The increase of timber use in residential construction in Australia: Towards a sustainable residential development model

Douglas N Thomas

A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy

University of Technology Sydney, Australia

Certificate of authorship/originality

I certify that the work in this thesis has not previously been submitted for a degree nor has

it been submitted as part of requirements for a degree except as fully acknowledged within

the text.

I also certify that the thesis has been written by me. Any help that I have received in my

research work and the preparation of the thesis itself has been acknowledged. In addition, I

certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Production Note:

Signature removed prior to publication.

Date: 23 February 2016

ii

Acknowledgements

I would firstly like to thank my supervisors Dr Grace Ding and Professor Keith Crews for their time and support of my research. The completion of this thesis would not have been possible without their assistance. Grace was always available to provide feedback at short notice and her guidance and input was invaluable to the completion of this thesis. Grace also provided constant encouragement, mentoring and assistance in learning the art of academic writing for research papers and thesis writing. Keith provided access to his years of expertise in the timber industry and helped steer my work in the right direction whilst showing confidence in my ability to navigate the research process. I would also like to express my gratitude to Dr Goran Runeson for reviewing my work and Peter Moore for the arduous task of editing the thesis in its entirety.

I would also like to thank my family and friends for their ongoing support - in particular my wife Belinda for her patience and support whilst completing this research. In addition I would also like to thank university colleagues Dr Matt Holmes and Dr Michael Er. Matt completed his thesis not long before mine and helped me understand the timber industry and other aspects of PhD research and Michael was a constant encouragement throughout my candidature.

Last but not least I would like to thank all the industry practitioners who freely contributed their time for this research. They have made this research possible and without their contributions and insight a lot of the data for this research would not have been accessible.

Table of Contents

LIST OF	FFIGURES	VIII
LIST OF	TABLES	IX
LIST OF	F PUBLICATIONS DURING CANDIDATURE	X
ABSTR	ACT	ΧI
CHAPT	ER 1 INTRODUCTION	1
1.1	BACKGROUND	1
1.2	PROBLEM DEFINITION	3
1.3	THE CURRENT RESIDENTIAL CONSTRUCTION PROCUREMENT DEVELOPMENT	_
1.4	MODEL MOTIVATION FOR UNDERTAKING RESEARCH	5 5
1.5	THE RESEARCH AIMS AND OBJECTIVES	6
1.6	RESEARCH SCOPE AND FOCUS	8
1.7	RESEARCH METHOD	9
1.8	OUTLINE OF THESIS	11
СНАРТ	ER 2 SUSTAINABILITY, DECISION THEORY AND	14
CIIAI I	BUSINESS MODEL INNOVATION	1
2.1	INTRODUCTION	14
2.2	SUSTAINABILITY THEORY – BACKGROUND	14
2.3	SUSTAINABILIY AND THE AUSTRALIAN CONSTRUCTION INDUSTRY	19
2.4	CONSUMER CHOICE THEORY	21
2.4.1		23
2.4.2	Consumer behaviour	24
2.4.3	Summary of choice behaviour	25
	Housing choice	26
2.5	CONSTRUCTION PROJECT PERFORMANCE INDICATORS BUSINESS MODELS AND STRATEGY	28
2.6	Business model innovation	31 32
	Business model innovation in incumbent firms	33
	Business models in construction	36
2.7	CONCLUSION	39
CHAPT	ER 3 TIMBER USE IN RESIDENTIAL CONSTRUCTION	41
3.1	INTRODUCTION	41
3.2	BACKGROUND	41
3.2.1	Timber use in Australian detached housing (BCA Class 1)	42
3.2.2		43
3.2.3	O .	44
3.2.4		46
3.3	PERCEPTION OF TIMBER USE IN RESIDENTIAL CONSTRUCTION	48
3.3.1 3.3.2	Perception versus reality	5(
3.4	Perception of fire in timber buildings FIRE LEGISLATION AND MULT-STOREY TIMBER APARTMENTS	51 54
3.5	ACOUSTIC PERFORMANCE IN TIMBER BUILDINGS	54 56
3.6	TIMBER EDUCATION OF CONSTRUCTION PROFESSIONALS	59
3.7	TIMBER DURABILITY	59
3.8	TIMBER PERFORMANCE IN EARTHQUAKES	63
3.9	ENVIRONMENTAL ASSESSMENT TOOLS FOR CONSTRUCTION	64
3.10	CONCLUSION	69

CHAPT	ER 4 CONSTRUCTION PERFORMANCE INDICATORS	71
4.1	INTRODUCTION	71
4.2	SUSTAINABLE PERFORMANCE – LIFE CYCLE ANALYSIS (LCA)	71
4.2.1	LCA overview	71
422	International standards for LCA studies-ISO 14040·2006	73
423	International standards for LCA studies-ISO 14040:2006 LCA Models	74
424	LCA in the building industry	78
1.2.7	LCA studies for residential development	80
4.3	LIFE CYCLE COST ANALYSIS	82
4.4	TIME IN CONSTRUCTION PROJECTS	88
4.5	THERMAL PERFOMANCE IN RESIDENTIAL CONSTRUCTION	92
4.6	CONCLUSION	96
1.0	dondedion	70
CHAPT	ER 5 RESEARCH METHOD	98
5.1	INTRODUCTION	98
5.2	METHODOLOGY OPTIONS	98
5.3	QUALITIVE VS. QUANTITATIVE RESEARCH	101
5.4	DATA COLLECTION METHODS	102
5.4.1		102
5.4.2		103
	Interviews	103
5.4.4		107
5.5	RESEARCH DESIGN	108
5.6	ANALYSIS	111
5.7	CASE STUDIES – COMPARING TIMBER PERFORMANCE AGAINST CONCRET AND	
5.7	BRICK IN RESIDENTIAL DEVELOPMENT	112
5.8	ETHICAL CONSIDERATIONS	113
5.9	CONCLUSION	116
3.9	CONCLUSION	110
CHAPT	ER 6 DATA COLLECTION & ANALYSIS – SURVEY AND INTERVIEW RESULT	S 117
6.1	INTRODUCTION	117
6.2	QUESTIONNAIRE SURVEY	117
6.2.1		117
6.2.2		118
6.2.3	Sampling and sampling errors	119
6.2.4	Questionnaire process	121
6.2.5	Distribution	121
6.3	DATA ANALYSIS	123
6.3.1	Response and analysis of data	124
6.3.2	Summary of questionnaire survey results SEMI-STRUCTURED INTERVIEWS	131
6.4		133
6.4.1	Interview purpose	133
6.4.2	Semi-structured interviews	133
6.4.3	Pilot interviews	134
6.4.4	Sampling and research population	134
6.4.5	Data analysis	137
6.4.6	Summary of semi-structured interviews	155
6.5	CONCLUSION	155
СНАРТ	ER 7 TOWARDS A SUSTAINABLE RESIDENTIAL DEVLOPEMENT MODEL	158
7.1	INTRODUCTION	158
7.2	INNOVATION IN THE CONSTRUCTION INDUSTRY	158
7.3	BARRIERS AND CHALLENGES OF ADAPTING SUSTAINABLE MATERIALS TO	100
5	RESIDENTIAL CONSTRUCTION	162
7.3.1		162

7.3.2	i i	164
7.3.3		171
7.4	IMPROVING SUSTAINABILITY IN RESIDENTIAL DEVELOPMENT	174
7.4.1	Current Australian residential development model	174
7.4.2	, ,	178
7.5	DEVELOPING A SUSTAINABLE BUILDING MODEL FOR RESIDENTIAL DEVELOPMEN	
	USING RENEWABLE RESOURCES	182
7.5.1	, ,	183
7.5.2	i v	187
7.5.3	1 0	190
7.6	CONCLUSION	201
CHAPT	ER 8 CASE STUDIES AND MODEL VERIFICATION	202
8.1	INTRODUCTION	202
8.2	CASE STUDY SELECTION METHODOLOGY	203
8.2.1	Selection Criteria	203
8.2.2	The selected projects	204
8.3	REDESIGNING CASE STUDY PROJECTS FOR USING SUSTAINABLE TIMBER	206
8.4	ASSESSING VARIABLES IN THE SUSTAINABLE RESIDENTIAL MODEL (SRD)	208
8.4.1		
	design	209
8.4.2		
	design	212
8.4.3		
	redesigned buildings	214
8.4.4		
0.1.1	buildings	216
8.5	DATA ANALYSIS AND DISCUSSION	219
8.5.1		219
8.5.2		221
8.5.3		228
8.5.4		235
	Case study project optimized schedules – Timber v Brick ANALYSIS OF THE RELATIONSHIP BETWEEN TIMBER PERFORMANCE AND BRICK	233
8.6		220
0 (1	PERFORMANCE	239
8.6.1		239
8.6.2		220
0.60	gross floor area	239
8.6.3		0.44
0.64	m² gross floor area	241
8.6.4		
	per m² gross floor area	243
8.7	CASE STUDY RESULTS AND VALIDATION OF THE SUSTAINABLE RESIDENTIAL	- · -
	DEVELOPMENT MODEL	245
8.7.1		246
8.7.2	1 ,	246
8.7.3	Sustainable performance of timber	247
8.7.4	Time performance of timber	248
8.7.5	Confirmation of initial propositions of timber performance	249
8.7.6	Comparing sustainable residential development (SRD) model with the	
	traditional linear model	251
8.8	CONCLUSION	253
СНАРТ	ER 9 IMPLEMENTING A SUSTAINABLE RESIDENTIAL MODEL, FURTHER	
	RESEARCH AND CONCLUSION	255
9.1	INTRODUCTION	255
9.2	IMPLEMENTING A SUSTAINABLE TIMBER RESIDENTIAL DEVELOPMENT	200
	MODEL	255

9.3	SUMMARY OF RESEARCH	260
9.4	REVIEW OF AIMS AND OBJECTIVES	263
9.4.1	Identifying current homeowner perception of timber use in homes	
	and units and the reason for their particular material selection	264
9.4.2	Examining the benefits and barriers to the increase use of timber	
	an alternative to steel, masonry and concrete	264
9.4.3	Identifying the current residential development model based on	
	the tradition	265
9.4.4	Developing a sustainable timber residential development model	266
9.4.5	Verifying and testing of the sustainable residential development	
	model	266
9.5	LIMITATIONS WITH RESEARCH AND THE SUSTAINABLE DEVELOPMENT	
	MODEL	267
9.6	RECOMMENDATIONS FOR FURTHER RESEARCH	269
9.6.1	Undertake building case studies on multi-storey residential	
	developments	269
9.6.2	Broaden the scope of case studies using homes in different states	
	and on different sites	269
9.6.3	Investigate prefabrication use to increase the life cycle benefits for	
	timber homes implementing the sustainable development model	270
9.6.4	Test the sustainable residential development model on	
	real life case studies	271
9.6.5	End of life scenario of residential building materials and designing	
	for disassembly	271
9.7	CONCLUSIONS	272
	REFERENCES	273
	APPENDICES	294
	AFFENDICES	294

List of Figures

- Figure 1.1 Scope of research investigation and case study analysis
- Figure 2.1 The three pillars of sustainable development
- Figure 2.2 Conceptual framework for sustainable development
- Figure 2.3 The new paradigm for sustainable construction.
- Figure 2.4 Customer value proposition model
- Figure 2.5 Business strategy framework
- Figure 2.6 Proposed generic business model and existing relationships between its elements
- Figure 6.1 Age comparisons between survey participants and NSW population
- Figure 7.1 Key agents, major types of interactions and framework conditions in the construction sector
- Figure 7.2 The building procurement process
- Figure 7.3 Residential development client value proposition model.
- Figure 7.4 Traditional residential procurement model with linear material flows
- Figure 7.5 Timber residential procurement model with circular material flows
- Figure 7.6 Sustainable residential development model
- Figure 8.1 Thermal performance of traditional materials versus timber (MJ/m²/yr.)
- Figure 8.2 Comparison between thermal star rating Timber versus brick
- Figure 8.3 Brick versus timber mean life cycle energy results by individual phase
- Figure 8.4 Life cycle energy per metre square. Timber versus heavy materials
- Figure 8.5 Timber and brick life cycle energy results-by phases
- Figure 8.6 Timber and brick life cycle energy and gross floor area
- Figure 8.7 Distribution of LCE across building elements (excluding end of life energy)
- Figure 8.8 Distribution of LCE in building elements (excl. windows & end of life energy)
- Figure 8.9 Life cycle energy results-Comparison between timber and brick
- Figure 8.10 Brick life cycle costs versus GFA
- Figure 8.11 Distribution of costs across building elements for brick and timber buildings
- Figure 8.12 Total life cycle cost comparison between timber and brick for 10 projects
- Figure 8.13 Construction cost comparison between timber and brick
- Figure 8.14 Maintenance cost comparison between timber and brick
- Figure 8.15 End of life cost comparison between timber and brick
- Figure 8.16 Timber and brick correlation between life cycle cost and gross floor area
- Figure 8.17 Construction schedule. Comparison between timber and brick
- Figure 8.18 Construction schedule compared to area of wall envelope (m2)
- Figure 8.19 Construction schedule compared to building footprint area
- Figure 8.20 Straight-line regression equation for timber and brick LCC per m² GFA
- Figure 8.21 Straight-line regression equation for timber and brick LCE (MJ) per m2 GFA
- Figure 8.22 Straight-line regression equation for timber and brick construction time (days) per m² GFA

Figure 9.1 Proposed strategy for timber design options in residential development

List of Tables

- Table 2.1 The seven concepts of ESD
- Table 2.2 Timber versus heavy material residential case studies
- Table 2.3 Main success indicators/criteria of construction projects in 1990's
- Table 2.4 Implication of the theory to incumbent construction firms implementing BMI.
- Table 3.1 Engineered timber product descriptions
- Table 3.2 International examples of innovative timber structural buildings
- Table 3.3 Timber system options for the Australian multi-residential building market
- Table 3.4 Hazard class selection guide (AS1604.1)
- Table 3.5 Stakeholder views of environmental assessment tools and the construction impact
- Table 4.1 Overview of some common LCA models
- Table 4.2 System boundaries for the LCEA of buildings
- Table 4.3 Issues with life cycle costing
- Table 4.4 Time efficiency studies for medium/large construction sites
- Table 5.1 Requirements for different research strategies
- Table 6.1 Research sample and contact methods
- Table 6.2 Details of main questionnaire
- Table 6.3 Questionnaire participant's employment industry background
- Table 6.4 Participants views on sustainable building materials and construction
- Table 6.5 Thermal comfort level of participants
- Table 6.6 Participants' opinions on the speed of timber construction
- Table 6.7 Cost of timber versus heavy materials
- Table 6.8 Reasons for the material choice in residential dwellings
- Table 6.9 Pilot interview details
- Table 6.10 Main interviewee details
- Table 6.11 Key issues and benefits of increase timber use in residential construction
- Table 6.12 Summary of practitioner's perception of sustainability of timber
- Table 7.1 Barriers to timber use in the residential building procurement cycle
- Table 7.2 Comparison of timber perception between literature and data results
- Table 7.3 Summary of client value propositions from residential developers
- Table 7.4 Classifying timber perceptions into performance criteria
- Table 7.5 Classifying timber perceptions into performance criteria
- Table 7.6 Criteria chosen for case study testing
- Table 8.1 Case study information 10 concrete /brick envelope homes
- Table 8.2 Building envelope materials for traditional residential development
- Table 8.3 Redesigned timber building envelope design
- Table 8.4 Thermal star rating for the ten brick veneer projects
- Table 8.5 Comparison of thermal conditioning Brick versus timber
- Table 8.6 Comparison of life cycle energy Brick versus timber
- Table 8.7 Replacement times for maintenance/demolition items
- Table 8.8 Comparison of life cycle costs Brick versus timber
- Table 8.9 Scheduling information sources and trade team numbers
- Table 8.10 Construction time comparison between brick and timber
- Table 8.11 Summary of life cycle energy by stages per m² GFA
- Table 8.12 Summary of life cycle energy by stages in percentage Table 8.13 Summary of life cycle costing by stages per m² GFA
- Table 8.14 Summary of life cycle costing by stages in percentage
- Table 8.15 Regression analysis results for LCC comparing timber to brick by m2 GFA
- Table 8.16 Regression analysis results for LCE comparing timber to brick by m2 GFA
- Table 8.17Regression analysis for construction time comparing timber to brick by m2 GFA

List of peer reviewed publications during candidature

'Sustainable timber use in Australian residential construction: Perception versus reality'

Energy and Sustainability Conference December 2014 Kuala Lumpur, Malaysia

'Sustainable timber use in the Australian housing market: Are consumers willing to pay the price'.
International Journal for Housing Science
Vol 37, No 3, 2013

'Medium rise structural timber apartments: Luxury or long-term carbon storage solution?'
SB13 Graz-Sustainable building conference
September 2013
Graz, Austria

'Multi-storey residential timber buildings in Australia: Where is the education?' AUBEA July 2012 University of NSW, Australia

Abstract

There is currently a limited use of timber products in residential development in Australia due to the dominance of heavy materials such as concrete, steel and brick. This dominant use of heavy materials is a reversal of the traditional material choice that was based predominantly on timber products. Technological advances and efficiencies drove the change to heavy materials in these particular industries. The emerging issue with this reliance on heavy materials is the impact of their use on the environment. The carbon impact and problem of finite resource depletion associated with concrete, steel and bricks need to be addressed due to the increasing pressure from national and international requirements and legislation. The construction industry needs to reduce its negative impact on the environment and sustainable timber presents a material solution to the problem. Timber from sustainably managed forests and plantations can be utilised as lumber or manufactured into engineered products for residential development use in both detached and multi-residential projects. Whilst there is research on carbon reduction through timber use in residential construction there is a gap in the research into how timber can achieve adequate performance in the key indicators in the Australian construction industry. These indicators are cost, time, quality and sustainability. There is also historic prejudice and misperception toward timber use in construction from both the supply and demand side of residential development. This study aims to discover the current perception towards timber in residential development and produce a sustainable timber use model that addresses the key performance indicators of the Australian construction sector. The performance of timber when compared to the current heavy material use in residential development will be compared through the use of the model.

A survey was conducted to gauge the perception of the demand side of residential development of the current use of timber in the structural envelope and cladding of housing projects. Interviews were then undertaken with construction practitioners to gain a supply perspective of some of the issues with timber use from a technical perspective and to review if survey results were

based on real timber performance problems or misperceptions. The data collected from the survey and interviews in addition to current literature on timber use in construction was used to develop a sustainable timber strategic building model. This strategic model provides an alternative model to the current heavy material use in residential construction. The model is tested and the results validated through ten building case studies by comparing the key performance factors when timber is substituted for non-renewable construction materials. When timber is used in the sustainable residential development model it is found to out perform traditional materials in aspects of time, cost, quality and sustainability.