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Abstract 

Engineering problems are generally described by mathematic models, and the parameters 

in mathematic models are usually assumed to be deterministic when solving these 

models. However, many parameters are hard to obtain accurately in practical application, 

which leads to the uncertainty of parameters. The uncertain parameters may induce the 

response of theoretical analysis that is quite different from the actual instance. In order to 

characterize the response of system more accurately, the uncertainty analysis methods 

need to be introduced. For the design optimization, considering the uncertainty may help 

to improve the reliability and robustness of design solution. This thesis investigates both 

the aleatory (random) uncertainty and epistemic uncertainty (expressed by interval 

variables in the thesis), by using the Polynomial Chaos (PC) expansion theory and 

Chebyshev polynomials approximation theory, respectively. Since there are many cases 

that both types of uncertainty are existed simultaneously, the hybrid uncertainty is also 

investigated in this thesis. A new hybrid uncertainty analysis method based on the 

orthogonal series expansion is proposed in this study, which solves the two types of 

uncertainty in one integral framework. The design optimization under uncertainty is also 

investigated based on the proposed uncertainty analysis method. The detailed content of 

this thesis is shown as follows.  

The interval uncertainty analysis theory is firstly studied in this thesis. By using the 

Chebyshev polynomials that have high accuracy in the approximation theory of 

polynomials, a new Chebyshev inclusion function based on the Chebyshev series 

expansion is proposed. The Chebyshev inclusion function can compress the wrapping 

effect of interval arithmetic more efficiently than the traditional Taylor inclusion function, 

especially for the interval computation of non-monotonic functions. On the other hand, 
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the Chebyshev inclusion function does not require the derivatives information which has 

to be given in the computation of Taylor inclusion function. Therefore, the proposed 

Chebyshev inclusion function is quite easier to implement than the Taylor inclusion 

function. The Chebyshev inclusion function is applied to solve the ordinary differential 

equations (ODEs) and differential algebraic equations (DAEs) with interval parameters, 

which are used to solve the mechanical dynamic systems with interval parameters.  

Secondly, the random uncertainty analysis based on the PC expansion is investigated, 

where the polynomials series are used to approximate the response of a system with 

respect to the random variables. The hybrid uncertainty analysis method using the 

orthogonal series expansion is proposed, termed as Polynomial-Chaos-Chebyshev-

Interval (PCCI) method, which is the combination of PC expansion method and 

Chebyshev interval method. Since both the polynomials used in PC expansion and 

Chebyshev polynomials belong to the orthogonal polynomials, the PCCI method 

investigates the random uncertainty and interval uncertainty under one integral 

framework. Two types of evaluation index of hybrid uncertainty are also proposed in the 

PCCI method, which is then used in the analysis of vehicle dynamics containing hybrid 

uncertainty.  

Thirdly, considering the interval uncertain parameters or variables existed in the 

optimization problems, the interval optimization design is investigated. To improve the 

computational efficiency of traditional nested optimization procedure in uncertainty 

optimization, the interval arithmetic is employed to delete its inner loop optimization. A 

new Chebyshev polynomials-based surrogate model is proposed to improve the 

computational efficiency in further. The numerical examples for the vehicle suspension 

design and truss structure design indicate that the interval optimization method has a good 

balance between the accuracy and efficiency. The interval optimization method is also 
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employed to solve the continuous structural topology optimization problem with 

uncertain load conditions, which gives a more robust solution than the traditional 

deterministic topology optimization method. 

Lastly, the hybrid uncertainty optimization model is proposed by combining the PCCI 

method and the classical optimization algorithms. To use the traditional mathematical 

programming method, the sensitivity of objectives and constraints with uncertain 

parameters are derived. For the application, the proposed hybrid uncertainty optimization 

method is used in the optimization of a planar truss and a space truss structures. 

Compared with the deterministic optimization and pure random uncertainty optimization, 

the hybrid uncertainty optimization provides a more feasible solution. 

Key words: interval uncertainty; hybrid uncertainty; Chebyshev polynomials; 

Polynomial Chaos expansion; orthogonal polynomials. 
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Chapter 1 Introduction 

1.1 Overview of the project 

The parameters in mathematical models of engineering problems are considered as exact 

values in traditional. However, the parameters in practical situations have some uncertain 

extent, i.e. the values of parameters are not accurate, which may change around their 

mean values. In engineering, the uncertainty widely exists, e.g. when we design a 

mechanical component, there is a tolerance of the geometry size for manufacturing easily; 

the inhomogeneity of materials may cause more uncertain mechanics parameters, 

including the mass and mass moment of inertia uncertainty induced by the uncertain 

density, and the stiffness uncertainty induced by the variation of elastic modulus; the 

variation of environment changes the performance of a system, such as the automotive 

will have different response when it drives on different roads. In many complicated 

systems, especially for the highly nonlinear system, an even very little variation of 

parameters may lead to a quite different response of the system. At the same time, the 

uncertain parameters have an obvious influence on the reliability and robustness of the 

system, so it is quite necessary to investigate the uncertainty in practical engineering 

problems. 

Uncertainty can be classified into two different types [1, 2], namely aleatory and 

epistemic uncertainty. Aleatory uncertainty, also termed as objective or stochastic 

uncertainty, describes the inherent variation associated with a physical system or 

environment. Epistemic uncertainty or subjective uncertainty, on the other hand, derives 

from some level of ignorance or incomplete information about a physical system or 

environment. The aleatory uncertainty is commonly described by the probabilistic 
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variables while the epistemic uncertainty may be described as the interval variables or 

fuzzy variables and so on. Although the probabilistic methods to solve the stochastic 

problems have more application in the uncertainty research, there may be some 

deficiency for the probability methods in solving the epistemic uncertainty problems. 

Most epistemic uncertainties are hard to be described by a probabilistic model accurately. 

If we still try to use the probabilistic methods to solve these problems, the uncertain 

variables have to be assumed to satisfy some probability distribution. However, Ben-

Haim and Elishakoff [3] have shown that even small variations deviating from real values 

may cause relatively large errors to the probability distributions. To overcome the 

weakness of probabilistic methods, the interval method is quite fit for solving the 

epistemic uncertainty problems. Nonetheless, the interval methods are the complimentary 

rather than the replacement of probabilistic methods. If there is plenty of information to 

describe the uncertain variables, the probabilistic methods will be a good choice since 

they can provide more useful information, but the interval methods are better for the case 

that only a little information can be obtained. 

The interval arithmetic has been rapidly developed in recent two decades for its high 

computational efficiency. Therefore, there have been more and more researchers using 

the interval arithmetic to solve the interval uncertainty problems. The overestimation 

intrinsically existed in interval arithmetic usually lead to a very conservative result, so 

most of the investigations about interval arithmetic are focused on the control of 

overestimation. In the dynamic systems, the overestimation is more difficult to control 

than the static problems, which is still a hot point in the research of interval arithmetic. 

On the other hand, the research of uncertainty is mainly focused on only one type of 

uncertainty, i.e. the pure probability uncertainty or pure interval uncertainty. As the 

author’s known, there are only a few publications that study the two types of uncertainties 
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simultaneously, but many practical engineering problems contain both types of 

uncertainties. For example, in vehicle dynamics, the stiffness and damping ratio of 

suspension have some aleatory uncertainties that should be expressed by the random 

variables. At the same time, the mass, mass center position, and mass moment of inertia 

have some epistemic uncertainties that are induced by the load condition variation. It is 

hard to obtain the probability distribution information of the load, so they are fit to denote 

as interval variables. In this case, if we only use the probability methods to solve the 

problem, some assumptions have to be added, which may lead to a large deviation 

between the theory analysis and actual results. On the contrary, if only the interval 

methods are used, some probability information cannot be utilized, which produces less 

useful information. Therefore, it is necessary to propose a new theory and method of 

hybrid uncertainty, which provides higher accuracy and more useful information. Some 

scientific problems should be solved, e.g. the evaluation index of hybrid uncertainty, and 

the hybrid uncertainty modeling considering both types of uncertainty characteristics. 

In the design of optimization, it is necessary to consider the uncertain factors to guarantee 

the reliability and robust of systems, which impels the rapid development of the 

reliability-based design optimization (RBDO) and robust design optimization (RDO). 

Nevertheless, most of the RBDO and RDO focus on the probability uncertainty 

optimization while the interval uncertainty and hybrid uncertainty optimizations have not 

been investigated widely. To extend the application of uncertainty design of optimization, 

both the interval uncertainty and hybrid uncertainty optimization will be researched in 

this thesis. When the interval uncertainty and hybrid uncertainty optimization are studied, 

the uncertainty evaluation index and optimization efficiency are two key points need to 

solve.  
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In this thesis, the Chebyshev polynomials are firstly used to solve interval uncertainty 

problems. The proposed Chebyshev interval method can control the overestimation better 

than the traditional Taylor interval method, especially for the dynamic problems. 

Secondly, the orthogonal polynomials are used to build the hybrid uncertainty model, 

which incorporates the Polynomial Chaos (PC) expansion theory with the Chebyshev 

interval method to propose a new hybrid uncertainty analysis method. Two types of 

evaluation indexes will be proposed to characterize the hybrid uncertainty. Finally, the 

design of optimization under the interval uncertainty and hybrid uncertainty will be 

studied by using the proposed uncertainty analysis theory and some optimization 

algorithms.  

1.2 Research objective and contribution to knowledge 

The specific objectives and contributions are given as follows: 

(1) Propose a new Chebyshev polynomials based interval analysis method to solve 

the dynamic problems, including the ordinary differential equations (ODEs) and 

differential algebraic equations (DAEs) under interval uncertainty. The Chebyshev 

interval method has better performance to compress the overestimation of interval 

arithmetic compared with the traditional Taylor inclusion function method, 

especially for the calculation of non-monotonic functions, which is quite 

important to the research of interval arithmetics. 

(2) The Polynomial-Chaos-Chebyshev-Interval (PCCI) method, a hybrid uncertainty 

analysis method, based on the orthogonal series expansion will be proposed. The 

PCCI method handles the random uncertainty and interval uncertainty in the one 

integral framework, and also investigates the new evaluation indexes of hybrid 

uncertainty. The hybrid uncertainty analysis is more suitable for the practical 
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engineering application than the traditional pure probability or pure interval 

uncertainty method. 

(3) The interval uncertainty optimization will be investigated. The interval 

optimization model considers both the reliability and robustness simultaneously. 

The interval arithmetic is employed to improve the computational efficiency and 

feasibility of design solution. The robust topology optimization of continuous 

structure considering interval uncertainty will also be studied, where the load is 

considered as interval parameters.  

(4) The design optimization under hybrid uncertainty will be investigated. To use the 

traditional mathematical programming method, the sensitivity of objectives and 

constraints with uncertain parameters are induced. The design of optimization 

under hybrid uncertainty is more in line with the practical cases of engineering 

problems. 

1.3 Outline of the thesis 

The thesis consists of 7 chapters, shown as follows: 

Chapter 1: The main aims and contributions of the thesis are introduced. 

Chapter 2: A literature review of the probabilistic uncertainty, interval uncertainty, and the 

design of optimization under uncertainty are given in this chapter.  

Chapter 3: The interval arithmetic is firstly introduced in this chapter. The Chebyshev 

polynomials approximation theory is then used to derive the Chebyshev inclusion 

function. The ODEs and DAEs with interval parameters are solved by using the proposed 

Chebyshev inclusion function, which is applied in mechanical dynamic problems. 
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Chapter 4: The PC expansion theory is introduced at the beginning of this chapter. A new 

hybrid uncertain analysis method is proposed, which combines the PC expansion and 

Chebyshev interval method, termed as PCCI method. Two types of evaluation indexes are 

defined to describe the hybrid uncertainty information. The application of the PCCI 

method on vehicle dynamics analysis is provided at the end of this chapter. 

Chapter 5: The design of optimization under interval uncertainty is presented. The 

interval optimization model is used to replace the traditional nested optimization model, 

which improve the computational efficiency of optimization. The interval uncertainty 

optimization is applied to the design of a planar structure, a double wishbone vehicle 

suspension, and a Mitchell-type structure.  

Chapter 6: The design of optimization under the hybrid uncertainty is presented. The 

hybrid uncertainty optimization model is based on the robust design optimization theory 

and hybrid uncertainty analysis method. The hybrid uncertainty optimization method is 

applied to optimize a planar truss and a space truss structures.  

Chapter 7: Discussion and further development recommendation are given, and the 

contributions of the thesis are summarized. 
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Chapter 2 Background and literature review 

The mathematical models are widely used to describe the inner principle that causes the 

much different external phenomenon. This procedure usually introduces a lot of 

uncertainties, which in transport-transformation models can be classified as natural 

uncertainty, model uncertainty, and data or parametric uncertainty, depending on their 

origins and on how they can be addressed [4]. 

Natural uncertainty exists in some systems, especially in environment and biological 

systems, which are inherently stochastic due to unavoidable unpredictability. Some 

quantities random in principle, e.g. in air pollution systems, the turbulent atmosphere and 

unpredictable emission-related activities contribute to the natural uncertainty. Some 

quantities are modelled as random quantities due to the unaffordable expensive precise 

measurement. On the other hand, some quantities vary over time, over space, or across 

individuals in a population, termed “variability”, which also belongs to the natural 

uncertainty. 

When the mathematical model is used to express the engineering problems, the practical 

problems usually need to be simplified or increase some corresponding assumptions. The 

best mathematical model uses the simplest way to describe the problems that we are 

interested in, and its accuracy can satisfy our requirement. When we choose the model, 

the trade-off between the accuracy and efficiency has to be considered. Choosing 

different model will produce a different analysis result, which contributes the model 

uncertainty. 

There are many resources that can produce the parametric uncertainty. Measurement error 

is the largest resource of parametric uncertainty, including the random errors in the 
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measurement device, systematic biases that occur due to imprecise calibration or 

inaccuracies in the assumptions used to infer the actual quantity of interest from the 

observed readings of a “surrogate” or “proxy” variable. Other potential sources of 

uncertainties in estimates of parameters include misclassification, estimation of 

parameters through a small sample, and estimation of parameters through non-

representative samples [4]. 

The parametric uncertainty is mainly researched in this thesis. Parametric uncertainty can 

be further classified into two different types, namely aleatory uncertainty and epistemic 

uncertainty [1, 2]. Aleatory uncertainty or objective uncertainty describes the inherent 

variation associated with a physical system or environment, generally expressed by 

probabilistic variables. Epistemic uncertainty or subjective uncertainty derives from some 

level of ignorance or incomplete information about a physical system or environment, 

which is described as the non-probabilistic variables, e.g. the interval variables or fuzzy 

variables and so on. Figure 2-1 shows the probabilistic variable, fuzzy variable, and 

interval variable. It can be found that the probabilistic variable is characterized by the 

probability distribution function and the fuzzy variable is expressed by its membership 

function, while the interval variable is only expressed by its bound values.  

 

Figure 2- 1(a) probabilistic variable  (b) fuzzy variable  (c) interval variable 

This thesis is focused on the investigation of interval uncertainty, and the hybrid of 

probability and interval uncertainty, so more detailed reviews about the probability 
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uncertainty analysis, interval uncertainty analysis, and design of optimization under 

uncertainty will be provided in the following subsections.

2.1 Probabilistic uncertainty analysis 

Probabilistic methods are the most widely used approach in uncertainty research. There 

have been many pieces of literature studied the theory and application of probabilistic 

methods, e.g. Papoulis [5] illustrated the probability theory and random variables 

comprehensively. In the probability methods, uncertain parameters are described by the 

random variables that satisfy some probability distributions, and the response of the 

system is also expressed by some probability distributions. There are two steps for 

probabilistic methods solving the engineering problems, the first of which is the 

determination of the probability distribution of input parameters (random variables), and 

the second of which is the uncertainty propagation of computational model. The 

distribution of parameters may be obtained through the statistics or the experience of 

experts. The statistics use a large number of samples or some representative samples to 

estimate the probability distribution, which have been introduced by many publications 

[6]. When the number of samples is limited, the professional knowledge of experts may 

be used to determine the probability distribution type. The propagation of uncertainty is 

the key to probabilistic method, which studies how to obtain the probability 

characteristics of system response from the probability information of input parameters. 

The methods for solving the propagation of probabilistic uncertainty in engineering can 

be broadly classified into two major categories: methods using a statistical approach and 

methods using a non-statistical approach. Monte Carlo method [7, 8] is one of the most 

widely used statistical methods, which can be utilized in any engineering areas because it 

is easy to implement. The Monte Carlo method takes samples of the random variables 
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based on the probability distribution of these random variables (input) and then computes 

the probability distribution of response (output) directly. The accuracy of Monte Carlo 

method depends on the sampling size, in accordance with the weak law of large 

number  (the convergence ratio is , where N denotes the sampling size). Therefore, to 

get enough high accuracy, the Monte Carlo method usually requires thousands of 

sampling points. For many complicated engineering models, each running takes a large 

amount of time, e.g. a finite element simulation for vehicle crash usually takes over tens 

of hours. In this case, the thousands of running for Monte Carlo method cannot be 

affordable. As a result, the Monte Carlo method is often used as the reference of other 

methods. To improve the efficiency of Monte Carlo method, some researchers propose 

some modified Monte Carlo methods, in which the sampling methods are improved, so 

less sampling points are required, such as the stratified sampling, Latin hypercube 

sampling, and so on [9, 10]. 

For the non-statistical approaches, the differential analysis methods are most popular, 

including the perturbation method and Neumann expansion method. The perturbation 

method expands the random field by using the Taylor series around its mean and 

truncated at certain order. Typically, at most second-order expansion is employed because 

the system of equations becomes extremely complicated beyond second-order. This 

approach also termed as the ‘second moment analysis’, has been used extensively in 

various fields [11-13]. The weakness of perturbation method is that the uncertainties 

cannot be too large, i.e. the variance of random field cannot be too large compared with 

their mean values, e.g. typically less than 10% [11]. At the same time, higher order 

statistics is not readily available for the second moment method. The Neumann expansion 

is based on the inverse of the stochastic operator in a Neumann series, but it also requires 
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the small uncertainty extent of random variables.  

Another type of non-statistical method comes from the stochastic finite element spectral 

method, which relies on the use of representing stochastic processes in terms of a series 

expansion, specifically the Karhunen-Loeve expansion [5, 14]. This expansion is termed 

as Polynomial Chaos (PC) expansion, so this method is also called as PC expansion 

method. The PC expansion allows high-order representation and promises fast 

convergence; coupled with K-L decomposition for the input and Galerkin projection in 

random space, it results in computationally tractable algorithms for large engineering 

systems [15]. More efficient Monte Carlo algorithms can also be designed when 

combined with the PC expansion technique [15, 16]. More recently, a theoretical 

framework of discretizing the random field via the finite element approach, i.e., piecewise 

polynomials, was proposed in [17]. 

The PC expansion method has been developed fast in recent two decades since it is quite 

fit for the problems with large uncertainty extent parameters. It has been widely used in 

various engineering problems, such as in fluid mechanics, multibody dynamics, vehicle 

dynamics, and so on.  

Xiu et al. [11] presented a generalized polynomial chaos algorithm for the solution of 

stochastic elliptic partial differential equations subject to uncertain inputs. A Galerkin 

projection in random space was applied to derive the equations in the weak form. The 

resulting set of deterministic equations for each random mode was solved iteratively by a 

block Gauss–Seidel iteration technique. Both discrete and continuous random 

distributions were considered, and convergence was verified in model problems and 

against Monte Carlo simulations. The authors also used the generalized PC expansion 

algorithm to model the input uncertainty and its propagation in incompressible flow 
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simulations [18]. 

Field Jr et al. [19] explored features and limitations of PC expansion approximations. 

Metrics was developed to assess the accuracy of the PC expansion approximation. A 

collection of simple but relevant examples was examined. The examples demonstrated 

that (1) the accuracy of the PC expansion approximation improved in some metrics as 

additional terms were retained but did not exhibit this behavior in all metrics considered, 

(2) PC expansion approximations for strictly stationary, non-Gaussian stochastic 

processes were initially non-stationary and gradually might approach weak stationarity as 

the number of terms retained increased, and (3) the development of PC expansion 

approximations for certain processes might become computationally demanding, or even 

prohibitive, because of the large number of coefficients that needed to be calculated. 

Wan et al. [20] formulated a Multi-Element generalized Polynomial Chaos (ME-gPC) 

method to deal with long-term integration and discontinuities in stochastic differential 

equations. The main idea of ME-gPC is to decompose the space of random inputs when 

the relative error in variance becomes greater than a threshold value, and then a gPC 

expansion is employed in each subdomain or random element. The authors developed a 

criterion to perform such decomposition adaptively and demonstrated its effectiveness for 

ODEs. 

Ghanem et al. [21] presented a methodology that permitted the prediction of the evolution 

of dynamical systems in the presence of stochastic uncertainty. Specifically it has been 

demonstrated that the random scatter in the model properties can be efficiently and 

accurately characterized in a PC basis. Encoding the model uncertainty in this fashion led 

to response predictions that accurately reflected the systems behavior. An alternative to 

the simulation-based non-intrusive estimation of the response chaos, the propagation of 
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the model uncertainty can also be performed through the intrusive evaluation of the time 

history, based on Galerkin projections. The latter approach was particularly efficient if the 

variability of the systems properties was small, since then a Taylor approximation of the 

stochastic restoring force was accurate, and the complexity of the computations was 

drastically reduced. 

Williams et al. [22] employed the PC expansion to solve a simple first order stochastic 

differential equation that was typical of transport problems. Because the equation had an 

analytical solution, it provided a useful test of the efficacy of PC expansion.  The results 

show that the convergence was very rapid in some cases but that the increased complexity 

associated with many random variables could lead to very long computational times. The 

usefulness of white noise approximation was also assessed. Extensive numerical results 

were given which highlight the weaknesses and strengths of PC expansion. The general 

conclusion was that the method was promising but required further detailed study by 

application to a practical problem in transport theory. 

Li et al. [23] developed an algorithm to calculate the tractive capacity of an off-road 

vehicle with stochastic vehicle parameters, operating on soft soil with an uncertain level 

of moisture, and on a terrain topology that induced rapidly changing external excitations 

on the vehicle. Both the Monte Carlo method and PC expansion method were used, and 

the results showed that the two methods provided similar accuracy, but the PC expansion 

method was much more computationally efficient. 

The PC expansion methods in the papers mentioned above are mainly based on the 

Galerkin projection, which is a kind of intrusive method. For some complicated models, 

especially for the black box problems, the Galerkin method is difficult to use. To solve 

this problem, some researchers have proposed the Stochastic Response Surface Method 
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(SRSM) [24-27], which is still based on the PC expansion theory. Be different from the 

Galerkin projection, the SRSM uses the regression method to realize the PC expansion. 

Sandu et al. [28] have proved the equivalence between the Galerkin method and SRSM. 

The procedure of SRSM is the same with the traditional response surface method; the 

only difference is that the SRSM employs the orthogonal polynomials as the basis of 

regression procedure. Therefore, the SRSM is a kind of non-intrusive method, which can 

be more widely used to the complicated models and black box models. The SRSM has 

been used in multibody dynamics, structure dynamics, and optimization problems [29-33]. 

In summary, the Monte Carlo method is usually used as the reference of other methods 

while the PC expansion methods are very useful to solve the problems with large 

uncertainty extent but low dimensional problems. Particularly, the SRSM of the PC 

expansion methods has quite good performance to solve the complicated or black box 

problems. 

2.2 Interval uncertainty analysis 

When the probability information of uncertain variables is hard to obtain, the interval 

numbers can be used to characterize the uncertainty. An interval number is determined by 

its upper bound and lower bound, and all the possible values of the variable are located in 

the range of the two bounds. A famous and very old example of an interval enclosure was 

given by the method due to Archimedes. He considered inscribed polygons and 

circumscribing polygons of a circle with radius 1 and obtained an increasing sequence of 

lower bounds and at the same time a decreasing sequence of upper bounds for the area of 

the corresponding disc. Thus stopping this process with a circumscribing and an inscribed 

polygon, each of n sides, he obtained an interval containing the number . By choosing n 

large enough, an interval of arbitrary small width can be found in this way containing 
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[34]. 

Reference [35] stated the rules for the arithmetic of intervals and applied it to evaluate the 

rational expression, which is called today interval arithmetic, and it is one of the first 

references to introduce the interval arithmetic as a tool in numerical computation. 

According to [36], Dwyer has discussed matrix computations using interval arithmetical 

ready in his book [37] in 1951. Probably one of the most important papers for the 

development of interval arithmetic was published by the Japanese scientist Teruo Sunaga 

[38]. In this publication not only the algebraic rules for the basic operations with intervals 

could be found but also a systematic investigation of the rules which they fulfilled. 

However, these results did not find much attention until the first book on interval analysis 

appeared which was written by Moore [36]. 

Initially, the interval arithmetic was designed to solve the problem of numerical error 

occurring on the computer, including the truncated error and round-off error. Because the 

irrational number cannot be exactly described by the float number of the computer while 

only the closest float number can be used to denote the actual number, so there may be 

some accumulative error in the calculation of computer. To solve this problem, Moore et 

al. changed the expression of an irrational number by two closest float numbers on the 

computer, and defined a corresponding arithmetic to guarantee the exact result of 

computation be located in an interval. In recently several decades, the interval arithmetic 

has not only developed rapidly in numerical computation but also been applied in many 

engineering, especially for the uncertainty analysis and optimization, e.g. the reliability 

based design optimization and robust design optimization and so on. In the interval 

arithmetic, the uncertain input parameter x is expressed by the symbol ,x x x , in 

which we do not know the exact value of x but only know its two bounds, and then using 
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the interval arithmetic to compute the interval response of a system ,y y y . 

The interval arithmetic can obtain the response range of system in high efficiency, but it 

has a weakness that is the overestimation induced by the wrapping effect, which means 

the range obtained by the interval arithmetic is usually enlarged, compared with the actual 

result. In general, the more times of interval variables occur in the expression of a 

function, the wider interval result may be obtained. Therefore, even the same function 

under different expression may produce different interval result by using interval 

arithmetic. How to reduce or control the overestimation of interval arithmetic is the key 

of interval arithmetic used in practical engineering problems and is also the main research 

content of interval arithmetic. In the following subsections, we will review the application 

of interval arithmetic in static problems and dynamic problems, respectively. 

2.2.1 Interval arithmetic solving the static problems 

Interval arithmetic to solve the static problems includes the following contents: the 

interval range estimation of a function, the solving of the linear system and nonlinear 

system, and the eigenvalue problems. The static problems have been used in engineering, 

such as the stress and displacement analysis of structure, the frequency of vibration 

system, the reliability analysis in product design, and global optimization. 

When the real float number is extended to real interval number, the traditional real 

function will also be extended to the interval real function. One of the most important 

capabilities of interval arithmetic is to compute the interval enclosure of a function, so 

interval function is also called as inclusion function. Interval arithmetic can compute an 

interval enclosure of the range of a function, but this interval enclosure may be enlarged 

much, which is termed as overestimation. As a result, the original interval arithmetic has 

to be adjusted. There have been three types of interval inclusion function to compute the 
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interval range of a function, including the natural inclusion function, centred inclusion 

function, and Taylor inclusion function [39].  

The Natural inclusion function is the direct extension of the original real function, in 

which the interval arithmetic is directly used to compute the interval function value, but 

the overestimation is usually quite large, especially for a function that the interval 

variables occur several times in its expression. Reference [40] stated that the natural 

inclusion function will not be enlarged if the interval variables only occur once in the 

expression of a function, but most of the functions cannot make each interval variable 

only occur once. 

The centred inclusion function uses the mean value theorem to rewrite the original 

expression as a new expression with respect to the mid-value and derivative of the 

function, and then the interval arithmetic is used to calculate the interval range. The 

Taylor inclusion function, which is an extension of centred inclusion function, expands 

the original function as high-order Taylor series and then uses the interval arithmetic to 

calculate the interval range. The Taylor inclusion function requires that the evaluated 

function has high-order continuity. Reference [41] has compared the three inclusion 

functions, which shows that the Taylor inclusion function produces the tightest interval in 

most cases while the centred inclusion function shows better performance than the natural 

inclusion function only in the case that the interval variables have large uncertain range. 

The solving of interval linear system is the inverse problem of the function range 

estimation. The interval linear system is expressed as following equation 

Ax = b      2-1

where the A denotes the interval matrix, b is an interval vector, and the solution x is also 

an interval vector. The traditional Gaussian elimination method can be combined with the 
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interval arithmetic to present the interval Gaussian elimination method [42]. However, 

this method usually produces large overestimation, so its application is restricted. To 

control the overestimation, some researchers have proposed some interval iteration 

methods to solve the interval linear system, e.g. the references [43-47]. 

Be different from the interval arithmetic solving the linear system that contains the 

interval parameters, the nonlinear system does not contain interval parameters while the 

interval arithmetic is only used to solve the traditional certain nonlinear equations. Since 

the nonlinear equation has several solutions generally, the interval arithmetic can be used 

to seek all the solutions that are located in a given initial interval. The interval methods to 

solve the nonlinear system include the interval Newton method [36], Krawczyk method 

[48, 49], and the forward-backward propagation method [39, 50]. Interval Newton 

method is the interval extension of traditional Newton method. Since the interval Newton 

method requires solving a linear interval equation in iteration where the Jacobian matrix 

may be singular and is limited to solve the problem with small interval solution, its 

application is restricted. The Krawczyk method does not require solving the interval 

linear equation in the iteration, which improves the solving efficiency and reliability. 

Although the Krawczyk method still needs to calculate the inverse matrix, the matrix is 

real matrix rather than the interval matrix. Hensen and Sengupta [51] proposed the 

Hensen-Sengupta algorithm that combined the Gauss-Seidel procedure and the Krawczyk 

method. Neumainer [49] stated that the Hensen-Sengupta algorithm produced tighter 

interval than Krawczyk method. Benhamou and Jaulin proposed the forward-backward 

propagation method [39, 50] based on the Waltz’s propagation theory [52-54]. 

When the elements of a matrix are interval numbers, the eigenvalues and eigenvectors are 

also interval numbers and interval vectors, respectively. Rohn et al. [55] investigated the 

standard eigenvalue of symmetric interval matrix and derivated the formula to solve 
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eigenvalue when the radius of interval matrix equaled to 1. Hallot et al. [56] found that 

the characteristic spectrum of interval matrix depended on the characteristic spectrum of 

its endpoints.  Deif et al. [57] proposed the theorem to solve the standard interval 

eigenvalues problems. Qiu et al. [58-60] extended the Deif’s method to generalized 

interval eigenvalues problems. 

The interval methods mentioned above have been used in engineering, especially in the 

structure dynamics. Chen et al. [61] used the interval arithmetic to the finite element 

method, computing the static displacement of a structure under interval parameters. The 

authors also used the interval arithmetic to investigate the robustness of vibration control 

system [62]. Qiu et al. [63, 64] combined the finite element method and non-probabilistic 

convex model theory, proposing a convex model method and interval analysis method to 

compute the static displacement of the structure. Moens et al. [65] proposed an interval 

sensitivity analysis method that has been used in interval numerical method. More 

applications of the interval arithmetic solving the static problems can be found in 

references [66-70].  

2.2.2 Interval arithmetic solving the dynamic problems 

The governing equations of dynamic problems are usually the differential equations, 

including the Ordinary Differential Equations (ODEs), Partial Differential Equations 

(PDEs), and Differential Algebraic Equations (DAEs). Traditional numerical algorithms 

to solve the differential equations assume that all the parameters in the differential 

equations are exactly known. When some parameters are considered to be interval 

numbers, the interval differential equations should be solved. Solving the dynamic 

problems under interval uncertainty is quite different from the static problem because the 

numerical methods for solving the differential equations contain a larger number of 
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iterations. If only the interval set theory is used to solve the interval differential equations, 

the wrapping effect will increase with the increase of time, and even makes the numerical 

methods divergent. Therefore, besides the basic interval theory, some special algorithms 

have to be incorporated to control the overestimation. 

There are two types of methods to solve the interval ODEs, interval Taylor series method 

[34, 71-73] and Taylor model method [74-77]. Interval arithmetic can obtain the upper 

bound and lower bound of the solution in the time domain, which guarantees the exact 

result to be located in the interval defined by the two bounds, so this method is also called 

as validated method. 

Each step of interval Taylor series method includes two phases, where the first phase is to 

compute a step size and a prior enclosure of the solution that contains the exact solution 

of the time span from the current time step to the next time step (algorithm ), while the 

second phase is to compute a tighter enclosure of the solution (algorithm ) [72].  

In phase 1, Moore et al. used Banach’s fixed point theorem and the Picard Lindelof 

operator to determine the step size. However, even the high-order Taylor series was used 

to decrease the overestimation in phase 2, the step size of Moore’s method was limited to 

Euler step size, i.e. the first-order enclosure [71]. To increase the step size, some 

researchers proposed the polynomials enclosure method [78] and high-order Taylor series 

method [36, 72, 79], which were called as the high-order enclosure. Phase 2 is the key to 

controlling the overestimation for interval Taylor series method. Moore et al. [36, 80] 

proposed a local transformation method to control the wrapping effect. Kruckeberg et al. 

[81] used the linear transformation of interval vector to enclose the solution of ODEs at 

each step. Lohner et al. [82] proposed a QR decomposition method that denoted the 

solution of ODEs by the linear transformed interval vectors. Rihm et al. [83] proposed an 
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extended mid-value method, which was similar to the QR decomposition method but 

usually showed better performance. Besides the interval Taylor series method, Nedialkov 

et al. [84] proposed an interval Hermite-Obreschkoff (IHO) method. IHO method can be 

thought as a generalized interval Taylor series method, but it had smaller truncated error 

and higher stability. The IHO method calculates less high-order Taylor coefficients and 

Jacobian matrix, so it has higher computational efficiency.   

Taylor model method, which was proposed by Berz et al. [74, 75, 77, 85-90], combined 

the two phases of interval Taylor series method to one phase. Taylor model method tries 

to reduce the dependence among interval variables to control the wrapping effect, so its 

basic principle is different from the interval Taylor series method. Taylor model expands 

the ODEs to a high-order Taylor series with respect to the time and the interval initial 

values, which may reduce the dependence among the interval variables, so as to control 

the overestimation. Besides the high-order Taylor series are used to express the Taylor 

model, another interval term should be added to guarantee the exact solution to be located 

in the interval. The coefficients of Taylor series is calculated based on the float number, 

which also helps to reduce the overestimation. Berz et al. coded a toolbox COSY IFINTY 

[91] to solve the dynamic problems under interval uncertainty, which was based on the 

Taylor model method. 

Both the interval Taylor series method and Taylor model method only solve the ODEs 

with interval initial values, without considering interval parameters. The Taylor model 

method is easier to extend to solve the ODEs with interval parameters because it can also 

be expanded as Taylor series with interval parameters. Lin et al. programmed the software 

toolbox VSPOSE [92], which used the phase 1 of the Taylor series method to control the 

step size, and then employed the extended Taylor model method in phase 2. At the same 

time, the additional interval term of Taylor model was computed by QR decomposition 
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method. Since the VSPODE assemble several interval methods, it usually produced 

tighter interval result than other single method. 

The aforementioned numerical methods for solving the interval ODEs were focused on 

the characteristic of ‘rigorous enclosure’, i.e. the interval solution must contain all the 

exact solution of the interval ODEs firstly, and then reduced the overestimation induced 

by the interval arithmetic. When the ODEs have a strong nonlinear characteristic, or the 

range of interval parameters is large, these methods will still produce too large 

overestimation to be used. To keep the numerical stability, the approximated method is 

commonly used in engineering. Although the approximated method may not guarantee 

the solution to be validated, it has more practical usefulness due to the stability. 

Qiu et al. [93, 94] combined the perturbation theory and finite element method to analyze 

the dynamic response of structure considering interval parameters. Wu et al. [95] used the 

first order Taylor expansion method to calculate the dynamic response of the linear 

structure with interval parameters. Zhang et al. [96] computed the dynamic response of a 

close-loop system under interval uncertainty by using the matrix perturbation theory and 

interval arithmetic. Han et al. [97] employed the linear function to approximate the 

dynamic response of composite–laminated plates with uncertain load and material 

properties, but this method was only fit for the case that uncertain range was small 

enough. Qiu et al. [98] investigated the dynamic response of nonlinear vibration system 

by using the second order Taylor expansion method. These methods mentioned above are 

actual a simplified Taylor model method, by using the first or second order Taylor model 

without considering the additional interval term. Due to the additional interval term is 

neglected, they are more stable. However, only low-order Taylor series expansion is used, 

there will be a large numerical error in solving the highly nonlinear problems. More 
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applications of interval arithmetic in dynamic problems can be found in references [99-

101]. 

To overcome the weakness of Taylor model method, the author proposed the Chebyshev 

interval method [102]. The Chebyshev interval method firstly expands the evaluation 

function with respect to the interval variables using the Chebyshev series, and then uses 

the interval arithmetic to estimate their bounds. In fact, the Chebyshev method can also 

be considered as a degenerated PC expansion method, since it also expands the original 

function to an orthogonal series. However, the Chebyshev series expansion only needs the 

bounds information rather than the probability distribution information of uncertain 

variables, which is quite different from traditional PC expansion in solving the random 

uncertainty. 

There is only a little research about interval method for solving the PDEs [103-105] and 

DAEs [106-110]. In mechanical dynamics, especially for multibody dynamics, most of 

the control equations are DAEs. Compared to the ODEs, even the traditional DAEs only 

containing certain parameters are hard to solve, so there will be more difficulties to solve 

the DAEs with interval parameters. The author used the Chebyshev interval method to 

solve the multibody dynamic problems with interval parameters [111], which showed that 

the Chebyshev interval method provides tighter result than the Taylor inclusion function 

based method.

2.3 Uncertainty optimization  

Traditional design optimization is based on the assumption that all the values of 

parameters are exactly known, which may lead the design of a solution to be located in 

the unfeasible region when the uncertainties exist. Therefore, it is necessary to investigate 
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the design of optimization under uncertainty since the uncertainty cannot be avoided in 

practical engineering problems.  

There have been many different methods that can be used to model uncertainty 

optimization, among which the reliability-based design optimization (RBDO) [112] and 

the robust design optimization (RDO) [113-115] represent two major paradigms. RDO 

aims at determining a robust design to optimize the deterministic performance about a 

mean value, while making it insensitivity with respect to uncertain variations by 

minimizing the performance variance. RBDO focuses on a risk-based solution taking into 

account the feasibility of design target at expected probabilistic levels, in which the 

failure probabilities and expected values are used to quantitatively express the effects of 

uncertainties. In fact, RDO and RBDO can be represented in the uniform theory 

framework. For instance, Du et al. [116] proposed an integrated framework for the design 

optimization under uncertainty, which took both the robust of the design objective and the 

probability of the constraints into account. 

The implementation of the design optimization considering uncertain parameters contains 

two procedures. The first is the optimization algorithm for seeking the optimum solution 

at the nominal values of the design variables, while the second is the uncertainty 

quantification that quantifies the uncertainty by using some evaluation indexes, such as 

the probability of failure or the generalized reliability index [117], the variance of 

evaluation functions (objective and constraint functions) in optimization model [114] and 

so on. In most cases, the two procedures are implemented by using the double-loop [112, 

118] or the sequential single-loop optimization [119]. To reduce the computational cost of 

the double-loop optimization, one option is to use the first-order Taylor series expansion 

to approximate the maximum and minimum values in the inner loop [120], instead of 

using the optimization algorithm. Chakraborty et al. [121] applied the matrix perturbation 
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theory via a first order Taylor series expansion to obtain a conservative dynamic response 

of interval functions. Chen et al. [62] used the first-order Taylor series expansion to 

analyze robust response of interval vibration control systems. In fact, the linearization 

model optimization is actually a type of degenerative nested optimization, in which the 

inner loop of optimization is replaced by the first-order Taylor series expansion. However, 

the linearization model has a lower numerical accuracy, which may lead to a solution 

located in unfeasible regions. There also have been some studies that try to combine the 

two procedures into one single step, e.g. the single-loop optimization in RBDO [122-

124], but the uncertain ranges of parameters are required to be small.  

Since the first procedure only refers to the conventional optimization algorithms, the 

second procedure for uncertainty quantification (or uncertainty analysis) will be the key 

for design of optimization under uncertainty. In the quantification of the uncertainty about 

probabilistic variables, the optimization method [125], Monte Carlo simulation [7, 126], 

and PC expansion method [11, 127] are usually employed. The optimization method is 

mainly used in the first-order reliability method (FORM) to find the most probable point 

(MPP) [123]. The optimization method has also been combined with the response surface 

method to quantify the uncertainty [128, 129]. The Monte Carlo simulation can be 

conveniently implemented and may obtain comprehensive statistic information of 

evaluation functions, such as mean, variance, failure probability, probability density 

function (PDF) and cumulative distribution function (CDF). However, the Monte Carlo 

simulation usually requires a large number of sampling points due to its low convergence 

ratio, so the computational cost may be expensive for engineering models. 

The PC expansion method can be used to estimate the response of a system under random 

uncertainty, to greatly reduce the computational cost. Hu et al. [130] presented an 

adaptive-sparse PC expansion method for performing engineering reliability analysis and 
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design, and the applications demonstrate the efficiency and accuracy of this method. Li et 

al. [131] proposed a hybrid approach by sampling both the PC expansion surrogate model 

and the original system to evaluate the failure probability efficiently. Coelho et al. [132] 

combined the moving least squares and PC expansion to build a surrogate model and then 

research the reliability based design optimization in truss structure, which showed the 

method provided accurate solutions at an affordable computational time. To improve the 

accuracy of PC expansion based surrogate model, Xiong et al. [133] proposed a new 

weighted SRSM based on PC expansion that considered the sampling probabilistic 

weights.   

In the quantification of interval uncertainty, the evaluation indexes of uncertainty are 

described by the upper and lower bounds (maximum and minimum values) of the 

evaluation functions. The bounds of evaluation functions can be calculated using 

optimization methods [134, 135] or interval arithmetic [61, 98, 136]. The optimization 

methods may capture the exact bounds of the evaluation functions if the optimization 

algorithms have the capacity to seek the global optimum. Since the global optimization 

algorithms are generally time-consuming, the mathematical programming methods are 

usually employed to find a local optimum solution, which will be effective when there are 

not multiple local solutions in the uncertainty range. Interval arithmetic is the other 

effective method to estimate the bounds of the evaluation function, and it may produce an 

envelope of the evaluation function. The interval arithmetic has higher efficient than the 

optimization algorithm, but the envelope is usually wider than the actual bounds 

(overestimation) [36]. There have been some techniques developed to control the 

overestimation, referred to subsection 2.2. The author studied the interval optimization of 

vehicle suspension [137] and truss structure [138] under interval uncertainty by using the 
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Chebyshev interval method, which shows a good trade-off between the accuracy and 

efficiency.   

Most of the aforementioned methods of uncertainty quantification are only focused on 

one type of uncertainty. However, many engineering problems involve both types of 

uncertainties simultaneously. Qiu et al. [139] proposed a probabilistic and interval hybrid 

reliability model to solve the structural design optimization problem, but the expression 

of limit state functions is required to be simple  Gao et al. [140] studied the hybrid 

uncertainty analysis for structures, in which both the Taylor expansion and Monte Carlo 

simulation are combined to determine the bounds of mean and standard deviation of the 

evaluation functions. Du et al. [141] investigated the reliability analysis under the hybrid 

uncertainty. The aleatory uncertainty was modeled with probability distributions by the 

probability theory, while the epistemic uncertainty was modeled with basic probability 

assignments by the evidence theory. A computational method was developed to compute 

belief and plausibility measures for black-box performance functions. This method 

involved the nested probabilistic analysis and interval analysis. To handle black-box 

functions, the first order reliability method for probabilistic analysis and nonlinear 

optimization for interval analysis were employed. Jiang et al. [142] employed the nested 

double-loop optimization to implement the analysis of hybrid uncertainties, in which the 

outer layer optimization is to find the MPP induced by the random uncertainty and the 

inner layer optimization is to seek the extreme values under interval uncertainty. The 

nested optimization is computationally prohibitive for design problems in engineering, 

and so Du et al. [143] used the sequential single-loop optimization to analysis the hybrid 

uncertainties. Ge et al. [144] applied the single-loop optimization for the hybrid reliability 

assessment. Eldred et al. [145] combined the PC expansion and interval optimization to 

quantify the hybrid uncertainties. However, the above methods are normally implemented 



Chapter 2 Background and literature review

28 

by using the optimization algorithms so that the efficiency will be low. Recently, the 

author combined the PC expansion method and Chebyshev interval method to develop a 

new uncertainty analysis method for vehicle dynamics performance under the hybrid 

uncertainties, which shows good accuracy and efficiency [146]. This hybrid uncertainty 

analysis method will be used in this thesis.



Chapter 3 Interval uncertainty analysis based on Chebyshev series

29 

Chapter 3 Interval uncertainty analysis based on 

Chebyshev series 

3.1 Interval arithmetic 

3.1.1 Basic theory of interval arithmetic 

The uncertain parameter may be expressed by interval number, i.e. interval number is an 

enclosure of all the possible values of the uncertain parameter. A real interval number [x] 

denotes a connected subset on real set, defined as 

= , x x x (3-1) 

where x and x denotes the lower bound and upper bound of interval number [x], 

respectively, i.e. the possible minimum and maximum number of [x], which can also be 

delegated by inf([x]) and sup([x]), respectively. The mid value and width of interval 

number are defined as follows: 

+=mid =
2c

x xx x (3-2) 

= -w x x x      (3-3) 

The interval number can also be transformed to the following expression 

= + ,  = - ,
2 2c

w x w x
x x x x  (3-4) 

where x is the symmetrical interval of [x]. The basic interval arithmetic between two 

interval numbers is defined as 
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,x y x y x y (3-5a) 

,x y x y x y     (3-5b) 

min , , , , max , , ,x y xy xy xy xy xy xy xy xy   (3-5c) 

,                     0,0

1 ,1 ,              0

1 , ,           0, 01 ,   1

,1 ,         0, 0

, ,            0, 0

y

y y y

y y yx y x y y

y y y

y y

  (3-5d) 

The power function of interval variable can be computed by using the following formula 

  

0,max , ,                    2 ,  0

= min , ,max , ,  2 ,  0

, ,                                  2 +1

n n

n n n n n

n n

x x n k x

x x x x x n k x

x x n k

  (3-6) 

where k denotes non-negative integer. If a function f is defined as a mapping from real set 

R to R, the corresponding interval function [f] is defined as the enclosure of function f 

mapped from the interval domain [x], such that  

    f x f x x x (3-7) 

Most of the continuous interval functions can be computed through the combination of 

Eqs. (3-5) and (3-6), but some elementary functions have to be computed by some special 

algorithms. The interval exponential function is computed by the Eq. (3-8). 

    exp exp ,expx x x (3-8) 

The previous formula uses the monotonic of exponential function. For the trigonometric, 

its periodic characteristic can be used to implement the interval computation. The 

algorithm of interval Cosine function is given as follows 
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_

_

if   2   

    then  inf cos 1;

else  inf cos min cos ,cos ;

if  2   

    then  sup cos 1;

else  sup cos max cos ,cos .

k Z k x

x

x x x

k Z k x

x

x x x

  (3-9) 

where Z denotes the integer set. For example [cos]([1, 5.5])=[-1, 0.7087], shown as Fig. 

3-1. 

2 4 60-2-4

-1

-0.5

0.5

1

1 5.5

Figure 3-1 The computation of interval Cosine function 

3.1.2 Interval inclusion function 

Consider a function f from Rn to Rm. The interval function [f] from IRn to IRm is an 

inclusion function for f if 

,nx IR f x f x (3-10) 

where IR denotes the interval real set. The interval function [f]([x])=Rm, for all [ ] nx IR  

is an example of a (not very useful) inclusion function for all functions f from Rn to Rm. 

One of the purposes of interval analysis is to provide, for a large class of functions f that 

can be evaluated reasonably quickly and such that [f]([x]) is not too large. The function f 
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may, for instance, be polynomial, or given by an algorithm. It may even be defined as the 

solution of a set of differential equations. 

1x

2x

1x
_

1x

2x

_

2x

x

1y

2y

Figure 3-2 The interval inclusion function from R2 to R2 

To illustrate the notion of inclusion function, consider a function f from R2 to R2, with 

variables x1 and x2 that vary within [x1] and [x2]. The image set [f]([x]) may have any 

shape, e.g. shown as Fig. 3-2 [39]. It may be non-convex, or even disconnected if f is 

discontinuous. Whatever the shape of [f]([x]), an inclusion function [f] of f makes it 

possible to compute a box [f]([x]) guaranteed to contain it. 

We find that the inclusion function may be quite wider than actual function, which is the 

unavoidable overestimation in interval arithmetic. How does the overestimation occur in 

inclusion function? Let us use a simple one-dimensional function to express the reason 

clearly. 

Consider the following one-dimensional quadratic polynomial function 

    2 2 1,  0,2f x x x x    (3-11) 

If the interval arithmetic is used to calculate this function, the calculation contains three 

steps: 1) calculate the interval function [f1]([x])=[x]2=[0,4], shown as the left plot of Fig. 
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3-3; 2) calculate the interval function [f2]([x])=-2x+1=[-3,1], shown as the middle plot; 3) 

calculate the interval function [f]([x])=[f1]([x])+[f2]([x])=[0,4]+[-3,1]=[-3,5], shown as the 

right plot. Therefore, the final interval result is [-3, 5] by using the interval arithmetic. 

However, the actual interval should be [f(x)*]=[0, 1], if we plot the f(x) on the domain of 

[0, 2]. 

Figure 3-3 Overestimation of interval arithmetic 

The overestimation is induced by that the f1(x) and f2(x) are considered to be two 

independent interval numbers, but they are dependent actually, i.e. both of them are the 

function of x. Most of the overestimation in interval arithmetic is induced by the 

dependency among several interval variables. 

The first idea that comes to mind in order to build an inclusion function for f: Rn  R is 

to perform two optimizations to compute the infimum and supremum of f when each xi is 

constrained to belong to [xi]. At least in principle, one should thus get the smallest 

interval containing f([x1],…,[xn]), denoted by [f]*([x1],…,[xn]). However, these 

optimization problems turn out be far from trivial in general [39], so the interval inclusion 

function is usually used to estimate the interval range of function. There are mainly three 

types of inclusion function, i.e. natural, centred, and Taylor inclusion function. 
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Natural inclusion function 

Consider a function  

   1 1: , ,..., ,...,n
n nf x x f x xR R    (3-11) 

expressed as a finite composition of the operator +, -, ×, / and elementary functions (e.g. 

sin, cos, exp, sqr…). An inclusion monotonic and thin inclusion function [39] [f]: IRn  

IR for f is obtained by replacing each real variable xi by an interval variable [xi] and each 

operator or function by its interval counterpart. This function is called the natural 

inclusion function of f. If f involves only continuous operators and continuous elementary 

functions, then [f] is convergent. If, moreover, each of the variables (x1,…,xn) occurs at 

most once in the formal expression of f then [f] is minimal. 

Natural inclusion functions are not minimal in general, because of the dependency and 

wrapping effects. The accuracy of the resulting interval strongly depends on the 

expression of f, as illustrated by the following example [39]  

   221 1 2 1 4f x x x x x x    (3-12) 

The three formal expressions of f are equivalent for the computation of float numbers. 

Evaluate their natural inclusion function for [x]=[-1, 1]: 

1 1 2,2f x x x (3-13a) 

                    2
2 1,2f x x x                                (3-13b) 

                    
2

3 1 2 1 4 1 4,2f x x .                       (3-13c) 

The accuracy of the interval result thus depends on the formal expression of f (Fig. 3-4). 

Since [x] occurs only once in f3 and f3 is continuous, [f3] is minimal, i.e. equals to the 
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exact range of f([x]). In most cases, it is impossible to find a formal expression that each 

interval variable occurs only once, so the natural inclusion function is rarely used. 

Figure 3-4 Three natural inclusion function for the same function 

Centred inclusion function 

Let : nf R R be as scalar function of a vector x=[x1,…,xk]T. Assume that f is 

differentiable over the box [x], and denote mid([x]) by xc. the mean-value theorem then 

implies that 

    T, c cf fx x z x x x g z x x    (3-14) 

Where gT is the gradient of f, i.e., a column vector with entries , 1,...,i ig f x i k . 

Thus, 

T, c cf fx x x x g x x x (3-15) 

Where [gT] is an inclusion function for gT, so  

   T
c cf fx x x x xg    (3-16) 

Therefore, the interval function 

T T
c c c cf f fx x x x x x x xg g (3-17) 
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is an inclusion function for f, which we shall call the centred inclusion function. To 

illustrate the interest of this function in the 1-dimensional case, consider the function 

[fc](x) from R to IR defined by 

c cf x f x f x x (3-18) 

for any given [x]. This function can be viewed as affine in x with an uncertain slope 

belonging to [ ]([ ])f x . The smaller w([x]) is, the better the centred inclusion function is. 

When the width of [x] tends to 0, there will be the following formula  

     1cw f x

w f x
    (3-19) 

When the width of [x] is small, the effect of the pessimism possibly resulting from the 

interval evaluation of [gT]([x]) is reduced by the scalar product with [ ]x , which is a 

small interval centred on zero. 

The centred inclusion function for a function f from Rn to R can be noticeably improved 

by using the mixed centred inclusion functions. The main idea to get a mixed centred 

inclusion function is to apply the centred inclusion function with each variable in turn. 

The mixed centred inclusion of the n-dimensional function is expressed by 

1 1
1

,..., , ,...,
k

c i i i c kc i ic
i

f f g x x x x x xx x (3-20) 

The mixed centred inclusion function can get tighter interval than the centred inclusion 

function for multi-dimensional function. 

Taylor inclusion function 

Reconsidering the derivation of centred inclusion function, the high-order Taylor series 

can be used to approximate the function : nf R R , which leads to the Taylor inclusion 
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function. Assume that function f(x) has kth-order continuous derivatives with respect to 

x=[x1…xn]T, so f(x) can be expanded as following kth-order Taylor series. 

1,1 1,

1,1 1,

1,
1

,1 ,

,1 ,

,
1

1 1
11

1 1 1
,1 , 1

- ... - ...
...

1                      - ... -
!... ! ...

n

n
n

ci
i

k k n

k k n
n

ck i
i

p p
c c n ncp p

np

k
p pc

c n nc kp p
k k n np k

ff f x x x x
x x

f x x x x R
p p x x

x

x

x x

(3-21) 

where Rk+1 is the remainder term of Taylor expansion, and , 0,1, 2...,k ip k . To simplify 

the expression, introduce the following operator 

   1

1
1

1

1
... 1 1

0 ,...,

1. ...
!... ! ...

n

n
n c

n

h
h pp

n pp
p p h n n

p p h

G G
p p x x

x

G   (3-22) 

The Eq. (3-21) can be simplified as 

    +1
=0

- +
k h

c k
h

f f Rx x x    (3-23) 

Therefore, the Taylor inclusion function is expressed by 

  +1 +1
=0 =0

- + = +
k kh h

T c k k
h h

f f R f Rx x x x  (3-24) 

In engineering, the interval remainder term [Rk+1] in Eq. (3-24) is usually neglected, 

because this term has little influence on the result if the k is large enough. 

Under mild technical conditions, the natural, centred and Taylor inclusion function are 

convergent. Roughly speaking, the convergence rate of a convergent inclusion function is 

the largest  such that [39] 

     w f x w f x w x    (3-25) 
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when w([x]) tends to 0. When an inclusion function is minimal, its convergence rate is 

infinite. The convergence rate of a natural inclusion function is at least linear, i.e.,  1, 

whereas the convergence rate of centred form is at least quadratic (  2). The 

convergence rate of a Taylor inclusion function is also at least quadratic for any order 

n 2. Quadratic convergence looks of course more interesting than linear convergence, but 

it should be remembered that it only means that more accurate results will be obtained in 

the case of infinitesimal boxes. Noting similar can be said on the behavior of these 

inclusion functions for boxes of a more realistic size. When the box involved is large, the 

natural inclusion function is generally more satisfactory than the centred inclusion 

function, whereas the latter performs better when the box is small, with the mixed version 

superior to the standard version [39]. No approach to building an inclusion function can 

claim to be uniformly the best, and a compromise between complexity and efficiency 

must often be struck. One may also use several inclusion functions and take the 

intersection of their image sets to get a better approximation of the image set of the 

original function. 

To compare these inclusion functions, the following function is evaluated by the three 

inclusion functions. 

    21 xf x x x e      (3-26) 

Compute the range of the function on two different intervals respectively 

    1 20,2 ,  0.9,1.1x x     (3-27) 

Using the natural, centred, and second order Taylor inclusion function to evaluate the f(x), 

the corresponding expression is shown as 

21 x
n

f x x x e . (3-28a)
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1 1
c

f x f f x x .                   (3-28b) 

211 1 1 1
2T

f x f f x f x x . (3-28c)

where 

2 1 ,  2x xf x x e f x e (3-29) 

Since this function is a monotonically increasing function on the given interval, the exact 

interval of f([x]) can be calculate be the following expression

* 2 21 ,1x xf x x x e x x e (3-30) 

The computational results are shown in Table 3-1, where w([f]([x]))-w(f([x])) . 

Table 3-1 Comparing inclusion functions 

 [x1]=[0, 2] [x2]=[0.9, 1.1] 

[f] [f]([x1]) 1  [f]([x2]) 2  

[f]n [0, 12.3891] 2.0 [3.1696, 4.3142] 0.4 

[f]c [-6.6708, 14.1074] 10.3991 [3.2978, 4.1387] 0.0963 

[f]T [0, 12.1311] 1.742 [3.3464, 4.1152] 0.0242 

[f]* [0, 10.3891] - [3.3696, 4.1142] - 

 

The results show that when the width of interval variable is relatively large, the natural 

inclusion function obtain tighter interval than the centred inclusion function; the centred 

inclusion function shows better performance than the natural inclusion function when the 

width of interval variable is small. Nonetheless, the Taylor inclusion function provides the 

best results for both two cases. 
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3.2 The Chebyshev inclusion function 

The Taylor inclusion function may be the best choice of the three traditional inclusion 

functions, but it still produces large overestimation for some complicated functions, 

especially for the non-monotonic functions. Therefore, this section will propose a new 

inclusion function to reduce the overestimation in further.

3.2.1 Chebyshev polynomial approximation theory 

To reduce the computational cost, the complicated functions are usually approximated by 

some simple functions. The classical Taylor expansion is a kind of polynomials 

approximation, which uses the Taylor series to approximate the original functions. In 

mathematical analysis, based on the Weierstrass approximation theory, if any function f(x) 

is included in C[a, b], i.e.,  f(x) is continuous over [a, b], there exists a polynomials p(x) 

which converges to the function f(x) on [a, b] [147], that is 

    ,    ,f x x x a bp    (3-31) 

This expression is validity for any 0 . Polynomial is the simplest function and is very 

convenient to calculate on the computer, so this approximation theorem is very important 

in numerical analysis. 

Let Pk(x) denote the set of polynomials of degree not bigger than k, for every nonnegative 

integer k, there exists a unique polynomial * ( )k xp  in Pk(x), such that 

  *
k kf x x f x x E fp p , where ,x a b  (3-32) 

For all ( ) ( )kx xp P other than * ( )k xp , ( )kE f , the infimum of maximum error, is defined 

as 
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   inf
k k

k kE f f x x
p P

p , where ,x a b   (3-33) 

Here * ( )k xp  is the best uniform approximation of polynomial with degree k to f(x) on [a, 

b]. However, it’s difficult to obtain * ( )k xp  when the degree of polynomials k>2. The 

truncated Chebyshev series, which are very close to the best uniform approximation 

polynomials [148, 149], will be employed to approximate the original function. 

1-dimensional problem 

Firstly, considering the 1-dimensional case, the Chebyshev polynomial for 1,1x  of 

degree i is denoted by Ci and defined as [150] 

   cos ,  arccos 0,iC x i x    (3-34) 

where i denotes the nonnegative integer. The Chebyshev polynomial can also be defined 

on interval [ , ]x a b , with arccos((2 ) ( )) [0, ]x b a b a . The Chebyshev 

polynomial may also be expressed with respect to [ 1,1]x , and the recursive formula is 

shown as 

    
0

1

1 2

1;

;

2 , 2i i i

C x

C x x

C x xC x C x i

   (3-35) 

The Chebyshev polynomial have both the continuous orthogonality relation and discrete 

orthogonality relation [151], such that 

1

21 0

,      0
cos cos 2,  0

1 0,      

r s

r s
C x C x

dx r s d r s
x r s

  (3-36) 

  
1 1

cos cos ,    ,
k k

j j j j
r s r rs

j j
C x C x r s K r s k   (3-37) 
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where 21 1 x is the weighting function, 0K k  and 2rK k when1 r k , and x(j) 

and j denote the zeros of the k-th order Chebyshev polynomial in x space and space, 

respectively 

    
2 1cos , , 1, 2,...,

2
j j j jx j k

k
   (3-38) 

The function f(x) included in C[a, b] can be approximated as the truncated Chebyshev 

series of degree k: 

        0
1

1
2

k

k i i
i

f x x f f C xp    (3-39) 

where fi are the constant coefficients. The error between the truncated Chebyshev series 

pk(x) and original function f(x) is shown as follow [153]: 

   12
1 !

k
k

k ke f f x x f
k

p    (3-40) 

In the above equation, if k is large enough, ek(f) can be neglected. The truncated 

Chebyshev series can approximate the original function better than the truncated Taylor 

series, as shown by Example 3.1 as below.  

Constructing the Chebyshev series shown in Eq. (3-39), the key is to compute the 

coefficients fi in the expression. If we multiply the Chebyshev polynomial Ci(x) to the two 

sides of Eq. (3-39) and integrate it in accordance with the weighting function 21 1 x , 

the equation will be transformed to 

1 1

02 21 -1
1

1 1

02 2-1 -1
1

1 1 1
21 1

1 1 1                                         = +
21 1

k

i j j i
j

k

i j j i
j

f x C x dx f f C x C x dx
x x

f C x dx f C x C x dx
x x

(3-41) 
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By using the continuous orthogonality of Chebyshev polynomials (Eq. (3-36)), the right 

side of the previous equation will be simplified to 2if . Therefore, the coefficients of 

Chebyshev series fi can be computed by the following formula 

  
1

21 0

2 2 cos cos , 0,1,2,...,
1

i
i

f x C x
f dx f i d i k

x
 (3-42) 

This integral equation has to be computed by numerical integral formula. The Mehler 

integral, also called Gaussian-Chebyshev integration formula [152] is employed to 

calculate Eq. (3-42), which is a type of interpolation integral formula expressed as 

follows: 

    
1

pb j
ja

j
x f x dx A f x    (3-43) 

where Aj are the integral coefficients.  

If the interpolation points x(1), x(2)…x(p) are the zeros of the orthogonal polynomials of 

degree p with the weight function x , the algebraic precision order of this integral 

formula is 2p-1. For Eq. (3-43), if the weight function is chosen as 21 1x x , the 

corresponding orthogonal polynomials will be the Chebyshev polynomials. The 

interpolation points are the zeros of the p-th order Chebyshev polynomials (Eq. (3-38)). 

In this case, all the integral coefficients jA p [151]. Substitute Aj into Eq. (3-42), we 

get the Gauss-Chebyshev integral formula as follows: 

  
1

21
1 1

1 cos
1

p p
j j

j j
f x dx f x f

p px
  (3-44) 

If the function f has 2p-th order derivative on [-1, 1], the numerical error of the Gauss-

Chebyshev integral formula is noted as pE f , expressed by 
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2
2 1 , 1 1

2 !2
p

p pE f f
p

(3-45)

The integral error can be neglected when p is large enough  

Substituting Eq. (3-44) into Eq. (3-42), the coefficients of Chebyshev polynomials are 

calculated as 

    
1

21
1 1

2 2 2 cos cos
1

p p
j j j ji

i i
j j

f x C x
f dx f x C x f i

p px
(3-45) 

Substituting the coefficients into the Eq. (3-39), the truncated Chebyshev series can be 

obtained. To minimize the integral error, the order of integral formula should be high 

enough. In computing the coefficient fk, the integrand contains the Chebyshev polynomial 

Ck(x), so the order of integral formula should be larger than k, e.g. p=k+1 in this thesis.  

The truncated Chebyshev series has higher approximation accuracy than the truncated 

Taylor series with same order. To validate the accuracy of Chebyshev approximated 

polynomials, consider the following mathematical example.  

Example 3.1 For function arctanf x x , where [ 1,1]x . Considering use the 5-th 

order Chebyshev polynomials to approximate this function, the Eqs. (3-38) and (3-45) 

can be used to compute the coefficients of Chebyshev series. The approximation of 5-th 

order of truncated Chebyshev polynomials is given by 

  5 0.8284cos 0.0474cos3 0.0049cos5p x   (3-46) 

where arccos [0, ]x . The truncated Taylor series approximation of 5-th order is 

expressed by 

    3 5
5 3 5T x x x x     (3-47) 
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Figure 3-5 Errors of arctan x  for Chebyshev series and Taylor series 

The errors for Eqs. (3-46) and (3-47) related to the original function are displayed in Fig. 

3-5. The results show that the maximum error of the Chebyshev series is much smaller 

than the conventional Taylor series. 

Multi-dimensional problem 

For the multi-dimensional problem, the polynomials are the tensor product of each one-

dimensional polynomial, e.g. the n-dimensional Chebyshev polynomials of [ 1,1]nx  is 

defined as  

       
1 2, ,..., 1 2 1 1 2 2, ,..., cos cos ...cos

nk k k n n nC x x x k k k   (3-48) 

where arccosi ix . Using the k-th order Chebyshev series to approximate the function 

: nf x R R , the approximation expression can be expressed by extending the Eq. (3-

39) 

   
1 1

1

,..., ,...,
0 0

1...
2 n n

n

lk k

i i i i
i i

f f Cx x     (3-49) 
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where 
1 ,..., ni if denotes the n-dimensional Chebyshev coefficients, and l denotes the total 

number of zero(s) to be occurred in the subscripts of 
1,..., ki iC x . For example, l=2 for 

C0,0(x), while l=0 for C2,1(x). By using the orthogonality of Chebyshev polynomials, the 

coefficients 
1,..., ni if  can still be obtained by the integration, but the 1-dimensional 

integration has to be extended to multi-dimensional integration, i.e.  

1

1 2

1 1 ,...,
, ,..., 12 21 1

1

1 1 1 10 0

2 ... ...
1 ... 1

2           ... cos ,..., cos cos ...cos ...

n

n

n
i i

i i i n

n

n

n n n n

f C
f dx dx

x x

f i i d d

x x

 (3-50) 

Using the Gaussian-Chebyshev integral formula in each dimension sequentially, the 

coefficient can be computed by following numerical integral formula 

     

1

1

1 1

1

1 1 ,...,
,..., 12 21 1

1

1 1

1 1 1
1 1

2 ... ...
1 ... 1

2        ... cos ,..., cos cos ...cos
1

n

n

n n

n

n
i i

i i n

n

n k k
j jj j

n n n
j j

f C
f dx dx

x x

f i i
k

x x

 (3-51) 

The n-dimensional interpolation points are the tensor product of the 1-dimensional 

interpolation points, e.g. the second order interpolation points in 1-dimensional case is 

= 4 3 4 , then the corresponding interpolation points in 2-dimensional case will 

be =[ ( 4, 4) ( 4,3 4) (3 4, 4) (3 4,3 4) ] . Substituting Eq. (3-51) 

into Eq. (3-49), the multi-dimensional Chebyshev series can be obtained. 

3.2.2 Chebyshev inclusion function 

The truncated Chebyshev series has high accuracy in approximation; meanwhile it 

controls the overestimation efficiently when it is used in interval arithmetic, especially for 

the non-monotonic functions. For the sake of simplicity but without losing any generality, 
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we consider the 1-dimensional problem. The Taylor inclusion function expands the 

original function by Taylor series firstly, and then using the interval arithmetic to compute 

the interval of monomials and polynomial. Similarly, we can expand the original function 

to a Chebyshev series and then employ the interval arithmetic to compute the interval of 

Chebyshev series. Replacing the variable x by interval variable [x] in Eq. (3-39), the 

Chebyshev inclusion function can be obtained as 

  0 0
1 1

1 1= cos
2 2k

k k

C i i i
i i

f x f f C x f f i   (3-52) 

where [x]=[-1,1], and [ ]= arccos([ ]) [0, ]x . There are two types of expressions for the 

Chebyshev polynomial Ci(x), i.e. it can be expressed as a polynomial with respect to x or 

a trigonometric function with respect to . When the interval arithmetic is used, the 

expression of trigonometric function should be employed, because it controls the 

overestimation more efficiently than the polynomial expression. For example, compute 

the C3([x]) by the two expressions respectively,  

      
3 3

3

3

=4 -3 =4 -1,1 -3 -1,1 = -7,7

= cos 3 = cos 0,3 = -1,1

C x x x

C x
   (3-53) 

It can be noted that the expression of trigonometric function provides much tighter result 

than that of polynomial expression. Particularly, since [ ]=[0, ] , for any Chebyshev 

polynomial with i>0, such that  

   = cos = cos 0, = -1,1iC x i i   (3-54) 

The plot of Chebyshev polynomials with different order is shown in Fig. 3-6.  
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Figure 3-6 The plot of Chebyshev polynomials 

Based on this characteristic of Chebyshev polynomials, the Eq. (3-52) can be further 

simplified as 

0 0 0
1 1 1

1 1 1cos 1,1 1,1
2 2 2k

k k k

C i i i
i i i

f x f f i f f f f  (3-55) 

For some highly nonlinear functions, the Chebyshev inclusion function can control the 

overestimation better than the Taylor inclusion function. Still considering the Example 3.1 

in last subsection, use the Chebyshev inclusion function and Taylor inclusion function to 

compute the bounds of ([ ]) arctan[ ],[ ]=[-1,1]f x x x , respectively. The Chebyshev 

inclusion function is expressed as 

 5
0.8284 cos 0.0474 cos 3 0.0049 cos 5

                 = -1,1 0.8284 + 0.0474 + 0.0049 = -0.8807,0.8807

Cf x
 (3-56) 

The Taylor inclusion function is 

   
5

3 5

+ = -1.5334,1.5334
3 5T

x x
f x x   (3-57) 

The exact interval range of f([x]) is given by 
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   * arctan ,arctan = 0.7854,0.7854f x x x   (3-58) 

Compared the three previous equations, it can be noted that the Chebyshev inclusion 

function get tighter interval than the Taylor inclusion function. The other advantage of the 

Chebyshev inclusion function is that it does not need to calculate the derivatives of the 

original function, so it can be used to solve the black box problems. 

Extending the 1-dimensional problem to multi-dimensional problems, the n-dimensional 

Chebyshev inclusion function is expressed by 

1 1 1

1 1
1

,..., ,..., 0,...,0 ,...,
0 0 0 ,...,

+...+ 1

1 1 1= ... = + -1,1
2 2 2k n n n

n n
n

l lk k

C i i i i i in
i i i i k

i i

Cf x f x f f  (3-59) 

It should be noted that the Chebyshv inclusion function is not a rigorous inclusion 

function since it neglects the truncated error and numerical error in integration. However, 

the two parts are usually small compared with the overestimation of interval arithmetic, 

so they can be neglected.  

3.3 The algorithm for solving interval ODEs 

In most cases, the dynamic responses of mechanical systems are governed by a set of 

ODEs, especially by the second-order ODEs. Since the second-order ODEs will be 

generally transformed to the first-order ODEs in numerical solver, this study is mainly 

focused on the first-order ODEs. The ODEs of a m-dimensional problem can be described 

as follows: 

0, , ,  t t ty f y x y y (3-60) 

where t denotes time, f=[f1, f2, …, fm]T is a m-dimensional nonlinear function vector, 

nRx is a n-dimensional uncertain parameter vector, and y  denotes the m-dimensional 
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initial vector. As mentioned in Chapter 2, there are many uncertain parameters in 

engineering. Here we consider some interval parameters existed in the system, i.e. 

nx IR , and the initial values can also be considered as interval parameters, i.e. 

my IR .  

The solution of Eq. (3-60) subjecting to the interval uncertain condition can be expressed 

as an interval vector [y] 

0[ ] : , , , ,t t ty y y f y x y y x x (3-61)

The lower bound and upper bound to be solved can be given by 

0

0

min : , , , ,

max : , , , ,

t t t

t t t
x x

x x

y y y f y x y y x x

y y y f y x y y x x
(3-62)

In general, the precise bounds of the solution cannot be easily obtained through the Eq. 

(3-62) which has to use the global searching algorithms. To reduce the computational 

effort, the interval arithmetic is used to estimate the range of the solution.  

3.3.1 The interval ODEs solved by Taylor inclusion function 

When the interval Taylor series method [72, 154] and Taylor model method [74, 89] solve 

the interval ODEs, they try to obtain the rigorous enclosure of actual solution. The 

rigorous interval method methods have two problems. The first problem is low accuracy 

for strong nonlinear problems. The overestimation in rigorous interval method is larger 

and larger with the integral range (time domain) increasing, so the divergence of the 

numerical algorithms cannot be avoided in essential. The other problem is the low 

efficiency, because a large amount of computational cost has to be spent on handling the 

interval remainder term, which is actually quite small. In engineering application, the 



Chapter 3 Interval uncertainty analysis based on Chebyshev series

51 

number of uncertain parameters is usually large, so the computational efficiency should 

be considered. This subsection propose an approximated Taylor model method to solve 

ODEs, which only considers the second order Taylor series expansion and neglects the 

interval remainder term, so the computational efficiency will be improved obviously. 

In Eq. (3-60), combining the two interval vectors [ ]y and [x] to one interval vector as 

T T T[ ] [[ ] [ ] ]z y x . Therefore, y can be thought as an interval function of [z], so as the f is 

the interval function of [z]. Expanding the f with respect to z at the mid-value zc by 

second order series, there will be the following equation. 

1 1
,

22 2 2

1 1 1 1 1 1
,

                    , , , ,

1 2
2

c c

c c

m n m
i

c c j
j i i j j

m n m n m m m m
p q p p

i
i j p q p pp q i j p i j p i j i j

yt t z
y z z

y y y y
z z

y y z z y z z y z z z z

y z

y z

f ff y z f y z

f f f f
j

(3-63) 

Use the second order Taylor series to expand the y in the left side of Eq. (3-60) at zc   

  
2

1 1 1, ,

1
2

c c c c

m n m n m n

c j i j
j i jj i j

z z z
z z z

y z y z

y yy y  (3-64) 

Since both the two sides of this equation are depend on the time t, we can differentiate 

them with t 

  
2

1 1 1, ,

1
2

c c c c

m n m n m n

c j i j
j i jj i j

z z z
z z z

y z y z

y yy y  (3-65) 

Substitute the Eq. (3-63) and Eq. (3-65) into the right and left side of Eq. (3-60), 

respectively 
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2

1 1 1, ,

1 1
,

2

1                  
2

                      , ,

1
2

c c c c

c c

m n m n m n

c j i j
j i jj i j

m n m
i

c c j
j i i j j

p q

q p q i j

z z z
z z z

yt z
y z z

y y
y y z z

y z y z

y z

y yy

f ff y z

f 22 2

1 1 1 1 1 1
,

2
c c

m n m n m m m m
p p

i j
i j p p pp i j p i j i j

y y
z z

y z z y z z z z
y z

f f f

(3-66) 

Because the z can be any values, Eq. (3-66) can be transformed to the following 

equations 

    , ,c c cty f y z      (3-67a) 

   
1, ,c c c c

m
i

ij i j j

y
z y z z

y z y z

y f f    (3-67b) 

22 2 2 2

1 1 1 1, ,

2
c c c c

m m m m
p q p p

p q p pi j p q i j p i j p i j i j

y y y y
z z y y z z y z z y z z z z

y z y z

y f f f f (3-67c) 

Eq. (3-67a) is the ODEs that the interval parameters are set as their mid valued in Eq. (3-

60). The second and third equations compute the first derivative and second derivative of 

y. Therefore, the original interval ODEs are transformed to three ODEs with deterministic 

parameters. Solving the previous deterministic ODEs, and then substituting the solution 

to the Taylor inclusion function, we can obtain the final interval solution of y. 

Example 3.2 Solve the following linear ODEs using the rigorous Taylor model method 

and approximated Taylor model method. 

T1 1 2 1 3 2
0

2 1

+ + 0
= = = , = , = 99,101 -1.01,-0.99 -10.1,-9.9

0
y x x y x y
y y

y f y x x  (3-68) 
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The initial values y0 are deterministic, and there are three interval parameters x1, x2 and x3. 

The computational results are shown in Fig. 3-7.   

(a)  

 (b)  

Figure 3-7 (a) The plot of y1; (b) The plot of y2 

The exact solution is obtained by the scanning method with 10 symmetrical sampling 

points in each dimensional interval parameter. It can be found that the interval solution of 

approximated Taylor model method is quite close to the exact solution, so the 

approximated Taylor model method can control the overestimation better than the 

rigorous Taylor model method. Although the rigorous Taylor model method encloses all 

the exact solution, it is enlarged too much after 2 second to be used in practical 

engineering. For the computational cost, the approximated method takes about 0.2s which 

is much less than the rigorous method (about 10s). Therefore, the approximated Taylor 

method is fit for engineering problems, which will be used in below. 
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3.3.2 The interval ODEs solved by Chebyshev inclusion function 

Change the ODEs (3-60) to expression of interval parameters, shown as 

    0, , ,  t t ty f y x y y    (3-69) 

Introduce the interval vector T T T +[ ] [[ ] [ ] ] m nz y x IR , which can be expressed by the 

standard interval vector +[ ]=[ 1,1]m n , i.e. 

           

0 0 0 0
1 1 1 1

1
0

+

+ -
+

2 2
= =

+ -+
2 2

n n n n
m n

y y y y

x x x x

y
z

x
 (3-70) 

When the ODEs are solved by numerical method, the integration domain should be 

discretized to several sub-integration domains by time nodes, and then compute the 

solution at each time node. The solution at each time node depends on the solution at 

previous time node. The solution of first time node is the function of the initial values, 

expressed as 

    1 1 0 1= , , = ,t ty y y x y    (3-71) 

Here we use superscript to denote the sequential number of time node. The right side of 

this equation is the function of interval vector [ ] , so we can use the k-th order 

Chebyshev inclusion function to compute it. 

1 + 1 + 1 +

1 + 1 +
1 +

1 1 1 1
,..., ,..., 0,...,0 ,...,+

0 0 0 ,...,
+...+ 1

1 1 1= ... = + -1,1
2 2 2m n m n m n

m n m n
m n

l lk k

i i i i i im n
i i i i k

i i

Cy y y y (3-72) 

where 
1 +

1
,..., m ni iy is the Chebyshev coefficient, computed by the following formula 
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     1 1

1 +

1 +

+ 1 1
1 1

,..., 1 1 1 +
1 1

2= ... cos ,..., cos cos ...cos
1

m n m n

m n
m n

m n k k
j jj j

i i m n m n m n
j j

i i
k

y y (3-73) 

It should be noted that 1 ( )( )1
1(cos ,...,cos )m njj

m ny denotes the solution of ODEs (3-71) at 

time node t1 when the standard interval variables are set to be some float numbers, i.e.  

1 ( )( ) T
1=[cos ,...,cos ]m njj

m n . ( )cos ij
i is the zeros of Chebyshev polynomials. Substituting 

the coefficients into Eq. (3-72), the interval solution [y1] can be obtained. 

When we compute the 1 ( )( )1
1(cos ,...,cos )m njj

m ny , there is no limitation for numerical 

methods, which means any traditional numerical methods (e.g. the Runge-Kutta method) 

for solving ODEs can be used, because the ODEs to be solved have been transformed to 

the traditional deterministic ODEs.  

Since the solution of ODEs at each time node depends on solution at previous time node, 

and [y1] is the function of [ ], [yj] will be the function of [ ] for any tj>t1. If the solution 

at time node tj has been obtained, the solution at tj+1 can be expressed by 

   +1 +1 +1= , , = ,j j j jt ty y y x y    (3-74) 

Similarly, using the Chebyshev inclusion function to compute the right side, we obtain 

  
1 +

1 +
1 +

+1 +1 +1 +1
0,...,0 ,...,+

0 ,...,
+...+ 1

1 1= , = + -1,1
2 2k m n

m n
m n

l
j j j j

C i im n
i i k

i i

ty y y y  (3-75) 

    1 1

1 +

1 +

+ 1 1
+1 +1
,..., 1 1 1 +

1 1

2= ... cos ,..., cos cos ...cos
1

m n m n

m n
m n

m n k k
j jj jj j

i i m n m n m n
j j

i i
k

y y (3-76) 

Here, 1 ( )( )1
1(cos ,...,cos )m njjj

m ny denotes the solution of ODEs (3-69) at time node tj+1 

when the interval parameters are set as 1 ( )( ) T
1=[cos ,...,cos ]m njj

m n .  
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In summary, there are two main steps using the Chebyshev inclusion function solve the 

interval ODEs: (1) solve the ODEs at the given interpolation points; (2) compute the 

Chebyshev coefficients and the Chebyshev inclusion function. The first step transforms 

the original interval ODEs to several deterministic ODEs, and then use traditional 

numerical methods to solve the ODEs. This process is similar to the Taylor model 

method, but there are obvious differences between them. Firstly, the Taylor model method 

transforms the original ODEs into three ODEs. Except the first ODEs, another two ODEs 

have different expression from original ODEs. However, the Chebyshev method does not 

change the expression of the ODEs, but only changes the values of initial conditions and 

interval parameters. Secondly, the Taylor model is hard to extend to higher order 

expansion, because the derivation of the formulas over second order is extremely 

complicated. The Chebyshev method is very easy to be extended to higher order, just by 

increasing more interpolation points. Therefore, the Chebyshev inclusion function based 

method can be easier implemented and also get higher accuracy. 

The flow chart of using Chebyshev inclusion function to solve interval ODEs is shown in 

Fig. 3-8. From the flow chart, four main steps are involved. The first step is to produce 

the interpolation points, and the second step is to solve the ODEs at the interpolation 

points to calculate the value of y . The coefficients of Chebyshev polynomials are 

calculated in the third step. Finally, the Chebyshev inclusion function will be constructed 

and the corresponding interval result [ ]y  will be obtained. 
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Figure 3-8 The flow chart of Chebyshev inclusion function solving interval ODEs 

3.3.3 The numerical example 

Consider the double pendulum as the numerical example. The schematic of a double 

pendulum is shown in Fig. 3-9, where m1 and m2 represent the mass of the two 

pendulums, respectively, and l1 and l2 denote the length of the two pendulum rods, 

respectively. 
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1

2

Figure 3-9 Schematic of a double pendulum 

The ODEs of this system can be expressed by [92] 

1 1

2 2

2 2
1 2 1 2 1 2 2 1 2 2 2 1 1 1 2

1
1 1 2 2 1 2

2 2
1 2 1 1 1 2 1 2 1 2 2 2 1 2

2
2 1 2 2 1 2

2 sin sin 2 2 sin cos
2 cos 2 2

2sin cos cos
2 cos 2 2

g m m m g m l l
l m m m

l m m g m m l m
l m m m

 (3-77) 

Here 1  and 2  denote the angles of the pendulum rods, 1  and 2  are the angle 

velocities of the two rods, and g is the gravity acceleration. It is assumed that two interval 

parameters are included in the ODEs. The lengths of the two rods are considered as the 

interval parameters that are expressed as l1=[0.18, 0.22]m and l2=[0.36, 0.44]m, and the 

gravity acceleration is set to the point value with g=9.8m/s2. The initial conditions are 

1 2 1 2[ , , , ] [ 3,3 5 , 0, 0] . The Chebyshev method, Taylor method, and scanning 

method are applied to solve the ODEs in the period of 0 to 10 second, respectively. For 

the Chebyshev inclusion function, we choose k=4. With respect to the scanning method, 

the symmetrical 10 sampling points are used for each uncertain parameter, and the 

number of calculation is (k+1)2=25 and 202=800, respectively. The results of the two 

pendulum rod angle are shown in Fig. 3-10. It can be found that the Taylor method 

enlarges the range of results along with the process of the iterations, while Chebyshev 
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method enclosure the actual results in the entire numerical period with less 

overestimation. However, it is noted that there are still some overestimation for the 

Chebyshev method, which cannot be totally avoided when the interval arithmetic is 

applied to systems with high nonlinearity. Some additional optimization algorithms may 

be incorporated to eliminate the overestimation ensentially, but it takes much 

computational effort. 

(a)

 (b)  

Figure 3-10 The angle of pendulum: (a) top pendulum; (b) bottom pendulum  

For the computational cost, the Taylor method takes about 165s, while the Chebyshev 

method takes only about 5s. Therefore, the Chebyshev method has better performance 

than the Taylor method in both accuracy and efficiency. 

1
2
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3.4 Chebyshev inclusion function solving multibody system 

3.4.1 The Modeling for multibody dynamic system 

Multibody dynamics of mechanical systems are widely involved in mechanisms, robotics, 

vehicles and machines, which consist of many mechanical components interconnected by 

joints and force elements. Such dynamic systems are often governed by index-3 

differential algebraic equations (DAEs) [155], which combine differential equations with 

algebraic equations to account for the dynamics and holonomic constraints of the system, 

respectively. Although mathematical modeling methods for multi-body dynamic systems 

have experienced a rapid growth over the past, most studies assumed that the parameters 

of the system are deterministic. However, a majority of real-world multi-body systems 

are too complex to be defined deterministically, due to the lack of complete information. 

Actually, a variety of uncertainties are inherent in loads, geometry and material 

parameters, as well as the assembly process and manufacturing tolerances and/or wear, 

ageing and so on. In these cases, the deterministic assumption may lead to unfeasible 

designs, as variations associated with the uncertainties might result in significant 

performance changes of the system. Thus, there is an increasing demand to consider 

uncertainties in the numerical analysis of multi-body dynamic systems, to ensure the 

safety of mechanical systems and avoid breakage and even collapse of the mechanism in 

extreme working conditions.  

Multibody systems are characterized by two distinct features: System components 

undergo finite relative rotations, and the components are connected by mechanical joints 

that impose restrictions on their relative motions [156] as algebraic constraints. Hence, 

the constrained equations for multi-body dynamic systems can be typically expressed as 

[155] a set of DAEs that combine differential and algebraic equations: 
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( ) ( ( )) ( )

( )

t t t
t

T
q

q = v
M q v = Q ,q, v, ,u - q,

q, = 0

(3-78)

where nRq  and nRv  are the generalized coordinates and velocities, respectively. 

mR  are the Lagrange multipliers, and : cR Ru  are time-dependent external 

dynamics, e.g. control variables. The matrix M is the generalized mass matrix; Q is the 

vector of generalized applied forces, and  is the set of m holonomic constraints. 

The classical numerical techniques for DAEs contain two types: state-space methods and 

direct methods [157]. State-space methods transform DAEs into a set of smaller-

dimensional ODEs, and then solve the problem using the conventional ODE solvers. The 

intrinsic drawback in association with the state-space method is the computational 

expensive process of transforming DAEs to ODEs, which will be further worsened in the 

context of implicit integrations [155]. Direct methods discretise constrained equations and 

transform DAEs to a set of algebraic equations at each integral step. Many direct methods 

have been proposed to solve the index-3 DAEs, including the Newmark method [158], 

HHT-I3 [159], and generalized -method [160]. In this study, HHT-I3 is used as the 

solver for the DAE systems.  

Discretize the Eq. (3-78) with respect to time leads to the following equations [155]: 

2

1 1

1 1

1 1

1 12

1-2 2
2

1-

1
1 1

1

n n n n n

n n n n

n n n

n n

hh

h

t
h

T T
q q

q = q + q + a + a

q = q + a + a

M q a - - Q - - Q = 0

q , = 0

(3-79)
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where h is the integration step size, an+1 is the approximation of q , and the initial value a0 

can be chosen as 0 0a = q , where subscript n denotes the nth integral step, and subscript q 

is the derivative of with respect to q. ,  and  are the parameters in the HHT-I3, 

which are used to confirm the conditions as: 

           2(1 ) 4 , 1 3,0  and 1 2    (3-80) 

Smaller value of  will result in larger numerical dissipation of HHT-I3, but it will make 

the solution more stable. The last two equations in Eq. (3-79) are the nonlinear system of

T
1 1 1[   ]n n nw a . Using the Newton method to solve the system leads to the following 

Jacobian matrix: 

1 1

1

1 ( ) ( )
1

( )

n n

n

T
q

q

M + P
J

0
(3-81)

where    2 ( ( ) )h hT
q q qP M q q + -Q Q      (3-82) 

The initial value w0 should be firstly determined to enable the Newton iteration. 

Differentiating the equation of constraints twice with respect to time leads to the 

following equation: 

2 ( )tt td q q q qQ q q q q (3-83)

The governing equations of multi-body dynamic systems in Eq. (3-78) can be re-written 

by 

     
T
q

dq

QM q
=

Q0
     (3-84) 

As a result, the initial value can be calculated by 
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-1T

q
0

dq

QMq
w = =

Q0
    (3-85) 

The major procedures for the HHT-I3 method is outlined as Algorithm 3.1 in ‘A 3.1’ 

[155]. Here,  denotes the error limitation, the functions I1 and I2 are the second and first 

functions in Eq. (3-79), and Y represents the last two functions in Eq. (3-79). The 

Algorithm does not explicitly address the uncertain parameters in the equations, and the 

uncertainties will be discussed in the following sections.

1
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(A 3.1) 

3.4.2 The interval DAEs solved by Chebyshev inclusion function 

Since the DAEs are usually transformed to algebraic equations and then solved by 

Newton iteration method, this section firstly research solving the nonlinear algebraic 

functions with interval parameters based on Chebyshev inclusion function. Consider m-

dimensional function group 1[ ,..., ] m m
my yY R R . The algebraic equations can be 

defined as follows: 

      Y X = 0       (3-86) 
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The Newton method can be used to calculate the value of Y, and the iteration algorithm is 

described as 

       1 -1( ) ( )i i i iX = X - J X Y X      (3-87) 

where the superscript denotes the iteration step, and ( )iJ X  is the Jacobin matrix at the ith 

iteration step. The iteration terminal condition is -1( ) ( )i iJ X Y X , where  is a small 

positive real number. 

Considering interval parameters contained in the function group, where the uncertain 

parameters are [ 1,1]k (uncertain ranges are transformed to [-1, 1]). The 

corresponding iterative algorithm be described by 

1 -1( ) ( )j j j jX = X - J X , Y X , (3-88)

The right side of Eq. (3-88) can be regarded as a function of . So each iteration step is to 

calculate the inclusion function with respect to . If the interval inclusion functions are 

directly applied to the iterative algorithm, the results will be easily subject to 

overestimation. Using the nth-order Chebyshev series to approximate the Xi  

1

1

,..., 1 1
0 0

1... cos ...cos =
2 n

n

lk k
j j j

i i n n
i i

i iX X X (3-89)

where arccos( ) [0, ]k , and 
1,..., n

j
i iX is the vector of coefficients. Based on the 

content in Section 3.2, the coefficients can be computed by 

1 1

1

1

1 1

,..., 1 1 1
1 1

2 ... ,..., cos ...cos
1

n n

n
n

n k k
j jj jj j

i i n n n
j j

i i
k

X X (3-90) 
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where k+1 is number of interpolation points in each dimensional variable

1 ( )( ) T
1[ ,..., ]njj

n are the interpolation points in  space  1 ( )( )
1( ,..., )njjj

nX  denotes the 

value of Xi at the interpolation points  

Substituting Eq. (3-89) into Eq. (3-88), the right side of Eq. (3-88) will be a function of  

as 

1 1 1( ) ( ( ), cos ) ( ( ), cos ) : ( )j j j j jX X J X Y X X (3-91)

Similarly, the Xj+1 can be expanded by the Chebyshev series 

     
1

1

1 1
,..., 1 1

0 0

1... cos ...cos
2 n

n

lk k
j j

i i n n
i i

i iX X   (3-92) 

The coefficients are computed by 

      

1 1

1

1

1 1
1 1

,..., 1 1 1
1 1

2 ... ,..., cos ...cos
1

n n

n
n

n k k
j jj jj j

i i n n n
j j

i i
k

X X  (3-93) 

Considering Eq. (3-89), the value of Xj+1 at the interpolation point 

1 ( )( ) T
1 1cos([ ,..., ] )njj  can be computed by the following equation 

1 1

1 1 1 1

( ) ( )( ) ( )1
1 1

1( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 1 1

,..., ,...,

,..., , cos ,..., ,..., , cos ,...,

n n

n n n n

j jj jj j
n n

j j j jj j j jj j
n n n n

X X

J X Y X
(3-94) 

Therefore, if the value of at the interpolation point has known, the value of at the same 

interpolation point can be calculated by this function. It can be found that Eq. (3-94) is 

the expression of Eq. (3-91) with the uncertain parameters setting as 

1 ( )( ) T
1cos([ ,..., ] )njj

n , i.e. the Newton iteration formula for solving the following 

equation 
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T( ) ( )1
1cos ,...,j jn

n
Y X, = 0     (3-95) 

When the iteration is terminated, we can obtain the final value of *X  at the interpolation 

point 1 ( )( )*
1( ,..., )njj

nX . Using Eq. (3-90), we can obtain the final Chebyshev coefficients  
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X X
 
 (3-96) 

Substituting the coefficients into the Chebyshev inclusion function the interval solution 

of algebraic equations can be obtained 

1

1

* *
,..., 1 1

0 0

1... cos ...cos
2 n

n

lk k

i i n n
i i

i iX X   (3-97) 

The detailed algorithm for using Chebyshev inclusion function to solve algebraic 

equations is shown as Algorithm 3.2. 
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(A 3.2) 

Section 3.4.1 shows that the numerical method for solving a multi-body dynamic system 

usually transforms the DAEs into a system of algebraic equations at each integral step, 

considering the uncertain parameters and uncertain external excitations in the system, 
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e.g., the manufacturing tolerance of components inducing the mass and center of mass 

uncertainties, the density uncertainty leading to the mass and moment of inertia 

uncertainties, as well as the fluctuation of the driving force. If the bounds of uncertain 

parameters are known, they can be expressed as interval parameters like [ ]na,b . 
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endk t t ha,b

1

( ) ( )
,..., ,0

1

(2 1) ; cos ;
2 1 2 2

1,2,..., 1; 1, 2,..., ; ,..., 0,1,..., ; 0 

n

jj ji i i i
i j j

n

a b b aj
k

j k i n j j k q

w

1 1

0
1 ,..., , 1 ,..., ,; ; 0

n nq q j j q j j qt t h Kw w

1

1 1 1 1

1 1

1

,..., , 1 ,..., , 1 ,..., , 1 ,..., , 1 1

1

1 ,..., , 1 1

; ; ,..., ;

 ,..., , ,...,

n

n n n n

n n

n

jK K K K j
j j q j j q j j q j j q n

j jK j K j
n j j q n

1 2q w q w J

w J Y w

Kw1 1

1
,..., , 1 ,..., , 1 ;

1
n n

K K K
j j q j j q

K K

w w w

1 1

1

1 1
1

1

1

,..., , 1 ,..., , 1

1 1
*

,..., , 1 ,..., , 1 1 1
1 1

* *
, 1 ,..., , 1 1 1

0 0

1

= ;

2 ... cos ...cos
1

1[ ] ... cos [ ]...cos [ ];
2

,..., 0,

n n

n

n n
n

k n

n

K
j j q j j q

n k k
jj

i i q j j q n n
j j

lk k

C q i i q n n
i i

n

i i
k

i i

w w

X w

X X

No

Yes

1 q endt tYes

No

END

Output

1q q

*
, 1[ ]

kC qX

Algorithm 3.1

Algorithm 3.2

Figure 3-11 The calculation flow for uncertain multi-body system 

Combining the Algorithm 3.1 and Algorithm 3.2, the flowchart for solving multibody 

system with uncertain parameters is given in Fig. 3-11. The input parameters t0 and tend 
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are used to denote the initial and terminal time, and 
1,..., , 1nj j qw  is the generalized 

coordinates, velocities, and accelerations of the (q+1)-th step at given interpolation 

points. It can also be found that the algorithm for solving the uncertain problem includes 

an inner numerical process (Algorithm 3.1), denoted by the dash block, which can be 

regarded as a black box module that can be replaced by any other appropriate numerical 

solvers.

3.4.3 The numerical example 

We consider the slider-crank mechanism[102] as the numerical example, in which both 

the geometry parameter and external force moment are considered as interval parameters. 

The schematic of the slider crank mechanism is shown in Fig. 3-12, and the parameters 

are given in Table 3-2. 

1

2

1x

2x
3x3y

2y

1y

 

Figure 3-12 Schematic of slider crank 

Table 3-2 Parameters of slider crank mechanisms 

parameter l1(m) l2(m) m1(kg) m2(kg) m3(kg) c(N/(m/s)) k(N/m) (Nm)

value 0.15 0.56 0.37 0.77 0.45 1 5 -0.5 
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As shown in Fig. 3-12, points A, B, and C denote the gravity centers of the crank, 

connecting the rod, and slider, respectively. 1  and 2  show the angles between the 

global coordinate and local coordinate of the crank and connecting rod, respectively. The 

slider is connected with a spring damper, and the spring force is zero when the angle 1  

and 2  equal to zero. l1 and l2 are the lengths of the crank and connecting rod. m1, m2, and 

m3 represent the mass of the crank, connecting rod and slider, respectively. c is the damp 

coefficient of the spring damper, k is the stiffness of the spring damper, and  is the 

external torque applied to the crank. 

Choose the generalized coordinate as T
1 1 1 2 2 2 3[ , , , , , , ]x y x y xq , where the subscripts 1, 

2, and 3 denote the crank, connecting rod, and slider, respectively. Firstly, supposing the 

length of the crank l1 containing uncertainty with 1% of its nominal value, then we have 

      1 1 1
ˆ 1 0.01l l      (3-98) 

where 1 [ 1,1] . The mass of the crank is proportional to the length, so the mass and 

moment of the inertia are given by 

32 2
1 1 1 1 1 1 1 1 1

1 1ˆˆˆ ˆ1 0.01 , 1 0.01
12 12

m m I m l m l  (3-99)

The initial conditions are set as 

1 1 2 1 2
ˆ ˆ ˆ2,0,0, 2,0,0, , 0,0,0,0,0,0,0

T Tl l l l l0 0q q (3-100)

The system is solved for a period of 2s by using the Chebyshev inclusion function with 

order 5 and the second order Taylor method, respectively. The scanning method is 

employed to ensure the precise ranges of the results, with a set of symmetrical 30 

sampling points. The results are shown in Fig. 3-13. It can be found that both the intervals 

of the Taylor method and the Chebyshev method enclose the scanning interval tightly in 
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the initial stage. However, after the time 1.2s, the overestimation of the Taylor method 

increases significantly while the results obtained by the Chebyshev method still encloses 

the range of the scanning method without large overestimation in the whole simulation 

period. 

(a)

 (b)

 (c)

Figure 3-13 (a) Rotation angle of crank with uncertain length of the crank; (b) 

Rotation angle of connecting rod with uncertain length of the crank; (c) 

Displacement of piston with uncertain length of the crank 
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Secondly, we also consider the external torque  under the interval uncertainty with 1% 

of its nominal value, and the uncertain external torque is then expressed as 

    2ˆ 1 0.01 , where 2 [ 1,1]     (3-101) 

The initial conditions keep unchanged. Solve the system for a period of 2s using the the 

fifth-order Chebyhev inclusion function and the second-order Taylor inclusion function. 

In the scanning method, symmetrical 30 sampling points are employed for each uncertain 

parameter, and the results are shown from Fig. 3-14. We can find that the number of 

sampling points (solving the DAEs) for the Chebyshev method is m2=36 and for the 

scanning method is 302=900, respectively. 

The results show that the overestimation induced by the Taylor method is more significant 

than the case only including one uncertain variable. The Chebyshev method leads to little 

overestimation, which is much smaller than the Taylor method. The computation time for 

the three methods is given in Table 3-3. It can be seen that the Chebyshev method 

requires the least computational time, and then the Taylor method and the scanning 

method. 

(a)
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 (b)

(c)

Figure 3-14 (a) Rotation angle of crank with uncertain torque; (b) Rotation angle of 

connecting rod with uncertain torque; (c) Displacement of the piston with uncertain 

torque 

Table 3-3 Computational cost  

Methods Chebyshev Taylor Scanning 

Computation time (s) 422 1392 10584 

3.5 Summary 

In this chapter, the interval arithmetic is firstly introduced, and then the three types of 

interval inclusion functions are given. To control the overestimation in further, a new 

Chebyshev inclusion function is proposed. The Chebyshev inclusion function is based on 

the Chebyshev series which has high accuracy in approximation theory. The Chebyshev 
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inclusion function may produce tighter interval than traditional Taylor inclusion function, 

especially for the non-monotonic functions. At the same time, the proposed Chebyshev 

inclusion function does not require the derivatives information of the original function, 

which is easier to realize than the Taylor inclusion function. The Chebyshev inclusion 

function is employed to solve the ODEs and DAEs with interval parameters. The 

Chebyshev interval method is a kind of non-intrusive approach so that it can be used for 

many complicated engineering models and black box models. The numerical examples 

for solving the mechanical dynamics problems with interval uncertainty indicate that the 

Chebyshev inclusion function based method control the overestimation better than the 

Taylor inclusion function based method and is also easier to implement.   
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Chapter 4 Hybrid uncertainty analysis using orthogonal 

series expansion 

Most works in the uncertainty analysis field were mainly focused on either the aleatory 

(random) uncertainty or the epistemic (interval) uncertainty, respectively. However, in 

practical engineering, there are many circumstances that both types of uncertainties 

existed simultaneously, e.g. vehicle dynamics should comprise both probability 

uncertainty for random parameters, such as stiffness and damping ratio of components, 

and non-probabilistic (e.g. interval) uncertainty for uncertain-but-bounded variables, such 

as loading and geometry size. This chapter will investigate the hybrid uncertainty analysis 

by using the orthogonal series expansion method, which incorporates the Chebyshev 

interval method proposed in Chapter 4 and the PC expansion method that is a very 

popular approach in probability uncertainty analysis. 

4.1 The Polynomial Chaos expansion theory 

4.1.1 The generalized Polynomial Chaos expansion theory 

The fundamental idea of Polynomial Chaos (PC) expansion is that the random process of 

interest can be approximated by sums of orthogonal polynomials of random independent 

variables [18]. For a deterministic model with random inputs, if the inputs are represented 

in terms of the set
1

n
i i

, the output metrics can also be represented with the same set, as 

the uncertainty of the outputs is solely because of the uncertainty of the inputs [4] . A 

random process ( )Y , viewed as a function of the random event , can be expanded in 

terms of the orthogonal polynomial chaos as: 
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0
( ) j j

j
Y y                          (4-1) 

Here yj represents the deterministic coefficients to be estimated, ( )j  are the generalized 

Askey-Wiener polynomial chaos of order j, according to the multi-dimensional random 

variable 1( ,..., )n  [18]. For uniformly distributed random variables the basis are 

Legendre polynomials, for Gaussian random variables the basis are Hermite polynomials, 

and more basis for other random variables can be found in [18]. In this chapter, only the 

uniformly distribution random variables are considered, and other random variables can 

be dealt with in the same way. In the numerical implementation, we have to employ finite 

terms to approximate the accuracy value. If we remain s terms, ( )Y  can be expressed by 

    

-1

0
( )

s

j j
j

Y y                            (4-2) 

The one dimensional Legendre polynomials satisfy a three-term recurrence relation, 

which is given by 

0 1 1 1
2 11, , , ( 1,..., )

1 1i i i
i iL L L L L i n

i i
          (4-3) 

where ~ ( 1,1)U . The subscript i denotes the order of Legendre polynomials. For multi-

dimensional random variables 1( ... )n , the Legendre polynomials can be expressed 

as: 

1 2, ... 1
1

... ,   0,1,2,...
n j

n

k k k n k j j
j

L L k                 (4-4) 

For an n-dimensional Legendre polynomials, the order no more than k of the polynomials 

contain s terms, which are given in Eq. (4-5): 
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!
! !

n k
s

n k
                                           (4-5) 

The Legendre polynomials 
1,..., 1( ... )

nk k nL in Eq. (4-4) are corresponded with the 

polynomials j in Eq. (4-2). For example, if n=2, the correlation can be shown as follows: 

     

0 0,0 1 2

1 1,0 1 2 1 2 0,1 1 2 2

2 2
3 2,0 1 2 1 4 1,1 1 2 1 2 5 0,2 1 2 2

, 1,

, , , ,
3 1 3 1, , , , , ,
2 2 2 2

...

L

L L

L L L

  

 (4-6) 

The Legendre polynomial forms a complete orthogonal basis in the L2 space consisting of 

the uniformly random variables, i.e. 

2,i j i ij                                          (4-7) 

where ij  is the Kronecker delta, and .,. denotes the ensemble average inner product. 

,f g f g w d                        (4-8) 

Here 1 2 nw  is the weighting function of Legendre polynomials. With the 

orthogonality, the coefficient yi in Eq. (4-2) can be obtained via the following expression 

2 2

, 1i
i i

i i

Y
y Y d                           (4-9) 

Once getting the coefficients, the statistics characteristics can be obtained. The mean of Y 

is given by the 0th order term in the stochastic expansion, and the variance of Y can be 

expressed by the sum of square of other terms multiplying with 2
i  

        
-122 2 2

0
1

,  
s

i i
i

y Y Y y    (4-10) 



Chapter 4 Hybrid uncertainty analysis using the orthogonal series expansion

77 

4.1.2 The stochastic response surface method 

Although some numerical methods can be applied to calculate the integral in Eq. (4-9), it 

may be difficult to implement for high dimensional problems. However, the coefficients 

of the PC expansion can be obtained through the collocation method, by using the model 

outputs at some selected collocation points to regress the coefficients [4]. The collocation 

points are selected from the tensor product of the roots of polynomial, which is one order 

higher than the PC expansion. Eq. (4-5) shows that the n-dimensional polynomials with k-

th order containing ( )! ( ! !)s n k n k  terms, while the number of roots combinations is

( 1)nk , which is larger than s. 

For example, to solve the problem with n=2 and k=1, we can use the roots of the second 

order Legendre polynomial 1 3  and 1 3 . The possible collocation points (tensor 

product of the roots) are 1 3, 1 3 , 1 3, 1 3 , 1 3, 1 3  and 1 3, 1 3 , but 

the number of coefficients is (2 1)! 2!1!=3s . The collocation method [18] needs to 

choose at least s points from the combinations to run the experiment. If only s points are 

selected, the result may be unstable, because each point in the model space may evidently 

change the coefficients of the polynomial. Thus, the number of sampling points must be 

higher than the number of coefficients to be estimated; selecting the number of points 

equaling twice the number of coefficients is recommended for obtaining robust result [4]. 

Once the collocation points selected, the least square method can be used to produce the 

coefficients, i.e. 

0 1 -1 11 T

0 -1

,   
s

T

N s N

y X X X Y X (4-11)
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where T
1 ... NY YY denotes the model output vector at the collocation points, N 

denotes the number of collocation points, T
0 1 1, ... sy y yy is the coefficients vector of 

PC expansions, ( )X  is the transform matrix, and 1,..., N  denote the collocation points 

in a n-dimensional space. It can be found that this procedure is quite similar to the 

response surface method (RSM), except that the basis functions i  are orthogonal 

polynomials with respect to the random variables. Therefore, the collocation method for 

solving the PC expansion is also called stochastic response surface method (SRSM).

4.1.3 Numerical example 

Considering the vehicle handling performance, it affects the safety of vehicle directly, 

especially when the vehicle speed is very high. Simplify the vehicle model to a two-

degree-of-freedom (2DOF) bicycle model which does not consider the influence of 

steering system and suspension system and assumes that the longitudinal velocity of 

vehicle keep constant to research the vehicle handling characteristic, shown in Fig. 4-1. 

1u
1

2u
2

'O

O
V
u

a b
L 1YF

2YF

2

y

xv

Figure 4-1 The 2 DOF Bicycle model for vehicle 
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The symbols in the figure are noted as follows: 

O: the center of gravity of the vehicle;  

O : the turning center of vehicle; 

FY1, FY2: lateral force of front wheel and rear wheel;  

a, b: the distance from the front and rear axles to the center of gravity;  

u, v: the longitudinal velocity and lateral velocity for the center of gravity;  

u1, u2: the velocity for front wheel and rear wheel; 

1 2, , : the slip angle for the front wheel, rear wheel and center of gravity;  

: the steering angle for front wheel;  

: the angle between the direction of velocity for front wheel and the x axis; 

: the yaw velocity of vehicle.  

The differential equation of this model is shown in Eq. (4-12). 

2 2

1

1

f r f r f

z f r f r f

vmv k k ak bk k mu
u u
vI ak bk a k b k ak
u u

(4-12)

where kf and kr are the front and rear tire cornering stiffness respectively. The yaw 

velocity and lateral acceleration ya are mainly researched in this paper. The lateral 

acceleration can be expressed as 

ya v u (4-13)

We consider the dynamic response of the steer angle step input. The step input means that 

the driver increases the steering angle and then keeps the steer angle unchanged. The step 

input is that the front tire turns to 2 degree in 0.2 second and then keeps the angel 

constant, as shown in Fig. 4-2.  
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Figure 4-2 Steering angle step input 

The step input can be defined as Eq. (4-14). 

10     0.2
180
2        0.2
180

t t

t
     (4-14) 

A group of parameters for a car are shown in Table 4-1. Consider that the parameters a, b, 

kf, and kr as random variables. Assume that there is 1% uncertain range for each variable 

which satisfies independent uniformly distribution. At the same time, the initial 

conditions are considered as uniformly random variables which are

0 0~ 0.1,0.1 , ~ 0.1,0.1v U U . The indications we researched for vehicle handling 

are the yaw velocity and lateral acceleration ya , and we use the PC expansion method to 

solve this problem.

Table 4- 1 Parameters for a car 

 m kg  2.zI kgm  a m  b m  /fk N rad  /rk N rad  

Mean value 1188 2000 1.117 1.223 -30000 -40000 
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Use the second order PC expansion method to solve this problem. The Monte Carlo 

method with 10000 samples is used to validate the PC expansion method. Fig. 4-3 and 4-

4 present the mean values of yaw velocity and lateral acceleration for PC expansion 

method and Monte Carlo method respectively, which show that the mean values for PC 

expansion method have little error with Monte Carlo simulation.  

Figure 4-3 Mean value for yaw velocity 

Figure 4-4 Mean value for lateral acceleration 

Figure 4-5 and 4-6 present the standard deviations of yaw velocity and lateral acceleration 

for PC expansion method results and Monte Carlo simulation, respectively. The standard 

deviations of the yaw velocity and lateral acceleration for PC expansion method are 

consistent with the result of Monte Carlo simulation before 0.5s, but it is smaller than that 

of Monte Carlo simulation after 0.5s. The main reason is that only the second order of PC 
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expansion is used, which produces large truncated error. If higher order PC expansion is 

employed, they will be well consistent.  

Figure 4-5 Standard deviation for yaw velocity 

Figure 4-6 Standard deviation for lateral acceleration 

4.2 The hybrid uncertain analysis method 

4.2.1 The Chebyshev interval analysis using LSM 

Chapter 4 has proposed the Chebyshev inclusion function, in which the coefficients of 

Chebyshev series are computed by using the Gaussian-Chebyshev integral formula. This 

section will use the least square method (LSM) to compute the coefficients. For simplicity 
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without losing the generality, here we consider the 1-dimensional problem. Based on the 

Eq. (3-39), the Chebyshev series expansion is expressed by 

       0
1 0

1
2

k k

i i i i
i i

f x f f C x C x    (3-39) 

The coefficients are computed by Eq. (3-45) 

      
1

21
1

2 2
1

p
j ji

i i
j

f x C x
f dx f x C x

px
(3-45) 

Consider use the LSM to compute the coefficients i in Eq. (3-39), i.e.  

1T TC C C f      (4-15) 

T
0 1[ ]k  is the coefficient vector, 1 T[ ( ) ( )]pf x f xf  denotes the 

function value vector at the sampling points x(i), i=1, …p, and C is the p×(k+1) transform 

matrix (or design matrix), which can be expressed by 

1 1 1
0 1

0 1

n

p p p
n

C x C x C x

C x C x C x

C (4-16) 

When the sampling points are selected as the zeros of Chebyshev polynomial with the 

order p, the coefficients obtained by Eq. (4-15) will be equal to the coefficients obtained 

by Eq. (3-45). 

Theorem 4.1: The coefficients of Chebyshev series can be obtained by using the least 

square method when the zeros of Chebyshev polynomial are used as the sampling points, 

which will provide the same result as the Gauss-Chebyshev quadrature formula. 

Proof: Considering the Eq. (4-16) and Eq. (4-15), we have 
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0 0 0
1 1

T
1 1

0
1 1

p p
j j j j

k
j j

k k
p p

j j j j
k k k

j j

C x C x C x C x

C x C x C x C x

C C C (4-17) 

Since the sampling points are the zeros of Chebyshev polynomial with the order m, based 

on the discrete orthogonality of Chebyshev polynomial (Eq. (3-37)), the matrix C  can be 

transformed to a diagonal matrix 

0

1

0 0
2

=

0 0 2p

K p
K p

K p

C (4-18) 

Substituting Eq. (4-18) into Eq. (4-15), the coefficient vector can be calculated by 

1
0 0

1 1 T
11

1

1 (cos )cos 0
1
22 (cos )cos1

2 (cos )cos

p
j j

j

p
j j

j

k p kj j

j

f
p

f
f fp

f
f k

p

C C f    (4-19) 

Therefore, the LSM produces the same coefficients as Gaussian-Chebyshev quadrature 

formula. 

For the multi-dimensional problems, introducing the m-dimensional interval variable

[ ]=[-1, 1]m , the k-th order Chebyshev series expansion (Eq. (3-49)) can be expressed as 

1 1
1

,..., ,...,
0 0

1= ...
2 m m

m

lk k

i i i i
i i

f f C
 
  (4-20) 
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where l denotes the total number of zero(s) to be occurred in the subscripts 1, ..., mi i , and 

1,..., ( )
mi iC  are the m-dimensional Chebyshev series, which are defined as the tensor 

product of each dimensional Chebyshev series (Eq. (3-48)). 

The interpolation points are the tensor product of each dimensional interpolation points, 

so the total number of interpolation points is (k+1)m, which also equals to the number of 

coefficients 
1 ,..., mi if . The total number of interpolation points will be very large for the high 

dimensional problems, which will be computationally prohibited. Therefore, we change 

the format of Chebyshev series expansion as 

1 1
1

1

,..., ,...,
0 +...+ 0

1
2 m m

m

l p

i i i i i i
i i k i

f f C   (4-21) 

Here, the coefficients 
1,...,(1 2)

m

l
i if  are corresponded to i  one by one, and 

1,..., ([ ])
mi iC  are 

corresponded to ([ ])i  one by one, i.e.  

0 0,...,0 0 0,...,0

-1
1 1,0,...,0 1 1,0,...,0

-1
-1 0,...,0, -1 0,...,0,

= 1 2 ,       = ;

= 1 2 ,    = ;

 = 1 2 ,  =

m

m

m
p k p k

f C

f C

f C

  (4-22) 

In Eq. (4-21), the terms higher than order k are deleted, and the number of remained terms 

equals to ( )! ( ! !)p m k m k . After the change, we do not need to evaluate all the 

interpolation points. Similar to the SRSM, some interpolation points are chosen to build 

the Chebyshev series. Use the LSM to compute the coefficients, i.e.  

0 1 -1 11 T

0 -1

,  where 
k

T

M k M

X X X f X  (4-23) 
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where M=2p denotes the number of interpolation points, T
1[ ( )... ( )]Mf ff denotes the 

model output vector at the m-dimensional interpolation points i, T
0 1 1[ , ... ]p is the 

coefficients vector of Chebyshev polynomials. Since 0 ([ ])=1 , and ([ ])=[-1,1], 1i i , 

based on the interval arithmetic, we can calculate the bounds of the interval function as 

follows: 

-1

0
=1

= + -1,1
p

i
i

f     (4-24) 

It should be noted that Eq. (4-24) cannot eliminate the overestimation induced by the 

wrapping effect [160], although it can reduce the overestimation. Therefore, some 

optimization algorithms may be incorporated to avoid the wrapping effect in interval 

computation. 

4.2.2 The statistical evaluation based on interval variables 

In this section, both the random and interval variables are contained in a function

( ,[ ])F , which is assumed to be a computationally expensive model. Particurlarily, we 

consider the n-dimensional random variable ( 1,  1)nU  and the m-dimensional interval 

variable [ ]=[-1, 1]m . Hence, the output of the function will have the characteristics of 

both random and interval variables. 

Consider the random variable  only, and use Eq. (4-2) to expand the function ( ,[ ])F  

    

1

0
( ,[ ]) ( )

s

j j
j

F     (4-25) 

Here we use j  denotes the PC coefficients. Since the left side of Eq. (4-25) contains 

both the interval variable [ ] and the random variable , while ( )j  at the right side is 

the Legendre polynomials which is only the function of , the coefficients j  will be a 
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function with respect to [ ], namely ([ ])j . Use the Chebyshev expansion Eq. (4-21) to 

the coefficients ([ ])j , obtaining its Chebyshev inclusion function 

1

,
0

[ ]([ ])= ([ ])
p

j i j i
i

(4-26) 

Here ,i j  denotes the element in the coefficient matrix  with p rows and s columns. 

Substitute Eq. (4-26) into Eq. (4-10), the mean and variance will be obtained as follows: 

1

0 ,0
0

211 1
2 2 2 2

,
1 1 0

[ ] [ ] = ([ ])

[ ] [ ] ([ ])

p

i i
i

ps s

j j i j i j
j j i

     (4-27) 

Since the expression of the mean and variance contains interval variables, the two 

statistics will also be interval numbers: interval mean (IM) [ ]  and interval variance (IV) 

2[ ] , respectively. Based on the Chebyshev inclusion function, the IM [ ] can be 

expressed as 

1 1

0 ,0 0,0 ,0
0 1

[ ] [ ] [ ] [ ] = ([ ])= + [-1,1]
p p

i i i
i i

  (4-28) 

Similarly, the IV 2[ ]  may be expressed by 

221 11 1
2 2 2

, ,0 ,
1 0 1 1

[ ] [ ] ([ ]) = + [-1,1]
p ps s

j i i j j j i j
j i j i

(4-29) 

Since [ ]  and 2[ ]  are the functions with respect to the interval numbers [-1,1] , the 

above equations (4-28) and (4-29) still involve the overestimation [36] according to the 

interval arithmetic, particularly, when the evaluated functions are multimodal. Here, the 

bounds of IM and IV can be calculated respectively as 
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1 1

,0 ,0
0 0

2 21 11 1
2 2 2 2 2

, ,
1 0 1 0

                      , min ,  max

, min ,  max

p p

i i i i
i i

p ps s

i j i j i j i j
j i j i

1 1 1 1

1 1 1 1

(4-30) 

In interval analysis, the scanning method or global optimization algorithms are often 

applied to the above equations, in order to solve the “min” and “max” problems to obtain 

the bounds. In this case, the overestimation of the interval computation can be well 

controlled. Based on the explicit expressions of IM and IV, both the scanning method and 

the global optimization algorithm can efficiently find the bounds for IM and IV. If the 

dimension of the interval variables is less than 3 (m<3), the scanning method [162]can 

directly produce accurate bounds. However, for the high dimensional problems, some 

global optimization algorithms, such as the genetic algorithm, particle swarm algorithm, 

and simulated annealing algorithm, may be more effective.  

In the numerical implementation of Eq. (4-30), the coefficient matrix  is required to be 

solved. Firstly, ([ ])j  is considered as an interval function with respect to [ ], so its 

Chebyshev coefficient vector can be calculated by using Eq. (4-23), i.e. 

0, 1 0 1 -1 11 T
1 1 1 1

1, 0 -1

,  
j j p

T

p j j M M p M

X X X X (4-31) 

where j i denotes the function value of j at the interpolation points i . 

Repeating Eq. (4-31) from j=0 to j=s-1 leads to 

0,0 0, 1 0 1 1 11 T
1 1 1

1,0 1, 1 0 1

s s
T

p p s M s M

X X X (4-32) 
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Then consider Eq. (4-11) and (4-12), the function value vector T
0 1,...,i s i can 

be calculated as  

0 1 0 1 -1 11T T
2 2 2 2

1 0 -1

,
,

,

i i s

s i N i N s N

F

F
X X X X (4-33) 

Apply Eq. (4-33) to all interpolation points from 1  to M , the function value matrix 

will be  

0 1 0 1 1 11T T
2 2 2

1 1 1 1

, ,

, ,

M M

s s M N N M

F F

F F
X X X (4-34) 

Substitute Eq. (4-34) into Eq. (4-32), we have the following equation. 

T1 1T T T T
1 1 1 2 2 2

1 1T T TT
1 1 1 2 2 2  

X X X X X X F

X X X F X X X
(4-35) 

where F is the function value matrix at the collocation points and interpolation points. 

1 1 1

1

, ,

, ,

M

N N M

F F

F F
F (4-36) 

After obtaining the coefficient matrix  via Eqs. (4-35) and (4-36), as aforementioned, 

the scanning method or the global optimization algorithms can be applied to evaluate the 

bounds of the IM and IV. 

4.2.3 The bounds evaluation based on random variables 

Substituting Eq. (4-26) into Eq. (4-25), the function can be expressed as 
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11

,
0 0

,
ps

j i i j
j i

F   (4-37) 

Since 0 =1 and = -1,1i  for any 1i , the lower bound and upper bound of 

,F can be directly estimated using interval arithmetic. Due to the wrapping effect 

in interval arithmetic, the global optimization algorithms or scanning method are often 

used to find the bounds of ,F . The lower bound and upper bound are defined as 

11

,
0 0

11

,
0 0

, min

, max

ps

j i i j
j i

ps

j i i j
j i

F

F

1 1

1 1

   (4-38) 

Since the above bounds contains the random variable , the bounds are not an exact 

number but a random number satisfying probability characteristics. In order to evaluate 

the bounds more precisely, we need to calculate the mean value and variance. These 

indexes are termed as mean of lower bound (MLB) and mean of upper bound (MUB), as 

well as variance of lower bound (VLB) and variance of upper bound (VUB), respectively. 

The PC expansion theory can still be used to calculate the mean and variance, but the Eq. 

(4-38) is not the standard form of the PC expansion because the min and max operations 

are included in the expression. Thus, the PC expansion procedure has to be used to 

expand the lower bound and upper bound again. Based on Eq. (4-2), the bounds of 

( ,[ ])F  can be expanded as 

-1 -1

0 0

, ,  ,
s s

j j j j
j j

F F   (4-39) 
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where = + ! ! !s n k n k denotes the number of the coefficients, and k  denotes the order 

of Legendre polynomial. Using Eqs. (4-11) and (4-12), the coefficients can be calculated 

by 

0 11 T
3 3 3

-1

0 11 T
3 3 3

-1

T

s N

T

s N

F

F

F

F

X X X

X X X

   (4-40) 

where the number of collocation points 2N s , and 3X is the transform matrix 

expressed as 

0 1 -1 1

3

0 -1

s

N s N

X     (4-41) 

Due to the min and max operations involved in Eq. (4-38), we use higher order of 

polynomials to expand it ( >k k ). Utilizing Eq. (10), the MLB, VLB, MUB, and VUB can 

be calculated as 

      

-1 -1
2 2 2 2 2 2

0 0
1 1

,  ,  ,  
s s

F F i i i iF F
i i  

 (4-42) 

According to the previous description, the proposed method includes two regression 

processes, the first of which is to obtain the coefficient matrix p sR , and the second of 

which is to get the coefficient vectors 1sR  and 1sR . The flowchart for the 

proposed uncertain method is given in Fig. 4-7. 
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,

2 2, , ,F F F F

,i iF F

Figure 4-7 The flowchart of the PCCI method 

There are three steps involved in each regression process: the first step is to produce the 

collocation points or interpolation points, and then compute the function values at these 

collocation points or interpolation points, and finally use the least square method to 

calculate the coefficients. Since the original function ( ,[ ])F  is computationally 

expensive, the proposed method is highly efficient, as it only computes the function 

values N×M times, which is much less than the Monte Carlo method and scanning 

method. It is noted that ( ,[ ])F  can be any formats, e.g. ODEs, DAEs, and even for 

complex black-box models in engineering. As a result, the proposed method can be 

applied to vehicle dynamics including uncertainty. 

From the previous illustration, we can find that the proposed method is the combination 

of PC expansion method and Chebyshev interval method, so we call this method as 

Polynomial-Chaos-Chebyshev-Interval (PCCI) method. To validate the result given by 

the PCCI method, the Monte Carlo method is used as the reference in the probability 
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analysis and the scanning method is utilized to validate the bounds of interval analysis. 

Both methods are combined to obtain the reference solution, which is termed as Monte-

Carlo-Scanning test.  

Considering the function ( ,[ ]), ( 1,  1) ,[ ]=[-1, 1]n mF U , if the number of Monte 

Carlo sampling points is N0, choosing the q asymmetry scanning points in each dimension 

of interval variables, then the total number of experiment points is N0×qm. Let M0= qm, we 

can write these experiment points in the format of matrix 

0

0 0 0

1 1 1

1

, ,

,

, ,

M

N N M

C (4-43) 

The output of the function at these experiment points can also be noted as a matrix 

0 0N MRF  

0

0 0 0

1 1 1

1

, ,

( ( , ))

, ,

M

N N M

F F

F F

F F C (4-44) 

The unbiased estimator of the mean value and variance of ( ,[ ])F  at the scanning point 

i  will be 

0 0 22

=1 =10 0

1 1= , , = , -
1

N N

i j i i j i i
j j

F F
N N

(4-45) 

After calculating the mean and variance at each scanning points, we can find the 

minimum value (lower bounds) the maximum value (upper bounds) to obtain the IM and 

IV 

2 2 2= min , max , = min , maxi i i ii ii i
(4-46) 
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The bounds of function ( ,[ ])F  at each Monte Carlo sampling point j can be 

calculated as 

= , ,  = min , ,  = max ,j j j j j i j j ii i
F F F F F F F (4-47) 

The MLB, VLB, MUB, and VUB are calculated as follows: 

0 0 0 02 22 2

=1 =1 =1 =10 0 0 0

1 1 1 1,  - ,  ,  -
1 1

N N N N

F j F j F j j FF F
j j j j

F F F F
N N N N

(4-48)

4.3 Application of hybrid uncertain analysis in vehicle 

dynamics 

4.3.1 Model description 

To demonstrate the effectiveness of the proposed PCCI method in engineering, the 4-DOF 

roll plan model of vehicles [163] is studied in this section. The roll plan model is shown 

in Fig. 4-8.  

There is an added mass M on the roll bar, which denotes the driver, the passenger, and 

other object in the vehicle. The d denotes the distance from the added mass position to the 

left end of the roll bar. The vehicle body is presented by a roll bar with mass m, length l, 

and inertia I. The mass of left tyre and right tyre is mt1 and mt2, respectively, and the tyre 

stiffness is kt1 for the left side and kt2 for the right side. Considering the nonlinear stiffness 

of suspension, the linear stiffness is denoted by ki and the nonlinear stiffness is 

represented by ik , where i=1for the left suspension and i=2 for the right suspension. The 

damping ratio for the left suspension and right suspension is noted as c1 and c2, 

respectively. 
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Figure 4-8 The roll plan model of a vehicle 

When the roll angle is small, i.e. 2 1-x x l is small, the dynamics equations of the system 

are 

2 1 2 1 1 2 1 2

2 1 2 1 1 1 2 2

2 2
2 1

1 1 1 1 1 1 1

2 2 2 2 2 2 2

+ + + - 2 -1 + + + + 0

cos - - + - - + + - - 2-

+ 2- + =0

+ + + - =0

+ + + - =0

k k C C

s s k C k C

t t k C t t

t t k C t t

m M x x M x x d l l F F F F

x x x x l D F F l D F F g M D d m l D

I m l D M D d x x l

m x F F k x y

m x F F k x y

 
(4-49) 

where + 2Md mlD
M m

, y1 and y2 denote the road input for each wheel, and Fk1 and Fk2 

denote the spring forces of the suspension. The nonlinear stiffness is expressed by 

  
3 3

1 1 1 1 1 1 1 2 2 2 2 2 2 2= - + - , = - + -k t t k t tF k x x k x x F k x x k x x   (4-50) 

FC1 and FC2 are the damping force of the suspension, defined as 

1 1 1 1 2 2 2 2=0.2 tanh - , =0.2 tanh -C t C tF c x x F c x x   (4-51) 

x1s and x2s represent the static position of the vehicle body relative to the ground, which 

may be estimated by numerical methods in solving the following nonlinear system 
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1 1 1 1 1 1

3
2 2 2 2 2 2

1 1 1
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-- + - + + g =0
2
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2

-+ + g + =0
2

+ + g + =0
2

s t s s t s

s t s s t s

t t s t

t t s t

mg l dk x x k x x M
l

mg dk x x k x x M
l

mg l dk x M m g
l

mg dk x M m g
l

   (4-52) 

Table 4-2 Parameters of the roll plan model 

Parameters m (kg) mt1,mt2 (kg) c1,c2 (N/(m/s)) 1 2, k k  (N/m) 1 2, k k  (N/m3) 

values 580 36.26 710.7 U(19000,20000) U(95000,105000)

Parameters l (m) I (kg.m2) kt1,kt2 (N/m) M (kg) d (m) 

values 1.524 63.3316 96319.76 [150, 250] [0.5, 1] 

Assume that there are some uncertain parameters in this system, including the stiffness of 

the suspension 1 2 1 2, , , k k k k , the added mass M, and the position of added mass d. The 

stiffness parameters are considered as random variables, assuming that they satisfy the 

uniform distribution. For the added mass and its position, it is practically hard to obtain 

their probability distribution, but their variation ranges are limited inside some intervals. 

Therefore, the added mass M and its position d are described as interval parameters. The 

uncertain and other parameters are shown in Table 4-2.

4.3.2 Hybrid uncertain analysis of vehicle model 

From Tab 4-2, there are 4 random and 2 interval parameters, which can be expressed by 

standard format as: 

1 1 2 2 1 3 2 4

1 2

=19500+500 ; =19500+500 ; =100000+5000 ; =100000+5000
200 50 ; =0.75+0.25

k k k k
M d

(4-53) 
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where 4~ ( 1,  1)U  and 2[ ] [ 1,  1] . 

Figure 4-9 The road input 

The road input is given in Fig. 4-9, and the vehicle velocity is 16 km/h. The left tyre 

moves upgrade from 0m, and reaches the highest position 0.1m where the horizontal 

displacement is 1m. Keeping the height 0.1m unchanged until the left tyre goes 

downgrade, which is asymmetrical to the upward slope. The right tyre moves along a 

similar track to the left one, but its upgrade starts from 0.6m of the horizontal 

displacement, and its maximum height is 0.08m. The output of the roll plan model are 

defined as the deformation of the suspension, i.e. 1 1 1= - tz x x  and 2 2 2= - tz x x . 

Due to the uncertainty of suspension stiffness, the added mass, and its position, the output 

should also be uncertain. The PCCI method is used to solve this problem. Replacing the 

function ( ,[ ])F  in the flowchart Fig. 4-7 by the output of this roll plan model, we can 

obtain the IM, IV, MLB, VLB, MUB, and VUB of the output. In this thesis, we choose 

the order of PC expansion and Chebyshev series expansion as 4 (k=4), and the scanning 

method with 20 symmetrical scanning points in each dimension of interval parameters is 

used to compute Eq. (4-30) and (4-38), which provides accurate bounds information. To 

validate the proposed method, the Monte-Carlo-Scanning test is also performed, in which 

the number of Monte Carlo sampling points is 1000, and 20 scanning points are used in 
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each dimension of interval parameters, so the total number of the simulation running is 

1000×202=400,000. The PCCI method takes about 180.4s to obtain the results, while the 

Monte-Carlo-Scanning test takes 9915.3s, which is more than 50 times than that of the 

PCCI method. 

   

Figure 4-10 IM of z1     

   

Figure 4-11 IM of z2 

The IM and IV of the output are shown in Fig. 4-10 to 4-13. The results show that the IM 

of the PCCI method are close to the IM of the Monte-Carlo-Scanning test, and the test 

results of IM are contained in that of PCCI tightly. So the PCCI method can provide 
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sufficient accuracy to the interval mean. For the IV, the intervals of the PCCI method do 

not contain all the intervals obtained by the reference test, but there is only small 

difference between them. Thus, the PCCI method can also provide good estimation for 

interval variance.

 

Figure 4-12 IV of z1 

 

Figure 4-13 IV of z2 

Figures 4-14 and 4-15 show the MLB and MUB of output. The results indicate that the 

PCCI method can provide similar results relative to the reference test in MLB and MUB. 

The MLB and MUB of the proposed method are in line with the Monte-Carlo-Scanning 

test, which is similar to that of the IM.
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Figure 4-14 MLB and MUB of z1 

 

Figure 4-15 MLB and MUB of z2 

The VLB and VUB of the output are shown in Fig. 4-16 to 4-19. It can be seen that the 

overall shapes of the VLB and VUB of the two methods match well, and the small 

difference only happened at local regions with sharp fluctuations.
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Figure 4-16 VLB of z1 

 

Figure 4-17 VUB of z1 

   

Figure 4-18 VLB of z2  
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Figure 4-19 VUB of z2 

4.4 Summary 

This chapter proposes an uncertain analysis method, termed as PCCI method, for systems 

involving hybrid uncertain parameters, namely the random parameters and interval 

variables. In this method, the PC expansion is applied to deal with the random uncertainty 

and the Chebyshev inclusion function is used to handle the interval uncertainty. It is 

proved that the least square method can be used to build the Chebyshev inclusion 

function directly, which provides the same result computed by the integral formula shown 

in Chapter 3. Two types of evaluation indexes are proposed, the first of which include the 

interval mean (IM) and interval variance (IV), considering the random parameters firstly 

and then the interval parameters, and the second of which are the mean of lower bound 

(MLB), variance of lower bound (VLB), mean of upper bound (MUB), and variance of 

upper bound (VUB), considering interval parameters firstly and then the random 

parameters. To validate the accuracy of the PCCI method, a Monte-Carlo-Scanning test 

scheme that combines the Monte Carlo method and the scanning method to calculate the 

two types of evaluation indexes is proposed.  
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A 4-DOF vehicle roll plan model is used to demonstrate the effectiveness of the proposed 

PCCI method, in which the stiffness of the suspension are regarded as random parameters 

while the added mass and its position are considered as interval parameters. The 

numerical results show that the PCCI method can provide accurate numerical results for 

both types of the evaluation indexes. Furthermore, the PCCI method only takes 180.4s, 

but the Monte-Carlo-Scanning test takes 9915.3s. Also, the PCCI method is a kind of 

non-intrusive method, so it can be used to solve the uncertainty of black box problems. 
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Chapter 5 Optimization under interval uncertainty 

Design of optimization has experienced considerable development over the past two 

decades with a wide range of engineering applications. However, the majority of these 

works are focused on the investigation of the deterministic problems. This chapter 

proposes a new interval uncertain optimization methodology for engineering. The 

uncertain design problem is often formulated as a double-loop optimization. To improve 

the optimization efficiency, the interval arithmetic is introduced to directly evaluate the 

bounds of interval functions and eliminate the inner loop optimization. The high-order 

Taylor inclusion function is employed to compress the overestimation of interval 

arithmetic. A Chebyshev surrogate model is proposed to compute the high-order 

coefficients of the Taylor inclusion function.  

5.1 The interval uncertain optimization model 

This section will propose a new uncertainty optimization model, in which the design 

variables are considered as interval numbers. In engineering problems, there are many 

cases that the design variables are also uncertain variables. For example, the stiffness in 

vehicle suspensions can be both the design variable and the uncertain parameters due to 

the material property variations. The cross section areas of a truss structure can be design 

variables, and at the same time uncertain parameters due to manufacturing tolerance. 

Therefore, the proposed uncertainty optimization model will be more suitable for 

practical problems. As mentioned above, the information of interval variables can be 

easily obtained compared to the precise probabilistic distributions of random variables, so 

the interval uncertain optimization is investigated in this chapter.  

A general deterministic optimization model is given by 
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min      ( )

s.t.      ( ) 0,     1, 2,...,

           
i
l u

f

g i n
x

x

x

x x x

 (5-1)

The above mathematical model is used to minimize the objective f  subject to constraints 

ig . kRx  is the vector including deterministic design variables. To describe 

uncertainties in the design, interval numbers are introduced to express the variations 

induced by the uncertainty, so the deterministic optimization model (5-1) can be re-

defined as follows: 

[x]
min      ([ ])

s.t.      ([ ]) 0, 1, 2,...,

           [ ]
i
l u

f

g i n

x

x

x x x

   (5-2)  

Since the width of an interval design variable [x] is pre-given as , any interval design 

variable can be expressed as 

[ ]= +[- , ]cx x     (5-3) 

The objective and constraints will also be interval numbers, denoted by [f] and [g], 

respectively, because the design variables are interval numbers. 

To ensure the “robustness” of the design, the above minimization problem is to minimize 

both the average value and the width of the uncertain objective function. The 

minimization of the width will lead to the decrease of the variance of the objective 

function, to make the uncertain objective function insensitive to the variation due to the 

uncertainty. It is noted that the midpoint value and width are functionally similar to the 

probabilistic counterparts in the conventional robust design optimization [114], which is a 

standard technique to minimize both the mean value and the standard deviation of the 

objective function. 
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To optimize the objective, both the midpoint and width of the objective should be 

minimized, which can actually be regarded as a type of robust designs. Thus, the new 

objective objf  can be specified as 

1 2= +obj cf f w f     (5-4) 

where 1 and 2 denotes the weighting coefficients, and we set both 1 and 2 as 1 in this 

study. Then the objective can be re-defined as follows: 

= + =obj cf f w f f     (5-5) 

Then the objective would be the upper bound of interval [ ]f , which is the maximum 

value of f under the uncertainty, as shown in Fig. 5-1. 

          

Figure 5-1 Interval objective function 

 

Figure 5-2 Interval constraints 
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For the interval constraints, there are three cases in the design space: 0 g , 0g g  

and 0g , as shown in Fig. 5-2. The first case violates the constraint, and the second case 

contains the possibility of violating the constraint. Only the last case can guarantee the 

design points in the feasible region, which denotes a 100% reliability index. So the upper 

bounds should be used to meet the constraints

        0,  1,2,...,ig i nx     (5-6) 

The upper bounds of the objective and constraints can be calculated through maximizing 

the value in the range of uncertainty. Consider Eqs. (5-3), (5-5) and (5-6), the 

optimization model can be finally expressed as 

         

[ ]

[ ]

min    max  ( )

s.t.      max  ( ) 0, 1, 2,...,

           [ ]= +[- , ]

           + -

c

i

c
l u

c

f

g i n
x x x

x x

x

x

x x

x x x

   (5-7) 

It should be noted that the optimization result of the uncertain optimization model (5-7) is 

different from that of the deterministic optimization model (5-1). The difference between 

the two optimization models can be demonstrated by a simple one-dimensional function, 

considering the function in Eq. (5-8). 

5 4 3 2( ) -251 771 -889 479 10, 0- 1116f x x x x x x x   (5-8) 

If the width of the interval variable [x] is set to =0.1, the objective under deterministic 

and uncertain conditions is shown in Fig. 5-3, respectively. It can be found that the 

deterministic optimal result is about 0.25, and the upper bound of ([ ])f x  around this 

point is about 0.75. However, the actual uncertain optimal result would be near to 0.27, 

where the upper bound is about 0.36. 
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Figure 5-3 Difference of the deterministic optimization and uncertain optimization 

5.2 Nested optimization method 

The optimization model in Eq. (5-7) is typically a nested double-loop optimization 

problem. The outer loop optimization searches the optimal midpoint of interval design 

variables to minimize the objective, while the inner loop finds the maximum values (or 

minimum values) of the objective and constraints within the ranges of interval 

parameters. Different optimization algorithms are usually employed at the two loops in 

order to balance the numerical accuracy and computational efficiency, considering the 

different characteristics of the two loops. 

Outer loop optimization 

To seek the global optimal solution and avoid multiple local minima, many heuristic 

techniques with strong global searching ability can be used. This study employs the 

Multi-Island Genetic Algorithm (MIGA) [164, 165] to solve the outer loop optimization 

problem. The flowchart of MIGA is shown in Fig. 5-4. MIGA divides each population of 

individuals into several sub-populations called “islands”. In the evolution, some 

individuals are selected from each island and migrated to different islands periodically, 
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which may make the solution converge to the global optimal solution faster than 

conventional genetic algorithms. 

 

Figure 5-4 Flowchart of MIGA 

The MIGA is similar to the general GA, which consists of two processes: the first process 

is the selection of individuals for the production of the next generation, and the second 

process is the manipulation of the selected individuals to produce the next generation by 

crossover and mutation techniques. However, in MIGA, the population is divided into 

several sub-populations and the migration operation is added. Each sub-population 

evolves independently for optimizing the same objective function. The migration occurs 

every M generation, and copies of the individuals which are the best N% of the island 

populations are allowed to migrate. M is called the interval of the migration and N% is 

called the rate of the migration. In the migration, the top N% strings in the sub-population 

A may be copied to another sub-population B, and the least N% strings of the sub-

population B will be eliminated. Similarly, the sub-population A will receive the top 
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strings from other sub-population and eliminates its least strings. This operation repeats 

until each sub-population achieves top strings from another sub-population.

Although MIGA has the ability to search the global optimum, its convergence ratio is 

normally slower than the conventional gradient-based algorithms, especially within the 

neighborhood of the optimal solution. To improve the efficiency, the Sequential Quadratic 

Programming (SQP) [166] will be combined with the MIGA to search the optimum, 

which means the optimal point of MIGA will be used as the initial point of SQP. In this 

case, the number of generations in MIGA can be reduced, because only a limited number 

of points near the global optimal solution are required, which will greatly reduce the 

calculation time of MIGA.  

Inner loop optimization 

The design space of the inner loop optimization is relatively narrow, and the inner loop 

optimization can be searched by using many optimization algorithms. This chapter 

employs the Active Set Optimization (ASO) method in MATLAB. The idea of ASO is to 

define a working set as the active set in terms of a set of constraints at each step. The 

working set is chosen to be a subset of the constraints that are actually active at the 

current point, and hence the current point is feasible for the working set. The algorithm 

then proceeds to move on the surface defined by the working set of constraints to an 

improved point. At this new point the working set may be changed. An ASO consists of 

the following components: (1) determination of a current working set that is a subset of 

the current active constraints, and (2) movement on the surface defined by the working 

set to an improved point. 

In the nested double loop optimization, the computational efficiency of the design 

problem is a key issue to be considered. The computational cost of the inner optimization 
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is not very high, but the total cost for the entire double loop optimization will be 

computationally prohibitive. For instance, if MIGA-SQP in the outer loop requires 1000 

iterations and the inner ASO algorithm requires 100 iterations, the total number of 

iterations will be 1000×100=105. To improve the computational efficiency, the 

linearization method has been widely applied to the inner loop [e.g. [120]]. That is, the 

objective can be expressed with respect to the design variables and parameters at the 

midpoints via the first-order Taylor series 

= + - +O 2
c

c c
ff f

x

x x x x
x

   (5-9) 

If the higher order terms are ignored, the maximum value can be determined as 

max +
c

c
ff f w

x

x x x
x

    (5-10) 

where w([x]) denotes the width of interval variables [x]. Similarly, the maximum value of 

constraint functions gi can also be calculated via the linearization model as 

max +
c

c
gg g w

x

x x x
x

   (5-11) 

The truncated errors exit in this linearization model, due to the neglect of the higher-order 

terms in Eq. (5-9). For highly nonlinear problems, the truncation error cannot be ignored. 

The linearization model can improve computational efficiency of the nested optimization. 

However, it may result in a poor numerical accuracy due to the truncated error. To reduce 

the computational time without sacrificing numerical accuracy, a new optimization 

strategy will be proposed in next section based on the interval arithmetic. 

The flowcharts for the nested optimization (Fig. 5-5(a)) and the linearization optimization 

using the first-order Taylor series (Fig. 5-5(b)) are shown in Fig. 5-5, respectively. In Fig. 
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5-5(a), the outer optimization is implemented by a combination of MIGA and SQP. The 

midpoints of the interval variables are updated in each step of the outer loop, and the 

bounds of the interval design functions are calculated by the inner optimization using the 

ASO algorithm. In Fig. 5-5(b), the first-order Taylor series expansion is used to replace 

the inner loop optimization, to avoid the computationally expensive double-loop process. 

This study will employ an alternative method to balance the efficiency and numerical 

accuracy in the numerical implementation. 

kx x

0 , 0jx x

 

Starting point
x0, k=0

Calculate fmax(xk),  gmax(xk) using 
Eqs. (5-10) and (5-11)

Updating design vaiables: xk
(MIGA+SQP)

Converge ?

End 

Yes

No
k=k+1

       

(a) Double loop process     (b) Linearization process 

Figure 5-5 Flowchart of optimization under interval uncertainty   

5.3 The interval optimization method 

5.3.1 Chebyshev surrogate model 

The double loop optimization process is very expensive, so the interval arithmetic can be 

used to replace the inner optimization directly to improve the optimization efficiency. The 

Chebyshev inclusion function proposed in Chapter 3 has better performance for large 

uncertain range, but the uncertain extent in design optimization is usually small. As a 
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result, the Taylor inclusion function will be used to evaluate the bounds of objective and 

constraints. 

However, there is a problem for using the Taylor inclusion function, which is the high-

order derivatives of the evaluated functions (objective and constraints) should be 

computed firstly. For most of the evaluated functions (objective and constraints), we do 

not know their analytical expression, so the derivatives cannot be accurately obtained. If 

the numerical differential method is used to compute the derivatives, the computational 

cost will be high while the accuracy may still be low. To use the Taylor inclusion 

function, a polynomial approximation model (or surrogate model, meta-model) should be 

constructed. As aforementioned in Chapter 3, the Chebyshev series has higher accuracy 

than the Taylor series, so the Chebyshev series will be used to construct the surrogate 

model. 

Using the k-th order Chebyshev series as the polynomial surrogate model of the surrogate 

model can be expressed by 

1 1

1

T
... ...

0 +...+

1 ˆ:
2 n n

n

l

i i i i
i i k

f f C fx x c x (5-12) 

Here ˆ ( )f x  denotes the polynomial surrogate model. The coefficient vector T
1=[ ,..., ]s  

1

T
0,...,0 ...[1 2 ,...,1 2 ]

n

k l
i if f , and 

1

T T
1 0,...,0 ...=[ ,..., ] =[ ,..., ]

ns i ic c C Cc x x  is the polynomial 

basis vector with =( + )! ! !s n k n k . The coefficient vector can be calculated by the LSM as 

the Chapter 4 has proved. 

1T TC C C Y     (5-13) 
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where
T

1= sf fY x x  is the vector of function value at the sampling points, 

and the matrix s sRC  is composed by the value of polynomial basis vector at the 

sampling points 

1 1 1

1

s

s s s

c c

c c

x x
C

x x
    (5-14) 

where x1…xs denote the sampling points, which are the zeros of Chebyshev polynomials. 

The expression of Eq. (5-12) is respect to the Chebyshev series, and it can also be 

expressed with respect to Taylor series 

Tf x b      (5-15) 

where the polynomial basis vector

1

T 0 T
1

=1       =1
...

=[ ] =[ ]i

n

n n
k

s i i
i i

k k k

b b x xb , and the 

coefficient vector T
1=[ ]s  may be calculated by 

1T TB B B Y     (5-16) 

where the matrix s sRB is determined by 

      
1 1 1

1

s

s s s

b b

b b

x x
B

x x
   (5-17) 

If the sampling points x1…xs used in Eq. (5-14) and (5-17) are the same, Eq. (5-12) 

and (5-15) will provide the same approximation model. This will lead to the following 

theorem: 

Theorem 5.1: When the least square method is used to build an approximation 

polynomial model with predefined order n, the accuracy of this polynomial is 
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determined by the sampling points rather than the basis vector of the polynomial 

model. 

Proof: If we can prove that the two approximation polynomial models (5-12) and (5-15) 

are equivalent, this theorem can be proved. From Eq. (3-35), we know that the 

polynomial basis vector c can be obtained through a linear transformation from vector b, 

such as 

b = Ac      (5-18) 

where s sRA is the linear transformation matrix between the two vectors c and b. 

Substituting Eq. (5-18) to Eq. (5-14) and (5-17), we can obtain 

TB = CA      (5-19) 

Substitute Eq. (5-13) to Eq. (5-12) 

T1 1T T T T Tˆ =  f x c C C C Y c Y C C C c   (5-20) 

Substitute Eq. (5-16) to Eq. (5-15) 

T1 1T T T T T=  f x b B B B Y b Y B B B b (5-21) 

Substituting Eq. (5-18) and (5-19) to Eq. (5-21), we will finally find the following 

equation 

1T T

1TT T T T

1 1 1T T T T 1 T T

         = 

ˆ        

f

f

x Y B B B b

Y CA CA CA Ac

Y CA A C C A Ac Y C C C c x

(5-22) 

Therefore, the two approximation models shown in Eq. (5-12) and (5-15) are absolutely 

equivalent, which means the sampling points determine the polynomial model rather than 
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the basis vector for the polynomial model. Since the zeros of Chebyshev polynomials are 

used as the sampling points, we called this polynomial approximation model as 

Chebyshev surrogate model. It should be noted that the Chebyshev surrogate model may 

be expressed as many different types corresponding to the basis vector, and we choose the 

Taylor series-based expression shown in Eq. (5-15) to be conveniently used in Taylor 

inclusion function. 

The number of interpolation points for constructing Chebyshev surrogate model equals to 

(k+1)n, which is computationally expensive, especially for the high dimensional 

problems. To save the computational cost, only a part of the interpolation points are used 

to build the Chebyshev surrogate model. The number of coefficients in Eq. (5-15) is 

= ( + )! ! !s n k n k , so the number of sampling points from the interpolation should not be 

less than s. Therefore, the number of sampling points can be chosen in the interval 

[( + )! ! !,  ( 1) ]nn k n k k . The larger number of sampling points, the smaller error of the 

approximation, but lower efficiency. Similar to the collocation method in Chapter 4, the 

number of the sampling points is set as twice of the number of the evaluated coefficients, 

to make the numerical method stable. Thus, when (k+1)n > 2( + )! ! !n k n k , 2( + )! ! !n k n k  

interpolation points will be chosen as the sampling points randomly. Otherwise, all the 

interpolation points will be chosen as the sampling points. After the set of sampling data 

is obtained, the LSM is used to calculate the coefficients and establish the surrogate 

model. 

The flowchart of constructing Chebyshev surrogate model is shown in Fig. 5-6. The 

process of constructing Chebyshev surrogate model contains two main steps: to obtain the 

sampling data and to calculate the coefficients. The sampling points are the zeros of the 

Chebyshev polynomial, and their sizes are determined by the dimension of interval 
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variables and the order of polynomials. When the sampling data is obtained, the least 

square method can be used to calculate the coefficients, and then calculate the bounds of 

the function based on the interval arithmetic. 

+ !
+1 >2

! !
k n k

n
n k

2 + ! ! !n k n k

Figure 5-6 Flowchart of Chebyshev surrogate model 

5.3.2 Optimization algorithm using interval arithmetic 

The Chebyshev surrogate model can then be combined with the outer loop optimization 

(MIGA+SQP) to implement the uncertain optimization. The major advantage of the 

interval arithmetic is that the maximum and minimum values of a function are contained 

in the interval results, which provide rigorous constraints for the outer loop to guarantee 

the outer loop optimal solution is in the feasible region. The optimal design of the interval 

arithmetic may be more conservative than that of the nested optimization, but it is more 

reliable than the nested optimization or linearization optimization. 
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, , , , ,l u
c kx x x y

Figure 5-7 The flowchart of interval optimization 

The flowchart in Fig. 5-7 illustrates the numerical process of the proposed interval 

optimization strategy. The first step is to define some initialization parameters, where xc 

denotes the mid value of design variables, and k denotes the order of the Chebyshev 

surrogate model. The second step is to calculate the objective fmax(xc), and constraints 

gmax(xc) in the outer loop using the interval arithmetic. The high-order Taylor inclusion 

function is used to reduce the overestimation in the interval arithmetic. However, the 

high-order derivatives in the inclusion function are hard to obtain. As a result, the 

Chebyshev surrogate model is constructed to approximate the Taylor inclusion function. 

The second step contains several sub-steps to build the Chebyshev surrogate model. In 

this stage, we produce several interpolation points which are the zeros of Chebyshev 

polynomials, and then choose some interpolation points as the sampling points based on 

the strategy described in Fig. 5-7 to calculate the values of the evaluation function at these 

sampling points. Then, the Least Square method is used to calculate the coefficients of the 
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Chebyshev surrogate model and then construct the Chebyshev approximation model. 

Lastly, the interval arithmetic is used to evaluate the objective fmax(xc) and constraints 

gmax(xc). Hence, the third step is to update the nominal values of design variables based 

on the outer loop optimization algorithm (MIGA+SQP). If the result satisfies the 

convergence condition, the algorithm will be end; otherwise the algorithm will go to the 

step 2. 

5.4 Application of interval optimization  

5.4.1 The 18-bar planar truss optimization 

Figure 5-8 shows the 18-bar cantilever planar truss. The objective is to minimize the total 

weight of the truss subject to the stress limitations of ±20000lb/in2 and Euler buckling 

compressive stress limitation [167] 

2
i i

i

KEAb
L      

(5-23) 

where K=4 denotes a constant determined by the cross-sectional geometry, E=107 lb/in2 

is the modulus of elasticity, Li is the ith member length, and Ai denotes the cross-sectional 

area of the ith member. The minimum cross-sectional area of members is 0.1 in2, and the 

maximum value is 50 in2. 

 

Figure 5-8 18-bar planar truss structure 
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The members can be categorized into different groups, according to the cross-sectional 

areas (design variables): x1=A1=A4= A8=A12= A16, x2=A2=A6= A10=A14= A18, x3=A3=A7= 

A11=A15, and x4=A5=A9= A13=A17. Here the design variables are considered as interval 

variables that has the interval width of 0.2in2. The material density is 0.1lb/in3. The 

vertical loads P=20000lb is applied at the upper side of the truss. 

The uncertain optimization model can be defined as follows: 
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(5-24)

 

where i  denotes the stress of ith member, c1 and c2 denotes the stress constraints and 

Euler buckling compressive stress limitation, respectively. The results, obtained with the 

three different methods: the nested optimization, linearization model, and the proposed 

interval strategy, are shown in Table 5-1. 

The objective and constraint shown in the bracket denotes the validated value, which is 

obtained through the scanning method in the uncertain range around the design point. The 

results show that the linearization model gives the lightest design solution 6622.74lb, and 

then the nested optimization method is 6623.95lb and the interval solution is 6650.27lb. 

However, the linearization optimization method violates both of the two constraints 

shown with underlines, and the second constraint is violated for the nested optimization 

solution. The interval method can ensure the satisfaction of both constraints, and so we 

can say that the interval method is able to provide more reliable optimization results. For 
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the calculation cost, the interval method takes 139s, which is close to the linearization 

method and much less than the nested optimization method. 

Table 5-1 The optimization results of 18-bar planar truss 

 Nested optimization Linearization optimization Interval optimization 

x1(in2) 10.2024 10.1962 10.2000 

x2(in2) 21.8514 21.8480 21.8517 

x3(in2) 12.6160 12.6310 12.8889 

x4(in2) 7.2761 7.2657 7.2711 

g1(lb/in2) 19995(19995) 20000(20015) 20000(20000) 

g2 1.000(1.014) 1.000(1.011) 1.000(1.000) 

w(lb) 6623.95 6622.74 6650.27 

Time(s) 288 103 139 

 

5.4.2 Vehicle suspension optimization 

The characteristics of wishbone suspension can be mathematically divided into two 

groups, namely, kinematic performance and dynamic performance [168]. The kinematic 

performance of suspension has large influence on the vehicles’ handling, while the 

dynamic performance influences the ride comfort. Since the positions of hardpoints 

obviously influence the kinematic performance rather than dynamic performance, only 

the kinematic characteristics of the suspension will be optimized in this section. 

Compared to the Macpherson suspension [169], the double wishbone suspension has 

better kinematic performance but relatively a more complicate structure, making the 

optimization of structure more difficult.  
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Figure 5-9 shows the model of a double wishbone suspension system, mainly including 

tie rod, knuckle, absorber, upper control arm, and lower control arm. In this study, the 

kinematic analysis model is developed using the commercial software ADAMS/Car. The 

simulation condition for the wheel stroke is a bump of 50 mm and a rebound of -50 mm. 

Figure 5-9 The model of double wishbone suspension 

With the suspension model, the kinematic characteristics which are described with the 

camber angle, caster angle, kingpin inclination angle, and toe angle, shown as Fig. 5-10.  

 

Figure 5-10 Camber angle, caster angle, kingpin inclination angle, and toe angle 

The camber angle is the angle between the vertical axis of the wheels used for steering 

and the vehicle z-axis (Fig. 5-10(a)). If the top of the wheel is farther out than the bottom, 
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the camber angle would be positive, otherwise it will be negative. Caster is the angle to 

which the kingpin axis is tilted forward or rearward from vertical, as viewed from the side 

(Fig. 5-10(b)). If the kingpin axis is tilted backward (that is, the top pivot is positioned 

farther rearward than the bottom pivot), then the caster is positive; if it's tilted forward, 

then the caster is negative. Kingpin inclination angle is measured in degrees from the 

center line kingpin to vertical, as viewed from the front or rear (Fig. 5-10(c)). The angle 

of the two front wheels or two rear wheels relative to each other and the car as seen from 

above is the toe angle (Fig. 5-10(d)).  

Figure 5-11 Camber angle 

Figure 5-12 Caster angle 
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Figure 5-13 Kingpin inclination angle 

Figure 5-14 Toe angle 

These angles are changed with the wheel stroke, and they can be obtained through the 

numerical simulation. The plots of these characteristic indexes with respect to the wheel 

travel are shown from Fig. 5-11 to Fig. 5-14, respectively.

The axis direction of inner revolution joint of upper control arm and lower control arm 

(Fig. 5-9) influences the kinematic performance of the suspension, so the coordinates of 

rear inner hardpoint of upper control arm (point A) and rear inner hardpoint of lower 

control arm (point B) are chosen as design variables. As the x-directional coordinates of 

the two hardpoints have little influence on the axis direction of revolution joint, only the 

y- and z-directional coordinates are considered as design variables. The relevant design 
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vector is denoted as 1 2 3 4[ ]u u u uu =[ ]A A B By z y z . The initial values of the 

design variables are set as [490 560 450 185]u  mm, and the range of design 

variables are set as ±60 mm in terms of the initial values. 

As described in above, the design variables contain uncertainties, which lead the actual 

values to fluctuate at their nominal values. It is assumed that the uncertain range of each 

design variable is ±3 mm from its nominal value, and then the design vector can be 

expressed as interval vector as: 

[ ] [ ],  [ ] [ 3,3] [ 3,3] [ 3,3] [ 3,3]u u + u u (5-25)

If the design variables are considered as interval variables, the response of kinematic 

performance will not be a curve but an interval belt, as shown in Fig. 5-11 to 5-14 To 

improve the kinematic performance, the maximum variation in the transient responses 

over the wheel travel is required to be minimized. In details, the maximum variation of 

camber angle, caster angle, and kingpin inclination angle is required to be no more than 

2°, 1°, and 3° over the wheel travel, respectively, and the toe angle is no less than -0.5° 

when the wheel travel is set to 50 mm. To minimize the variation of camber angle and 

kingpin inclination angle, the optimization problem is defined as follows: 
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where the t denotes the wheel travel from -50 mm to 50 mm, lb and ub denotes the lower 

bound and upper bound of design vector, 1( , )f tu , 2 ( , )f tu , 3( , )f tu , and 4 ( , )f tu  

respectively denotes the camber angle, caster angle, kingpin inclination angle, and toe 

angle, which are the functions with respect to design variables and wheel travel. c1(u), 

c2(u), c3(u), and c4(u) respectively denotes the variation of camber angle, caster angle, 

kingpin inclination angle, and the minimum value of toe angle when the wheel stroke 

equals to 50mm, shown from Fig. 5-11 to 5-14. 1 and 3 are the weighting coefficients 

which are both set to 0.5 in this paper, indicating two equally weighted individual 

objectives in the design. Since the suspension model is built in software, we may not 

obtain the explicit expression of the four indexes (camber, caster, kingpin inclination and 

toe), and the simulation of the complex model is very time-consuming. To reduce the 

computational cost, the Chebyshev surrogate model will be used to approximate the four 

indexes.  

 

Figure 5-15 The average objective 

The kinematic performance of the double wishbone suspension is evaluated with the 

conventional nested double-loop optimization approach and the proposed interval 
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arithmetic-based approach, respectively. The parameters of MIGA are set as: 100 

populations in each island, 10 islands and 10 generations, so there are 1000 populations in 

each generation. The objective in average value and best value changing with the 

generation are shown in Figs. 5-15 and 5-16, respectively.

 

  Figure 5-16 The best objective 

The final optimization results are shown in Table 5-2. The bold number in Table 5-2 

indicates that the constraint is violated. The optimization results show that the optimized 

suspension satisfies the constraints by minimizing the objective function relative to the 

initial condition. The objective function evaluated using the interval arithmetic-based 

method is equal to that calculated by the double-loop approach, but the constraints are 

some different. The difference is because the interval arithmetic-based method produces a 

wrap of original function, which means the maximal value produced by interval 

arithmetic is slightly larger than that obtained by optimization. Correspondingly, the 

minimal value of the interval arithmetic is slightly smaller than the minimum of 

optimization. Thus, the interval arithmetic-based optimization method more rigorously 

satisfies the constraints. 
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Table 5-2 Optimization results of vehicle suspension 

 u1 u2 u3 u4 c1 c2 c3 c4 obj time(') 

Initial 490.0 560.0 450.0 185.0 2.10 0.49 2.46 -1.48 2.28 - 

Double-loop 518.9 525.7 394.2 128.0 0.40 0.94 0.47 -0.44 0.43 265 

Interval 541.9 524.4 393.0 128.0 0.38 1.00 0.48 -0.44 0.43 81 

 

The computational time indicates that the interval method is more efficient, because it 

only requires less than one third of time compared to the double-loop method. Fig. 5-17 

to 5-20 show the variations of the camber angle, caster angle, kingpin inclination angle, 

and toe angle respectively with respect to the wheel travel, considering the initial 

conditions, double-loop optimization solutions and interval arithmetic based optimization 

solutions. The figures are plotted through the scanning method using the kinematic model 

of double wishbone suspension. The plots show a great improvement of the suspension 

kinematic performance. The two different optimization approaches can provide very close 

optimization results. 

 

Figure 5-17 Comparison of camber angle 
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Figure 5-18 Comparison of caster angle 

 

Figure 5-19 Comparison of kingpin inclination angle 

 

Figure 5-20 Comparison of toe angle 
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The maximum variation of camber angle over the wheel travel reduces to 0.40° and 0.38° 

from 2.10° with the same initial conditions after optimized by the double-loop method 

and the interval method, respectively. The maximum variation of caster angle over the 

wheel travel increases to 0.94° and 1.00° from the same initial value 0.49° after optimized 

by the double-loop method and the interval method. However, both the optimization 

results satisfy the constraints. At the same time, the maximum variation of kingpin 

inclination angle over the wheel travel is reduced to 0.47° and 0.48° from the initial value 

2.46° optimized by the double-loop method and the interval method, respectively. The toe 

angle when wheel travel equals to 50 mm increase to -0.44° for both the optimization 

methods, while the initial value is -1.48° violated the constraint. 

5.5 Robust topology optimization under interval uncertainty  

In the field of structural optimization, topology optimization has experienced 

considerable development over the past two decades with a wide range of engineering 

applications [170]. Topology optimization is essentially a numerical iterative process to 

optimize a prescribed objective function under specific constraints by distributing a given 

amount of material, until the best layout of the material is achieved within the design 

domain. The topology optimization is different from general parameter optimization 

problem. The number of design variables in topology optimization is usually quite large, 

so the gradient-based optimization algorithms have to be used, in order to save the 

computational cost. Several typical methods have been developed for topology 

optimization of structures, such as the homogenization method [171], the SIMP based 

methods [172, 173], and the level set-based methods [174-176]. 

However, the majority of current studies about the topology optimization are based on the 

deterministic assumption, which may result in a design that cannot satisfy the expected 



Chapter 5 Optimization under interval uncertainty

131 

goal or even unfeasible design, as most problems in engineering inevitably involve 

various uncertainties, including the manufacturing tolerance, load variation, 

inhomogeneity of material property, and so on [177]. For a structure, the topological 

design may be quite different when uncertain factors are considered. As a result, the 

performance of a structure, such as robustness and reliability, is unavoidably subject to 

variations in practice due to various uncertainties [125, 178]. Hence, it is necessary to 

incorporate uncertainties into structural topology optimization problems quantitatively, in 

order to enhance structural safety and avoid failure in extreme working conditions. 

The Robust Design Optimization (RDO) aims to reduce the sensitivity of the objective 

function with respect to uncertain parameters, so it can minimize both the mean and 

variation of the objective function. The application of RDO to structural topology 

optimization refers to the robust topology optimization, termed as RTO which is the 

major focus of this section. There have been some studies which investigate RTO under 

the uncertainties of load conditions, material properties, and geometry. For instance, 

Sigmund [179] presented a topology optimization method by using the concept of density 

filtering to include uncertainties during the fabrication of micro and nano structures, 

which was further applied to RTO problems by [180]. Guest et al. [181] presented a 

perturbation-based topology optimization method for solving optimization problems with 

small uncertainty in the magnitude and location of the applied loads. Asadpoure and et al. 

[177] combined deterministic topology optimization techniques with a perturbation 

method for quantification of uncertainties associated with structural stiffness. For the 

continuous problems with uncertainty, the stochastic spectrum-based method is usually 

used to discretize the random field. Tootkaboni et al. [182] combined the PC expansion 

with topology optimization, to design continuum structures to achieve robustness in 

presence of random uncertainties. Zhao et al. [183] considered loading uncertainty of 
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random field by using the K-L expansion to characterize the random field as a reduced set 

of random variables. The K-L expansion was also used to develop robust topology 

optimization method [184] with random field uncertainty, in which the univariate 

dimension-reduction method was combined with the Gauss type quadrature sampling to 

calculate statistical moments of the objective function. Jansen et al. [185] discretised the 

random field by using the expansion optimal linear estimation method, which particularly 

suits for discretizing random fields with a relatively large correlation length. Zhao et al. 

[186] proposed an efficient approach by completely separating the Monte Carlo sampling 

with topology optimization to solve the RTO problem of structures under loading 

uncertainty, which obtained the accurate calculation of the objective function. 

Most of the aforementioned RTO methods are based on the theory of random field or 

random variables, using a combination of the first and second order statistical moments 

(mean and variance) of the design response as the objective function of the RTO 

problems. However, in engineering, how to accurately describe probability distribution 

functions for random variables is a challenging task, especially for variables with limited 

uncertainty information. In some cases, for the uncertain variables the lower and upper 

bounds can be more easily obtained than the evaluation of accurate probability 

distributions [187]. Hence, the uncertain-but-bounded parameters may be more suitable 

for describing uncertainties under some situations. When non-probabilistic parameters are 

used to describe the uncertainty, the performance under the worst condition can be used to 

define the objective function of RTO problems. 

In this section, the Chebyshev inclusion function will be applied to solve the RTO 

problems of continuum structures under interval uncertainty. The interval objective 

function of the RTO will be calculated by using the interval arithmetic to improve the 

computational efficiency. In particular, a new numerical method will be developed to 
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compute the derivatives of the interval functions, which makes the RTO problems be 

solved by using the traditional gradient-based optimization algorithms. 

5.5.1 Material Density based approach for topology optimization 

A typical topology optimization problem is the one where we try to find the best possible 

layout of material within a given design domain, to minimize an objective function while 

satisfying a set of constraints. The well-known design problem of minimizing structural 

mean compliance will be discussed in this paper, as a typical case. A limited volume of 

material is given, and the goal of the optimization is to identify structural topologies that 

store the minimum amount of strain energy under a set of applied loads. Using the SIMP 

method [188], the optimization model is defined as follows:  
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where C is the compliance,  is the vector including all elemental design variables, 

k0 denotes the element stiffness matrix, e  is an entry in  corresponding to element e, ve 

is a quantity that gives the volume of the element e when multiplied by the design 

variable e , and V is the upper bound for the amount of material that are allowable for 

usage. min is a vector of minimal densities, N is the number of elements used to 

discretise the design domain, and p is the penalization power. U and F denotes the global 

displacement vector and forcing vector, respectively, and they satisfy the following 

equation 

KU = F      (5-28) 

where K denotes the global stiffness matrix. 
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The above optimization model can often be solved by several types of optimization 

algorithms, such as the Optimality Criteria (OC) method [189], the Method of Moving 

Asymptotes (MMA) [190], and so on. If the MMA is used, the sensitivity of the objective 

function with respect to the design variables should be derived firstly, as follows [188]: 
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e
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h p u k u    (5-29) 

To avoid numerical instability of the relaxed topology optimization, the filter technique 

[191, 192] will be used. Therefore, the element sensitivity is normally modified as  
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where Ne is the set of elements whose center-center distance to element e is no larger than 

the filter radius R, and wi is the weight factor, determined by the following equation 

    ,i i ew R dist     (5-31) 

Using Eq. (5-30) to compute the derivatives of the objective function, the optimization 

given in Eq. (5-27) can be solved by the gradient-based optimization algorithms, e.g. the 

MMA. 

5.5.2 Robust topology optimization under interval uncertainty 

When interval uncertain parameters (e.g. loads and material properties) involved in 

topology optimization model, the formulation (5-27) will be rewritten as follows: 
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  (5-32) 
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Here, [ ] nx IR  denotes a n-dimensional vector of interval parameters. Since the 

constraint is the volume fraction, the interval parameters are not involved in it. In this 

case, the original compliance (float function) has become an interval function of mean 

compliance, so it will be expressed by its lower bound ,C x and upper bound 

,C x . Considering the worst case of the objective under uncertainty, the upper bound 

of the interval objective function will be used as the new objective to define the RTO 

model. 

     min

min   ,

s.t.    g 0,
        0 1.e

C x

    (5-33) 

If we know the explicit expression of the objective with respect to interval parameters [x], 

the interval arithmetic can be used directly to produce the upper bound of the interval 

objective function. However, it is hard to obtain its explicit expression, so we have to 

solve the following interval linear system to obtain the interval displacement, and then 

calculate the interval function of the mean compliance. 

      
K x U = f x     (5-34) 

The Eq. (5-34) is difficult to solve by using interval arithmetic directly, especially for the 

large dimensional case in the finite element analysis. On the other hand, each node 

displacement occurs several times in the expression of compliance, which may produce 

large overestimation if the interval arithmetic is used directly. To overcome these 

problems, the non-intrusive Chebyshev inclusion function will be employed to calculate 

the interval compliance. 

Let ( ,[ ])eC x denote the interval element compliance under the interval parameters, i.e. 

T
0, pe

e e eC x u x k x u x    (5-35) 
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Based on the Chebyshev inclusion function proposed in Chapter 3, the interval element 

compliance ( ,[ ])eC x  can be approximated by the following k-th order truncated 

Chebyshev series: 

1

1

...
0 0 1

1, ... cos
2 k

k

kn n
e e

j j i il
j j i

C c jx   (5-36) 

It should be noted that the coefficients 
1... k

e
j jc will be changed with the design variables , 

noted as
1... k

e
j jc . Considering Eq. (5-32), the interval compliance can be expressed as 
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Based on the Chebyshev inclusion function, the objective function of the RTO problem 

can finally be expressed as follows: 
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The Eq. (5-38) assumes that all the interval element compliance gets their upper bound 

simultaneously, so it usually makes ( ,[ ])C x  be larger than its exactly upper bound. 

However, the ( ,[ ])C x has the same trend of the exactly upper bound, so it can be used 

as the objective to replace the exactly upper bound. 

5.5.3 Numerical implementation of RTO using interval arithmetic 

To use the MMA to solve the RTO, the derivatives of the objective with respect to the 

design variables have to be produced. The objective shown in Eq. (5-36) contains the 

operation of computing the absolute value, which is difficult to calculate the derivative, 

so we reform the Eq. (5-38) as the Eq. (5-39). 
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where the sign function is defined as 
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Differentiating Eq. (5-39) with respect to design variables e , we have the sensitivity 
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The sign function sign(x) is not continuous, so it cannot be derivative at the point x=0. To 

make the stability of optimization, the Heaviside projection method is used to smooth the 

sign function, as  

tanhs x x     (5-42) 

where the parameter  is a positive real number. The s(x) and the sign(x) are plot in Fig. 

5-21, which indicates that the s(x) will be equal to sign(x) when the parameter  tends to 

be infinite. 

 

Figure 5-21 The plot of sign(x) and tanh(  x) 

Replacing sign(x) by s(x) in Eq. (5-41), we can obtain the following equation 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

sign(x)
tanh( x)  =2
tanh( x)  =5
tanh( x)  =10
tanh( x)  =100



Chapter 5 Optimization under interval uncertainty

138 

1

1 1 1
1

1

...0...0 2
... ... ...

1 0 ,...,
... 0

,
tanh sech

2 2
k

k k k
k

k

eeN
j j e e e

j j j j j jk l
e j j ne e e

j j

C cc
c c c

x
 (5-43) 

Since the first-order derivatives of the coefficients 
1... nj jc  with respect to e  (sensitivities) 

cannot be explicitly obtained, we will consider the following expansion, to approximate 

these first-order derivatives. Considering the interval parameters, the derivative of 

compliance in Eq. (5-29) should be rewritten as 
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Similar to the procedure shown in previous section, the derivative can also be expanded 

by the truncated Chebyshev series, as follows: 
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It is noted that the above equation involves the coefficients 
1... ( )

kj jh , which actually can 

be directly calculated by using the same quadrature formula shown in Chapter 3 or by the 

LSM shown in Chapter 4. 

Differentiating Eq. (5-37) with respect to e , we have 
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Comparing the Eq. (5-45) and Eq. (5-46), we will have 
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In this case, we can get the first-order derivatives of the coefficients 
1...

1
k

N
e
j j

e
c  with 

respect to e  in the right-hand side of Eq. (5-43). Hence, substituting Eq. (5-47) into Eq. 

(5-43), we can finally find the design sensitivity of the objective function as 
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After the Eq. (5-48) is obtained, it can be substituted in the filter Eq. (5-30) to produce the 

modified element sensitivity which will be finally used by the MMA solver. Therefore, 

the process of robust topology optimization under interval uncertainties can be 

summarized as follows: 

1) Initialize the design variables  and produce the interpolation points of the interval 

parameters i by using Eq. (3-42); 

2) Setting the interval parameters to be the values at the interpolation points produced in 

step (1), solve the displacements by finite element method and then evaluate the 

compliance 
1

( , cos( ),..., cos( ))
ni iC  and sensitivity 

1
( , cos( ),..., cos( ))

ni ih  at these 

interpolation points; 

3) Calculate the coefficients 
1... k

e
j jc and 

1... nj jh  using the quadratic formula or LSM; 

4) Calculate the upper bound of interval compliance ( ,[ ])C x  using Eq. (5-38);  

5) Calculate the sensitivity of objective ( ,[ ])

e

C x  using Eq. (5-48) and then substituting 

it into filter Eq. (5-30) to produce the final sensitivity used in MMA; 

6) Use the MMA to update the design variables, and go back to step 2) until convergence.
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5.5.4 Numerical example 

This section the Mitchell-type structure will be used as the numerical example, the 

boundary conditions and loads of which are shown in Fig. 5-22. The volume fraction is 

set as 0.3, and the magnitude of the three forces are F1=1, F2=2, and F3=1. The force 

direction is assumed to be 1 2 3= -90  in the deterministic condition. For the 

uncertain conditions, the force direction is assumed to be: 1) 3=[-95 ,  -85 ] ; 2) 

3=[-100 ,  -80 ] ; 3) 3=[-110 ,  -70 ] .  

1 2 3

Figure 5-22 Mitchell-type structure design 

Figures. 5-23 and 5-24 show the deterministic topology optimization result and RTO 

results, respectively. The detailed objective values are provided in Table 5-3. For the 

deterministic topology optimization, there are no materials between the two end points 

and the locations of F1 and F3. 

Figure 5-23 Deterministic topology optimization 
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 (a) 3=[-95 ,  -85 ]    (b) 3=[-100 ,  -80 ]   (c) 3=[-110 ,  -70 ]  

Figure 5-24 The RTO of Mitchell-type structure  

When the uncertainty extent is 5, two crossing structures are happened in the left bottom 

and right bottom domain, which may bear some lateral force induced by the force 

direction perturbation. When the uncertainty extent gets 10, we can find that the two 

crossing structures move downward. When the uncertainty extent gets 20, the crossing 

structures have moved to the bottom of the design domain, and they have degenerated to 

the direct linked bar. It can be found that there are more materials distributed in the 

bottom area when the uncertainty extent increases, which can improve the lateral 

stiffness, so as to keep the stability of the structure. 

The compliance shown in Table 5-3 demonstrates that the RTO produces quite smaller 

worst-case compliance than the deterministic topology optimization. 

Table 5-3 The compliance of Mitchell-type under the worst condition 

 3=[-95 ,  -85 ]  3=[-100 ,  -80 ]  3=[-110 ,  -70 ]  

Deterministic 310 556 1503 

RTO 257 276 266 

Figure 5-25 shows the iteration history of the RTO under different uncertainty extent. 

After 40 iterations, the variation of worst-compliance is not very large. 
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Figure 5-25 The iteration history of the RTO for Mitchell beam 
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5.6 Summary 

This Chapter is focused on the design of optimization under interval uncertainty, which is 

based on the interval uncertainty analysis in Chapter 3. The interval uncertainty 

optimization model is proposed, which integrates the RBDO and RDO into one 

framework.  The worst case scenario is used as the constraints to guarantee the reliability 

of the design solution.  

The interval arithmetic based optimization method is proposed to improve the 

optimization efficiency and feasibility of solution. The Taylor inclusion function is 

employed to compute the bounds of objective and constraints directly. The Chebyshev 

surrogate model is proposed to derive a polynomial approximation model, which is used 

by the Taylor inclusion function. This chapter also proves that the accuracy of 

polynomials surrogate model is only determined by the sampling points rather than the 

basis vector, so the selection of sampling points is very important. Two numerical 

examples, which are truss structure and vehicle suspension optimization problem, show 

that the proposed interval arithmetic based optimization method has higher efficiency and 

provides a more feasible solution.  

The topology optimization under interval uncertainty (Robust Topology Optimization 

with interval uncertainty) is also researched. The upper bound of mean compliance is 

used as the objective of RTO, and the sensitivity of the objective is derived. The 

numerical example indicates that the RTO gives better design solution than the 

deterministic optimization when the load uncertainty is considered. 
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Chapter 6 Optimization under hybrid uncertainty 

Chapter 5 investigates the design of optimization under interval uncertainty. There have 

also been many studies investigating the probabilistic uncertainty optimization. However, 

there is only a little research about the optimization under hybrid uncertainty (containing 

both the interval uncertainty and probabilistic uncertainty). In fact, many engineering 

problems involve both types of uncertainties simultaneously.  

In this chapter, we will systematically combine the interval arithmetic, the Monte Carlo 

simulation and the PC expansion to quantify the hybrid uncertainty, so as to deliver a new 

hybrid uncertainty analysis-based optimization method for structures including design 

sensitivity analysis for interval mean and interval standard deviation. In the proposed 

method, the role of the PCCI method proposed in Chapter 4 is to firstly expand the 

evaluation functions via a series of orthogonal polynomials with respect to both the 

random and interval variables, and then the interval mean and variance of evaluation 

functions are calculated conveniently and effectively by using the characteristic of 

orthogonal polynomials. At the same time, the derivatives of the interval objective 

function and constraints can be evaluated, to enable the application of gradient-based 

optimization algorithms to the uncertainty design optimization. Finally, the Monte Carlo 

simulation will be applied to estimate the probability density function and cumulative 

distribution function of the two bounds of the evaluation functions. It is noted that the 

Monte Carlo simulation is not computationally expensive in this case, because the PCCI 

has built a relatively cheaper surrogate model for the original complicated evaluation 

functions. The optimization under hybrid uncertainty is formulated with the feasible 

robustness under the random uncertainty and the reliability of the worst-case scenario 
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under the interval uncertainty. A typical numerical example will be used to demonstrate 

the effectiveness of the proposed method. 

6.1 The hybrid uncertain optimization model 

The conventional deterministic optimization model can be expressed as follows: 

     

min      ( )

s.t.      ( )
           l u

f
x

x

g x 0
x x x

    (6-1) 

where nRx  are the n-dimensional design variables, f(x) is the objective function, and 

T
1( ) [ ( ) ( )]pg gg x x x  is the p-dimensional constraints. All the design variables in 

the vector x and other parameters are deterministic in the above equation.  

As aforementioned, we will extend the deterministic optimization problem as an 

uncertain optimization problem. If the design variables and parameters are supposed to 

involve uncertainty, there may be some uncertain variables contained in both objective 

and constraint functions. Thus, the optimization formulation will be changed to the 

following 

          

min      ( , )

s.t.      ( , )
           l u

f
x

x

g x 0
x x x

    (6-2) 

where T
1[ ]m are the uncertain part of the design variables, T

1[ ]n  

denotes the uncertain parameters. It is noted that the  and  can be either random 

variables or interval variables, or the mixture of random and interval variables. However, 

for simplicity but without losing any generality, this study will only consider parameters  

as the n-dimensional independent random variables, and  as the m-dimensional 
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independent interval variables, to be noted by [ ] [ , ] , in which and  are the lower 

bounds and upper bounds of the interval variables, respectively. 

Since both the objective function f and constraints g contain the uncertain variables, the 

objective and constraints should be re-formulated to reflect the influence of the 

uncertainty. Firstly, if only the random variables are included in f and g, the mean f and 

g, as well as the variance 2
f  and 2

g are usually used as uncertainty evaluation indexes. 

For the feasible robustness approach, the objective and constraints will be the weighted 

summation of the mean value and standard deviation, so the uncertain optimization model 

can be transformed to the following expression [115, 193] 

1 2

3

min      w [ ] w [ ]

s.t.      [ ] w [ ]

           

f f

l u

x

g g

x + , x + ,

x + , x + , 0

x x x

   (6-3) 

where w1 and w2 is the weighting coefficients of the mean value and standard deviation in 

objective, respectively. w3 is the weighting coefficient of constraints, usually considered 

to be 3, which indicates the probability of constraints satisfaction will be (3)=0.9987 

[193]. 

Secondly, considering the additional interval uncertainty [ ] included in the equation (6-

3), the value of the mean and standard deviation would also be an interval number rather 

than the float number. Therefore, the interval mean and interval deviation vary between 

their lower bounds and upper bounds. To guarantee the reliability, the worst case scenario 

will be considered in the optimization formulation, which uses the maximum value (or 

the upper bounds) of the original objective function and constraints as the new objective 

function and constraints. Hence, the optimization model can be expressed as follows: 
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1 2

3

min      w [ ] w [ ]

s.t.      [ ] w [ ]

           

f f

l u

x

g g

x + , x + ,

x + , x + , 0

x x x

   (6-4) 

The above optimization problem can be solved by many traditional optimization methods. 

Here the discussion of the optimization algorithm is out of the major scope of this study. 

The key procedure in the optimization is the evaluation of the objective function and 

constraints. Both the objective function and constraints are composed of the bounds of 

interval mean and interval deviation, so how to obtain the two measure metrics efficiently 

is an important issue, which will be discussed in the next section. 

6.2 The realization of hybrid uncertain optimization 

6.2.1 Hybrid uncertainty analysis model 

Chapter 4 has proposed the hybrid uncertainty analysis method (PCCI), which will also 

be used in this chapter, but the format of the polynomial will be adjusted. Still consider 

the function F( , [ ]) which includes both the random variables  and interval variables 

[ ]. Here the n-dimensional random variables are assumed to be in the form of standard 

Gaussian distribution (0,  1)nN  and the m-dimensional interval variables are defined 

as [ ]=[-1, 1]m .  

To evaluate the interval mean and interval variance of F( , [ ]), which will be expanded 

by using the truncated Hermit series (PC expansion) with respect to the random variables 

 as 

1

0
( ,[ ]) ([ ]) ( )

s

j j
j

F     (6-5) 
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where the ([ ])j  denotes the coefficients of Hermit polynomials, and j denotes the 

Hermit polynomials which are the basis of the expansion. The Hermit polynomials 

correspond to the Gaussian distribution of the random variables. If the random variables 

satisfy another type of distribution, the corresponding orthogonal polynomials will be 

used as the basis [127]. The coefficients ([ ])j  have a relationship with interval 

variables [ ], so they can be expanded by the Chebyshev polynomials [111].  

Expanding the coefficients ([ ])j with respect to [ ] using the k-terms truncated 

Chebyshev series, we can obtain its Chebyshev inclusion function as follows: 

1

,
0

[ ]([ ])= ([ ])
k

j i j i
i

(6-6) 

Here ,i j  denotes the elements in the coefficient matrix  with k rows and s columns, i  

denotes the Chebyshev polynomials. The coefficient matrix  can be obtained by using 

the least square method twice, i.e. Eq. (4-35).  

The Chebyshev series may be transformed to the power series, so the Eq. (6-6) can be 

expressed by the following power series 

1 1

, ,
0 0

[ ]([ ])= ([ ]) ([ ])
k k

j i j i i j i
i i

P (6-7) 

where ,i j  are the elements of coefficient matrix  of the power function Pi, and the m-

dimensional power function ( )iP  are defined as follows: 
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(6-8) 

The coefficient matrix  can be calculated by using a linear transformation from the 

coefficient matrix , or evaluated by the least square method by 

1 1T T T T
3 3 3 2 2 2( ) ( ) ( ) ( ) ( ) ( )X X X F X X X  (6-9) 

where the F and X2 are as the same shown in Eq. (4-33) and (4-36), and the transform 

matrix X3 is expressed by 

      
T(1) ( )

3( ) ( ) ( )MX P P    (6-10) 

Here T
0 1[ ,  , ]kP PP denotes the vector of the power function. 

Using T
0 1[ ,  , ]s  and T

0 1[ ,  , ]k  to denote the vectors of Hermit 

polynomials and Chebyshev polynomials, respectively, the two transform matrix will be 

expressed by 

 
T T(1) ( ) (1) ( )

1 2( ) ( ) ( ) ,  ( ) ( ) ( )M NX X  
(6-11) 

where the ( ) ( 1,..., )i i N  denotes the collocation points of the random variables which 

are the zeros of Hermit polynomials, and ( ) ( 1,..., )i i M  are the collocation points of 

interval variables which are the zeros of Chebyshev polynomials. To enhance the 

numerical stability, the number of collocation points and interpolation points are usually 

selected by the following criteria: N 2s and M 2k.  
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Once the coefficients are obtained, the interval mean [ ]F  and interval variance 2[ ]F  of 

the evaluation functions can be calculated based on the PC expansion theory [11, 127] 

and interval arithmetic, as follows 

1

0 ,0
0

[ ] [ ] [ ] = ([ ])
k

F i i
i

P    (6-12) 

21 1 1
2 2 2 2

,
1 1 0

[ ] [ ] = ([ ])
s s k

F j j i j i j
j j i

P (6-13) 

where 2
j  represents the inner product of 2

j . 

Using Eq. (6-12) and (6-13) to calculate the interval mean and interval variance of 

function f and g given in Eq. (6-4), the uncertainty optimization can be implemented. It 

can be found that the proposed method analyses the random uncertainty and interval 

uncertainty in one integrated framework, and can be implemented easily. After obtain the 

function value matrix F at the collocation points and interpolation points (Eq. (4-36)), the 

coefficients can be produced by the least square method, and then the interval mean and 

variance can be calculated according to the above two equations. 

6.2.2 Quantification of hybrid uncertainty 

We can obtain the interval mean and interval variance of evaluation functions based on 

the derivation in the previous section, but these two evaluation indexes may not provide 

the comprehensive information of the hybrid uncertainty. Besides the interval mean and 

interval variance, the hybrid uncertainty can be more comprehensively assessed by the p-

box, the measures of belief and plausibility in the evidence theory [194, 195]. Here the 

probability density function (PDF) and cumulative distribution function (CDF) of the 

lower and upper bounds of evaluation functions will be applied to express the 

comprehensive information. The CDF of lower bound may be equivalent to the measure 
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of belief, while the CDF of the upper bound may be equivalent to the measure of 

plausibility. 

Substituting Eq. (6-6) into Eq. (6-5), the evaluation function can be expressed by 

1 1 1 1

, ,
0 0 0 0

,
s k k s

i j i j i j j i
j i i j

F   (6-14) 

Therefore, the two bounds of the evaluation functions will be defined as  

1 1 1 1

, ,
0 0 0 0

, min ,  , max
k s k s

i j j i i j j i
i j i j

F F  (6-15) 

The optimization algorithms or scanning method can be used to calculate the two bounds 

with respect to interval variables. On the other hand, the bounds of evaluation functions 

contain the random variables , so we can obtain the PDF and CDF of the bounds 

through the Monte Carlo simulation. It should be noted that both the optimization process 

and Monte Carlo simulation are not computationally expensive in this case, because the 

analytical expression (Eq. (6-15)) has been obtained. 

To validate the proposed method, we consider the following test example. For simplicity, 

the ( ,[ ])F  is a scalar function containing 1-dimenisonal random variable (0,  1)N

and 1-dimensional interval variable [ ]=[-1, 1] , which can be defined as 

   
2 [ ]( ,[ ]) sin

2
F     (6-16) 

The PCCI method is used to expand Eq. (6-32), in which the number of collocation points 

and interpolation points are set as N=M=3. Hence, the total number of computing points 

for the original function is N×M=9. After obtaining the coefficients, the Monte Carlo 

simulation and optimization algorithm can be used to obtain the sampling data of the 
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bounds (Eq. (6-15)). Based on a large amount of sampling data, we can plot the PDF and 

CDF of the two bounds for the function F, shown in Fig.6-1. 

(a)  

 (b)  

Figure 6-1 (a) The PDF of two bounds; (b) The CDF of two bounds 

The reference result of the PDF and CDF of the two bounds can be obtained by the 

combination of Monte Carlo simulation and the scanning test for the original function, 

termed as Monte-Carlo-Scanning-Test (MCST). The MCST uses the Monte Carlo 

simulation collect the sampling points in the space of random variables and employs the 

scanning test that is a symmetrical dense grid to sample the space of interval variables. 

The scanning test will find the bounds of the evaluation function, and the Monte Carlo 

simulation will find the corresponding PDF and CDF. The results of MCST are also given 

in Fig. 6-1, which shows that the PDF and CDF of two bounds obtained by the PCCI 

method is very close to that of MCST. In practical applications, the cost of evaluating the 
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original function is very expensive usually, so we use the number of evaluating the 

original function as the index of efficiency. For this numerical testing example, the 10000 

samples are used in the Monte Carlo simulation and 10 symmetrical samples are used in 

the scanning test, so the total number of computing the original function is 10000×10, 

which is much larger than the 9 samples for the PCCI method. Hence, the PCCI method 

has higher efficiency than the MCST.  

 

Figure 6-2 The CDF of two bounds for pure interval function 

If the random variable is considered as constant, e.g. =1, then CDF of the two bounds 

will be degenerated into two vertical lines (pure interval), as shown in Fig. 6-2. In this 

case, the PDF will be infinite, so we do not plot it. On the other hand, if there is no 

interval variable in the function, the CDF of the two bounds will be one traditional CDF. 

Some researchers just consider the uncertain-but-bounded variables as uniformly 

distributed random variables, which may produce some large deviations. For example, if 

the uncertain variable  in Eq. (6-16) is assumed to satisfy the uniform distribution, i.e.  

~ U(-1,1), we can draw its PDF and CDF of F( , ) by using the Monte Carlo method, 

shown in Fig. 6-3. However, if the actual probability distribution is  ~ Beta(2,4) or  ~ 

Beta(4,2), the corresponding PDF and CDF of function F( , ) will be quite different, 
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shown as Fig. 6-3. Since we do not know the actual distribution of , the unfit assumption 

will make large error. In this case, if we just use the bounds information, the envelope of 

the possible actual CDF can be obtained, i.e. the various CDF under different probability 

distribution are contained in the CDF belt constructed by the bounds of hybrid uncertainty 

(Fig. 6-3). 

 

 

Figure 6-3 The PDF and CDF of F( , ) for different types of random variable 

6.3 The sensitivity of hybrid uncertain optimization model 

When the mathematic programming methods are used as the optimization algorithm, the 

derivatives of objective and constraints with respect to the design variables are required. 
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Although the finite difference method can be used to approximate the derivatives, the 

computational cost will be expensive and the numerical accuracy will be low for large-

scale optimization problems. In this section, we will derive the first-order derivatives of 

the interval mean and interval standard deviation. 

Based on Eq. (6-4), it can be found that the derivatives of the evaluation functions (both 

the objective function and the constraint functions) with respect to x is equal to the 

derivatives with respect to , Considering the 1-dimensional case, the coefficients of 

Hermit polynomials in Eq. (6-7) can be regarded as a standard power series with respect 

to [ ]  

1 1

, 0, ,
0 1

[ ] [ ] ([ ]) [ ]
k k

i
j i j i j i j

i i
P    (6-17) 

If there is a small increment , the coefficient can also be expressed as another standard 

power series 

1 1

0, , 0, ,
1 1

[ ] [ ] [ ] [ ]
k k

i i
j j i j j i j

i i
b b

 
 (6-18) 

where the coefficients bi will be determined by  

2
, , 1,1i j i j i jb a i a    (6-19) 

Using the interval arithmetic, the upper and lower bound of the coefficients can be 

calculated by 

0, , , , ,
2 1 2

sign sign1j j i j i j i j i j
i p i p

  (6-20) 

0, , , , ,
2 1 2

sign sign1j j i j i j i j i j
i p i p

(6-21) 

where p denotes the positive integer, and the function sign and sign1 are defined as 
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1,         0 1,         0
sign ,   sign1

1,       0 0,         0
x x

x x
x x

  (6-22) 

Combining the Eq. (6-17) to Eq. (6-21), the derivative of the two bounds of the 

coefficients can be expressed by 

0

1, 1, , 1, ,
2 1 2

[ ] [ ]
lim

      1 sign 1 sign1

j j j

j i j i j i j i j
i p i p

i i   
 (6-23) 

0

1, 1, , 1, ,
2 1 2

[ ] [ ]
lim

       1 sign 1 sign1

j j j

j i j i j i j i j
i p i p

i i  
(6-24) 

The Eq. (6-23) and (6-24) contain the sign function, which will make the derivatives 

discontinuous. The discontinuous derivatives may make the optimization process 

unstable, so the Heaviside projection method is used to smooth the sign function, shown 

as follows 

1 1sign tanh ,   sign1 tanh
2 2

x x x x   (6-25) 

where the coefficient  is a positive real number. The function tanh( x) will be equal to 

sign(x) when the parameter  tends to be infinite. Therefore, the derivatives of the two 

bounds will be transformed to  

 1, 1, , 1, ,
2 1 2

11 tanh 1 tanh
2

j
j i j i j i j i j

i p i p

ii  (6-26) 

1, 1, , 1, ,
2 1 2

11 tanh 1 tanh
2

j
j i j i j i j i j

i p i p

ii
 
(6-27) 

Combining Eq. (6-14) and (6-26), the derivative of the upper bound of the interval mean 

will be  
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11 tanh 1 tanh
2

F
i i i i
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ii
 

(6-28) 

Using the interval arithmetic in Eq. (6-15), the upper bound of the interval variance can 

be calculated by 

1
2 2 2 2

1
max ,

s

F j j j
j

    (6-29) 

Therefore, the derivative of the upper bound of the standard deviation is given as 

   

2 2 2 21
2

2
1

2 ,  max , max ,1 ,
2

2 ,  

j
j j js j j j jF

j
jF j

j j j

  (6-30) 

Based on the sensitivity information given by Eq. (6-28) and (6-30), the hybrid 

uncertainty optimization defined in Eq. (6-4) can be implemented by conventional 

gradient-based optimization algorithms.  

6.4 Numerical examples 

6.4.1 Planar truss structure 

Consider the same 18-bar planar truss structure in Section 5.4.1, shown as Fig. 5-8.  The 

members are still classified into four groups when the cross-sectional areas are regarded 

as the design variables: x1 (A1, A4, A8, A12, A16), x2 (A2, A6, A10, A14, A18), x3 (A3, A7, A11, 

A15), and x4 (A5, A9, A13, A17). Considering the design variables as interval variables, the 

interval width is 0.1in2. The nominal value of the material density =0.1lb/in3, and the 

vertical loads is P=20000lb acting on the upper nodes of the planar truss. However, the E 

and  are considered as random parameters here, satisfying the Gaussian distribution 

where the mean value is the nominal value and the standard deviation is 2% of the 
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nominal value, that is 7 5 2~ (10 ,  (2 10 ) )E N  and 2~ (0.1,  0.002 )N . For this problem, 

the deterministic optimization formulation can be defined as follows: 

18

1

1 21,...,18 1,...,18

T T
1 4 1 4

min      ( )

s.t.      max ( ( ) ( , )) 1,  = max ( ) 20000

          [ 0.1 ... 0.1] [50 ... 50]

i

i i
i

i ii i

f A L

g b E g

x
x

x x x

x

  (6-31)

 

where f is the total mass of the truss, i denotes the stress of the ith member, g1 and g2 

are the stress constraints and Euler buckling compressive stress limitation, respectively. 

Three cases of the optimization will be considered:  

(1) the deterministic optimization without considering uncertain parameters and variables 

(defined as problem (6-31));  

(2) the uncertain optimization with considering the random parameters (E and )  

1 2

T T
1 4 1 4

min      ,

s.t.     , 1,   20000

          [ 0.1 ... 0.1] [50 ... 50]

f

g g
x

x

x x

x

    (6-32)

 

where  denotes the random parameters E and . 

(3) the uncertain optimization with considering the hybrid uncertainties for both the 

interval variables  and random parameters 

1 2

T T
1 4 1 4

min      ,

s.t.     , 1,   20000

          [ 0.1 ... 0.1] [50 ... 50]

f

g g
x

x

x x

x

    (6-33)

 

where the interval variables 40.05,0.05 .  

Use the active-set algorithm in MATLAB to implement the optimization, and the initial 

values of design variables are set as x0=[10 10 10 10]T. The 2nd order orthogonal 
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polynomials (Hermite and Chebyshev polynomials) are used to expand the objective 

function and constraint function of the hybrid uncertain optimization model. Therefore, 

the collocation points will be chosen from the zeros of the 3rd order Hermite polynomial 

and Chebyshev polynomials. Since there are 2 random variables and 4 interval variables, 

the number of coefficients for Hermite polynomials expansion and Chebyshev 

polynomials expansion will be 6 and 15, respectively. To make the numerical stability, we 

will use all the 9 zeros of  the 3rd order Hermite polynomial (2 dimension) as the 

collocation points of random variables, and randomly choose 30 zeros of  the 3rd order 

Chebyshev polynomial (4 dimension) as the collocation points of interval variables. The 

optimization results are shown in Table 6-1.  

Table 6-1 Optimization results of planar truss structure 

 x1(in2) x2(in2) x3(in2) x4(in2) 

Deterministic 10.00 21.65 12.50 7.07 

Random 10.00 22.30 12.87 7.07 

Hybrid 10.10 22.44 12.97 7.18 

 

 

Figure 6-4 The iteration history of the objective function 
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The iteration history of the objective function of the three optimization models is shown 

as Fig. 6-4. It can be found that the hybrid uncertain optimization process (Chebyshev 

polynomials) converges after 20 iterations, so this hybrid uncertain optimization model is 

stable. To compare the optimization results comprehensively, the PDF and CDF of the 

two bounds of the objective function and constraints are shown in Fig. 6-5 to Fig. 6-9.  

 

Figure 6-5 PDF of f 

 

Figure 6-6 CDF of f 
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‘ubd’ are the lower bound and upper bound of the deterministic optimization. The 

constraint g2 is only related to the interval variables, so only its CDF is plot. 

It can be found that the objective functions of the random uncertainty optimization and 

the hybrid uncertainty optimization are more conservative than that of the deterministic 

optimization. However, for the upper bound of constraint g1, there are more than 60% 

probabilities to be violated for the deterministic optimization, while the failure probability 

for both the random uncertainty optimization and the hybrid uncertainty optimization is 

very small (close to zero).  

  

Figure 6-7 PDF of constraint g1  

 

Figure 6-8 CDF of constraint g1 
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For the bounds of constraint g2, the deterministic optimization and random uncertainty 

optimization give the same results, because both of them do not consider the interval 

uncertainty. Therefore, the upper bounds of the deterministic optimization and random 

uncertainty optimization are larger than the given condition (20000lb/in2), which means 

that the two optimization results have possibility to be located in the unfeasible region. 

The hybrid uncertainty optimization makes the upper bound of g2 smaller than 

20000lb/in2, which makes the optimal solution located inside the feasible region. 

 

Figure 6-9 CDF of constraint g2 

6.4.2 Space truss structure 
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Figure 6-10 25-bar space truss structure 

This space truss is subjected to two loading conditions, which are shown in Table 6-2. 

The structure is required to be symmetric, so the truss members can be grouped in Table 

6-3, which also shows the stress limitations of each group. At the same time, the 

maximum displacements of nodes in each direction are limited to ±0.35in. The cross-

sectional areas of all members vary in the range 0.1-10 in2.

Table 6-2 Loading conditions 

Node Condition 1 Condition 2 

Px (lb) Py (lb) Pz (lb) Px (lb) Py (lb) Pz (lb) 

1 0 20000 5000 1000 10000 -5000 

2 0 -20000 -5000 0 10000 -5000 

3 0 0 0 500 0 0 

6 0 0 0 500 0 0 
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Table 6-3 Member stress limitations 

Variables 
x1 x2 x3 x4 x5 x6 x7 

A1 A2 ~A5 A6 ~A9 A10 ~A13 A14 ~A17 A18 ~A21 A22 ~A25

Compressive stress 

limitations (lb/in2) 
-35000 -11000 -17000 -35000 -6000 -6000 -11000 

Tensile stress  

limitations (lb/in2) 
40000 40000 40000 40000 40000 40000 40000 

 

The deterministic optimization formulation can be given as 

25

1

1 2 31,10,...,13 2,...,51,...,25

4 5 66,...,9 14,...,17

min      ( )

s.t.       = max ( ) 40000; = min ( ) 35000; = min ( ) 11000;

           = min ( ) 17000; = min ( ) 6000; = min

i i
i

i i ii ii

i ii i i

f A L

g g g

g g g

x
x

x x x

x x
18,...,21

7 822,...,25 1,...,30

T T

1 7 1 7

( ) 6000;

           = min ( ) 11000; = max ( , ) 0.35;

          0.01 ... 0.01 10 ... 10

i

i ii i
g g d E

x

x x

x

(6-34)

 

where Li is the length of the ith bar, i  is the stress of the ith member, and di  represents 

the displacement of each node in each direction. The random optimization model and 

hybrid optimization model are given as follows 

1 2 3 4

5 6 7 8

T T

1 7 1 7

min      ,

s.t.     40000;  35000; 11000;  17000;

          6000;  6000; 11000;  , 0.35;

          0.01 ... 0.01 10 ... 10

f

g g g g

g g g g

x
x

x x x x

x x x x

x

   (6-35)
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1 2 3

4 5 6

7 8

T

1 7

min      [ ],

s.t.     [ ] 40000;  [ ] 35000; [ ] 11000;  

          [ ] 17000; [ ] 6000;  [ ] 6000;

          [ ] 11000;  [ ], 0.35;

          0.1 ... 0.1 10 ... 10

f

g g g

g g g

g g

x
x

x x x

x x x

x x

x T

1 7

    (6-36)

 

where  denotes the random parameters E and  , and the interval variables 

70.05,0.05 .  

The active-set optimization algorithm in MATLAB is used to solve the optimization 

problem, and the initial values of the design variables are set as x0=[1 … 1]T
1x7. The 2nd 

order orthogonal polynomials (Hermit and Chebyshev polynomials) are used in PCCI 

method to expand the objective function and constraint function of the hybrid uncertain 

optimization model. Therefore, the collocation points will be chosen from the zeros of the 

3rd order Hermit polynomial and Chebyshev polynomials. Since there are 2 random 

variables and 7 interval variables, the number of coefficients for Hermit polynomials 

expansion and Chebyshev polynomials expansion will be 6 and 36, respectively. To make 

the numerical stability, we will use all the 9 zeros of  the 3rd order Hermit polynomial (2 

dimension) as the collocation points of random variables, and randomly choose 72 zeros 

of  the 3rd order Chebyshev polynomial (7 dimension) as the collocation points of 

interval variables.  

Table 6-4 Optimization results 

 x1(in2) x2(in2) x3(in2) x4(in2) x5(in2) x6(in2) x7(in2) 

Deterministic 0.10 1.77 2.95 0.10 0.69 1.95 2.61 

Random 0.10 1.97 3.15 0.10 0.73 1.93 2.80 

Hybrid 0.10 2.13 3.24 0.10 0.75 2.00 2.95 
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Figure 6-11 The iteration history of objective function 

The optimization results are shown in Table 6-3, and the iteration history of the objective 

function is provided in Fig. 6-11. 

The PDF and CDF of the bounds for the objective function and active constraints are 

shown in Fig.6-12 to Fig. 6-16, respectively. The weight of the truss by using the 

uncertainty design optimization is larger than that of the deterministic optimization, 

because the constraints of the uncertainty optimization are more rigorous. 

  

Figure 6-12 PDF of objective f 
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Figure 6-13 CDF of objective f 

One of the active constraints g6 is only related to the interval variables, so only the CDF 

is plotted, as shown in Fig.6-14. Since g6 is only related to the interval variables, the 

random uncertainty optimization and the deterministic optimization almost lead to the 

same results (Here, the lbr and lbd are coincidence, and the ubr and ubd are coincidence), 

and the lower bound of g6 is smaller than -6000lb/in2, which indicates that the constraint 

is not satisfied. However, for the hybrid uncertainty design optimization, its lower bound 

is larger than -6000lb/in2, so it satisfies the constraint even in the worst case of scenario. 

 

Figure 6-14 CDF of constraint g6 
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The PDF and CDF of the other active constraint g8 ( 0.35) are given in Fig. 6-15 and Fig. 

6-16. It can be seen that the failure probability of the deterministic optimization is around 

90% for the worst case of scenario. The failure probability of the random uncertainty 

optimization is much smaller, but it is still has about 10% failure probability under the 

worst condition. However, the failure probability of the hybrid uncertainty optimization 

tends to zero under the worst-case scenario. 

 

Figure 6-15 PDF of constraint g8 

 

Figure 6-16 CDF of objective g8 
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6.5 Summary 

A new uncertain design optimization method is proposed in this chapter, in which both 

random uncertainty and interval uncertainty are considered. In the optimization model, 

the objective and constraints trade off the mean value and standard deviation produced by 

random parameters, under the worst case of scenario with interval variables. The 

numerical analysis of hybrid uncertainty is implemented by using the PCCI method 

proposed in Chapter 4. The design sensitivity of the bounds of the interval mean and 

interval standard deviation are explicitly developed, which greatly facilitate the direct 

application of many more efficient gradient-based optimization algorithms. The interval 

arithmetic is applied to estimate the interval mean and interval variance of the evaluation 

functions based on the characteristic of orthogonal polynomials. Besides the interval 

mean and variance, the probabilistic density function and cumulative distribution function 

of the lower bound and upper bound of the evaluation functions are also employed to 

characterize the hybrid uncertainty. Two truss structures are utilized to showcase the 

effectiveness of the proposed method for the design of structural problems under hybrid 

uncertainty. The numerical results indicate that the proposed optimization method has a 

larger possibility to produce feasible solution than the deterministic and pure random 

uncertainty optimization methods. 
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Chapter 7 Summary and prospect 

7.1 Summary 

This thesis is mainly focused on the uncertainty analysis and optimization, including the 

interval uncertainty analysis, hybrid uncertainty analysis, design of optimization under 

interval uncertainty and hybrid uncertainty. Since there are many uncertain factors in 

engineering, this topic is valuable for both theory research and practical application. 

Chapter 2 provides a comprehensive review of the research of uncertainty, including the 

probabilistic uncertainty analysis, interval uncertainty analysis, and the design of 

optimization under uncertainty. The review indicates that there are some problems have 

not been solved yet, e.g. interval uncertainty analysis in dynamic problems, hybrid 

uncertainty analysis, the low efficiency and accuracy of optimization under uncertainty. 

The interval uncertainty analysis for the dynamic problem is investigated in Chapter 3. A 

new Chebyshev inclusion function is proposed to control the overestimation induced by 

interval arithmetic. The Chebyshev inclusion function uses the Chebyshev series to 

expand the original function and then employs the interval arithmetic to compute the 

bounds of original function. Using Chebyshev inclusion function to solve the dynamic 

problems (governed by ODEs and DAEs) is researched, and it is applied in mechanical 

dynamics. The numerical examples for dynamic problems indicate that Chebyshev 

inclusion function has better performance than traditional Taylor inclusion function. On 

the other hand, since the Chebyshev inclusion function does not need the derivatives 

information of original function, so it is easier to implement than the Taylor inclusion 

function that has to utilize the derivatives of original function. 
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For solving the hybrid uncertainty problems that contain both random uncertainty and 

interval uncertainty simultaneously, a new PCCI method is proposed in Chapter 4. The 

PCCI incorporates the PC expansion method used in probabilistic uncertainty analysis 

with the Chebyshev interval method, since both the two types of methods are based on 

the orthogonal series expansion. Two types of evaluation index of hybrid uncertainty are 

also proposed, i.e. 1) the interval mean and interval variance; 2) bounds of mean and 

bounds of variance. A 4-DOF roll plan model of automotive is employed as the numerical 

example to validate the PCCI method, and the results indicate it has high accuracy and 

efficiency. The most important novelty of PCCI method is that two types of uncertainties 

are solved in one framework. At the same time, the PCCI method is a non-intrusive 

method, so it can be easily implemented for solving the complicated engineering model 

(even in black box model). 

Chapter 5 investigates the design of optimization under interval uncertainty. An interval 

optimization model is proposed, which considers both robustness of objective and 

reliability of constraints. For general parameter optimization problems, the interval 

arithmetic is used to replace the inner optimization process of the traditional double-loop 

optimization method, which improves the efficiency significantly. A new Chebyshev 

polynomials-based surrogate model is proposed, which demonstrates that the accuracy of 

a polynomial surrogate model is only determined by the sampling points rather than the 

basis vector. The combination of Chebyshev surrogate model and Taylor inclusion 

function controls the overestimation effectively. The application in truss structural and 

vehicle suspension design shows the high accuracy and efficiency of the interval 

arithmetic based optimization algorithm. The robust topology optimization (RTO) under 

interval uncertainty is also presented. Chebyshev inclusion function is used in RTO, as 
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well as the sensitivity of interval objective function is derived, to use the gradient-based 

optimization algorithms. 

The design of optimization under hybrid uncertainty is proposed in Chapter 6. In the 

hybrid uncertainty optimization model, the objective and constraints trade off the mean 

value and standard deviation produced by random parameters, under the worst case of 

scenario with interval variables. The hybrid uncertain evaluation indexes are computed by 

using the PCCI method. The sensitivity of the bounds of the interval mean and interval 

standard deviation are explicitly developed, which greatly facilitate the direct application 

of many more efficient gradient-based optimization algorithms. Besides the interval mean 

and variance, the probabilistic density function and cumulative distribution function of 

the lower bound and upper bound of the evaluation functions are also employed to 

characterize the hybrid uncertainty. The numerical results indicate that the proposed 

optimization method has larger possibility to produce feasible solution than the 

deterministic and random uncertainty optimization methods. 

7.2 Perspective for future work 

The future work can be deeply developed in theory research and widely extended in 

engineering application. 

Firstly, the efficiency of uncertainty analysis and optimization for high-dimensional 

problems is still a quite challenging problem. The uncertainty analysis method proposed 

in this thesis is based on the orthogonal series, in which the selection of interpolation 

points is extremely important. The higher dimensional problems, the more interpolation 

points required, which means the more computational cost is spent. Therefore, how to 

choose fewer interpolation points to get higher accuracy will be an important issue for 

future work. 
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Secondly, the hybrid uncertainty of random field and interval parameters is another issue. 

The random uncertainty in this thesis only considers the discrete parameter. For many 

problems, the random uncertainty is a continuous parameter, such as the Young’s modulus 

and Poisson’s ratio in structure analysis and flexible multibody systems. Researching the 

hybrid of continuous random uncertainty and interval uncertainty should solve more 

difficult problems.  

Thirdly, the uncertain analysis method proposed in the thesis is a kind of non-intrusive 

method, so the procedure can be thought as constructing a polynomials surrogate model 

(or model reduction). The polynomials surrogate model has many advantages than other 

complicated surrogate model, especially in efficiency, conceptual simplicity, and 

transparency. The accuracy of the polynomials surrogate model is a weakness should be 

improved. As the theory 5.1 proved in Chapter 5, the accuracy of polynomials surrogate 

model is only determined by the sampling points, so how to choose the sampling set to 

improve the accuracy of polynomials surrogate model should be a key issue. The 

surrogate model can be used in many different areas, besides the engineering, the 

information technology area can also use it, such as the machine learning, artificial 

intelligence, and so on. Therefore, the application of surrogate modeling will also be 

another research direction. 
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