UNIVERSITY OF TECHNOLOGY SYDNEY

Doping and Characterisation of ZnO

Nanowires and Crystals

by

Liangchen Zhu

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy

in the

School of Mathematical and Physical Sciences Faculty of Science

2015

Declaration of Authorship

I, Liangchen Zhu, hereby declare that the work in this thesis has neither previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I confirm that:

- This work was done wholly while in candidature for the PhD research degree at University of Technology Sydney;
- 2. Where I have consulted the published work of others, this is always clearly attributed;
- 3. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
- 4. I have acknowledged all main sources of help;
- 5. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signature of Student:

Date: _____

Abstract

ZnO is a wide bandgap semiconductor with a direct band gap of 3.37 eV and an exciton binding energy of 60 meV at room temperature. Due to their large band gap, high exciton binding energy and the ease of forming versatile low-dimensional nanostructures, ZnO nanowires have been widely studied for applications in optoelectronic devices. The lack of a reliable method for *p*-type doping and for controlling the *n*-type compensation limited to native defects in ZnO has hindered the development of ZnO-based devices. Group V elements, in particular nitrogen that has an ionic radius similar to that of oxygen, is widely believed to be a promising candidate for realising *p*-type doping in ZnO. In contrast, hydrogen, a common impurity in ZnO, can act as a shallow donor in ZnO. This project primarily aims to investigate the properties and behaviours of these two important impurities plus the native defects in both bulk and nanowire ZnO.

In this first part of the project, arrays of ZnO nanowires were fabricated using gold (Au) as catalyst. New insights into controlling nanowire merging phenomena were demonstrated in the growth of ZnO nanowires using monodispersed Au colloidal nanoparticles as catalysts. Both nanowire diameter and wire distribution density were found to be strongly dependent on the density of Au catalytic nanoparticles. Structural analysis and spectral cathodoluminescence imaging of the *c*-plane nanowire crosssections revealed that thin isolated nanowires growing from the Au nanoparticles began to merge and coalesce with neighbouring nanowires to form larger nanowires when their separation is inferior to a certain threshold distance. The distribution of nanowire diameters and their green emission were found to be strongly dependent on the density of the Au nanoparticles. The merging phenomenon was attributed to electrostatic

interactions between polar nanowire tips during growth and well-described by a cantilever bending model.

The grown nanowires were subsequently doped with nitrogen by plasma annealing at 300°C. The chemical states of nitrogen dopants in ZnO nanowires and the optical properties of doped ZnO were studied by complementary chemical and optical techniques. It is found that nitrogen exists in multiple states: N₀, N_{Zn} and loosely bound N₂ molecule. The work establishes a direct link between a donor-acceptor pair (DAP) emission at 3.232 eV and the concentration of loosely bound N₂. These results indicate that N₂ at Zn site is a potential candidate for producing a shallow acceptor state in N-doped ZnO.

Results are also reported on the electronic properties and kinetic behaviour of hydrogen dopants in bulk ZnO crystals. Hydrogen was found to be at the bond-centred site by forming O-H bonds after hydrogen plasma annealing. Hydrogen shallow donor and hydrogen bound to basal plane stacking faults (BSFs) are observed in the low-temperature high-resolution CL measurements of H-doped ZnO single crystals. Under the electron beam irradiation, hydrogen donors bound to BSFs dissociate from these defect sites and migrate to the periphery of the electron interaction volume. The hydrogen donors are confirmed to be in the $H_{BC, //}$ configuration by means of XANES measurements.

Acknowledgements

First and foremost, I would like to express my profound gratitude to my supervisors, Dr. Cuong Ton-That and Prof. Matthew Phillips, for the continuous support, advice and guidance during my study at University of Technology Sydney. They have provided me with the most enjoyable learning experiences throughout my time in Australia.

My sincere thanks also go to Geoff McCredie for his help with the construction of the nanowire growth system, Mark Berkahn for XRD measurements, Herbert Yuan and Katie McBean for daily technical support. I would also like to extend my thanks and appreciation to my fellow students Meng Huang, Mark Lockrey, Sumin Choi and Olivier Lee for assistance with cathodoluminescence characterisation and plasma processing.

I acknowledge the contributions of the UTS research team, led by Dr. Cuong Ton-That, that conducted measurements on ZnO samples at the Australian Synchrotron. This synchrotron work was assisted by beam line scientists, Bruce Cowie, Anton Tadich and Lars Thomsen.

Additionally, I would like to acknowledge the financial support from the UTS International Research Scholarship (IRS)-China Scholarship Council (CSC) PhD scholarships program.

Finally, I would like to express my heartfelt gratitude to my family. None of this would have been possible without the patience and understanding of my family.

List of Publications and Presentations

Journal papers

L. Zhu, C. Ton-That, and M. R. Phillips, Nitrogen incorporation in ZnO nanowires using N₂O dopant gas. Mater. Lett. **99**, 42-45 (2013).

L. Zhu, M. R. Phillips, and C. Ton-That, Coalescence of ZnO nanowires grown from monodispersed Au nanoparticles. CrystEngComm **17**, 4987 (2015).

C. Ton-That, <u>L. Zhu</u>, M. N. Lockrey, M. R. Phillips, B. C. C. Cowie, A. Tadich, L. Thomsen, S. Khachadorian, S. Schlichting, N. Jankowski, and A. Hoffmann, Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing. Phys. Rev. B **92**, 024103 (2015).

S. Khachadorian, R. Gillen, C. Ton-That, <u>L. Zhu</u>, J. Maultzsch, M. R. Phillips, and A. Hoffmann, Revealing the origin of high-energy Raman local mode in nitrogen doped ZnO nanowires. Phys. Status Solidi-Rapid Res. Lett., Accepted. In Press. DOI: 10.1002/pssr.201510405.

Oral Presentations at International Conferences

<u>L. Zhu</u>, M. Lockrey, C. Ton-That, and M. R. Phillips, Growth and optical properties of N-doped ZnO nanowires. APMC-10, ICONN 2012 & ACMM-22, Perth, February (2012).

L. Zhu, C. Ton-That, and M. R. Phillips, Au effect on the growth and optical properties of ZnO nanowires. AMAS XII – The Twelfth Biennial Symposium, Sydney, February (2013).

C. Ton-That, <u>L. Zhu</u>, M. R. Phillips, A. Tadich, L. Thomsen and B. Cowie., Nanocharacterisation of nitrogen dopants in ZnO nanowires. ACMM23 and ICONN2014, Adelaide, February (2014).

Poster Presentations at Conferences and Workshops

L. Zhu, C. Ton-That, and M. R. Phillips, Nitrogen doping in ZnO nanowires using N₂O dopant gas. ACMM23 and ICONN2014, Adelaide, February (2014).

L. Zhu, C. Ton-That, and M. R. Phillips, Nanocharacterisation of N-doped ZnO nanowires. ANN Early Career Workshop, Sydney, July (2014) (The 2nd poster award).

Table of Contents

Declaration of Authorshipi
Abstractii
Acknowledgementsiv
List of Publications and Presentationsv
Table of Contents
List of figuresxi
List of tablesxv
Acronyms and abbreviationsxvi
Chapter 1 Introduction to ZnO Nanowires1
1.1 Motivation of the research
1.2 Aims of the project
1.3 Thesis structure
Chapter 2 Activities of Impurities and Native Defects in ZnO
2.1 Structural defects and impurities in ZnO
2.1.1 Point defects
2.1.1.1 Oxygen vacancies
2.1.1.2 Zinc interstitials
2.1.1.3 Zinc vacancies
2.1.2 Extended defects
2.1.3 Impurities
2.2 Donors and acceptors in ZnO
2.3 Bound excitons
2.4 Nitrogen dopants in ZnO

2.5	Hy	ydrogen in ZnO	14
Chapte	er 3	Experimental Methods	16
3.1	Su	bstrates and furnace for the sample preparation	16
3	.1.1	Preparation of substrates	16
	3.1.	1.1 Substrates for ZnO nanowire growth	16
	3.1.	1.2 Au catalyst deposition on substrates	16
	3.1.	1.3 ZnO single crystal for hydrogen doping	18
3	.1.2	Construction of the gas-controlled furnace	19
3	.1.3	Growth of ZnO nanowires by carbothermal reaction	20
3.2	Do	oping by plasma annealing	21
3.3	Cł	naracterisation techniques	22
3	.3.1	Morphological and structural analysis	23
3	.3.2	Cathodoluminescence (CL)	24
	3.3.	2.1 CL experimental setup	26
	3.3.	2.2 Calibration of wavelength and intensity	27
	3.3.	2.3 Simulation of the CL generation depth	31
3	.3.3	X-ray absorption near edge structure (XANES)	35
Chapte	er 4	Au-catalysed growth of ZnO Nanowires	37
4.1	Int	troduction	37
4.2	Zn	O nanowire growth using Au films	39
4	.2.1	Morphology of catalytic Au islands before nanowire growth	39
4	.2.2	Effects of temperature on ZnO nanowire growth	41
4	.2.3	Effects of pressure and flow of carrier gases	43
4.3	Di	ameter-controlled nanowire growth using Au nanoparticles	46
4	.3.1	Assembly of Au colloidal nanoparticles on substrate	49

4.3.2	2 M	orphology of ZnO nanowires grown from Au nanoparticles	51
4.3.	3 D	Dependence of nanowire diameter on Au colloidal concentration	
4.3.4	4 Zı	nO nanowire bending and cantilever model	56
4.3.	5 O	xygen vacancy defects in ZnO nanowires	61
4.4	Sumn	nary	62
Chapter :	5 N	itrogen dopants in ZnO nanowires	64
5.1	Introc	luction	64
5.2	In-sit	u growth of N-doped ZnO nanowires	64
5.2.	1 In	-situ doping using N2O gas	64
5.2.2	2 M	orphological properties of <i>in-situ</i> N-doped ZnO nanowires	65
5.2.	3 C1	rystal structure of N-doped ZnO nanowires	67
5.2.4	4 Ra	aman modes associated with atomic N and molecular N_2	69
5	5.2.4.1	Review of nitrogen Raman modes in ZnO	69
5	5.2.4.2	Raman vibrations of <i>in-situ</i> N-doped ZnO nanowires	70
5.2.	5 C	L properties	71
5.3	Nitro	gen doping by plasma annealing	75
5.3.	1 Pc	ost-growth doping of nanowires	75
5.3.2	2 St	ructural properties of ZnO nanowires doped by rf N2 plasma	75
5.3.	3 Cl	hemical states of nitrogen in ZnO	78
5.3.4	4 Li	iminescence properties	82
5	5.3.4.1	Power density-resolved CL of N-doped ZnO nanowires	82
5	5.3.4.2	Characteristics of N-doped ZnO emissions	88
5	5.3.4.3	Molecular nitrogen acceptors	92
5.3.:	5 Ra	aman scattering of nitrogen plasma annealed ZnO nanowires	97
5.4	Sumn	nary	104

Chapter	6 Hydrogen dopants in ZnO1	.05
6.1	Introduction to H-doping in ZnO1	05
6.2	Doping and characterisation of hydrogen in ZnO1	07
6.3	Luminescence properties of H-doped ZnO1	07
6.3	.1 Temperature-resolved CL characterisation	07
6.3	.2 Arrhenius plots of CL emissions from H-doped ZnO1	.09
6.4	Site occupancy of hydrogen dopants1	11
6.5	Hydrogen migration under electron beam irradiation1	14
6.6	Summary	
Chapter	7 Conclusions and Outlook1	20
7.1	Conclusions1	20
7.2	Suggestions for future work1	21
Referenc	ces1	23

List of figures

Figure 2.1. Formation energies of intrinsic point defects in ZnO
Figure 2.2. Calculated defect energy levels in ZnO7
Figure 2.3. Energy band positions of the Fermi level in a series of semiconductors 14
Figure 3.1. DYNAVAC SC150 sputter coater used for Au layer deposition
Figure 3.2. Schematic of depositing Au nanoparticles on Si substrate17
Figure 3.3. Nanowire growth setup in the furnace and the temperature profile19
Figure 3.4. Diagrams of the rf plasma chamber
Figure 3.5. Optical photograph of two ZnO nanowire samples
Figure 3.6. Schematic of the X-ray diffractometer
Figure 3.7. Radiative near-band-edge transitions in ZnO bandgap24
Figure 3.8. Schematic of optics setup on the SEM for CL measurements27
Figure 3.9. System optics response curve for OceanOptics spectrometer
Figure 3.10. Wavelength calibration for the Hamamatsu CCD using Grating 129
Figure 3.11. System optics response curve for Grating 1
Figure 3.12. Wavelength calibration for the Hamamatsu CCD using Grating 430
Figure 3.13. System optics response curve for Grating 4
Figure 3.14. Incident electron energy loss profile in ZnO
Figure 3.15. CL generation depth as a function of incident electron energy
Figure 3.16. Schematic of the apparatus for XANES measurements
Figure 3.17. X-ray absorption edge electron transitions
Figure 4.1. Schematic of nanowire growths via the VLS and VS mechanisms37
Figure 4.2. Si substrate with 6 nm Au film annealed at 700°C for 30 min39
Figure 4.3. Au-coated <i>a</i> -plane sapphire substrate annealed at 700°C for 30 min41

Figure 4.4. SEM images of ZnO nanowires grown at a source temperature of 950°C
Figure 4.5. ZnO nanowires grown with O ₂ introduced at different temperatures44
Figure 4.6. ZnO nanowires grown from Au layers of different thicknesses
Figure 4.7. 5 nm Au nanoparticles deposited onto Si substrate
Figure 4.8. Dispersed Au particle density on the substrate versus Au nanoparticle
concentration in colloidal solution
Figure 4.9. SEM images ZnO nanowires grown using 5 nm Au nanoparticles52
Figure 4.10. XRD spectrum of ZnO nanowires grown from 5 nm Au colloidal
nanoparticles
Figure 4.11. Histograms of diameters for ZnO nanowires grown from catalytic Au
nanoparticles
Figure 4.12. ZnO nanowire diameter and nanowire density as a function of Au
colloidal concentration
Figure 4.13. ZnO nanowires grown from patterned Au layer and the wire tip-
merging
Figure 4.14. CL spectral image of fused ZnO nanowires
Figure 4.15. Schematic of nanowire bending model due to Coulomb forces
Figure 4.16. CL spectra of ZnO nanowires grown from Au nanoparticles and the
intensity ratio I_{GL}/I_{NBE} versus the Au concentration
Figure 5.1. SEM images of ZnO nanowires grown using different N ₂ O gas flow rates
Figure 5.2. Diameter of undoped and N-doped ZnO nanowires
Figure 5.3. XRD patterns of undoped and N-doped ZnO nanowires using N ₂ O68
Figure 5.4. Raman spectra of as-grown and N-doped ZnO nanowires70

Figure 5.5. CL spectra of undoped and N-doped ZnO nanowires at 80 K72
Figure 5.6. Intensity ratio of the DAP emission to the FX-LO peak73
Figure 5.7. SEM images of N-doped ZnO nanowires grown on silicon and sapphire
substrates
Figure 5.8. XRD patterns of as-grown and N plasma treated ZnO nanowires77
Figure 5.9. XPS survey scan of the N-doped ZnO nanowires
Figure 5.10. XANES spectra of the ZnO nanowires
Figure 5.11. N K-edge XANES spectra of N-doped ZnO nanowires after N_2
annealing
Figure 5.12. Power density-resolved CL spectra of ZnO nanowires
Figure 5.13. Power density-resolved CL spectra of N-doped ZnO nanowires at 10 K
Figure 5.14. Log-log plot of DAP and D ⁰ X peak intensities
Figure 5.15. Temperature-resolved CL spectra of as-grown and N-doped ZnO
nanowires
Figure 5.16. Temperature dependences of FX-LO, FX-2LO and N-doped DAP
transition energies obtained from the CL spectra
Figure 5.17. CL spectra of as-grown and nitrogen plasma annealed ZnO nanowires
Figure 5.18. Dependence of CL peak intensity ratio I(3.232 eV)/I(LO) intensity and
XANES components
Figure 5.19. Raman spectrum of a bare <i>a</i> -plane sapphire substrate97
Figure 5.20. Raman spectra of as-grown and N plasma treated ZnO nanowires98
Figure 5.21. Extracted Raman peak intensities versus N plasma time

Figure 5.22. Raman spectra of ZnO nanowires processed using various treatments	
Figure 6.1. Schematic of the hydrogen configurations in ZnO wurtzite lattice	
structure105	
Figure 6.2. Temperature-resolved <i>a</i> -plane ZnO CL spectra	
Figure 6.3. Arrhenius plots and peak energies of ZnO110	
Figure 6.4. Angle-resolved O K-edge XANES spectra of as-received and H-doped	
ZnO112	
Figure 6.5. Time-resolved CL spectra of as-received and H-doped ZnO116	
Figure 6.6 Schematic of the U donor migration under a beam irrediction 110	

Figure 6.6. Schematic of the H donor migration under e-beam irradiation......118

List of tables

Table 2.1. Ionisation energies of donors and acceptors in ZnO	.10
Table 2.2. Exciton energies of common I lines in ZnO	.12
Table 3.1. Pumps used in the nanowire growth	.20
Table 3.2. Parameters for CASINO CL generation depth simulation	32
Table 4.1. Lattice mismatches between ZnO and substrates used in this research	40
Table 4.2. Temperature ranges used in the growth of nanowires	.41
Table 4.3. Ranges of gas flow rates used for ZnO nanowire growth	.43
Table 5.1. Assignments of N-related Raman modes in ZnO	69

Acronyms and abbreviations

AB	anti-bonding
A ⁰ X	neutral acceptor bound exciton
BC	bound-centre
BSF	basal plane stacking fault
CCD	charge coupled device
CL	cathodoluminescence
CVD	chemical vapour deposition
DAP	donor-acceptor pair
D ⁰ X	neutral donor bound exciton
ESR	electron spin resonance
FX	free exciton
LO	longitudinal optical
MOCVD	metal-organic chemical vapour deposition
NBE	near-band-edge
rf	radio frequency
SEM	scanning electron microscope
VLS	vapour-liquid-solid
VPT	vapour-phase-transport
VS	vapour-solid
XANES	X-ray absorption near-edge structure
XPS	X-ray photoelectron spectroscopy
XRD	X-ray diffraction
WZ	wurtzite
ZB	zinc blende