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Ability to learn human context in an environment could be one of the most desired fun-
damental abilities that a robot should possess when sharing workspaces with human co-
workers. Arguably, a robot with appropriate human context awareness could lead to a
better human robot interaction. This thesis addresses the problem of learning human
context in indoor environments by only looking at geometrics features of the environ-
ment. The novelty of this concept is, it does not require to observe real humans to learn
human context. Instead, it uses virtual human models and their relationships with the

environment to map hidden human affordances in 3D scenes.

The problem of affordance mapping is formulated as a multi label classification problem
with a binary classifier for each affordance type. The initial experiments proved that the
SVM classifier is ideally suited for affordance mapping. However, SVM classifier recorded
sub-optimum results when trained with imbalanced datasets. This imbalance occurs be-
cause in all 3D scenes in the dataset, the number of negative examples outnumbered
positive examples by a great margin. As a solution to this, a number of SVM learners that
are designed to tolerate class imbalance problem are tested for learning the affordance-
map. These algorithms showed some tolerance to moderate class imbalances, but failed to

perform well in some affordance types.

To mitigate these drawbacks, this thesis proposes the use of Structured SVM (S-SVM)
optimized for Fl-score. This approach defines the affordance-map building problems as a
structured learning problem and outputs the most optimum affordance-map for a given
set of features (3D-Images). In addition, S-SVM can be learned efficiently even on a
large extremely imbalanced dataset. Further, experimental results of the S-SVM method

outperformed previously used classifiers for mapping affordances.

Finally, this thesis presents two applications of the affordance-map. In the first applica-
tion, affordance-map is used by a mobile robot to actively search for computer monitors
in an office environment. The orientation and location information of humans models
inferred by the affordance-map is used in this application to predict probable locations of
computer monitors. The experimental results in a large office environment proved that the
affordance-map concept simplifies the search strategy of the robot. In the second applica-

tion, affordance-map is used for context aware path planning. In this application, human



v

context information of the affordance-map is used by a service robot to plan paths with

minimal distractions to office workers.
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DT[] Distance transform
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|- | The magnitude of a vector
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Occlusion

Pose

Planning

Surface

Surface Normal

Unstructured

Viewpoint

Voxel

All action possibilities latent in the environment, objectively mea-
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