F +61 2 9514 2655 
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>Address: PO Box 123 Broadway NSW 2007 Australia 
>Adel UTS Web 
Link<http://datasearch2.uts.edu.au/feit/staff/listing/details.cfm?StaffId=6770#tab4> 1, Adel Web 
Site link 2<http://services.eng.uts.edu.au/~adel/index.htm> 
> 
>From: Geoffrey Murray 
>[mailto:Geoffrey.Murray@SESIAHS.HEALTH.NSW.GOV.AU] 
>Sent: Tuesday, 13 October 2015 2:04 PM 
>To: Adel Ali Al-Jumaily 
>Subject: RE: Robotic assisted uper extremity rehab for post-stroke 
>patients - HE14/400 
> 
>Hi Adel, 
> 
>If you are going to do a study in a hospital setting, you would not get Ethics approval if you 
wanted to study AR 
compared to usual treatment. You would have to compare AR + usual treatment compared with 
usual treatment 
and measure differences. 
> 
>I would suggest you study patients after their usual therapy is completed in an outpatient 
setting. Obviously you 
would start with a pilot to perfect your intervention with AR, and then presumably you would do 
a comparative 
study comparing AR with no treatment (stroke patients do improve over time without therapy) 
Ideally the 
participants would be randomized. Your participant size would depend on measureable change 
you detect in your 
pilot. There are potential validated instruments that you could use to measure change in upper 
limb function, but I 
would need to know more about what your expectations from the AR are before I could advise 
you on the most 
appropriate. 
> 
>Regards, 
> 
>Geoff. 
> 
>From: Adel Ali Al-Jumaily [mailto:Adel.Al-Jumaily@uts.edu.au] 
>Sent: Tuesday, 13 October 2015 11:14 AM 
>To: Geoffrey Murray 
><Geoffrey.Murray@SESIAHS.HEALTH.NSW.GOV.AU<mailto:Geoffrey.Murray@SESIA 
>HS.HEALTH.NSW.GOV.AU>> 
>Cc: 'Yee Aung 
>(Yee.M.Aung@student.uts.edu.au< >)' 
><Yee.M.Aung@student.uts.edu.au< >> 
>Subject: RE: Robotic assisted uper extremity rehab for post-stroke 
>patients - HE14/400 
> 
>Dear Geoff, 
>It was nice to meet you and delivery our presentation. 
4 
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>As we discussed about the next step of the clinical trail and implementation, I attached draft 
what we think to start 
with. 
>Hope to receive your feedback to plan for our further steps. 
>Regards. 
>Adel 
> 
>Dr. Adel Al-Jumaily 
>Associate Professor, 
>Faculty of Engineering and IT 
>University of Technology, Sydney 
>City campus, 
>Building 11, level 9, Room 116 
>T +61 2 9514 7939 
>F +61 2 9514 2655 
>Address: PO Box 123 Broadway NSW 2007 Australia 
>Adel UTS Web 
Link<http://datasearch2.uts.edu.au/feit/staff/listing/details.cfm?StaffId=6770#tab4> 1, Adel Web 
Site link 2<http://services.eng.uts.edu.au/~adel/index.htm> 
> 
>From: Geoffrey Murray 
>[mailto:Geoffrey.Murray@SESIAHS.HEALTH.NSW.GOV.AU] 
>Sent: Wednesday, 2 September 2015 4:35 PM 
>To: David Stirling; Fazel Naghdy; Adel Ali Al-Jumaily 
>Cc: Haiping Du; maj890@uowmail.edu.au<mailto:maj890@uowmail.edu.au>; 
>xh962@uowmail.edu.au<mailto:xh962@uowmail.edu.au>; Maryam Ghahramani; 
>Sina Ameli; Paul Stapley; Maren Jones; David Rollestone; Namuk 
>Alkhateeb; Tanya Woll 
>Subject: RE: Robotic assisted uper extremity rehab for post-stroke 
>patients - HE14/400 
> 
>Hi David and Adel, 
> 
>It looks as though 24/9/15 between 3 pm and 5 pm is doable for everyone. We will send 
instructions on how to get 
here. 
> 
>Xianwei from UOW will demonstrate his robotic Amadeo finger rehab unit and Assoc Prof . Adel 
Al-Jumaily and 
team from UTS will demonstrate their Augmented Reality (AR) based upper limb rehabilitation 
exercises for stroke 
patients. Possibly Mitchell from UOW will also demonstrate virtual reality research that he is 
doing. We will make up 
a publicity flyer when we know whether Mitchell can participate. 
> 
>We will book the physio gym, and I will invite physiotherapists and occupational therapists, as 
well as rehab 
doctors, to attend. I will also see if John Carmody (neurologist) is free to attend. 
> 
>I think there could be a relatively large attendance (guesstimate about 30). It will be in the 
physiotherapy gym at 
the hospital. 
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> 
>I would think for you guys seeing what each other is doing would be very useful, and I hope we 
can collectively 
have some useful clinical input/suggestions in to your research. 
> 
>Looking forward to your presentations and many thanks, 
> 
>Geoff. 
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