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Abstract—Licensed Shared Access is a European standardisa-
tion effort which promotes repository based quasi-static hierar-
chical spectrum sharing. In this scheme the sharing time base is in
the order of months if not years. For widespread use of Licensed
Shared Access, shrinking the sharing time base is crucial. In this
paper we propose a scheme to reduce the sharing time base to
seconds or minutes scale. We present a new technique named
lightweight Radio Environment Map based on a Kalman Filter
derived from geo-location aware spectrum measurements, which
can be run at the shared access licensee end. Our objective is to
determine the active area of a static or slowly moving incumbent.
We consider a challenging scenario where a large fraction of
measurements is missing and the available measurements are
highly distorted. Performance of our incumbent active area
detection approach is evaluated by simulating a low power
incumbent in an urban cellular environment. Simulation results
show a substantial improvement of missed detection area in
comparison to the counterpart that does not use our lightweight
Radio Environment Map.

Index Terms—Licensed Shared Access, Kalman Filter, Maxi-
mum Likelihood Estimation

I. INTRODUCTION

Over the last few decades, cellular technology has come
a long way considering the enhancement in throughput and
Quality of Service (QoS). Although the engineered solutions
have well defined bounds, the mobile user traffic is limited
only by their imagination. In meeting the demand of future
cellular, more spectrum resources under 6 GHz need to be
allowed for use in cellular applications. To promote spectrum
sharing as a potential solution the European Telecommunica-
tions Standards Institute Reconfigurable Radio Systems (ETSI
RRS) Technical Standardisation Committee has proposed a
new approach named Licensed Shared Access (LSA) [1].

In LSA architecture, the incumbent and a LSA licensee
come to a mutual agreement on a sharing policy. LSA licensee
is typically a cellular operator. To allow better quality of
service the sharing time base is currently in the order of years.
However finding suitable bands for this quasi-static sharing
scheme where the incumbent agrees to cooperate for a long
duration is not trivial, which limits widespread use of LSA.
By shrinking the sharing time base finding suitable bands will
turn out less challenging.

To strike a balance between two extremes, we propose
a framework that shrinks the sharing time base of LSA
down to a seconds/minutes range only. This paper is based
on our previous work on Radio Environment Maps (REM)

[2], [3], a technique of generating a heatmap which shows
how the Received Signal Strength (RSS) varies over space.
Therein we considered the scenario where both location and
transmit power of incumbents are not known due to absence
of a LSA repository. We then found an estimation to the
incumbent active area primarily using `1-norm minimisation
theory. However, the work did not exploit the concurrent
implementation of LSA architecture. Also in [4], the authors
use a well known spatial interpolation technique called Kriging
to construct a REM. In [5] authors derive a Bayesian Kriging
interpolation model. In a large cellular network Kriging related
techniques tend to fall into offline processing category, due to
the computational complexity.

In the interest of keeping communication and computation
overhead minimal, we propose light-REM, a novel approach
to constructing REMs. Our scheme significantly differs from
the traditional REM approach found in literature as we exploit
the location information of a static/slowly moving incumbent
provided by the LSA repository. This paper casts light-REM
construction as a Kalman Filter (KF) problem by exploiting
long coherence time of large scale fading characteristics of
wireless channels. This is achieved by User Equipment (UE)
exchanging training symbols. This allows the base station
to learn and track wireless channels of interest, further il-
lustrated in Section II. UE collect geo-location aware RSS
measurements of the incumbent signal. By putting together
incumbent location information provided by LSA along with
UE measurements we take the maximum likelihood estimation
for the incumbent transmit power, which is directly related to
the incumbent active area. Further, we consider a challenging
scenario where the majority of measurements are missing
and/or heavily distorted. Under these circumstances we illus-
trate how our light-REM based maximum likelihood approach
outperforms the counterpart that doesn’t use a light-REM.

In Section II we introduce our system model and illustrate
how LSA architecture is extended in our work. Problem
formulation and our proposed solution based on light-REM
and maximum likelihood estimation of incumbent active area
are presented in Section III, IV and V. Simulation results and
analysis can be found in Section VI.

II. SYSTEM MODEL

We consider the scenario where a static or slowly moving
incumbent is present in an urban microcellular environment.
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Fig. 1. System model: the LSA repository informs the LSA licensee base
stations regarding the location of potentially active incumbents. Base stations
use geo-location aware spectrum measurements from UE to estimate the
incumbent active geographical area.

LSA licensee is an operator that intends allowing its users
to exploit LSA spectrum for localised spectrum usage scenar-
ios such as femtocells, peer-to-peer applications, etc. In our
system model the LSA repository contains the frequency and
location information of this static or slowly moving incumbent.
We assume a sharing time base is in the order of seconds
if not minutes. LSA repository is however unable to provide
information on whether the incumbent is active at any given
point and if so the geographical area in which the spectrum
needs to be made available for incumbent use. Architecture of
the system is shown in Fig. 1.

In our work we define light-REM as a heatmap in R3

showing power gains of channels from the incumbent location
to other points in space. This paper demonstrates how a light-
REM helps an operator to detect the incumbent active area in
space. To reduce the complexity of the problem we consider
discrete space composed of a grid structure as shown in Fig. 1.
The incumbent and UE are assumed to be on grid. The error
caused by considering discrete space is captured by a Gaussian
process as illustrated in Section III.

UE are uniformly distributed where the probability of a
UE actively participating in light-REM construction at any
grid point is the same at all points. To reduce the power
consumption of UE, their duties are limited to exchanging
training symbols and performing geo-location aware RSS
measurements only. Measurement results are forwarded to the
base station which constructs a light-REM to determine the
contour of geographical area where LSA spectrum is available.
For this exchange the operator uses a dedicated common
control channel from its own licenced bands.

III. PROBLEM FORMULATION

In this section we formulate light-REM construction as
a KF problem. Consider a discrete space composed of Np
grid points, Ns active UE performing spectrum measurements
and one local incumbent. The probability of a UE actively
engaging in light-REM construction at any given point is q.
Suppose the incumbent is present at jth grid point, the received

signal at all Np grid points at time t can be written as,

r = Hs+ n (1)

where H = (h1j , h2j , · · · , hNpj)
T , hij is the complex co-

efficient of channel from j to i. Also, s is the transmitted
signal of the incumbent and n is a Np × 1 AWGN vector.
On a square grid layout the jth reference point can be
mapped to (row, column) coordinates as: j → (dj/

√
Npe, j−√

Np(dj/
√
Npe−1). Further we assume frequency-flat fading

of the channel.
We calculate the Received Signal Strength (RSS) at Np grid

points as follows,

Pr = E [r ◦ r∗] (2)
= E [(Hs+ n) ◦ (Hs+ n)∗] (3)

where ◦ is the Hadamard product. We also assume that noise is
spatio-temporally white and independent of transmitted signal.
Therefore we can rewrite (3) as follows,

Pr = E [(Hs) ◦ (Hs)∗] + E [n ◦ n∗] (4)

= ΨPt+ σ2
n1 (5)

where Ψ is the Np × 1 channel gain vector given by [Ψ]i =
E
[
|hij |2

]
, Pt is the transmit power of the incumbent given by

Pt = E
[
|s|2
]
, σ2

n is the variance of AWGN and 1 is a vector
of ones. We consider that only Ns receivers are performing
spectrum measurements at any given time. Hence, the noisy
spectrum measurement vector Ps can be written as,

Ps = Ψ̃Pt+ σ2
n1+ η (6)

where Ψ̃ = ΦΨ, Φ is the Ns × Np matrix representing the
geolocation of spectrum sensing UE as follows,

[Φ]kj =

{
1 if kth active UE is at jth reference point
0 otherwise

(7)

In a practical implementation of our system errors may occur
in measuring RSS, determining geo-location and approximat-
ing the location to the nearest grid point in discrete space. To
capture such errors we add the Ns × 1 Gaussian noise vector
η in (6).

Hence, our problem can be stated as finding Pt in (6) based
on the geo-localised RSS measurements Ps. Our approach
is two fold, we first construct a light-REM (i.e. estimate
Ψ) using a KF as shown in Section IV. Then we take the
maximum likelihood estimation approach to find Pt as shown
in Section V. In the interest of keeping the computational
complexity and traffic overhead minimal, the transmit power
Pt is directly related to the incumbent active area using a
pathloss model, as further illustrated in Section V.

IV. KALMAN FILTER FOR LIGHT-REM CONSTRUCTION
AND TRACKING

In this section we cast the light-REM construction as a
discrete time KF problem. Consider the channel gains vector
given by Ψ which can be modelled as,

[Ψ]i = E
[
|hij |2

]
= E[FijGijLij ] (8)



where Fij captures the fast fading due to a multipath envi-
ronment, Gij models the shadow fading due to blockage and
the pathloss is modelled using Lij . To facilitate LSA in a
seconds/minutes sharing time scale, the expectation operator
refers to the time average taken over a short period such that
it eliminates the impact of multipath fading, while large scale
fading and path loss can be considered quasi-static. As the
environmental changes do not occur rapidly, the coherence
time of the large scale fading is substantially large and
it is expected to spread over many measurement iterations
depending on the application environment.

Therefore we can write,

[Ψ]i = E[F ]GijLij (9)

Hence the channel estimation problem comes down to de-
termining and tracking changes to GijLij . For this purpose,
UE at jth grid point transmits a sequence of training symbols
which is used by the UE at ith grid point to estimate [Ψ]i. We
run a discrete time KF that exploits the substantial coherence
time of large scale fading coefficients, as shown in the rest of
this section.

We assume the following discrete time linear system,

Ψt+1 = AΨt + ζt (10)

Prt = CΨt + σ2
n1+ ηt (11)

where A models the variation of large scale channel gains over
time. A is assumed to have been estimated offline in the scope
of this paper. Making no assumptions on spatial correlation
of large scale fading, given the high temporal correlation A
tends to be a diagonal matrix. C is a diagonal matrix where all
entries along the diagonal are the transmit powers of training
symbols. The Gaussian process noise is modelled by ζ and the
measurement noise caused by erroneous location awareness
and RSS measurements is modelled by a Gaussian process η.
Corresponding covariance matrices are Q and R.

The problem is made more challenging by the UE being
unable to perform sensing at all Np grid points. Motivated by
the work in [6] we partition the measurement vector to known
and unknown parts as follows,[

Pst − σ2
n1

P̃st − σ2
n1

]
=

[
Ĉ

C̃

]
Ψt +

[
η̂t
η̃t

]
(12)

where Ps is the known measurement vector from Ns active
UE and P̃s contains the unknown elements of Pr. Impact of
missing measurements is captured by allowing η̃ ∼ N (0, σ2

η̃)
where σ2

η̃ → ∞. The measurement noise correlation matrix

can be written as,
[
R11 R12

R21 Iσ2
η̃

]
From classic KF time update and prediction equations [6],

Ψ́t|t =E[Ψt|q,Pr0, · · · ,Prt] (13)

Pt|t =E[(Ψt − Ψ́t|t)(Ψt − Ψ́t|t)
T

|q,Pr0, · · · ,Prt] (14)

Ψ́t+1|t =E[Ψt+1|q,Pr0, · · · ,Prt] (15)

Pt+1|t =E[(Ψt+1 − Ψ́t+1|t)(Ψt+1 − Ψ́t+1|t)
T

|q,Pr0, · · · ,Prt] (16)

where Ψ́ is the estimation for Ψ. Regardless of the missing
measurements, the prediction stage of the KF stays the same
as it is independent from the observation process.

Ψ́t+1|t =AΨ́t|t (17)

Pt+1|t =APt|tA
T +Q (18)

However, the time update equations now become stochastic
depending on the random locations where UE perform sens-
ing. Solutions for (15) and (16) deviate from traditional KF
solutions as shown in [6],

Ψ́t|t =Ψ́t|t−1 + Kt(Pst − σ2
n1− ĈΨ́t|t−1) (19)

Pt|t =(I−KtĈ)Pt|t−1 (20)

where I is an identity matrix and Kt is the Kalman gain
defined as,

Kt = Pt|t−1Ĉ[ĈPt|t−1Ĉ
T + R11]−1 (21)

Hence (17), (18), (19), (20) and (21) can be used to estimate
and track changes of channel gains that can be used to
determine the incumbent active area as further illustrated in
Section V.

V. MAXIMUM LIKELIHOOD ESTIMATION OF INCUMBENT
ACTIVE AREA

To determine the incumbent active area we adopt a sim-
ilar approach to the interference temperature concept in
IEEE 802.22 [7]. We are interested in estimating the contour
where the RSS of the incumbent drops below a predetermined
threshold. Outside this contour the SNR value of the incum-
bent signal is too low to be decoded by an incumbent receiver.
Hence the probability of an incumbent receiver being present
outside this contour is minimal and the LSA licensee is able
to use the spectrum is this region.

In determining the incumbent active area we consider the
following pathloss model, Lij = K (d0/dij)

γ where dij is the
distance between ith and jth reference points. Further, K and
d0 are constants. We can determine the radius of contour as
follows,

d = d0
(
PtK/P̄ r

)1/γ
(22)

where P̄ r is the predetermined RSS threshold.
From (22) the transmit power of the incumbent is propor-

tional to the radius of contour. Given the channel estimations
from Section IV we can take the maximum likelihood estima-
tion of the transmit power as follows,

Ṕ t = [(ΦΨ́)TΦΨ́]−1(ΦΨ́)T (Ps− σ2
n1) (23)

where Ps is the RSS of the incumbent signal measured by
active UE. The value of Pt can then be used to estimate
the incumbent active area contour in (22). Our approach to
incumbent active area detection is summarised in Algorithm 1.
Effectiveness of this approach is evaluated in Section VI.



Algorithm 1 Light-REM construction and incumbent active
area detection: kth iteration

Require: If k = 1 use the following initial conditions
• Ψ́t|t−1 - Np × 1 column vector of zeros
• A - can be estimated offline in the scope of this paper

1: if Measurements were received from UE then
2: Calculate Kalman Gain Kt from (21)
3: Perform measurement update in (19) and (20)
4: end if
5: Estimate the incumbent transmit power from (23) and the

incumbent active region contour from (22)
6: Perform KF prediction stage by following (17) and (18)

Estimated contours

Actual contour

Λ0Λ1 Λ2

Missed Detection Area

False Alarm Area

Fig. 2. Missed Detection Area (MDA) and False Alarm Area (FAA)
illustration

VI. SIMULATION AND ANALYSIS

We consider a static or slowly moving incumbent operating
in 700 MHz band. The incumbent has come to an agreement
with a LSA cellular operator who is allowed to use the
spectrum when it is inactive. Incumbent is obliged to report to
the LSA repository regarding its location, however the LSA
operator should determine when the incumbent is active and
take necessary steps to avoid interference. To generate RSS of
the incumbent signal we use WINNER+ channel model.

We compare our light-REM based maximum likelihood
estimation approach to its counterpart that does not use a
light-REM in making maximum likelihood estimation. In the
alternative approach we consider, the LSA licensee remembers
the latest noisy channel estimation to perform maximum
likelihood estimation approach. Hence, we directly compare
the benefit of our KF based light-REM approach.

As the performance criteria we investigate the error in
incumbent transmit power estimation, Missed Detection Area
(MDA) and False Alarm Area (FAA) defined as follows,

MDA = (Λ0 − Λ1)/Λ0 FAA = (Λ2 − Λ0)/Λ2 (24)

The areas Λ0,Λ1 and Λ2 are the areas as shown in Fig. 2.
Our definition for MDA and FAA are analogous to Missed
Detection (H0|H1) and False Alarm (H1|H0) in a traditional
cognitive radio system (0 ≤ MDA, FAA ≤ 1). From (22)
we infer that d ∝ Pt1/γ . Therefore, regardless of the RSS
threshold used in determining the incumbent contour we write,

MDA =
Ṕ t

2/γ

0 − Ṕ t
2/γ

1

Ṕ t
2/γ

0

FAA =
Ṕ t

2/γ

2 − Ṕ t
2/γ

0

Ṕ t
2/γ

2

(25)

TABLE I
SIMULATION PARAMETERS

Parameter Value
Grid size 9 x 9 (80 x 80 m)
Incumbent power Pt = 10 dBm
KF linear model A = I, C = Pt(mW )× I
Noise covariance Q = var(ζ)× I, R = var(η)× I
Noise model η ∼ N (0, 1e − 12), ζ ∼ N (0, 1e − 16),

n ◦ n∗ ∼ N (1e− 11, 1e− 22)
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Fig. 3. Difference between the estimated and actual incumbent power in
dBm, 95% confidence level is shown. We compare our light-REM approach
(marker: circle) with the alternative maximum likelihood approach that does
not use light-REM (marker: triangle). Value of q is shown in the legend. Note:
q = 0.15 results in a highly erroneous estimation.

We vary q, the probability of a UE taking part in light-REM
construction, and determine how fast our algorithm converges
to the solution. The variable q is directly proportional to the
traffic overhead, hence a smaller value is desirable. However,
the lower traffic overhead comes at a price as illustrated in
the rest of the section. Some relevant parameters used in
simulations are shown in Table I.

A. Incumbent Power Detection

In Fig. 3 we compare the difference between estimated and
actual incumbent transmit power. This stochastic variable is
represented by its 95% confidence level, which is a better rep-
resentation than mean and/or variance. Simulations were run
for 50 iterations considering 100,000 independent scenarios.

Fig. 3 shows that both approaches eventually converge to
a steady state error level determined by q. Although error is
low when q ≥ 0.5, due to high overhead this region is less
feasible. When q ≤ 0.2 the overhead is low, however the error
is > 10 dBm even after 25 iterations.

When 0.2 < q < 0.5, which is a more reasonable operating
region for the system, our approach has a clear edge over
the alternative. For instance, when q = 0.35 our approach
guarantees the error in incumbent power estimation is less
than 2 dBm after 11 iterations with 95% confidence. Whereas
the alternative guarantees the same after 15 iterations. When
q = 0.3 those figures are 22 and 45 respectively.
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Fig. 4. Missed Detection Area as defined in (24), the 95% confidence level.
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Fig. 5. False Alarm Area as defined in (24), the 95% confidence level.

B. Missed Detection Area

Fig. 4 shows how the 95% confidence level of MDA varies
through 50 iterations. We have the incumbent constantly active
at one randomly selected reference point and we determine
the MDA using (24). Similar to Fig. 3 all curves appear to
eventually reach a steady state MDA level depending on the
UE density. The difference of steady state MDA when q = 0.4
is in the order of 0.05. When q = 0.25, 0.30 the difference is
expected to be > 0.13. As we get close to q ≤ 0.2 region
the gain is reduced. This MDA performance improvement in
the typical operational region of q justifies the use of our KF
based light-REM approach.

Also, it should be noted that q = 0.15 curve is constant at
MDA = 1 for the first 9 iterations. We infer that the incumbent
is not detected in the first 9 iterations with 95% probability.

C. False Alarm Area

Fig. 5 shows how the 95% confidence level of FAA varies
through 50 iterations. Clearly q = 0.15 stands out with a
high FAA rate in comparison to other curves. This is due
to lack of availability of measurements for any approach to

be effective. For all q > 0.2 values the FAA falls below 0.05
after about 7 iterations. Both approaches appear to be highly
effective in reducing the FAA. Since the difference between
two approaches is marginal, statistical inference is that both
approaches are indiferent in regard to FAA.

Since FAA converges to steady state faster than MDA,
one could marginally increase the estimated incumbent power
Ṕ t to improve the MDA at the expense of worsened FAA.
However, that is considered to be beyond the scope of this
paper.

VII. CONCLUSION

In this paper we proposed an extension to the existing LSA
cellular operator architecture by incorporating the concept of
light-REM.Our approach is based on running a discrete time
Kalman Filter to construct and track changes to light-REM,
then taking maximum likelihood estimation for the incumbent
user active region. We consider a challenging situation where
geo-localised spectrum measurements used in the system are
highly distorted and the majority of the measurements is
missing. We compare the proposed approach to the nearest
comparable alternative of taking maximum likelihood estima-
tion that does not use a light-REM. Simulation results show
that our approach is more effective than its counterpart when
spectrum measurements are taken when the UE density is
within the range 0.20 < q < 0.50, which is a realistic region
of operation for the system.
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