
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.”

IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Hybrid Tree-rule Firewall for High Speed Data
Transmission

Thawatchai Chomsiri, Xiangjian He*, Priyadarsi Nanda, Zhiyuan Tan

Abstract—Traditional firewalls employ listed rules in both configuration and process phases to regulate network traffic.
However, configuring a firewall with listed rules may create rule conflicts, and slows down the firewall. To overcome this
problem, we have proposed a Tree-rule firewall in our previous study. Although the Tree-rule firewall guarantees no conflicts
within its rule set and operates faster than traditional firewalls, keeping track of the state of network connections using hashing
functions incurs extra computational overhead. In order to reduce this overhead, we propose a hybrid Tree-rule firewall in this
paper. This hybrid scheme takes advantages of both Tree-rule firewalls and traditional listed-rule firewalls. The GUIs of our
Tree-rule firewalls are utilized to provide a means for users to create conflict-free firewall rules, which are organized in a tree
structure and called 'tree rules'. These tree rules are later converted into listed rules that share the merit of being conflict-free.
Finally, in decision making, the listed rules are used to verify against packet header information. The rules which have matched
with most packets are moved up to the top positions by the core firewall. The mechanism applied in this hybrid scheme can
significantly improve the functional speed of a firewall.

Index Terms—Firewall, High Speed Firewall, Network Security, Computer Network, Cloud Network

——————————�——————————

1 INTRODUCTION

irewalls were first invented in 1990s [1], and have been
developed to operate more securely and faster. Since

the first generation firewalls, the commercially used fire-
walls still perform network traffic regulation based on
listed rules. The listed rules are a set of rule sequences
which consist of conditions and actions. If information
carried in the header fields (e.g., Source IP, Destination IP
and Destination Port) of an incoming packet is matched
with the condition of a rule, the packet will be accepted or
denied in accordance with the action specified in the rule.
However, in the listed-rule set of a traditional firewall,
there may be 'shadowed rules' [2] and/or redundant
rules. On one hand, shadowed rules may cause security
problems because protection rules could be shadowed by
other rules listed ahead. On the other hand, redundant
rules cause latency in traffic processing and lower the
throughput of a network due to the undesirable waste of
time on verifying against these rules. The detailed discus-
sion of these problems can be found in our previous work
published in [3].

To address the afore-mentioned problems, we recently
proposed a new type of firewall called 'Tree-rule firewall'
in [4]. It has been proved that the Tree-rule firewall guar-
antees no conflicts (e.g., no shadowed rules and no re-
dundant rules) in rule sets, and is more efficient in traffic

processing in comparison with traditional listed-rule
firewalls [4]. In our recent follow-up study [5], a new
stateful mechanism was proposed to further improve the
Tree-rule firewall with the capability of tracking the states
of network connections. In comparison with IPTABLES,
the most popular open source firewall, the stateful Tree-
rule firewall is more advanced in terms of processing
speed.

However, complex hashing computations are involved
in the stateful mechanisms used in the Tree-rule firewall
and the IPTABLES. A hashing function has to be invoked
at least once in either the stateful Tree-rule firewall or the
IPTABLES in stateful mode to verify each single packet
travelling through the firewall. It takes approximately
1,400 nanoseconds to compute the Jenkins hash (jhash) [6]
used in these two firewalls running on a standard PC
with a Pentium 2.4 GHz CPU. Whereas, comparing two
variables takes only 1.4 nanoseconds with the same setup.
On contrary, if an incoming packet matches with the first
rule in a stateless firewall (e.g., IPTABLES in stateless
mode), then the firewall needs to conduct comparisons
between four packet header fields (i.e., Source IP address,
Destination IP address, Source Port and Destination Port)
and the respective conditions specified in the rule. This
rule matching is approximately 1400/(1.4*4) = 250 times
faster than that of a stateful firewall.

Although the traditional stateless firewalls (e.g., IP-
TABLES in stateless mode) can operate fast, the rule con-
flict problem is still the main obstacle for improving fire-
wall speed using the rule sequence tuning. In a firewall
rule list, there may be many frequently matched rules
which are positioned at the bottom of the list. These rules,
especially the last rule which was created to deny all
packets, cannot be moved up to the top positions because
rule conflicts may cause the change of firewall policy if

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

• Thawatchai Chomsiri is with the University of Technology Sydney (UTS),
PO Box 123, Broadway 2007, Australia. E-mail: Tha-
watchai.Chomsiri@student.uts.edu.au.

• * Corresponding author. Xiangjian He is with the University of Technology
Sydney (UTS), PO Box 123, Broadway 2007, Australia. E-mail:
Xiangjian.He@uts.edu.au.

• Priyadarsi Nanda is with the University of Technology Sydney (UTS), PO
Box 123, Broadway 2007, Australia. E-mail: Priyadar-
si.Nanda@uts.edu.au.

• Zhiyuan Tan is with the University of Twente, P.O. Box 217 7500AE
Enschede, Netherlands. E-mail: z.tan@utwente.nl.

F

2 IEEE TRANSACTIONS ON CLOUD COMPUTING

they are moved up. However, if frequently matched rules
in a firewall can be moved up to top positions, the fire-
wall, especially a firewall working in a large network
with a huge number of rules, will operate faster.

Motivated by the above, the contributions of this paper
are shown as follows.

• We propose a hybrid firewall which takes ad-
vantages of both the Tree-rule and stateless
mechanism in design. This scheme ensures no
rule conflicts and high traffic processing speed in
nature. More frequently matched rule will be
moved to higher positions in the rule list auto-
matically.

• We derive a mathematical model measuring the
time consumption in the hybrid firewall and a
mathematical model for measuring the efficiency
of data transmission. The experimental results
show a great improvement in terms of efficiency
on the proposed firewall.

• The proposed firewall is implemented under a
cloud environment. The experimental results
show that the proposed hybrid firewall using
'automatic rule sorting' outperform the ones with
'non-automatic rule sorting' modes.

The rest of this paper is organized as follows. The
background and the related work are introduced in Sec-
tion 2. Our proposed hybrid firewall scheme is then de-
tailed in Section 3. The implementation of our proposed
scheme is presented and the experimentation is demon-
strated in Section 4. Finally, conclusion is drawn along
with the discussion of our future research in Section 5.

2 BACKGROUND AND RELATED WORK
Previous research approaches aiming to enhance func-
tional speed of firewalls can be categorized into three
types. The first type focuses on discovery and elimination
of rule conflicts, especially redundant rules, to reduce the
rule size of a firewall. This can reduce memory space con-
sumption and processing time on a firewall. The second
type emphasizes on developing firewalls with high per-
formance hardware, such as implementing a firewall on

Field Programmable Gate Array (FPGA). Whereas, re-
search of the third type focuses on filtering mechanisms
of firewalls, for instance, converting firewall rules into a
tree structure which can process packets faster than a tra-
ditional sequential rule list.

In this section, we first conduct a review on the recent
advances in the afore-discussed research focuses. Then,
we present the achievements from our previous studies
on Tree-rule firewall. These achievements are the under-
lying infrastructure of the new hybrid firewall proposed
in this paper.

2.1 Enhancing processing speed via rule conflict

elimination

Rule conflicts have come into focus of many researches

on traditional firewalls. These firewalls use their listed
rules to filter packets. The listed rules shown in Table 1,
for example, illustrate how to regulate traffic traversing
over the network presented in Fig. 1 in compliance with
the network topology

In the context of firewall, rule conflicts can be classified
into two categories, the ones causing speed issues and the
ones causing security problems, respectively. As dis-
cussed in [2], [4] and [7], these rule conflicts result from
shadowed rules and redundant rules, and they present
critical impact on the performance of traditional firewalls.

Specifically, shadowed rules result in security prob-
lems on a traditional firewall. Rules blocking attack pack-
ets can be shadowed by some other rules with higher pri-
orities (i.e., positioned ahead of them) and may not be
used by the firewall at all. This, consequently, causes se-
curity problems and weakens the firewall [4]. Redundant
rules decrease the processing speed of a firewall [2][4].
This is because they are redundant to other rules and
waste the firewall's time to process them. Therefore,

Fig. 1. An example network.

TABLE 1
A SET OF LISTED RULES CREATED FOR AN EXAMPLE NETWORK IN

FIG. 1.

THAWATCHAI CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 3

shadowed rules and redundant rules should be cleaned
from a firewall rule set to improve the functional speed of
a firewall.

To detect these rule conflicts, Al-Shaer and Hamed ap-
plied the set theory in their work published in [2]. Their
approach is to map the original listed rules to a 'policy
tree'. The conflicting rules and the types of the conflicts
are reported after detection is completed. The authors
further extended their methods to discover anomalies
inside distributed networks [8].

The methods proposed in [7] also aim to discover rule
conflicts. However, the proposed method in [7] is based
on relational algebra techniques. It can discover more rule
conflicts in comparison with the method suggested in [2].
The findings highlighted in [2], [7] and [8] suggest poten-
tial solutions to remove these problematic rules from a
firewall rule set.

In addition, tools such as Binary Decision Diagrams
(BDDs) [9], Constraint Logic Programming (CLP) [10] and
Fireman Toolkit [11] were proposed to help analyze and
remove rule conflicts from the rule set of a listed-rule
firewall.

Although these studies [2][7][8][9][10][11] have intro-
duced several schemes to deal with rule conflicts, their
solutions are not satisfactory to this problem yet because
listed rules are still in favor of all these proposed
schemes.

2.2 Enhancing processing speed via hardware im-

plementation

Fong et al. [12] implemented their firewall on FPGA

devices to achieve a Terabit per second throughput for
large and complex rule sets. They presented a scalable
parallel architecture, named ParaSplit, for high-
performance packet classification. Moreover, a rule set
partitioning algorithm based on range-point conversion
was proposed to reduce the overall memory requirement
[12].

Likewise, Erdem and Carus [13] proposed a multi-
pipelined and memory-efficient firewall to classify pack-
ets. They designed high throughput SRAM-based parallel
and pipelined architectures on FPGAs. Hager et al. [14]
proposed the Massively Parallel Firewall Circuits (MPFC)
to generate customized firewall circuits in the form of
synthesizable VHDL code for FPGA configuration. They
claimed that MPFC circuits were highly parallel and
could achieve a deterministic throughput of one packet
per clock cycle.

However, the high speed performance achieved by the
above-mentioned firewalls [12][13][14] was relied on spe-
cial hardware (i.e., the FPGA) rather than on the design of
a rule set architecture or development of a filtering algo-
rithm.

2.3 Enhancing processing speed via advanced filter-

ing mechanisms

Ni et al. [15] applied statistical analysis on two

Transport layer protocol header fields of packets (i.e.,

Protocol and IP Address) based on the extracted features
and the characteristics of multi-tree and dual-index strat-
egy to decrease the firewall preprocessing time. This re-
search used the 'data storage structure and search dia-
gram' to filter packets. This structure is considered as a
tree structure. However, the tree consists of only the
fields of Protocol and IP address. It has no Port and Ac-
tion fields in their tree. Moreover, firewall administrators
still create firewall rules in a form of listed rule. Their ap-
proach compares the performance of their algorithm with
Stochastic Distribution Multibit-trie (SDMTrie) algorithm
[16] only. They claimed that their scheme was better than
traditional firewalls and firewalls working with the
SDMTrie algorithm. However, performance comparison
with standard firewalls (e.g., IPTABLES, Cisco ACL) and
any well known firewall algorithm is not presented.

Trabelsi et al. [17] proposed an analytical dynamic
multilevel early packet filtering mechanism to enhance
firewall performance. The proposed mechanism uses sta-
tistical splay tree filters that utilize traffic characteristics
to minimize packet filtering time. The statistical splay tree
filters are reordered according to the network traffic di-
vergence upon certain threshold qualification (Chi–
Square Test). They claimed that this method was faster
than traditional methods because unwanted packets were
rejected as early as possible, and the proposed mecha-
nism could also be considered as a device protection
mechanism against Denial-of-Service (DoS) attacks.

Hung et al. used B-Tree [18] to improve the speed of
classifying and processing packets on firewall. They pro-
posed a new two-dimensional early packet rejection tech-
nique based on the B-Tree. They defined a core firewall
process as the 'Original Filter', and created their new
scheme called 'Early rejected filter'. Their work focused
on preventing unwanted packets and applied the 'Origi-
nal Filter' to minimize packets traversing to the core fire-
wall process. Their scheme can reduce firewall processing
time under DoS attacks. However, under normal network
operations (without DoS attack), their 'Early rejected fil-
ter' scheme may slightly increase firewall processing time.

Liu and Gouda [19] proposed 'Diverse Firewall Design'
using tree-structured rules, which are converted from a
rule list, to discover and eradicate rule conflicts. Howev-
er, their work was still based on listed rules of traditional
firewalls.

Zhao et al. [21] proposed to use 'goto' function inside
listed-rule firewalls (e.g., a 'jump' command in IP-
TABLES). Although their rule structure looks like a tree
structure, their sub-rules (or nodes) contain listed rules.
Therefore, their firewalls are still deemed as Listed-rule
firewalls and are time consuming when performing linear
and sequential rule searching.

Likewise, although the methods proposed in [2][8] can
convert firewall rules to a 'policy tree', the 'policy tree'
cannot be considered as a tree-based filtering firewall
mentioned in this paper. This is because the 'policy tree' is
used only for rule conflicts discovery but not for filtering
packets.

Apart from the afore-discussed three types of ap-
proaches, recent research has been investigating to devel-

4 IEEE TRANSACTIONS ON CLOUD COMPUTING

op a new generation firewall based on Software Defined
Networking (SDN). For example, the firewalls proposed
in [22], [23], [24] and [25] employ SDN and support cen-
tralized management like SDN switches and SDN router
do. However, this SDN-based approach focuses on con-
nectivity and compatibility with other SDN devices in-
stead of firewall rule optimization.

2.4 Background of Tree-rule firewall

Chomsiri et al. have further studied firewall rules'

problems, and published their interesting findings in [3]
and [4]. They proposed a Tree-rule firewall to overcome
these problems. The Tree-rule firewall not only organizes
firewall rules in a tree structure as shown in Fig. 2 but
also filters out unwanted packets in accordance with tree-
structured rules. To inspect a packet, the Tree-rule fire-
wall first reads the relevant header fields from the packet.
Then, the value of the first header field is compared with
a firewall sub-rule stored in the root node of the tree. Af-
terwards, the firewall checks the other header fields se-
quentially against their respective tree nodes at the corre-
sponding levels. Finally, a consequent action, such as an
approval or a denial of access to the network, is taken on
the packet. As shown in Fig. 2, packet header fields in-
cluding Destination IP address (Dest IP), Destination Port
(Dest Port), and Source IP address (Source IP) are taken
into account in the example Tree rule. This tree structure
eases the design of firewall rules and makes sure that
they are conflict free, namely non-shadowed and non-
redundant rules.

To further improve the processing speed of the Tree-
rule firewall [4], we have proposed a stateful mechanism
in [5]. However, this mechanism requires hashing calcula-
tion [6] at least once per packet. Therefore, the speed of

the firewall can be significantly improved if this complex
hashing is eliminated. To achieve better speed perfor-
mance, we propose a new hybrid firewall in this paper.
The details of the proposed firewall are presented in Sec-
tion 3.

3 OUR APPROACH

In this section, we propose a hybrid firewall which is a
combination of a Tree-rule firewall and a traditional fire-
wall. A Tree-rule firewall's GUI presented in our previous
work [4] is used in the configuration phase to create tree
rules, which are then converted to traditional conflict-free
listed rules. During decision making, an incoming packet
is verified against the listed rules sequentially until a
match is found. Unlike the traditional firewalls, our hy-
brid firewall periodically re-arranges a sequence of rules.
Each rule is independently moved to its suitable position
in accordance with the number of matches with the in-
coming packets. For example, the rule matching with
most packets is moved up to the top of the list in order to
optimize the processing speed of the hybrid firewall.

3.1 Methodology

As shown in Fig. 3, there are four steps involved in the

Fig. 2. A Tree rule structure created for an example network in Fig. 1.

Fig. 3. Four steps of proposed scheme.

THAWATCHAI CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 5

process of our hybrid approach. In the first step shown in
Fig. 3-(1), a tree rule is created using the GUI by a firewall
rule designer. The created tree rule is then converted into
listed rules as shown in Fig. 3-(2). The listed rule is then
used in a core firewall for verifying against the header
fields of an incoming packet. 'Counter' field shown in Fig.
3-(3) records the number of packets matched with each
rule and is initially set to 0 for each rule. The 'Counter' of
a rule will increase by one when a match between an in-
coming packet and the rule is confirmed. The counter
determines which rule is most frequently matched. To
reduce the computational time, the most frequently
matched rule is relocated in the top of the list as shown in
Fig. 3-(4). The counters of all the rules will be reset to 0
when a pre-determined 'Time interval' (e.g., 3 seconds) is
reached. The 'Time interval' is specified by a firewall ad-
ministrator.

When putting into practice, a range of IP addresses
and a range of ports are applied in each line within nodes.
The root node shown on the left-hand side of Fig. 2 con-
sists of six lines. The range of numbers in each line does
not overlap with the ranges of numbers in other lines
within a same node. For example, the range [100.3.3.1-
100.3.3.254] does not overlap with the range [200.1.1.2-
200.1.1.2]. Likewise, the ranges of numbers in lines with-
in a node (e.g., the first node of 'Dest Port' column) do not
overlap with each other as well. These non-overlapping
ranges allow us to transform a tree rule into a set of con-
flict-free listed rules.

Transforming a tree rule into a listed rule can be done
for one rule path at a time. For example, the first rule path

([100.3.3.1-100.3.3.254]-->[22-22]-->[200.1.2.254
200.1.2.254]-->Accept)

can be transformed into the listed rule shown in Table 2.
The second rule path

([100.3.3.1-100.3.3.254]-->[22-22]-->[Else]-->Deny)

can be transformed into the listed rule shown in Table 3.

Bearing the same idea in mind, the tree rules shown in
Fig. 2 can be transformed to the listed rules shown in Ta-
ble 4.

After designing and transforming tree rules into listed
rules using the GUI, the listed rules shown in Table 4 are
loaded into the memory of the core firewall for verifying

TABLE 2

EXAMPLE OF A LISTED RULE TRANSFORMED FROM A RULE PATH

TABLE 3
EXAMPLE OF TWO LISTED RULES TRANSFORMED FROM A RULE

PATH

TABLE 4
THE LISTED RULES TRANSFORMED FROM

THE TREE RULES IN FIG. 2

6 IEEE TRANSACTIONS ON CLOUD COMPUTING

against incoming packets. The counter of each rule will be
increased individually when a packet is matched with a
rule. All rules are sorted in descending order according to
the value of a counter.

3.2 Discussion on efficiency

Although various methods [2][7][8][10][11][19] have

been designed to minimize rule conflicts through re-
arrangement of those frequent matched rules to the top
positions in a rule list, they do not guarantee that a con-
flict-free rule list can be reached.

Let us take the rule list illustrated in Table 1 as an ex-
ample. When the network is under attack of worms, the
last rule will be the most frequently matched rule within
the list and is applied to drop those attack packets. There-
fore, the last rule, namely Rule-29, will be re-positioned to
the top of the list. This creates an undesirable conse-
quence that all following incoming packets are blocked by
Rule-29 even though they may be allowed by the other
rules below. In contrast, individual listed rules created by
our proposed scheme as shown in Table 4 can be moved
to any position independently.

Moreover, given that the most frequently matched
rules are listed at the bottom of a rule list, data transmis-
sion overhead of the aforementioned firewalls increase
along with the expansion of their rule lists. This is be-
cause that it takes the firewalls' time to process un-
matched rules before reaching the matched one and al-
lowing/denying packets to pass through. According to
our studies, 1000 redundant rules can reduce data trans-
mission speed by approximately 10%. The drop of speed

depends on several factors, i.e., type of firewall [20] and
CPU speed of the machine running the firewall.

The decrease of data transmission speed prolongs data
transmission time of a system (e.g., time consumption for
downloading the data increases 10% if data transmission
speed drops by 10% as shown in Figs. 4-(a) and (b) re-
spectively). Moving the matched rule from the bottom of
firewall rule list to the top position (e.g., from rule num-
ber 1000 to rule number 1 enhances the data transmission
speed and shortens transmission time as illustrated in Fig.
4-(c). Using our proposed scheme, rule sorting is executed
periodically for each specified time interval, such as 1
second, 3 seconds or 5 seconds. Sorting the firewall rules
takes less time in comparison with rule matching. Time
consumption for data transmission using our proposed
scheme can be found in Fig. 4-(d). The time consumption
shown in Fig. 4-(d) is more than that revealed in Fig. 4-(c)
but less than that revealed in Fig. 4-(b).

In summary, there are five main factors determining
time consumption, T, for data transmission and they are
shown as follows.

- Time interval (w)
- Data size (F)
- Network speed (S)
- Efficiency of transmission speed before rule sorting

(e)
- Time for sorting rules (g)

Fig. 5 illustrates the time (T) used for transmitting data

and the five main factors. x axis and y axis denote trans-
mission time and transmission speed respectively. The
figure reveals the relation between time T used for data
transmission and the five important factors (i.e., w, F, S, e
and g). In this example, we assume that the matched rule
is at the bottom position of a rule list. The size of the rule
list is 1000, which decreases transmission speed by rough-
ly 10% of the maximum speed. In the first state, transmis-
sion speed begins with 90% (e=0.9) until the time reach
the Time Interval (w). Then, the firewall takes time g to
sort its rules. We assume that the transmission speed dur-
ing this period of time is 0 because the firewall is sorting

Fig. 4. Transmission speed versus transmission time

Fig. 5. Time (T) used for data transmission and the five main factors
(w, F, S, e and g).

THAWATCHAI CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 7

its rules and not processing any packets. At this moment,
data which have been transmitted is denoted as A1. After
the rule sorting is complete, the firewall continues to pro-
cess packets with its sorted rules. The transmission speed
can peak at 100% because the matched rule has been
moved up to the top position. When time interval w ends,
the firewall takes time g to re-sort its rules again. This
process repeats until the transmission of the last block of
data (A6) is complete. The time v used to transmit the last
block may be smaller than w. The total amount of data (F)
transmitted is F=A1+A2+A3+A4+A5+A6.

The efficiency, e, is determined by the number of rules.
We have created a special program to measure e with
1000 rules on a 2.8 GHz CPU computer and 345 Mbps
network speed. We found that e was approximately 0.9.
However, the value of e may vary in different environ-
ments because it is influenced by multiple factors. Like e,
g is also determined by the number of rules. However, it
equals to the base 2 logarithm of the number of rules be-
cause the Quick Sort [26] is used for rule sorting in this
paper. Thus, g increases slightly while the number of
rules increases. We measured g in the same environment
where e was done. We found that the value of g was ap-
proximately 1 millisecond for 1000 rules. The w is a free
parameter and assigned by firewall administrators. It can
be 1, 3 or 5 seconds. However, transmission time may be
longer than usual if w is specified inappropriately. The
details of w will be discussed later in Section 4.

3.3 A mathematical model for measuring time con-

sumption

Let

• n denote the number of data blocks that do
not include the first and the last data block
(e.g., n=4 in Fig. 5),

• F denote size of data being transmitted (in
bits),

• e denote efficiency of transmission speed be-
fore sorting the rules, 0 <e< 1,

• S denote speed of network (in bits per se-
conds),

• w denote time interval between two rule sort-
ings (in seconds),

• g denote time used for rules sorting (in se-
conds),

• v denote the time span of transmitting the last
block (in seconds), e.g., the time span of A6 in
Fig. 5,

• u denote v/w, 0 <u< 1, and
• T denote the time used for data transmissions.

Then, we have

 SvnSweSwF ++=

 SvnSweSwF +=−

 uwnwvnwSeSwF +=+=− /)(

 unwSeSwF +=− //)(

 SweSwFun /)(−=+

eSwFun −=+)/(
 (1)

The time T used for data transmissions shown in Fig. 5
is defined as,

uggwungw

uggwugwngw

uwgwngw

vgwngw

T

−+×+++=
−+++++=

++++=
++++=

)()()(

)()()(

)()(

)()(

 (2)

Substituting Equation (1) into Equation (2), we have
that

ug
w

g

S

F
gwe

ug
Sw

Fgw
gwegw

uggweSwFgw

T

−+++−=

−+++−+=

−+×−++=

)1())(1(

)
)(

()()(

)())/(()(

 (3)

Equation (3) reveals that the larger the data size F is,
the longer time it takes a system to transmit data. Similar-
ly, the higher the network speed S is, the shorter time the
system will take to transmit data. Moreover, g, w and e
also play important roles in determining the time used for
data transmission.

We have conducted a simple testing using this formula

on Microsoft Excel, and given some input data for observ-
ing the result and output graphs. The results are shown in
Fig. 6. We specified F = 2048 MB (16384 Mbits), S=300
Mbps, g=0.001 seconds and e=0.9. We calculated con-
sumption time T for w=0.25, 0.50, 0.75, 1.00, 1.25, 1.50,
1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25,
4.50, 4.75 and 5.00 respectively. Fig. 6 shows a relation
between the consumption time T in the vertical axis and
Time Interval w in the horizontal axis. The curve of graph

Fig. 6. Relation between Time use (T) and Time Interval (w)

8 IEEE TRANSACTIONS ON CLOUD COMPUTING

tells us that there is the optimal value of w which can give
the minimum consumption time T for data transferring.
In this case, w=0.75 causes T=54.7603, which is better than
the values T=54.7673, T=54.9313 and T=55.1243 when
w=1.00, 3.00 and 5.00, respectively.

Regarding to the operation without using our pro-
posed scheme, the firewall will take the time calculated
using Equation (4) below for data transferring.

 eS

F
T = (4)

Thus, in this example, without using our proposed
scheme, the firewall will take time: T= 16384/(0.9*300) =
60.6815 seconds. In contrast, using our proposed scheme,
the transferring time can be saved for 9.76% for w=0.75,
and 9.75%, 9.48% and 9.16% for w=1, 3 and 5 seconds,
respectively.

3.4 Determining time interval w

To determine the time interval w, we created a special

program to measure a time used for sorting 1000 rules.
We found that the sorting took less than 1 millisecond.
Taking a four minute data transmission as an example,
the sorting function is executed 80 (=4*60/3) times if rules
are sorted every 3 seconds. The overall time taken for rule
sorting is merely 80 milliseconds which is very small in
comparison with 4 minutes for the whole process. In the
networks that have a small size of data transmission, set-
ting the Time Interval to 3 seconds or 5 seconds may not
be suitable because a time use T of the firewall applying
the proposed scheme may be bigger than a time use T of
the firewall without applying the proposed scheme (not-
ing that the proposed scheme may waste firewall pro-
cessing times due to the sorting time g as shown in Equa-
tion (3)). Firewall administrators should calculate and set
a good value of Time Interval w to the firewall before us-
ing it. The proposed scheme focuses in cloud which most-
ly working with big size of data transferring. Thus, we
can set the Time Interval w to any value (e.g., 3 or 5 se-
conds) as long as the T calculated from Equation (3) is less
than the T calculated from Equation (4).

We have found that the optimal Time Interval can be
accurately estimated using Equation (5) below.

)1(eS

Fg
w

−
= (5)

We have derived Equation (5) based on Calculus from

a function represented as T=f(w), showing the relation-
ship between the time use (T) and the time interval (w).
The optimal w occurs at the minimum point on the curve
represented by this relation function (see Fig. 6) and can
be obtained by differentiating T with respect to w as
shown in Equation (6) below.

 0=
dw

dT
 (6)

From Equation (3) in Section 3, 'T' can be calculated by:

.))(1()1(uggwe
w

g

S

F
T −+−++=

Therefore, Equation (6) is equivalent to

.0)1()1(

)1()1(

))(1()1(

))(1()1(

2

1

1

=−+−=







−+=









−+−++=








 +−++=








 −+−++

−

−

e
Sw

Fg
we

S

Fgw

dw

d

gewe
S

F

S

Fgw

dw

d

gwe
w

g

S

F

dw

d

uggwe
w

g

S

F

dw

d

Thus,
)1(eS

Fg
w

−
= that proves Equation (5).

In Fig. 6, we have calculated the time use (T) for

w=0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50,
2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75 and 5.00,
respectively using Microsoft Excel. We have found that
the optimal w is 0.75 as we have discussed in subsection
3.2. With the same environments and parameters (e.g., the
same value of F, S, g and e), we have calculated w using
Equation (5), and found that the optimal w, which is
0.739008. Therefore, it can be concluded that the optimal
w can be estimated by either of the two methods as fol-
lows.

• Using the Equation (3) to find the minimum T
for various input values of w

• Directly using Equation (5)

4 IMPLEMENTATION AND EXPERIMENTATION
Similar to our previous schemes [4][5], we implement the
proposed schemes based on the Netfilter module
[27][28][29]. We hook packets' events using a technique
presented in [30] by calling the function named
'nf_register_hook' [30]. Before calling this function, the
hooking function must be declared first, as such in the
line: 'nfho.hook = hook_func'. When packets arrive at the
firewall, the 'hook_func' will be called. It will receive sev-
eral important parameters as shown below:

unsigned int hook_func(unsigned int hooknum,
 struct sk_buff *skb,
 const struct net_device *in,
 const struct net_device *out,
 int (*okfn)(struct sk_buff *))
{

}

THAWATCHAI CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 9

4.1 Experimental setup and environment

We create the Tree-rule firewall using C on Cent OS 6.3

Linux. It operates as a kernel module and runs in a kernel
level. Our original firewall source code, 'firewall.c', is
compiled into the 'firewall.ko' and can be executed by the
command '# insmod firewall.ko'. We develop rule editor
GUI using C# on Windows. The firewall rule is created
by GUI and is sent to the core firewall running on Linux.
The rule structure is modified for handling listed rules
and counters information.

We evaluate the firewall on one Giga bits per second

link speed LAN with seven standard PCs as shown in Fig.
7. The five clients and the firewall machine in this testbed
are equipped with a 2.4 GHz CPU and 4 GB RAM as well
as a Cent OS 6.3. The server is equipped with a 2.8 GHz
CPU and 8 GB RAM as well as an ESXi (by VM Ware
company) as OS/Hypervisor in a cloud environments.
Within the server, we create five Virtual Machines (i.e.,
guest OSs) to serve as web servers (as shown in Fig. 8).
Each Virtual Machine (VM) runs a Cent OS 6.3. All Ether-
net links operate on 1 Gbps speed including network
switches. Based on our experience, the performance on
different hypervisors, such as VMW, ESXi, Microsoft Hy-

per-V etc., are almost the same. Therefore, we decided to
test on only on ESXi for the proposed work in this paper.

In our experimentation, time used for downloading
big size of data (e.g., big files) is measured. To do so, we
store a 4 GB file on VM #1 (Server #1), and 2 GB files on
VM #2 and VM #3 respectively. We also place 1 GB files
on VM #4 and VM #5, respectively. During evaluation,
client #1 downloads a file from VM #1 only. Likewise,
client #i downloads a file from VM #i only. We measure
the downloading times on both 'automatic rule sorting'
and 'non-automatic rule sorting' modes.

4.2 Experiments

The equation used in subsection 3.4 for finding optimal

w considers a single file containing firewall rules. How-
ever, in a real network, multiple files are simultaneously
transmitted and each file may be matched with a different
rule as well. Moreover, the size of each transmitting file
may vary as well. Thus, finding the optimal "w" with mul-
tiple files is difficult. The selected w of 3 makes adminis-
trators easy to manage the network and takes a little time
for rule-sorting. For example, a computer LAB which is
matched with one allowed rule, and open 3 hours for us-
ers to use it. Assume that w is set to be 3 seconds on a
firewall. In this case, the firewall will sort its rules
3*60*60/3 = 3,600 times. If one round of rule sorting takes
0.002 seconds, the total sorting time will be 3600*0.002=7.2
seconds, which is 0.067% in comparison to the 3 hours.
This selected w leads to a little sorting time in total. The
firewall application developed using the proposed
scheme can display information in its monitor screen to
inform administrator which rules are the frequently
matched rules. It is similar to the 'top' command in Linux
which shows percentages of CPU used by each process. If
we specify a too small w (e.g., 0.5 or 1 seconds), it is hard

Fig. 7. Experiment with ESXi.

Fig. 9. Three cases of 'non automatic rule sorting' and a case of 'au-
tomatic rule sorting'.

Fig. 8. Five Linux Web Servers within a ESXi Hypervisor.

10 IEEE TRANSACTIONS ON CLOUD COMPUTING

for administrators to read the information within such a
short time window. In contrast, specifying a too big value
of w (e.g., 5 or 10 seconds) will result in slow reaction to
apply administrators' preferences. Hence, the w selected
in our experiments is set to 3 seconds.

To begin with, we test on 3 cases with non-automatic
rule sorting as shown in Cases #1, #2 and #3 of Fig.9. We
create 500 firewall rules and intentionally make rule #250
match with the 4 GB file. In this case, the first rule and the
last rule will match 2 GB files, while rules #125 and #375
match with 1 GB files. This is for measuring time con-
sumption in average case.

Case #2 is another average case for which five rules are
in almost middle position. These files are matched with
rules #248, #249, #250, #251 and #252, respectively. In
case #3, we want to simulate the worst case by creating
matched rules in positions 496, 497, 498, 499 and 500.

Secondly, we test with automatic rule sorting. We use
a 3-second time interval (w), i.e., all rules are resorted eve-
ry 3 seconds and a counter of each rule is reset to zero
after all rules are resorted. Whilst five files are download-
ed simultaneously, results of sorting may be different
from the right bottom picture of Fig. 9. They may be sort-
ed in many sequences as shown in Fig. 10.

Lastly, we test with 1000, 2000 and 4000 rules, respec-
tively. Five files start to transfer at the same time. We start
a timer at this point. All packets of files travel through
the firewall rules. We stop the timer when the transfer of
the last file is complete. In each case, we conduct the ex-
perimentation for five times, and the average result num-
bers are taken and highlighted in Table 5.

Case #1 and Case #2 in Table 5 are average cases,
whose results are very similar. Case #3 is the worst case
that takes a longer time in comparison with Case #1 and
Case #2. In three cases, the downloading times are longer
when the number of rule is increased. In the case of 'au-

tomatic rule sorting', firewall rules are sorted every 3 se-
conds so that five rules matching with fives active con-
nections are moved to the top five positions. In other
words, these rules are moved to rules with numbers 1, 2,
3, 4 and 5. The firewall has to verify packets against only
the first five rules and is not necessary to process the re-
maining unmatched rules. Consequently, time consump-
tion in this case is the smallest in comparison with the
other cases. Moreover, the time consumptions for 500,
1000, 2000, and 4000 rules are slightly different. The per-
centages of time saving are presented in Table 6. As
shown in Table 6, our scheme can reduce the processing
time of the firewall with 500 rules by 8.17% on average.
More time is saved in the cases with bigger rule sizes. For
example, the proposed method saves 60.89% of the time
for the case with 4,000 rules as shown in Table 6.

Apart from testing on ESXi Hypervisor, we also con-

duct experiments setting up a small LAN with four serv-
ers, four clients and our Tree-rule firewall in the perime-
ter. We compare the performance of our proposed fire-
wall with IPTABLES, the most popular open-source fire-
wall, using multiple sets of rule having different size. All
computers including the firewall machine in this testbed
are equipped with a 2.2 GHz CPU and 8 GB RAM. The
firewall’s OS is Cent OS 6.3 while the Back Track 5 R3 was
used as OS for servers and clients. The servers generate
packets using 'hping3' command with '—flood' parameter
to create and send the packets as fast as possible. This test
uses 1440 bytes packet size. We choose a bigger packet
size because HTTP typically uses packet size of 1400-1500
bytes.

The worst cases (when all packets are matched with
the last rules) can be tested by creating one matched rule
at the bottom position of firewall rule list. Apart from the
last rule, other rules are considered unmatched rules. This
condition is similar to case #3 of the previous experimen-
tation but using one matched rule at the bottom of rule
list.

 We measure speeds of IPTABLES with different rule
size, e.g, 100, 250, 500, 1000, 1500, 2000, 2500, 3000, 3500

TABLE 6
TIME SAVE IN PERCENTAGE

Fig. 10. Sequences of rules in 'automatic rule sorting'.

TABLE 5
TIME CONSUMPTION FOR TRANSFERRING FILES FROM SERVERS

TO CLIENTS (MINUTES)

THAWATCHAI CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 11

and 4000 rules. The 'hping3' command with '—flood' can
throttle the firewall to operate with its maximum speed
(throughput). With no rule (rule size=0), IPTABLES can
process 30956 packets per second, as shown in Table 7. In
Tables 7, the firewall speed was represented in term of
packets per second, and mega bytes per second. The data
were calculated using 1440 bytes packet size.

We can see, the speed of IPTABLES drops from 42.51

MB/s to 22.25 MB/s (47.66%) having 1000 rules. The per-
centage of speed drop increases when the firewall pro-
cesses a bigger rule size.

We also test the proposed firewall with the same con-
dition (as we tested IPTABLES) by disabling the feature
'Automatic rule sorting'. As shown in Table 8, speed of
our firewall operating with rule size=20000, 30000, 40000,
50000, 60000, 70000 and 80000 indecate that our firewall
operates faster than the IPTABLES approximately by 20
times. For rule size=1000, speed of our firewall drops only
7.43%. In comparison, IPTABLES speed drops by 47.66%.
The two plots as shown through Figure 11 and Figure 12
translate corresponding data present in Table 7 and Table
8. In the two plota, vertical axis of the graph represents
speeds of firewall in MByte/sec whereas the horizontal
axis represents numbers of rules.

We perform more experiments for the proposed fire-

wall to compare between operations with and without
'Automatic rule sorting'. Experimental results are pre-
sented in Table 9 and Figure 13.

TABLE 7
SPEED ACHIEVED THROUGH IPTABLES

TABLE 8
SPEED OF PROPOSED FIREWALL WITHOUT 'AUTOMATIC RULE

SORTING'

Fig. 11. Speed of IPTABLES (represented in graph)

Fig. 12. Speed of Proposed Firewall without 'Automatic rule sorting'
(represented in graph)

TABLE 9
SPEED OF PROPOSED FIREWALL WITH 'AUTOMATIC RULE SORT-

ING'

 -

 10.0

 20.0

 30.0

 40.0

 50.0

 - 1,000.0 2,000.0 3,000.0 4,000.0 5,000.0

IPTABLES

 -

 10.0

 20.0

 30.0

 40.0

 50.0

 - 20,000 40,000 60,000 80,000 100,000

The Proposed Firewall

12 IEEE TRANSACTIONS ON CLOUD COMPUTING

With rules size=1000 in Table 9, the proposed firewall

with 'Automatic rule sorting' gives 2.07% of speed drop
whereas operating without 'Automatic rule sorting' gives
7.43% (see Table 8). Figure 13 shows speed comparison
for three firewalls, i.e., (1) the proposed firewall operating
with 'Automatic rule sorting', (2) the proposed firewall
operating without 'Automatic rule sorting', and (3) IP-
TABLES. The results shown through these graphs con-
firm that our proposed firewall with 'Automatic rule sort-
ing' operates faster than IPTABLES significantly, and par-
ticulay with large size of rule set.

5 CONCLUSION AND FUTURE WORKS
In this paper, we have proposed a hybrid Tree-rule fire-
wall which reduces processing time in verifying packets.
The proposed firewall applies the concepts of Tree-rule
firewall in designing conflict-free rules and the concepts
of traditional firewall in decision making. Verifying in-
coming network packets against conflict-free listed rules
contributes a more secure and faster processing firewall.
Counters are introduced to analyze which rules match
with the most packets. The rules are sorted according to
the counters periodically, and the most frequently
matched rules are moved to the top positions. As such,
time spent in rule matching can be further reduced be-
cause a match can most possibly be found in the first few
rules.

We have also proposed a mathematical model to illus-
trate a relation between 'time use' for data transferring
and other relevant factors, especially 'time interval'.
Moreover, we have proposed an equation for calculating
an optimal 'time interval' with a mathematical proof
based on Calculus.

Experiments have been conducted using our imple-
mented testbed for evaluating the performance of our
proposed hybrid firewall on a big size of data transfer-
ring. The experimental results show that our scheme can
reduce firewall processing time significantly. For our fu-
ture research, we will further improve and test the pro-

posed firewall in other environments.

REFERENCES
[1] W. Cheswick, S. Bellovin, A. Rubin, Firewalls and Internet Security:

repelling the wily hacker, Addison-Wesley Professional, 2003.

[2] E. Al-Shaer, H. Hamed, Firewall policy advisor for anomaly detection

and rule editing, in: Proceedings of the IEEE/IFIP Integrated Manage-

ment, IM, 2003, pp. 17–30.

[3] T. Chomsiri, X. He, P. Nanda, Limitation of listed-rule firewall and the

design of Tree-rule firewall, in: Proceedings of the 5th International

Conference on Internet and Distributed Computing Systems, China,

2012, pp. 275–287.

[4] X. He, T. Chomsiri, P. Nanda, Z. Tan, Improving cloud network securi-

ty using the Tree-rule firewall, Future Generation Computer Systems,

Elsevier, 30 (2014) 116-126.

[5] T. Chomsiri, X. He, P. Nanda, Z. Tan, A Stateful Mechanism for the

Tree-rule Firewall, 2014 IEEE 13th International Conference on Trust,

Security and Privacy in Computing and Communications (TrustCom.

2014), 2014, pp. 122-129.

[6] P. Ayuso, Netfilter's Connection Tracking System, LOGIN;, The USE-

NIX magazine, 32 (2006) 34-39.

[7] C. Pornavalai. T. Chomsiri, Firewall Policy Analyzing by Relational

Algebra, In: proceeding of the 2004 International Technical Conference

on Circuits/Systems, Computers and Communications (ITC-CSCC),

2004, pp. 214-219.

[8] E. Al-Shaer, H. Hamed, R. Boutaba, M. Hasan, Conflict classification

and analysis of distributed firewall policies, IEEE Journal on Selected

Areas in Communications 23 (10) (2005) 2069-2084.

[9] S. Hazelhusrt, Algorithms for Analyzing Firewall and Router Access

Lists, Technical Report TR-WitsCS-1999, Department of Computer Sci-

ence, University of the Witwatersrand, 1999.

[10] P. Eronen, J. Zitting, An Expert System for Analyzing Firewall Rules, In:

Proceedings of the 6th Nordic Workshop on Secure IT-Systems

(NordSec), 2001, pp. 100-107.

[11] L. Yuan, J. Mai, Z. Su, FIREMAN: A toolkit for Firewall modeling and

analysis, In: Proceedings of the 2006 IEEE Symposium on Security and

Privacy, 2006, pp. 199-213.

[12] Fong, Jeffrey, Xiang Wang, Yaxuan Qi, Jun Li, and Weirong

Jiang. "ParaSplit: a scalable architecture on FPGA for terabit

packet classification." In High-Performance Interconnects (HO-

TI), 2012 IEEE 20th Annual Symposium on, pp. 1-8. IEEE, 2012.

[13] Erdem, Oğuzhan, and AydinCarus. "Multi-pipelined and

memory-efficient packet classification engines on FPGAs."

Computer Communications (2015).

[14] Hager, Sven, Frank Winkler, Bjorn Scheuermann, and Klaus

Reinhardt. "MPFC: Massively Parallel Firewall Circuits." In Lo-

cal Computer Networks (LCN), 2014 IEEE 39th Conference on,

pp. 305-313. IEEE, 2014.

[15] Ni, Cuixia, Guang Jin, and Xianliang Jiang. "A New Multi-tree

and Dual Index based Firewall Optimization Algorithm."

TELKOMNIKA Indonesian Journal of Electrical Engineering 11,

no. 5 (2013): 2387-2393.

[16] Fengjun S, Yingjun P, Xuezeng P, Bin B. Research on a Stochas-

tic Distribution MultibitTrie Tree IP Classification Algorithm.

Journal of Communications (in Chinese). 2008; 29(7): 109-117.

[17] Trabelsi, Zouheir, Mohammad M. Masud, and KilaniGhoudi.

"Statistical dynamic splay tree filters towards multilevel fire-

wall packet filtering enhancement." Computers & Security 53

(2015): 109-131.

[18] Hung, Nguyen Manh, and Vu Duy Nhat. "B-tree based two-

Fig. 13. Comparision of Firewalls’ speeds

THAWATCHAI CHOMSIRI ET AL.: HYBRID TREE-RULE FIREWALL FOR HIGH SPEED DATA TRANSMISSION 13

dimensional early packet rejection technique against DoS traffic

targeting firewall default security rule." In Computational Intel-

ligence for Security and Defense Applications (CISDA), 2014

Seventh IEEE Symposium on, pp. 1-6. IEEE, 2014.

[19] A. Liu, M. Gouda, Diverse Firewall Design, IEEE transaction on

parallel and distributed systems 19 (9) (2008) 1237-1251.

[20] "1000 redundant rules of IPTABLES (TCCSI-2015-01-0032.R1)",

https://www.youtube.com/results?search_query=TCCSI-

2015-01-0032.R1, 2016

[21] L. Zhao, A. Shimae, H. Nagamochi, Linear-tree rule structure

for firewall optimization, In: Proceedings of Communications

Internet and Information Technology, 2007, pp. 67-72.

[22] M. Kang, J. Choi, H. Kwak, I. Kang, M. Shin, J. Yi, Formal mod-

eling and verification for SDN firewall application using

pACSR, In Electronics, Communications and Networks IV: Pro-

ceedings of the 4th International Conference on Electronics,

Communications and Networks (CECNET IV), Beijing, China,

2014, pp. 155.

[23] S. Kumar, R. Perumalraja, Establishing User-Defined Firewall

in Software Defined Network, International Journal of Research

2(6)(2015), pp. 28-31.

[24] M. Suh, S. Park, B. Lee, S. Yang, Building firewall over the

software-defined network controller, In Advanced Communi-

cation Technology (ICACT), 2014 16th International Confer-

ence, 2014, pp. 744-748.

[25] H. Hu, G. Ahn, W. Han, Z. Zhao, Towards a reliable sdn fire-

wall, Presented as part of the Open Networking Summit (ONS

2014), 2014.

[26] "Java Applets Centre - University of Canterbury",

http://www.cosc.canterbury.ac.nz/mukundan/dsal/QSort.ht

ml, 2015

[27] R. Rosen, Netfilter, Linux Kernel Networking, Apress, (2014)

247-278.

[28] The netfilter.org project, 2014, http://www.netfilter.org/.

[29] P. Ayuso, Netfilter's Connection Tracking System, LOGIN;, The

USENIX magazine, 32 (2006) 34-39.

[30] Fidel, Vidal, and José María. "Mecanismopara el accesopúblico

a servidores con direccionamientoprivado." (2011).

Thawatchai Chomsiri is a Ph.D. student at the Faculty of Engineer-
ing and Information Technology (FEIT) of the University of Technol-
ogy, Sydney (UTS), Australia. He is also an Assistant Professor at
the Department of Information and Communication Technology in
the Faculty of Informatics of the Mahasarakham University, Thailand.
Mr. Chomsiri has 17 years of experience in industry, teaching and
research. His research interests are computer networking, and com-
puter and network security.

Xiangjian He is a Professor of Computer Science. He is also the
Director of Computer Vision and Recognition Laboratory and a co-
leader of the Network Security Research group at the University of
Technology, Sydney (UTS). He is an IEEE Senior Member. He has
been awarded Internationally Registered Technology Specialist by
International Technology Institute (ITI). His research interests are
network security, image processing, pattern recognition and comput-
er vision.

Priyadarsi Nanda is a Senior Lecturer in the School of Computing
and Communications, and is a Core Research Member at the Centre
for Real-time Information Networks (CRIN) at the University of Tech-
nology, Sydney (UTS). His research interests are network QoS,
network securities, assisted health care using sensor networks, and
wireless networks. Dr Nanda has over 23 years of experience in
teaching and research.

Zhiyuan Tan is a Postdoctoral Researcher in Services, Cyber secu-
rity and Safety Research Group, Faculty of Electrical Engineering,
Mathematics and Computer Science, University of Twente, Nether-
lands. His research interests are network security, pattern recogni-
tion, machine learning and distributed computing.

