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Abstract:
I model the behavior of decision-makers seeking conformity and influence in a connected population. The
model allows for one-sided linking, with information flowing from the target to the link’s originator. Confor-
mity is achieved only with a social order, necessitating differentiated rewards despite ex ante homogeneity. The
leader holds a strategic social location ex post, exerting influence independent of any leadership traits. A strong
desire to influence produces non-conforming autonomous decision-makers. Socially detrimental multiple lead-
ers can be sustained as well.
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My goal is to acquire works that great museums letch after.1

1 Introduction

Decision-makers enjoy conformity, particularly when pre-empting the popular choice. Thornton (2009) ob-
serves that an avant-garde collector’s reputation is based on his or her success in being an early collector of
a subsequently successful artist’s works. At the same time, the success of an aspiring artist is driven, in part,
by the reputation of the collectors acquiring the artist’s works. The buying and selling of art is not conducted
anonymously. The scenario is such that an individual benefits from acting in advance of a phenomenon, the
emergence of which may be influenced by the individual’s own actions.2 Social considerations weigh on a va-
riety of decisions, from conspicuous consumption to investment to political support.3 Most decision-makers
decide between conformity and early adoption, a tradeoff the influential can avoid.

The developed game captures the social aspect of decision making, including the tension between early
adoption and conformity. Available actions create pathways for exerting or responding to social influence.
Popularity arises from coordinating behavior, made possible by the flow of information over personal contacts.
Actions manifest as a social structure in the form of selectively-employed directed links.

Prior to organizing, the ex ante homogeneous players face the same payment opportunities, there are no
explicit costs for either moving or waiting, and they have equal access to when and how to choose among the
options. Conformity in the decision-making environment requires ex post societal heterogeneity. A leader is not
endowed with the traditional leadership attributes in the form of information or decision-making advantage.
Rather, a leader comes by these attributes socially in order to serve the interests of all.

Equilibrium is reflected in the social structure. A population organized around a single leader is the pre-
vailing equilibrium structure. The size of the following, and possible presence of multiple leaders, serve the
interest of the followers.

The setting suggests a dynamic process for attaining or retaining a social structure. The present paper iden-
tifies equilibrium behavior for a simultaneous play game and the resulting social structures. The identified
equilibrium structures are also stable in the dynamic setting for myopic players unwilling or unable to plan
beyond the current period. While the current project employs equilibrium analysis to identify social structures
consistent with socially influenced preferences, the computational analysis of Goldbaum (2017) and the experi-
ments of Bostian and Goldbaum (2017) separately consider evolutionary behavior in pursuit of conformity and
influence absent knowledge of the network.

Section 2 introduces the network structure, possible actions, payoffs, and an equilibrium concept of the
model. Examples employing populations of two and three players illustrate that while a greater reward to
leading undermines the interest in following, equilibrium always includes at least one follower. To identify
how relative proximity to the leader alters behavior requires analysis with larger populations, an undertak-
ing that starts in Section 3. Larger populations allow for multiple leaders with possible majority and minority

David Goldbaum is the corresponding author.
© 2018Walter de Gruyter GmbH, Berlin/Boston.
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conforming populations. Section 4 considers the conditions necessary to allow multiple leaders to co-exist in
equilibrium. Extensions of the model, including non-linear payoffs and possible best response cascades, are
considered in Section 5.

Appendix A includes formal definitions of essential populations and social structures. Appendix B includes
a formal statement and proof of the propositions and lemmas. Appendix C formally develops examples from
Section 4.

Related Literature

The strategic complementarities found in Katz and Shapiro (1985) reward adopting a popular choice. Classic
evidence of social influence in individual decisions, even in the absence of physical complementarities, can
be found in Whyle (1954), Katz and Lazarsfeld (1955), and Arndt (1967). Hill, Provost, and Volinsky (2006) and
Dwyer (2007) exploit modern technology to consider social connections as they develop in mobile phone friend
networks and online chats. Early experiments, including those of Kelman (1961), Bearden and Rose (1990), and
Lascu, Bearden, and Rose (1995), identify conformity in decision-making.

Some of the early examples exploring the influence of social networks model a bi-directional interaction
between individual decision-making and global behavior, including Schelling (1971), Katz and Shapiro (1985),
and Schelling (1973).4Cowan and Jonard (2004) document the impact of local and global connectivity on overall
knowledge across a population.

Deutsch and Gerard (1955) differentiate between informational and normative conformity. The former is
revealing of the underlying decision. The latter affects the decision-maker’s relationship with others.5 The con-
formity and influence arising in the social learning model of DeGroot (1974) are informational. The importance
of network structure and individual behavior are further developed in such works as Acemoglu et al. (2013),
Acemoglu and Ozdaglar (2011), Battiston and Stanca (2015), Buechel, Hellmann, and Klößner (2015), Corazzini
et al. (2012), and Golub and Jackson (2010), where conformity and influence are the consequence of the social
learning environment. Arifovic, Eaton, and Walker (2015) consider conformity as a motivator shaping beliefs
and network formation in the context of social learning.

In the current investigation, players actively seek normative conformity and influence over the decisions
of others. As such, they operate in a setting in which the actions of the population entirely define the state.
There is no underlying exogenous truth to be discerned from the opinions of one’s neighbors. All uncertainty
is intrinsic. These features shape the nature of information gathering. Combining information from various
sources does not necessarily serve the individual’s objectives.

Coordination in adoption imparts a positive peer effect in the Brock and Durlauf (2001) model of utility-
driven normative conformity. The Ali and Kartik (2012) preference for normative conformity, in the form of
complimentary actions, motivates strategic exploitation of influence in the sequential decision-making of the
Banerjee (1992) observational learning model.6 The benefits of early adoption appear in models such as the
Pesendorfer (1995) adoption of new fashion and in the Challet, Marsili, and Zhang (2001) model of investing.

The equilibrium concept adopted for the main analysis is that of a Nash equilibrium applied to the actions
of the agents seeking conformity and influence. Equilibrium actions produce a social structure by which equi-
librium can be defined. The resulting equilibrium notions of network structure are consistent with Haller and
Sarangi (2005), Galeotti and Goyal (2010), Zhang, Park, and van der Schaar (2011), and Baetz (2015), that explic-
itly model the beneficial interaction that gives rise to network connectivity. In these examples, endogenously
determined equilibrium network structures are the product of a static model or of simultaneous linking de-
cisions. These models generate asymmetry in outcomes from ex ante homogeneity. This is in contrast to the
possible heterogeneity produced by sequential play network formation games and equilibrium identification
in Jackson and Wolinsky (1996), Watts (2001), and Jackson and Watts (2002).

Consistent with Arndt (1967), social connections form the foundation upon which the agents develop strate-
gies to facilitate coordination. The static structures are relevant to populations seeking conformity when repeat-
edly confronted with a new set of options. Reliable social connections substitute for the inability to communicate
or rely on the consistency of the choice option, as in Crawford and Haller (1990).

Multiple Nash equilibria exist in the present model. The asymmetry in the payoff means that the players
have conflicting interests with regards to which equilibrium emerges. The two-player version reflects the en-
dogenous heterogeneity that can emerge in research and development and duopoly games, as in Reinganum
(1985), Sadanand (1989), Hamilton and Slutsky (1990), Amir and Wooders (1998), and Tesoriere (2008). Amir,
Garcia, and Knauff (2010) generalize the issue of symmetry breaking, as is the case when a leader and follower
emerge. The general n player game retains the issues regarding asymmetry in outcome while introducing new
strategy possibilities. It also introduces the possibility of best response cascades, as in Dixit (2003) and Heal
and Kunreuther (2010), refining the set of equilibrium structures.
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2 Model

Let 𝑁 = {1, ..., 𝑛} be the set of players and let the 𝑛 × 𝑛 adjacency matrix g indicate contacts between players. If i
can directly observe j then 𝑔𝑖𝑗 = 1 and 𝑔𝑖𝑗 = 0 otherwise. Let 𝑔𝑖𝑖 = 1 always. Write 𝑁𝑑(𝑖; 𝑔) = {𝑗 ∈ 𝑁\{𝑖}|𝑔𝑖𝑗 = 1}
for a set of players i can observe as contacts and let 𝑛𝑑

𝑖 = |𝑁𝑑(𝑖; 𝑔)| indicate the number of contacts for player i.
Let 𝑂 = {𝑂1, … , 𝑂𝑚} be a set of 𝑚 ≥ 2 options or alternatives.

Let 𝑎𝑖 denote the action of player i. Players act simultaneously, with each player choosing (i) one of the m
options autonomously or (ii) to imitate another player. The autonomous player chooses 𝑎𝑖 = 𝑜𝑖 ∈ 𝑂 where 𝑜𝑖
is determined at random with uniform probability assigned to each option. Thus, Pr(𝑜𝑖 = 𝑜𝑗) = 1/𝑚 for i and
j both acting autonomously, 𝑖 ≠ 𝑗. 7 To imitate another player, then 𝑎𝑖 = 𝑗. A player who chooses an option
autonomously is said to lead while a player who links to another is said to follow. The set of actions for player i
is 𝐴𝑖 = 𝑂 ∪ 𝑁𝑑(𝑖; 𝑔). Write 𝑎 = (𝑎1, … , 𝑎𝑛) for an action profile, where 𝑎𝑖 ∈ 𝐴𝑖.

An action profile a induces an 𝑛 × 𝑛 adjacency matrix describing the paths of imitation between players as
determined by their actions. If 𝑎𝑖 = 𝑗 then 𝜎𝑖𝑗 = 1 and if 𝑎𝑖 ∈ 𝑂𝑖, such that i leads, then 𝜎𝑖𝑖 = 1. Otherwise,
𝜎𝑖𝑗 = 0. Thus, for the matrix σ, 𝜎 ⋅ 1 = 1, indicating that each player employs one and only one source to
inform adoption, including possibly self-informed adoption. Imposing a single source is non-binding on the
obtained solutions. Say that j is a predecessor of i if 𝜎𝑖𝑗 = 1 or if there is a sequence of players 𝑗1, … , 𝑗𝜏 such that
𝜎𝑖𝑗1 = … = 𝜎𝑗𝜏 𝑗 = 1. Write 𝑁𝑃(𝑖; 𝜎) for the predecessors of i. Say that j is a successor of i if 𝜎𝑗𝑖 = 1 or if there is a
sequence of players 𝑗1, … , 𝑗𝑟 such that 𝜎𝑗𝑗1 = … = 𝜎𝑗𝜏 𝑖 = 1. Write 𝑁𝑆(𝑖; 𝜎) for the successors of i.

Let 𝑁𝐿(𝜎) = {𝑖|𝜎𝑖𝑖 = 1} denote the set of players who lead. A leader leads and has a non-empty set of
successors. It is possible to lead, acting autonomously, without being a leader. If player i leads with player j as
a successor, this makes player i player j’s leader. Note that each player i has at most one player who leads as a
predecessor, that is |𝑁𝐿(𝜎) ∩ 𝑁𝑃(𝑖; 𝜎)| ∈ {0, 1} for each i. It is possible for a successor to be without a leader. Let
𝐿𝑖 identify the predecessor of i who leads.

Define the distance from player i to her adopted alternative as the number of players between i and the
alternative. This distance is relevant when determining payoffs. Using 𝑑𝑖 to denote player i’s distance,

𝑑𝑖 =

⎧{{{
⎨{{{⎩

0 if 𝑖 ∈ 𝑁𝐿(𝜎)
1 if 𝜎𝑖𝑗 = 1, 𝑗 ∈ 𝑁𝐿(𝜎)
𝜏 + 1 if 𝜎𝑖𝑗1 = … = 𝜎𝑗𝜏 𝑗 = 1, 𝑗 ∈ 𝑁𝐿(𝜎)
∞ otherwise.

�

Use 𝑑𝑖𝑗 to denote the distance from successor i to predecessor j measured in the number of links connecting
i to j. Observe that when 𝐿𝑖 = 𝑗, 𝑑𝑖𝑗 = 𝑑𝑖.

Let 𝑁𝑐(𝑖; 𝑎) denote the set of “conforming” players adopting the same alternative as does player i (exclusive
of i). Let 𝑁𝑒(𝑖; 𝑎) denote the set of “ensuing” conforming adopters who are of greater distance from the alterna-
tive than is i.8 Observe 𝑁𝑒(𝑖; 𝑎) ⊆ 𝑁𝑐(𝑖; 𝑎). Let 𝑜𝑖 ∈ 𝑂 represent the alternative adopted by player i. Let 𝜇𝑐

𝑖 and
𝜇𝑒

𝑖 represent the cardinality of the respective populations, 𝜇𝑐
𝑖 = |𝑁𝑐(𝑖; 𝑎)| and 𝜇𝑒

𝑖 = |𝑁𝑒(𝑖; 𝑎)|.
The payoff for player i rewards conformity and influence. Allowing for possible nonlinearity in the reward

associated with each,9

𝜋𝑁𝐿(𝑖; 𝜎) = 𝜙(𝜇𝑐
𝑖 ) + 𝜓(𝜇𝑒

𝑖 ). (1)

Each reward component should be increasing and continuously twice differentiable with 𝜙 (0) = 𝜓 (0) = 0.
Appendix A develops a payoff function in 𝜇𝑐

𝑖 and 𝜇𝑒
𝑖 from a utility function valuing social interaction. As a

function of 𝜇𝑐
𝑖 , the conformity attribute of the payoff is similar in concept to the community effect of Blume and

Durlauf (2001). The 𝜇𝑒
𝑖 component rewards a player for the appearance of being influential whether or not the

player actually informed the action of others.10 Let Π(𝑎) = (𝜋1, … , 𝜋𝑛)′ be the 𝑛 × 1 vector of payoffs according
to a.

For illustration, consider the special case of linear reward components,

𝜋(𝑖; 𝜎) = 𝑟𝑐𝜇𝑐
𝑖 + 𝑟𝑒𝜇𝑒

𝑖 , (2)

with non-negative coefficients 𝑟𝑐 and 𝑟𝑒.11

3
Authenticated | david.goldbaum@uts.edu.au author's copy

Download Date | 11/6/18 3:42 AM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Goldbaum DE GRUYTER

Figure 1: A g and illustrative feasible σ for a population of 𝑛 = 12 players with 𝑚 = 2 alternatives. The network structure
produced by g is a ring. Frame (Figure 1a) is a network representation of the g matrix. Frame (Figure 1b) is a network rep-
resentation of the σ matrix resulting from the actions 𝑎 = (𝑂1, 𝑂1, 2, 5, 6, 𝑂1, 6, 7, 𝑂2, 9, 12, 11). Frame (Figure 1c) depicts
the groupings implied by σ as trees (or “hierarchies”) with predecessors positioned above successors and with the alter-
native above the trees. Dashed arrows indicate a leader’s choice according to a. Followers 11 and 12, lacking a path to one
of the alternatives, are placed at the bottom.

Example 1.
Consider a population of twelve players arranged in a ring with each player able to link to her nearest

neighbor on either side. For 𝑚 = 2, the set of feasible action profiles includes, as an illustrative example, the
action

𝑎 = (𝑂1, 𝑂1, 2, 5, 6, 𝑂1, 6, 7, 𝑂2, 9, 12, 11).

Figure 1 includes graphical representations of g and the σ induced by a. Here, 𝑁𝐿(𝜎) = {1, 2, 6, 9} and for
𝑖 ∈ {4, 5, 7, 8}, 𝐿𝑖 = 6. The hierarchical presentation of σ in Figure 1c positions predecessors above successors in
a tree structure rooted by the adopted alternative. Players 11 and 12 fail to adopt one of the alternatives as they
are successors to each other and thus without a leader, a self-referencing loop.

Table 1 reports the payoff to each player based on the action a. For player 𝑖 ∈ {1, … , 8}, 𝑁𝑐(𝑖; 𝑎) = {1, … , 8}\{𝑖}
so that 𝜇𝑐

𝑖 = 7. In addition, for 𝑖 ∈ {3, 5, 7}, 𝑁𝑒(𝑖; 𝑎) = {4, 8}, reflecting that all players of equal distance from 𝑂1
benefit equally from the players who are of greater distance. Player 9, having chosen differently than the other
leading players, benefits only from her successor, player 10. For players 𝑖 ∈ {4, 8, 10, 11, 12}, 𝑁𝑒(𝑖; 𝑎) = ∅. Players
11 and 12, failing to adopt a choice, receive no payoff nor do they contribute to the payoff of any other player.

Table 1: Payoff for 𝑎 = (𝑂1, 𝑂1, 2, 5, 6, 𝑂1, 6, 7, 𝑂2, 9, 12, 11) evaluated at 𝑟𝑐 = 1 and 𝑟𝑒 = 3.

Player 𝜇𝑐
𝑖 𝜇𝑒

𝑖 𝜋𝑖 Player 𝜇𝑐
𝑖 𝜇𝑒

𝑖 𝜋𝑖 Player 𝜇𝑐
𝑖 𝜇𝑒

𝑖 𝜋𝑖

1 7 5 22 5 7 2 13 9 1 1 4
2 7 5 22 6 7 5 22 10 1 0 1
3 7 2 13 7 7 2 13 11 0 0 0
4 7 0 7 8 7 0 7 12 0 0 0

2.1 Strategic Behavior

Recall Pr (𝑜𝑖 = 𝑜𝑗) = 1/𝑚 for any two players i and j not in the same tree, producing a random element to pure
strategy payoffs. A couple of small n examples illustrate the issues and outcomes inherent to the setting.

Table 2: The relevant action-dependent expected payoff matrix of Example 2 with 𝑛 = 2, 𝑚 = 2, 𝑟𝑐 = 1, 𝑟𝑒 > 0 .

Player 2
lead follow

Player 1 lead 1
2 , 1

2 𝑟𝑒 + 1, 1
follow 1, 𝑟𝑒 + 1 0,0

Example 2.
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n = 2, m = 2, 𝜙(𝜇𝑐) = 𝜇𝑐, 𝜓(𝜇𝑒) = 𝑟𝑒𝜇𝑒, 𝑟𝑒 > 0, and 𝑔 = 1
2×2

.
The Nash equilibrium strategy profile based on the rewards reported in Table 2 produces one leader and

one follower. For the equilibrium with player 2 leading player 1, player 2 receives the higher payoff for being
the leader. Player 1’s lower payoff remains higher than the expected payoff obtained from also leading. The
symmetry of the game means that there is also an equilibrium with player 1 leading player 2. The players want
to avoid the strategy profile in which both lead. There is uncertainty in the payoff when both players lead. The
low expected payoff reflects both the absence of an ensuing reward for each and an only 1/𝑚 = 1/2 probability
of matching on choice to receive the conformity reward. The players also want to avoid the outcome produced
when each follows the other.12

A larger population introduces the possibility of adopting a minority option.

Table 3: Example 3 expected payoff table based on the actions of players 1 and 2 when player 3 leads. n = 3, k = 2, 𝑟𝑐 = 1,
𝑟𝑒 > 0.

Player 2
lead follow 1 follow 3

Player 1 lead 1, 1, 1 3
2 + 𝑟𝑒, 3

2 , 1+ 𝑟𝑒
2 1 + 𝑟𝑒

2 , 3
2 , 3

2 + 𝑟𝑒
follow 2 3

2 , 3
2 + 𝑟𝑒, 1+ 𝑟𝑒

2 0, 0, 0 2, 2 + 𝑟𝑒, 2 + 2𝑟𝑒
follow 3 3

2 , 1 + 𝑟𝑒
2 , 3

2 + 𝑟𝑒 2 + 𝑟𝑒, 2, 2 + 2𝑟𝑒 2, 2, 2 + 2𝑟𝑒
Player 3 leads

Example 3.
n = 3, m = 2, 𝜙(𝜇𝑐) = 𝜇𝑐, 𝜓(𝜇𝑒) = 𝑟𝑒𝜇𝑒, 𝑟𝑒 > 0, and 𝑔 = 1

3×3
. Table 3 reports the expected payoff matrix for the

actions for players 1 and 2 based on player 3 leading.
The set of equilibrium structures depends on 𝑟𝑒. Low 𝑟𝑒 implies less emphasis on the ensuing reward so that

conformity plays a larger role in driving decisions. The Nash equilibria for 𝑟𝑒 ≤ 2 have both 1 and 2 following
player 3. The equilibrium set includes the structure in which both 1 and 2 directly imitate player 3, as in Figure
2c, as well as the vertical structures of Figure 2d and Figure 2e. As a Pareto improvement to Figure 2c, the
middle agent in a vertical structure gains an ensuing reward without altering the rewards earned by the leader
and more distant follower.13

Figure 2: The structures generating the expected payoff produced for Example 3. Solid arrows indicates imitation. Dashed
arrows represent direct selection of one of the options. The bottom row reports the corresponding Table 3 cell row and
column.

For 𝑟𝑒 ≤ 2, players 1 and 2 each prefers following 3 to autonomy, independent of the action of the other
follower. Given player 2 follows 1, for example, player 1 prefers following 3, producing Figure 2d, over being
the population’s unique leader, as in Figure 2f. The former ensures player 1’s conformity with player 3 while
preserving a distance advantage over player 2.

The strong ensuing reward of 𝑟𝑒 > 2 undermines conformity by encouraging autonomy. The equilibrium
structure consists of a leader with a single follower. The remaining autonomous player hopes to match the
leader, thereby gaining the ensuing reward of the follower. The substantial premium to leading makes the
expected value of this uncertain payoff greater than the certain reward of following in the presence of an existing
follower.

For a network of directed links, a strongly connected network is one for which every player pair {i,j} has
either 𝑔𝑖𝑗 = 1 or there exists 𝑗1, … , 𝑗𝑘 such that 𝑔𝑖𝑗1 = … = 𝑔𝑗𝑘𝑗 = 1. As a consequence, for every {i,j} pair there
is a directed path from i to j. Let G(n) be the universe of strongly connected networks based on a population
size n. Both examples 2 and 3 are based on a g that is a complete graph (all players are able to link to any other
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player directly). For n = 2 the only strongly connected graph is the complete graph. There are 18 possible g∈G(3)
with five that are unique to a relabeling of the players. The benefit to coordinating on an alternative through
imitation is the same for any g∈G(3). For all g∈G(3),
1. for 𝑟𝑒 ≤ 2, an action profile is a Nash equilibrium if and only if it produces one leader and two successors,

2. for 𝑟𝑒 > 2, an action profile is a Nash equilibrium if and only if it produces one leader, one follower, and
one autonomous player,

3. the non-empty set of Nash equilibria includes action profiles that produce i as the unique leader for all
i∈{1,2,3}.
From 1 and 2 above, every equilibrium action produces one and only one non-trivial tree. From 3, it is always

possible that any one of the players can hold the favorable position of leader.
As will be developed in the following sections, the features found in the n = 3 population generalize for any

size population occupying a strongly connected network. These features are
- Pure strategy Nash equilibria exist.

- A unique leader, possibly in the presence of other autonomous players, is among the equilibrium social struc-
tures.

- Any player i∈N can be the equilibrium leader of the non-trivial tree.

- The number of independent autonomous adopters depends primarily on 𝑟𝑐/𝑟𝑒 and m. As either 𝑟𝑐/𝑟𝑒 or m
increases, the number of autonomous adopters decreases. Above a threshold there are no autonomous
adopters, ensuring uniformity in choice as everyone follows the single leader.

3 Single-Leader Equilibria

This section formally develops the behavior observed in the two examples of Section 2 while generalizing to
a population of size n and a network of potential links 𝑔 ∈ 𝐺 (𝑛). Some additional aspects of the equilibrium
actions only come to light when considering a larger n. For example, a population of n > 3 makes feasible coexist-
ing multiple non-trivial trees. A social structure considered in Section 4 requires 𝑛 ≥ 8. The strongly connected
graph allows for application to settings in which participants seek involvement in social phenomena without
direct access to all members of the population. The limits to connectivity create scenarios that cannot otherwise
be considered in the special case of the complete graph.

The equilibrium concept employed is that of pure strategy Nash equilibrium. As such, an equilibrium is an
action profile in which each player’s action is the optimal action given the actions of the other players. Such
action profiles generate social structures such that equilibrium can be defined based on the attributes of the
social structure produced. In support of establishing single leader structures as equilibria, the current section
identifies the conditions ensuring followers want to follow, establishes that autonomous adopters can prefer
their autonomy to following the leader, and identifies optimal behavior for those who follow.

3.1 Hierarchies

The term hierarchy refers to a non-trivial tree and thus a social order consisting of a leader and follower(s). Let
h(i;g) be the set of σ given g such that 𝑖 ∈ 𝑁𝐿(𝜎) with a non-trivial tree of successors. Let H(i;g) represent the set
of σ given g with {𝑖} = 𝑁𝐿(𝜎) and, necessarily, a successor population 𝑁𝑆(𝑖; 𝜎) = 𝑁\{𝑖}. For 𝑔 ∈ 𝐺 (𝑛), H(i;g) is
non-empty and, for 𝑛𝑑

𝑖 > 1 for at least one follower, then σ∈H(i;g) is not unique. Let ℎ𝐿(𝑖; 𝑔) represent the set of
structures in which all 𝑗 ∉ 𝑁𝑆(𝑖; 𝜎) lead (so that there is only one hierarchy and a population of players acting
autonomously). With  𝑛 = 5, the four frames of Figure 3 capure the principle social structure scenarios.
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DE GRUYTER Goldbaum

Figure 3: Example social structures with n = 5. Solid arrows indicate links in σ. Dashed arrows represent direct selection
of one of the options.

Using follower 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) as a reference, classify the population based on their relative position to j in a
structure σ. As identified in Figure 4, let 𝑁𝑥(𝑗; 𝜎) be the set of successors of i who are of distance no greater than
𝑑𝑗𝑖. Let 𝑁𝑦(𝑗; 𝜎) be the set of successors of i with a distance greater than 𝑑𝑗𝑖 who are not successors of j. Recall
that set 𝑁𝑆(𝑗; 𝜎) identifies the population that succeeds player j. Let 𝜇𝑥

𝑗 = 𝜇𝑥(𝑗; 𝜎) = |𝑁𝑥(𝑗; 𝜎)|, 𝜇𝑦
𝑗 = 𝜇𝑦(𝑗; 𝜎) =

|𝑁𝑦(𝑗; 𝜎)|, and 𝜇𝑠
𝑗 = 𝜇𝑠(𝑗; 𝜎) = |𝑁𝑆(𝑗; 𝜎)|.14 For any σ ∈ H(i;g),

𝜇𝑐
𝑗 ≡ 1 + 𝜇𝑥

𝑗 + 𝜇𝑦
𝑗 + 𝜇𝑠

𝑗 = 𝑛 − 1and (3)

𝜇𝑒
𝑗 ≡ 𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 . (4)

Figure 4: Labeled positions in relation to player j. In j’s own tree are 𝑥 ∈ 𝑁𝑥(𝑗; 𝜎), 𝑦 ∈ 𝑁𝑦(𝑗; 𝜎), and 𝑠 ∈ 𝑁𝑆(𝑗; 𝜎) with
𝜇𝑥

𝑗 = 1, 𝜇𝑦
𝑗 = 3 and 𝜇𝑠

𝑗 = 2. In the presence of a second tree (considered in Section 4) are 𝛼 ∈ 𝑁𝛼(𝑗; 𝜎) and 𝛽 ∈ 𝑁𝛽(𝑗; 𝜎).

For σ ∈ H(i;g), if j were to instead lead, the result has 𝜎 ′ ∉ 𝐻(𝑖; 𝑔). Let ℎ−(𝑖, 𝜎; 𝑔) be the set of alternate
structures produced when each 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) individually leads rather than follows.

3.2 Follow the Leader

The structure in which the entire population follows a single leader offers parsimony from which to gain insight
into behavior. This section develops conditions supporting such structures. The parsimony allows analysis with
non-linear rewards expressed in eq. (1). A linear version based on eq. (2) rewards is introduced to transition to
solutions involving an interior number of followers, considered in Section 3.5. The linearity comes at little cost,
as will be demonstrated.

3.2.1 Nonlinear Rewards

Let,

𝐴𝑁𝐿(𝑗; 𝜎) = 𝐴1 + 𝐴2(𝜇𝑦
𝑗 , 𝜇𝑠

𝑗 ) + 𝐴3(𝜇𝑠
𝑗 ) (5)

𝐴1 = 𝑚−1
𝑚 (𝜙(𝑛 − 1) − 𝜙(𝑛 − 2))

𝐴2(𝜇𝑦
𝑗 , 𝜇𝑠

𝑗 ) = 𝜓(𝜇𝑦
𝑗 + 𝜇𝑠

𝑗 ) − 𝜓(𝜇𝑠
𝑗 )

𝐴3(𝜇𝑠
𝑗 ) = 𝑚−1

𝑚 (𝜙(𝑛 − 2) − 𝜙(𝜇𝑠
𝑗 )) − 1

𝑚(𝜓(𝑛 − 2) − 𝜓(𝜇𝑠
𝑗 ))

for σ∈H(i;g). Additionally, let

𝐵𝑁𝐿(𝑛, 𝑚) ∶= (𝑚 − 1)𝜙(𝑛 − 1)
𝜓(𝑛 − 2) − 1. (6)

As a reminder, φ′(µ) > 0 and 𝜓′ (𝜇) > 0 with φ(0) = ψ(0) = 0. Let 𝜆(𝜇) = 𝜙(𝜇)/𝜓(𝜇) and let ̄𝑗 represent a
follower most distant from i in structure σ, possibly not uniquely so.

Proposition 1.
Given 𝜆′(𝜇) ≥ 0, the 𝑛 − 1 followers in structure σ consisting of a single leader prefer following to leading if and only

if 𝐵𝑁𝐿 ≥ 0.
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As a first step in establishing the social structures that prevail in equilibrium, Proposition 1 considers the
preference of each follower and identifies the conditions under which everyone is content to follow leader i.
The most distant follower of i prefers following to leading if and only if 𝐵𝑁𝐿 ≥ 0. The condition 𝜆′(𝜇) ≥ 0 is
sufficient to ensure that the most distant follower is the marginal decision-maker of the population following i.
For follower j, A(j;σ) reflects the excess reward to following rather than leading. While A(j;σ) is both structure-
and position-dependent, Proposition 1 is independent of either structure- or position-specific conditions.

Corollary 1.
For a structure σ consisting of a single leader, a population of 𝑛 − 1 followers and the condition 𝐵𝑁𝐿 ≥ 0, λ′(µ) < 0 can

produce a preference to lead among middle distance followers.

For λ′(µ) < 0, the most distant follower need not be the marginal decision-maker, opening the possibility that
some middle-distance follower prefers leading despite 𝐵𝑁𝐿 ≥ 0.

The roles of 𝐴𝑁𝐿(𝑗; 𝜎), 𝐵𝑁𝐿(𝑛, 𝑚), and λ(µ) in supporting Proposition 1 and its corollary warrant further
explanation. The 𝐴𝑁𝐿(𝑗; 𝜎) is derived from 𝔼(𝜋(𝑗; 𝜎) − 𝜋(𝑗; 𝜎 ′)), reflecting player j’s excess reward to following
an existing leader i over the value of leading in the presence of leader i. For 𝐴𝑁𝐿(𝑗; 𝜎) ≥ 0, player 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎)
prefers imitating over leading. For ̄𝑗, for whom 𝜇𝑥 = 𝑛−2 and 𝜇𝑦 = 𝜇𝑠 = 0, 𝐵𝑁𝐿(𝑛, 𝑚) ≥ 0 arises as the condition
producing 𝐴𝑁𝐿( ̄𝑗; 𝜎) ≥ 0. By 𝜆′(𝜇) ≥ 0, the relative strength of the ensuing premium gained by autonomously
matching the leader is greater for ̄𝑗 than for anyone else anywhere in the hierarchical structure. Consequently,
if 𝐴𝑁𝐿( ̄𝑗; 𝜎) ≥ 0 then 𝐴𝑁𝐿(𝑗; 𝜎) ≥ 0 for all 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎).

The three reference populations relevant to j’s decision are {i}, 𝑁𝑥(𝑗; 𝜎), and 𝑁𝑦(𝑗; 𝜎) with the contribu-
tions decomposed into the elements of 𝐴𝑁𝐿(𝑗; 𝜎). The net conformity contribution to a follower derived from
matching with the leader, reflected in 𝐴1, is strictly positive. Added separability in the two rewards allows in-
dependence between 𝐴1 and player j’s position in the tree structure. The 𝐴2 term captures the non-negative
contribution of the 𝑁𝑦(𝑗; 𝜎) population towards the ensuing reward when j follows. The remaining conformity
contribution of the 𝑁𝑦(𝑗; 𝜎) population is inseparable from that of the 𝑁𝑥(𝑗; 𝜎) population, both accounted
for in 𝐴3. The net conformity reward of the combined 𝑁𝑥 ∪ 𝑁𝑦 adds to the draw towards following. The net
ensuing reward offered by the 𝑁𝑥 ∪ 𝑁𝑦 population when j leads, with its negative coefficient, represents the
draw towards leading. The 𝑁𝑆(𝑗; 𝜎) population only indirectly impacts on j’s decision by affecting the reward
contributions of the other populations.

The function 𝐴3(𝜇𝑠
𝑗 ) exists over the range 𝜇𝑠

𝑗 ∈ [0, 𝑛−2]. Follower 𝑗 = ̄𝑗, for whom 𝜇𝑠
𝑗 = 𝜇𝑦

𝑗 = 0, prefers follow-
ing to leading when 𝐴3(0) ≥ −𝐴1, assured by the condition 𝐵𝑁𝐿(𝑛, 𝑚) ≥ 0, thereby producing 𝐴𝑁𝐿( ̄𝑗; 𝜎) ≥ 0.
At the other extreme, 𝜇𝑠

𝑗 = 𝑛 − 2 is only possible if j is the sole direct imitator of i and thereby the predecessor
of the remaining population. Let 𝑗1 indicate a follower who is the unique direct follower of i. Whether leading
or following, the entire 𝜇𝑠

𝑗 = 𝑛 − 2 population remains with 𝑗1. With 𝜇𝑥
𝑗1 = 𝜇𝑦

𝑗1 = 0, there is no population within
𝑁𝑆(𝑖; 𝜎) with whom 𝑗1 can potentially gain a distance advantage over through leading, resulting in 𝐴3(𝑛−2) = 0.
Assured of 𝑛 − 2 followers of her own, 𝑗1 gains the additional certain conformity of i by making i the leader
rather than leading herself, thus 𝐴𝑁𝐿(𝑗, 𝜎) = 𝐴1 > 0.

Between ̄𝑗 and i (or 𝑗1 if there is only one direct imitator of i) are followers who potentially exercise some
direct influence, with 𝜇𝑠

𝑗 > 0, while also benefiting from conformity with other independent followers of i,
with 𝜇𝑥

𝑗 + 𝜇𝑦
𝑗 > 0. The relative shapes of φ(µ) and ψ(µ) determine whether the balance between conformity and

influence preserves the preference for following for all players above ̄𝑗. The functions φ(µ) and ψ(µ) jointly shape
𝐴3(𝜇𝑠

𝑗 ), but with 𝜆′(𝜇) ≥ 0, ψ(µ) alone establishes a lower bound that, due to the increasing ψ(µ), is monotonic
in its progression from 𝐴3(0) (whether positive or negative) to 𝐴3(𝑛 − 2) = 0. Let 𝐴0

3(𝜇) represent 𝐴3(𝜇) as
produced by λ′(µ) = 0. For 𝜆′(𝜇) ≥ 0, 𝐴0

3(𝜇) ≤ 𝐴3(𝜇),

𝐴0
3(𝜇) = 𝐴3(0) (1 − 𝜓(𝜇)

𝜓(𝑛 − 2)) .

With 𝐴3(𝑛 − 2) anchored at zero, 𝜆′(𝜇) ≥ 0 ensures the minimum of 𝐴3(𝜇) is at one of the two endpoints,
as determined by the sign of 𝐴3(0). The condition 𝜆′(𝜇) ≥ 0 places no additional individual restrictions on
φ or ψ. The possible λ(µ) remains quite rich, allowing for a broad combination of possible reward structures.
Figure 5 illustrates the role of λ(µ). Frame Figure 5a, based on λ′(µ) > 0, employs 𝜙(𝜇) = 𝜇1−𝑎/(1 − 𝑎) and
𝜓(𝜇) = 𝑐𝜇1−𝑏/(1 − 𝑏) with a < b.
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Figure 5: 𝐴3(𝑗; 𝜎) as shaped by λ(µ). The most distant follower of i has 𝜇𝑠
𝑗 = 𝜇𝑦

𝑗 = 0 so that 𝐴𝑁𝐿 = 𝐴1 + 𝐴3(0). 𝐵𝑁𝐿 ≥ 0
indicates that the most distant follower prefers to follow. For 𝜆′(𝜇) ≥ 0, the minimum of 𝐴3(𝜇𝑠

𝑗 ) is at a boundary value
𝜇𝑠

𝑗 ∈ {0, 𝑛−2}. For λ′(µ) < 0 the minimum can occur for an interior value of 𝜇𝑠
𝑗 so that 𝐵𝑁𝐿 ≥ 0 does not ensure 𝐴(𝑗; 𝜎) ≥ 0

for all j.

For λ′(µ) < 0, 𝐴0
3(𝜇) becomes the upper bound on 𝐴3(𝜇), introducing the possibility of an interior minimum.

Consequently, the possibility for 𝐴𝑁𝐿(𝑗; 𝜎) ≤ 0 for some middle distance 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) arises despite 𝐵𝑁𝐿 ≥ 0
ensuring 𝐴3(0) ≥ −𝐴1, as the example included in Figure 5b illustrates. It is based on 𝜙(𝜇) = ((1 + 𝜇)1−𝑎 −
1)/(1−𝑎) and 𝜓(𝜇) = ((1+𝜇)1−𝑏 −1)/(1−𝑏) with b < a. A dip in 𝐴3(𝜇𝑠

𝑗 ) below −𝐴1 indicates that some possible
middle-distance nodes of the hierarchical tree, if occupied, are inferior to leading. For λ′(µ) < 0, the decision to
lead or follow for all 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) cannot be identified from the preference of i’s most distant follower.

Figure 6 presents the 𝐴𝑁𝐿(𝑗; 𝜎) surface, expressed as a function of 𝜇𝑥
𝑗 , 𝜇𝑦

𝑗 , and 𝜇𝑠
𝑗 . The collection of nodes

on the surface is the universe of possible follower rewards for positions in σ∈H(i;g) from 𝑔 ∈ 𝐺 (𝑛). The near
right and far corners, 𝐴(0, 0, 𝑛 − 2) and 𝐴(1, 𝑛 − 3, 0), are inherently positive. The condition 𝐵𝑁𝐿 > 0 indicates
𝐴(𝑛−2, 0, 0) > 0 for the near left corner. The minimum 𝐴(𝜇𝑥, 𝜇𝑦, 𝜇𝑠) node is always to be found in the near edge
with 𝜇𝑦 = 0. The example illustrates a reward function with λ′(µ) < 0 such that the leading edge includes nodes
with A(j;σ) < 0, indicated in red. Any structure with one or more individuals occupying a node with A(j;σ) < 0
is not an equilibrium.

Figure 6: 𝐴𝑁𝐿(𝑗; 𝜎) surface produced for n = 18 with λ′(µ) < 0 and 𝐵𝑁𝐿 > 0. Each point on the surface represents a unique
feasible triplet (𝜇𝑥

𝑗 , 𝜇𝑦
𝑗 , 𝜇𝑠

𝑗 ). The height of the point is 𝐴𝑁𝐿(𝑗; 𝜎). 𝐴𝑁𝐿(𝑗; 𝜎) < 0 in red. For σ∈H(i;g), 𝜇𝑥
𝑗 + 𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 = 𝑛 − 2.

Each follower occupies a point on the surface. As determined by σ∈H(i;g), each point can be occupied by zero, one, or
multiple players with the condition that at least one player occupies the lower left corner. The far corner is always the
highest point. For 𝐵𝑁𝐿 ≥ 0, all three corners are positive with only the near left corner at zero for 𝐵𝑁𝐿 = 0. For 𝐵𝑁𝐿 < 0
the near left corner is negative. For 𝜆′(𝜇) ≥ 0, one of the near corners is the lowest point on the surface. For λ′(µ) < 0,
local convexity in the 𝜇𝑦 = 0 plane allows a low point along the near edge. Any σ with a player located at a point with
A(j;σ) < 0 cannot be an equilibrium. This λ′(µ) < 0 surface is produced by φ(µ) = tanh(aµ) and ψ(µ) = 2tanh(bµ), 0 < b < a < 1.

Examination of the social impact of λ′(µ) < 0 resumes in Section 5. Until then, analysis will be dedicated to
identifying the equilibrium structures supported by 𝜆′(𝜇) ≥ 0.

3.2.2 Linear Rewards

The linear rewards of eq. (2) produce linearity in 𝐴𝑁𝐿(𝑗; 𝜎), 𝐵𝑁𝐿(𝑛, 𝑚), and 𝐴3(𝜇). Since linearity also generates
λ′(µ) = 0, 𝐴3(𝜇) = 𝐴0

3(𝜇).
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For 𝜋(𝑖; 𝜎) = 𝑟𝑐𝜇𝑐
𝑖 + 𝑟𝑒𝜇𝑒

𝑖 for all i∈N, 𝐴𝑁𝐿 becomes

𝐴(𝑗; 𝜎) = (𝑚 − 1)
𝑚 𝑟𝑐 + 𝑟𝑒𝜇

𝑦
𝑗 + 1

𝑚((𝑚 − 1)𝑟𝑐 − 𝑟𝑒)(𝑛 − 2 − 𝜇𝑠
𝑗 ). (7)

Each term of eq. (7) is the linear version of the corresponding 𝐴1, 𝐴2, and 𝐴3 of eq. (5). Proposition 1 applies
so that 𝐵𝑁𝐿 ≥ 0 is a necessary and sufficient condition for 𝜋(𝑗, 𝜎) ≥ 𝜋(𝑗, 𝜎 ′) for all 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) for any σ∈H(i;g)
and 𝜎 ′ = {ℎ−(𝑖, 𝜎; 𝑔)|𝜎 ′

𝑗𝑗 = 1}. An evaluation of Proposition 1 based on the linear payoff function can be found
in Appendix B.

Linearity in the reward function allows the role of each population, i, 𝑁𝑥(𝑗; 𝜎), and 𝑁𝑦(𝑗; 𝜎), to be considered
in isolation,

𝐴(𝑗; 𝜎) ∶= (𝑚 − 1)
𝑚 𝑟𝑐 + (𝑚 − 1)

𝑚 (𝑟𝑒 + 𝑟𝑐)𝜇𝑦
𝑗 + 1

𝑚 ((𝑚 − 1)𝑟𝑐 − 𝑟𝑒) 𝜇𝑥
𝑗 . (8)

The individual contributions of each population are included in Table 4. Also included are the 𝑁𝑆(𝑗; 𝜎) and
a potentially non-empty 𝑁𝑙(𝑖; 𝜎) population, though the net contribution of each towards the decision to lead
or follow negates to zero.

Table 4: Expected contribution by different populations within the hierarchy to j’s payoff according to j’s decision to lead
or follow.

Population j follows j leads

{i} 𝑟𝑐
1
𝑚 𝑟𝑐

𝑁𝑥(𝑗; 𝜎) 𝑟𝑐𝜇𝑥 1
𝑚 (𝑟𝑐 + 𝑟𝑒)𝜇𝑥

𝑁𝑦(𝑗; 𝜎) (𝑟𝑐 + 𝑟𝑒)𝜇𝑦 1
𝑚 (𝑟𝑐 + 𝑟𝑒)𝜇𝑦

𝑁𝑆(𝑗; 𝜎) (𝑟𝑐 + 𝑟𝑒)𝜇𝑠 (𝑟𝑐 + 𝑟𝑒)𝜇𝑠

𝑁𝑙(𝑗; 𝜎) 1
𝑚 𝑟𝑐(𝜇𝑙 − 1) 1

𝑚 𝑟𝑐(𝜇𝑙 − 1)

The linear reward functions in eq. (6) produce

𝐵𝑁𝐿(𝑛, 𝑚) = (𝑚 − 1)𝑟𝑐(𝑛 − 1)
𝑟𝑒(𝑛 − 2) − 1

for 𝑟𝑒 ≠ 0. Multiply 𝐵𝑁𝐿(𝑛, 𝑚) by (𝑛 − 2)/(𝑛 − 1) to obtain,

𝐵(𝑛, 𝜃) ∶= 𝜃 − (1 −
1

𝑛 − 1
) (9)

where

𝜃 = (𝑚 − 1)𝑟𝑐
𝑟𝑒

.

Throughout the paper, how θ compares to some threshold value determines whether all players prefer to follow
an existing leader or whether there exists some player who prefers to lead in the presence of another leader.
The condition 𝐵 ≥ 0 is just one expression of this threshold. Other threshold values for θ arise when analysis
turns to more complicated social structures involving multiple leaders, as considered in Section 4.

A high θ indicates a strong inclination to follow. A preference that favors conformity, as indicated by a high
𝑟𝑐/𝑟𝑒, induces following to exploit the certainty of conforming with i and i’s other 𝜇𝑠

𝑖 − 1 followers. Similarly,
a large m deters leading by reducing the likelihood of autonomously matching with the leader’s choice. The
threshold against which θ is measured reflects the size and relative positions of those populations important
to the marginal decision-maker. For ̄𝑗 in σ∈H(i;g), the concern focuses on i and 𝑁𝑥(𝑗; 𝜎) as the only non-empty
populations.

3.3 How Best to Follow

Let H′(i;g) be the set of σ∈H(i;g) such that each 𝑗 ≠ 𝑖 minimizes 𝜇𝑥
𝑗 . Let 𝐻∗(𝑖; 𝑔) be the non-empty subset of

H′(i;g) in which every follower minimizes 𝑑𝑗𝑖 (same as minimizing 𝑑𝑗 through leader i).15 Note that if σ′ exists
such that {𝜎, 𝜎 ′} ∈ 𝐻∗(𝑖; 𝑔), then 𝑑𝑗(𝜎) = 𝑑𝑗(𝜎 ′) for all j∈N. As a result, all 𝜎 ∈ 𝐻∗(𝑖; 𝑔) offer exactly the same
payoff profile. Similar to 𝐻∗(𝑖; 𝑔), let ℎ∗(𝑖; 𝑔) be the set of strategies for which each successor of i imitates the
player offering the shortest distance from i.
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Lemma 1.
A player maximizes her own payoff as a follower of i by minimizing 𝜇𝑥

𝑗 in the i-led hierarchy.

Lemma 1 identifies the optimal follow action. With 𝜋𝑁𝐿(𝑗; 𝜎) = 𝜙(𝑛 − 1) + 𝜓(𝜇𝑦
𝑗 + 𝜇𝑠

𝑗 ) for σ∈H(i;g), Lemma
1 emerges from the fact 𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 = 𝑛 − 2− 𝜇𝑥

𝑗 and that 𝜓′ (𝜇) > 0.16 By Lemma 1, for 𝜎 ∈ 𝐻′ (𝑖; 𝑔), no player can
do better for herself as a follower.

Lemma 2.
The followers in a structure σ, consisting of a single leader, minimize 𝜇𝑥

𝑗 if σ is an equilibrium.

A structure 𝜎 ∈ 𝐻′ (𝑖; 𝑔), having each follower optimize against the available following options by mini-
mizing 𝜇𝑥

𝑗 , remains a candidate for Nash equilibrium. A follower who has not minimized 𝜇𝑥
𝑗 has not achieved

the personal maximum achievable payoff as a follower.
As a subset of the actions that minimizes 𝜇𝑥

𝑗 , minimizing the distance to the leader is a sufficient action to
achieve the minimum 𝜇𝑥

𝑗 . When available, the option to increase 𝑑𝑗 without causing the structure to exit H′(i;g)
is Pareto improving without opening exploitable position changes to other players. See the proof of Corollary
2 in Appendix B for details. The action by j to minimize 𝜇𝑥

𝑗 but not 𝑑𝑗 benefits some player 𝑗′ ∈ 𝑁𝑆(𝑖; 𝜎)\{𝑗}
without cost to any player. The two structures in Figure 7 illustrates the opportunity for Pareto improvement.

Figure 7: An example of 𝜎 ′ ∈ 𝐻′(𝑖; 𝑔)\𝐻∗(𝑖; 𝑔) based on 𝑁𝑑(2; 𝑔) = {1, 3}, 𝑁𝑑(4; 𝑔) = {2, 5}, and 𝑁𝑑(5; 𝑔) = {2, 4},
𝜎 ∈ 𝐻∗(1; 𝑔). The conditions for 2 to minimize 𝜇𝑥

2 without minimizing 𝑑2,1 are present in σ. For players i = 1,2,4,5,
π(i;σ) = π(i;σ′) while π(3;σ) < π(3;σ′).

3.4 A Structure as Equilibrium

With the followers optimally positioned within the tree structure according to Lemma 2, the conditions imposed
in Proposition 1 ensure all followers prefer following to leading, making 𝜎 ∈ 𝐻′ (𝑖; 𝑔) an equilibrium.

Proposition 2.
Given 𝜆′(𝜇) ≥ 0, a structure consisting of a single leader and a population of 𝑛 − 1 followers, all of whom position

themselves in the tree structure to minimize the size of their own 𝑁𝑥(𝑗; 𝜎) population, is a Nash equilibrium if and only if
𝐵𝑁𝐿 ≥ 0.

The only conditions needed to produce this set of structures as equilibria are 𝐵𝑁𝐿 ≥ 0 and 𝜆′(𝜇) ≥ 0,
independent of the particular i or the characteristics of 𝜎 ∈ 𝐻′ (𝑖; 𝑔) or 𝑔 ∈ 𝐺 (𝑛) for all i. The same conditions
also identify 𝜎 ∈ 𝐻∗(𝑖; 𝑔) as an equilibrium, allowing Corollary 2.17

Corollary 2.
Given 𝜆′(𝜇) ≥ 0, a structure consisting of a single leader and a population of 𝑛 − 1 followers, all of whom minimize

their distance to the leader, is a Nash equilibrium if and only if 𝐵𝑁𝐿 ≥ 0.

Let 𝑔𝑐 represent the special case of a complete graph. The {𝜎𝑐} = 𝐻∗(𝑖; 𝑔𝑐) is a star network and 𝐻′(𝑖; 𝑔𝑐)
additionally includes structures in which one player links indirectly to i through one of the 𝑛 − 2 direct succes-
sors.

Hereafter, optimizing followers are presumed to minimize 𝑑𝑗𝑖.18

11
Authenticated | david.goldbaum@uts.edu.au author's copy

Download Date | 11/6/18 3:42 AM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Goldbaum DE GRUYTER

3.5 A Preference for Autonomy

A setting with B < 0 excludes σ∈H(i;g) as a potential equilibrium since not all members of the population wish to
follow i. As with Proposition 1, 𝜆′(𝜇) ≥ 0 ensures ̄𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) is the marginal decision-maker. As such, analysis
can proceed employing linearity, preserving ̄𝑗 as the marginal decision-maker while allowing summation over
expected outcomes.19

Let ℎ𝐿(𝑖, 𝜇𝑠
𝑖 ; 𝑔) represent the set of structures in which i’s successor population is of size 𝜇𝑠

𝑖 < 𝑛 − 1 and the
𝑛 − 𝜇𝑠

𝑖 − 1 most distant players from i on g lead rather than follow. For 𝜎 ∈ ℎ∗
𝐿(𝑖, 𝜇𝑠

𝑖 ; 𝑔), each member of 𝑁𝑆(𝑖; 𝜎)
additionally minimizes her distance to i.

Observe that for 𝜎 ∈ ℎ𝐿(𝑖, 𝜇𝑠
𝑖 ; 𝑔) and 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎),

1 + 𝜇𝑥
𝑗 + 𝜇𝑦

𝑗 + 𝜇𝑠
𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝜇𝑠
𝑖

+ 𝜇𝑙 = 𝑛

where 𝜇𝑙 = |𝑁𝐿(𝜎)| includes i. Let

𝐶(𝜇𝑠
𝑖 ; 𝜃) = 𝜃 − (1 − 1

𝜇𝑠
𝑖
) . (10)

Allow 𝜇∗ to represent the value of 𝜇𝑠
𝑖 that solves 𝐶(𝜇𝑠

𝑖 ; 𝜃) = 0,

𝜇∗ = 1
1 − 𝜃 , (11)

where B < 0 ensures θ < 1. Defined below, ̄𝑛 is an integer near 𝜇∗, | ̄𝑛 − 𝜇∗| < 1. Identify the most distant
successor of i given σ as ̄𝑗(𝜇𝑠

𝑖 ) so that 𝐴( ̄𝑗(1); 𝜎) is the value of 𝐴( ̄𝑗; 𝜎) for a σ in which 𝜇𝑠
𝑖 = 1 and 𝐴( ̄𝑗(𝑛 − 1); 𝜎)

is the value of 𝐴( ̄𝑗; 𝜎) for a σ∈H(i;g).

Proposition 3.
Given B < 0, the 𝜇𝑠

𝑖 followers in σ prefer to follow the single leader i and the 𝑛−𝜇𝑠
𝑖 −1 remaining players prefer leading

to following i if 𝑁𝑆(𝑖; 𝜎) is populated by the ̄𝑛 players closest to i on g.

Regardless of j’s action, each autonomous agent has a 1/𝑚 chance of contributing the j’s conformity reward.
Since the follower’s decision is unaffected by the 𝑁𝑙(𝜎) population, 𝐴(𝑗; 𝜎) ≥ 0, for A(j;σ) as expressed in
eq. (8), remains the condition for j to follow. For 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎), A(j;σ) depends on the structure of the i-led
hierarchy, including its overall size. Observe, 𝐴( ̄𝑗(1); 𝜎) > 0, 𝐴( ̄𝑗(𝜇𝑠

𝑖 ); 𝜎) is decreasing in 𝜇𝑠
𝑖 and, since B < 0,

𝐴( ̄𝑗(𝑛 − 1); 𝜎) < 0. The player ̄𝑗 remains the marginal decision-maker.
The endogenously determined ̄𝑛 is identified by the condition 𝐴( ̄𝑗( ̄𝑛); 𝜎) ≥ 0 and 𝐴( ̄𝑗( ̄𝑛 + 1); 𝜎 ′) < 0. For

𝜎 ∈ ℎ∗
𝐿(𝑖, ̄𝑛; 𝑔), no 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) can improve her payoff within the i-led hierarchy nor by leading. Additionally, no

𝑗 ∈ 𝑁𝑙(𝜎) can improve her payoff by joining the i-led tree. The structure 𝜎 ∈ ℎ∗
𝐿(𝑖, ̄𝑛; 𝑔) precludes the existence

of some 𝑗 ∈ 𝑁𝐿(𝜎) able to link to the i-led tree at a distance 𝑑𝑗 < 𝑑 ̄𝑗(𝜇𝑠
𝑖 ) and thereby improve her reward. The

individual optimality with regards to the size and membership in 𝑁𝑆(𝑖; 𝜎) leaves structure 𝜎 ∈ ℎ∗
𝐿(𝑖, ̄𝑛; 𝑔) as a

candidate Nash equilibrium.
The autonomy of leading is not pursued for the sake of individuality but rather a gambit of autonomously

matching the choice of the leader and thereby earning the premium ensuing reward.
A non-trivial set of alternatives and a preference for conformity, meaning m > 1 and 𝑟𝑐 > 0 so that θ > 0, are

prerequisites for the existence of a non-trivial tree as a possible equilibrium. For θ = 0, 𝐴(𝑗; 𝜎) ≤ 0. When due to
m = 1, the coordination problem is solved trivially without the leader-follower structure. When due to 𝑟𝑐 = 0,
there is no conformity reward to be gained by delaying adoption.

Similar to the finding in Proposition 2, for 𝜇𝑠
𝑖 = ̄𝑛 < 𝑛−1, the candidate equilibrium size of the tree, according

to Proposition 3, is determined by universal parameters, independent of the particular i or the characteristics
of 𝜎 ∈ 𝐻∗(𝑖; 𝑔), 𝜎 ∈ ℎ∗(𝑖; 𝑔), or the underlying 𝑔 ∈ 𝐺 (𝑛).

The conditions 𝐵𝑁𝐿 < 0, 𝜆′(𝜇) ≥ 0, and 𝜙″(𝜇) < 0  preserve Proposition 3’s primary feature of an interior ̄𝑛
for nonlinear rewards, the outline of which is included in Appendix B.

4 Multiple Leaders

This section considers the viability of multiple hierarchies. For B < 0, this entails examining whether those
autonomous players not following i would prefer to organize behind some other leader. For 𝐵 ≥ 0, the issue is
in identifying equilibrium structures not already excluded by Propositions 1 through 3.
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Let ℎ(𝑖𝐴, 𝑖𝐵; 𝑔) be the set of σ given 𝑔 ∈ 𝐺 (𝑛) such that {𝑖𝐴, 𝑖𝐵} ∈ 𝑁𝐿(𝜎) with successor populations
𝑁𝑆(𝑖ℎ; 𝜎) ≠ ∅ for h = A,B. Let 𝐻(𝑖𝐴, 𝑖𝐵; 𝑔) represent the subset of ℎ(𝑖𝐴, 𝑖𝐵; 𝑔) such that {𝑖𝐴, 𝑖𝐵} = 𝑁𝐿(𝜎). In
ℎ∗(𝑖𝐴, 𝑖𝐵; 𝑔) and 𝐻∗(𝑖𝐴, 𝑖𝐵; 𝑔) are structures σ in which each successor employs the shortest path to the chosen
leader. Let 𝜇𝑠

ℎ = |𝑁𝑆(𝑖ℎ; 𝜎)| indicate the number of successors in the 𝑖ℎ-led tree. Without loss of generality,
assume 𝜇𝑠

𝐴 ≥ 𝜇𝑠
𝐵.

For h = A,B, let 𝑗ℎ represent 𝑗 ∈ 𝑁𝑆(𝑖ℎ; 𝜎). With two non-trivial trees, there is a need to identify and label
populations in the 𝑖−ℎ-led tree based on their position relative to 𝑗ℎ. Let 𝑁𝛼(𝑗ℎ; 𝜎) be the set of successors of 𝑖−ℎ
who are of distance no greater than 𝑑𝑗ℎ,𝑖ℎ and let 𝑁𝛽(𝑗ℎ; 𝜎) be the set of successors of 𝑖−ℎ who are of a distance
greater than 𝑑𝑗ℎ𝑖ℎ . Let 𝜇𝛼

𝑗 = 𝜇𝛼(𝑗; 𝜎) = |𝑁𝛼(𝑗; 𝜎)| and 𝜇𝛽
𝑗 = 𝜇𝛽(𝑗; 𝜎) = |𝑁𝛽(𝑗; 𝜎)|. The node labels in Figure 4

identify the agent’s position relative to player j with 𝜇𝛼
𝑗 = 2 and 𝜇𝛽

𝑗 = 4.

4.1 Maintaining Autonomy

For B < 0 and a given leader 𝑖𝐴 with 𝜇𝑖
𝐴 = ̄𝑛 followers, some or all of the 𝑛 − ̄𝑛 − 1 individuals not in 𝑁𝑆(𝑖𝐴; 𝜎)

might prefer forming a second hierarchy to autonomy.20 Recalling that 𝜃 = (𝑚−1)𝑟𝑐/𝑟𝑒, 𝐵 = 𝜃 −(1−(𝑛−1)−1),
and 𝐶 = 𝜃 − (1 − (𝜇𝑠

𝑖 )−1), let

𝐷(𝑗; 𝜎) ∶= 𝑚 − 1
𝑚 (𝑟𝑐 + (𝑟𝑒 + 𝑟𝑐)𝜇𝑦

𝑗 ) + 1
𝑚 ((𝑚 − 1)𝑟𝑐 − 𝑟𝑒) 𝜇𝑥

𝑗 −
𝑟𝑒𝜇𝛼

𝑗
𝑚 (12)

and

𝐸(𝑖ℎ; 𝜃, 𝑛, 𝜎) ∶= 𝜃 − (1 − 1
𝜇𝑠

ℎ
) − 𝜇𝛼( ̄𝑗ℎ; 𝜎)

𝜇𝑠
ℎ

. (13)

Proposition 4.
The set of σ in which the ̄𝑛 players closest to i follow and the remaining 𝑛 − ̄𝑛 − 1 players lead is the set of equilibrium

structures if and only if B < 0.

By Proposition 4, 𝜎 ∈ ℎ∗
𝐿(𝑖, 𝜇𝑠

𝑖 ; 𝑔) and only 𝜎 ∈ ℎ∗
𝐿(𝑖, 𝜇𝑠

𝑖 ; 𝑔) structures are equilibria for B < 0. With conformity
only weakly rewarded, the 𝑛− ̄𝑛−1 not following 𝑖𝐴 are better served by leading than by organizing into a second
hierarchy. The motivation for leading is the possibility of gaining a distance advantage over 𝑖𝐴’s followers. The
conformity of following 𝑖𝐵 inadequately compensates for the sacrificed distance advantage against the 𝑁𝑆(𝑖𝐴; 𝜎)
population that would become 𝑗𝐵’s 𝑁𝛼(𝑗𝐵; 𝜎) population in the event of a match.

The condition 𝐷(𝑗; 𝜎) ≥ 0 indicates j prefers following to leading with 𝐸(𝑖ℎ; 𝜎) ≥ 0 corresponding to
𝐷( ̄𝑗ℎ; 𝜎) ≥ 0. That 𝐷(𝑗; 𝜎) = 𝐴(𝑗; 𝜎) − 𝑟𝑒𝜇𝛼

𝑗 indicates that the presence of a second hierarchy makes leading
more attractive for j relative to the second hierarchy’s absence. Similarly, with 𝐸(𝑖ℎ; 𝜎) = 𝐶(𝜇𝑠

ℎ; 𝜃) − 𝜇𝛼( ̄𝑗ℎ)/𝜇𝑠
ℎ

the minimum threshold value on θ to maintain a 𝜇𝑠
ℎ-sized tree in the presence of an existing alternate tree is

greater than the threshold necessary to maintain a 𝜇𝑠
ℎ-sized tree in the presence of a population of autonomous

adopters. The greater 𝐸(𝑖ℎ; 𝜎) > 0 induced conformity reward necessarily compensates for the lost distance
advantage over the 𝑁𝛼(𝑗; 𝜎) population when following.

Since 𝜇𝛼
𝑗 ≥ 1 for all 𝜎 ∈ ℎ(𝑖𝐴, 𝑖𝐵; 𝑔),

(1 + 𝜇𝛼( ̄𝑗ℎ) − 1
𝜇𝑠

ℎ
) ≥ 1 > (1 −

1
𝑛 − 1

) . (14)

Thus, 𝐸(𝑖ℎ; 𝜎) ≥ 0 imposes a higher threshold for θ than does the condition 𝐵 ≥ 0. A multiple leader
structure cannot be an equilibrium when B < 0. The set of Nash equilibria are drawn from ℎ𝐿(𝑖, 𝜇𝑠

𝑖 ; 𝑔) only. The
set ℎ∗

𝐿(𝑖, ̄𝑛; 𝑔) constitutes the set of Nash equilibria.
There are two features of this solution worth exploring. First, starting from the structure 𝜎 ∈ ℎ∗

𝐿(𝑖𝐴, ̄𝑛; 𝑔)
and 𝑖𝐵 ∈ 𝑁𝐿(𝜎), the condition 𝐸(𝑖𝐵; 𝜎) < 0 for all 𝜇𝑠

𝐵 > 0 makes it imprudent for any player not following 𝑖𝐴 to
instead follow 𝑖𝐵 since following would lower the player’s own expected payoff.

The conclusion applies to ̄𝑗𝐴 as well. In the presence of an 𝑖𝐵-led hierarchy, the most distant followers of both
trees prefer leading to following. Neither tree can persist in the presence of the other, independent of the size
of either tree. The result points to a fragility of the 𝜎 ∈ ℎ∗

𝐿(𝑖, ̄𝑛; 𝑔) equilibrium structures.
The conditions 𝐵𝑁𝐿 < 0, 𝜆′(𝜇) ≥ 0, and 𝜙″(𝜇) < 0 preserve Proposition 4’s primary feature of a single

leader and population of autonomous adopters, the outline of which is included in Appendix B.
Propositions 2 and 4 allow for the following observation.
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Theorem 1.
Given a non-trivial choice, a preference for conformity, and a strongly connected population, for every i∈N there exists

an equilibrium structure with player i as the only leader.

A single-leader structure led by player i for all i∈N is among the equilibrium set. The tree structure is
supported by the presence of a meaningful choice between options and a desire to conform, reflected in θ > 0.
The only condition for a single leader is 𝜆′(𝜇) ≥ 0.

As the culmination of Propositions 1 through 4, equilibrium structures exist under a broad range of permis-
sible reward functions. Structure with a unique leader prevail among the equilibria. The single-leader structure
as equilibrium extends to settings of weak conformity reward, where one might anticipate a single widespread
norm is not of particular importance to the population. Additionally, leadership is supported by a population’s
desire for conformity and the appearance of influence, without the need for private advantage or individual
leadership characteristics. Lastly, the network structure does not impinge upon an individual’s ability to lead.
Within the set of strongly connected networks, it is never the case that the particulars of the linking structure
conspire to prevent an individual from leading in equilibrium.

4.2 Multiple Hierarchies

For a sufficiently strong conformity reward such that 𝐸 ≥ 0, multiple leaders do not lose followers defecting
to instead lead. They may, however, still suffer defections and eventual dissolution by followers switching to a
preferred hierarchy.

For 𝜎 ∈ 𝐻(𝑖𝐴, 𝑖𝐵; 𝑔), let 𝑑𝜇 = 𝜇𝑠
𝐴 − 𝜇𝑠

𝐵 so that dµ captures the population size differential between the two
trees. Let 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎) represent the set of followers possessing potential links to predecessors in both trees.
A strongly connected g ensures that each tree has at least one member able to link directly to a player in the
other tree.

Figure 8: Example σ∈H(1,8;g) with player 𝑗𝐵 = 9 switching to join the player 𝑖𝐴 = 1-led tree. The identified populations
are {10} = 𝑁𝑥(9; 𝜎), {11, 12} = 𝑁𝑦(9; 𝜎), ∅ = 𝑁𝑆(9; 𝜎), {2, 3, 4} = 𝑁𝛼(9; 𝜎), {5, 6, 7} = 𝑁𝛽(9; 𝜎), {7} = 𝑁𝑦

𝐴(9), and
{12} = 𝑁𝛽

𝐴(9).

Let 𝜎 ′ = 𝜎−𝑗ℎ × 𝜎 ′

𝑗ℎ be the structure produced by 𝑗ℎ switching predecessors in order to become a member of
the 𝑖−ℎ-led tree. The alternative structure identifies populations 𝑁𝛽

−ℎ(𝑗ℎ) = 𝑁𝛽(𝑗ℎ; 𝜎 ′) and 𝑁𝑦
−ℎ(𝑗ℎ) = 𝑁𝑦(𝑗ℎ; 𝜎 ′).

The former is the population of players in 𝑗ℎ’s current tree who are more distant from 𝑖ℎ than is 𝑗ℎ from 𝑖−ℎ in
σ′. The latter is the population in the 𝑖−ℎ led tree more distant from 𝑖−ℎ than 𝑗ℎ in σ′. Let 𝜇𝛽

−ℎ(𝑗ℎ) = |𝑁𝛽
−ℎ(𝑗ℎ)| and

𝜇𝑦
−ℎ(𝑗ℎ) = |𝑁𝑦

−ℎ(𝑗ℎ)|. Figure 8 illustrates the relative values.
Let

𝐹𝐴(𝑗𝐴; 𝜎) ∶= 𝜃 − 𝜇𝛽
𝐵(𝑗𝐴)−𝜇𝛽(𝑗𝐴)−𝑚(𝜇𝑦(𝑗𝐴)−𝜇𝑦

𝐵(𝑗𝐴))
𝑑𝜇−1−𝜇𝑠(𝑗𝐴)) , (15)

𝐹𝐵(𝑗𝐵; 𝜎) ∶= 𝜇𝛽(𝑗𝐵)−𝜇𝛽
𝐴(𝑗𝐵)+𝑚(𝜇𝑦(𝑗𝐵)−𝜇𝑦

𝐴(𝑗𝐵))
𝑑𝜇+1+𝜇𝑠(𝑗𝐵) − 𝜃. (16)

For 𝜎 ∈ 𝐻(𝑖𝐴, 𝑖𝐵; 𝑔), members of 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎) have the option to switch leaders. All followers have the
option to lead. Let 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔) be the subset of 𝐻∗(𝑖𝐴, 𝑖𝐵; 𝑔) satisfying the three conditions of Proposition 5.
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Proposition 5.
𝐵 ≥ 0 allows multiple leader equilibrium structures under the condition that:

1. no leader is capable of linking directly with a member of another tree,

2. the most distant follower in each tree prefers following to leading despite the presence of other trees, and

3. all followers capable of linking to a member of another tree prefer their current position.

The first two conditions have previously been established. Proposition 1 identifies, for linear rewards, 𝐵 ≥ 0 as
necessary and sufficient for following, rather than leading, in the presence of another leader. Thus, the absence
of a link from one leader to any member of the other tree is a condition for an equilibrium 𝜎 ∈ 𝐻(𝑖𝐴, 𝑖𝐵; 𝑔).

Proposition 4 establishes that a sufficiently large θ, indicating a strong conformity reward such that
𝐸(𝑖ℎ; 𝜎) ≥ 0 for h = A,B, indicates the followers 𝜎 ∈ 𝐻(𝑖𝐴, 𝑖𝐵; 𝑔) prefer following to leading. Consider 𝜎1 ∈
𝐻∗(𝑖; 𝑔) and 𝜎2 ∈ 𝐻∗(𝑖𝐴, 𝑖𝐵; 𝑔). Though the reward to following in a multi-leader setting depends on the size of
various position-specific relative populations, the structure-independent differential

𝔼(𝜋( ̄𝑗, 𝜎1) − 𝜋( ̄𝑗ℎ, 𝜎2)) = 𝑚 − 1
𝑚 (𝑛 − 1 − 𝜇𝑠

ℎ)𝑟𝑐

reveals a reward to following in the multi-leader 𝜎2 that declines relative to following in the single-tree
structure of 𝜎1 as the size of ̄𝑗ℎ’s affiliated tree decreases.

In contrast, the attraction to lead depends only on the total size of the follower population and not on how
the followers are distributed among leaders. Let 𝜎 ′

ℎ, h = 1,2 represent the structure produced when ̄𝑗ℎ switches
to leading. The differential

𝔼(𝜋( ̄𝑗; 𝜎 ′
1) − 𝜋( ̄𝑗ℎ; 𝜎 ′

2)) = 𝑟𝑒/𝑚

is independent of n and 𝜇𝑠
ℎ. The non-zero value reflects that with two trees, there is one less follower, 𝑖𝐵.

Thus, maintaining followers in a multi-leader setting requires a θ that more strongly penalizes autonomy.
The third condition of Proposition 5 requires 𝐹ℎ(𝑗ℎ; 𝜎) ≥ 0 for h = A,B. The condition 𝐹ℎ(𝑗ℎ; 𝜎) ≥ 0 indicates a

greater expected reward to 𝑗ℎ for remaining in the 𝑖ℎ-led hierarchy than available from switching to the alternate
hierarchy.

Two scenarios potentially satisfy the third condition of Proposition 5. Though the greater conformity reward
of a larger hierarchy generally attracts the most distant followers from smaller and equal sized hierarchies, it
is possible for a smaller hierarchy to have 𝐹𝐵( ̄𝑗𝐵; 𝜎) ≥ 0 while still preserving 𝐹𝐴( ̄𝑗𝐴; 𝜎) ≥ 0.21 For this to occur
requires (i) that the less populous tree has a population concentrated near 𝑖𝐵 and (ii) that the more populous
𝑖𝐴-led tree has a bulge so that there is a large number of followers at a distance just below the most distant
follower of 𝑖𝐵. The structure depicted in Figure 9 displays these features. Example 4 illustrates how this structure
is advantageous to ̄𝑗𝐵 while not attracting ̄𝑗𝐴.

Alternatively, in the absence of a complete graph, it is possible that those with contacts enabling them to
switch to the other hierarchy prefer the status quo. The remaining members, at least one of whom would prefer
to switch, are without a link to the other hierarchy. In particular, a follower, even of a substantially smaller
hierarchy, can be induced to stay by the ensuing reward of a non-empty 𝑁𝑦(𝑗; 𝜎) population. The 𝐹𝐵 conditions
of this latter scenario are position specific, requiring confirmation for every follower in 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎) in order
to establish 𝜎 ∈ 𝐻∗(𝑖𝐴, 𝑖𝐵; 𝑔) as an equilibrium. Example 5 below illustrates this latter scenario.

Figure 9: Example 4 of 𝜎 ∈ 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔). The dashed link is the position available to 𝑗ℎ in the 𝑖−ℎ tree. γ identifies 𝑗 ∈
𝑁𝑦

𝐴(𝑗𝐵; 𝜎). 𝑗𝐴 ∈ 𝑁𝑦
𝐴(𝑗𝐵; 𝜎). Here, dµ = 3, 𝜇𝛽

𝐵(𝑗𝐴) = 1, 𝜇𝛽(𝑗𝐵) = 10, 𝜇𝑦
𝐴(𝑗𝐵) = 2, 𝜇𝑠

𝐴 = 12, and 𝜇𝑠
𝐵 = 9. Let m = 2, then

𝐹𝐴 ≥ 0 implies 𝜃 ≥ 1
2 , 𝐹𝐵 ≥ 0 implies 𝜃 ≤ 3

2 , and 𝐸(𝑖𝐵) ≥ 0 implies 𝜃 ≥ 11
9 . There is nontrivial support 𝜃 ∈ [ 11

9 , 3
2 ] for which

𝜎 ∈ 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔) is a Nash equilibrium.
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Example 4.
With 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎) = {𝑗𝐴, 𝑗𝐵}, the structure depicted in Figure 9 is in 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔) for conforming values of

θ. In the structure, player 𝑗𝐵 benefits from holding a distance advantage over the large population of β-labeled
players in the event that 𝑖𝐴 and 𝑖𝐵 match. She loses that advantage were she to switch to the larger 𝑖𝐴-led tree.
Player 𝑗𝐴 does not gain advantage over the β population with a switch to the 𝑖𝐵-led tree and thus prefers to stay
with 𝑖𝐴 for the greater conformity reward. The large 𝑁𝑥(𝑗𝐵, 𝜎) population is needed to counter the benefits to
𝑗𝐵 of the 𝑁𝛼(𝑗𝐵, 𝜎) and 𝑁𝑦

𝐴(𝑗𝐵, 𝜎) populations were she to switch.
In this example, with 𝜇𝑦(𝑗𝐵) = 𝜇𝑠(𝑗𝐵) = 0, 𝐹𝐵(𝑗𝐵; 𝜃) ≥ 0 reduces to

𝜃 ≤ 𝜃 ≡
𝜇𝛽(𝑗𝐵) − 𝑚𝜇𝑦

𝐴(𝑗𝐵)
𝑑𝜇 + 1

. (17)

In addition, with 𝜇𝑦(𝑗𝐴) = 𝜇𝑠(𝑗𝐴) = 0, 𝐹𝐴(𝑗𝐴; 𝜃) ≥ 0 reduces to

𝜃 ≥ 𝜃 ≡
𝜇𝛽

𝐵(𝑗𝐴)
𝑑𝜇 − 1

. (18)

The two conditions define upper and lower bounds on permissible θ to have 𝜎 ∈ 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔). For a partic-
ular σ and g, the support producing 𝜎 ∈ 𝐻+(𝑖𝐴𝑖𝐵; 𝑔) may be empty, with 𝜃 ≤ 𝜃, or may have θ fall outside of
the support. The lower bound on θ established by the condition 𝐸(𝑖𝐵) ≥ 0 can be greater than that produced by
𝐹𝐴 ≥ 0, in which case the most distant follower of 𝑖𝐵 will lead before 𝑗𝐴 considers switching to the 𝑖𝐵-led tree.

The second scenario, illustrated in Example 5, consists of structures in which a follower in the less populous
𝑖𝐵-led tree has a sufficiently large 𝜇𝑦(𝑗𝐵) such that the larger conformity reward offered by the 𝑖𝐴-led tree does
not compensate for the loss of a distance advantage over the 𝑁𝑦(𝑗𝐵; 𝜎) population.

Figure 10: Example 5 of 𝜎 ∈ 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔). With 𝑁𝐴𝐵(1, 7; 𝜎) = {6, 9}, 𝑁𝑑(9; 𝑔) = {5, 7}, and 𝑁𝑑(10; 𝑔) = {8, 9}, there
is a nontrivial range for θ in which player 9 has a higher expected payoff following 7. Player 6 prefers following 4 over
following 8, 9, or 10. Both 6 and 10 prefer following to leading.

Example 5.
The structure σ depicted in Figure 10 satisfies 𝐹𝐵 ≥ 0 with 𝜃 ≤ 1+ 𝑚

3 . The 𝐸(𝑖𝐵) ≥ 0 condition is satisfied
with 𝜃 ≥ 2. The condition 𝐸(𝑖𝐴) ≥ 0 is less stringent, requiring only that 𝜃 ≥ 7/5. To support 𝜎 ∈ 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔)
as an equilibrium requires 𝑚 ≥ 3. For, say, m = 4, then 𝑟𝑐/𝑟𝑒 ∈ [6/9, 7/9] produces a non-empty 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔). In
this range the certainty of the conformity reward discourages player 10 from leading while the relatively high
premium for leading pays enough to keep 9 from switching to the greater conformity reward offered by the
larger player 1-led tree. In this example, 𝜎 ∈ 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔) is preserved as the number of alternatives increases
by a conforming 𝑟𝑐/𝑟𝑒 where 𝑟𝑐/𝑟𝑒 ∈ (0, 1/3] = lim𝑚→∞(𝜃/(𝑚 − 1), 𝜃/(𝑚 − 1)].

5 Non-Conforming Environments

5.1 Interior Desire to Lead

Consider, again, the nonlinear payoff function of eq. (1),

𝜋𝑁𝐿(𝑖; 𝜎) = 𝜙(𝜇𝑐
𝑖 ) + 𝜓(𝜇𝑒

𝑖 )

16
Authenticated | david.goldbaum@uts.edu.au author's copy

Download Date | 11/6/18 3:42 AM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Goldbaum

with 𝜆(𝜇) = 𝜙(𝜇)/𝜓(𝜇). For 𝜆′(𝜇) ≥ 0, dissatisfaction with following, if present, originates with the most
distant follower. In contrast, as seen in Figure 6, λ′(µ) < 0 allows that middle distance followers may prefer
leading while the most distant follower prefers following. For those players with 𝜇𝑦

𝑗 = 0, the decision be-
tween following and leading involves how to best position oneself to the 𝑁𝑥(𝑗; 𝜎) population to supplement
the 𝑁𝑆(𝑗; 𝜎)-assured reward.

For λ′(µ) < 0, the importance of conformity relative to preemption decreases as 𝜇𝑠
𝑗 increases so that the rel-

ative contribution of conformity is at its strongest when 𝜇𝑠
𝑗 is small and becomes weaker as 𝜇𝑠

𝑗 increases. A
follower with 𝜇𝑠

𝑗 > 0 extracts the substantial component of the conformity reward from her successors. The
marginal contribution of positioning the 𝑁𝑥(𝑗; 𝜎) population to contribute to the conformity reward declines
relative to the preemption reward as 𝜇𝑠

𝑗 increases. Taking advantage of the certainty of her successors in es-
tablishing her own smaller hierarchy, the follower may find it beneficial to concede conformity with the larger
population. With probability 1/𝑚 player j, as a leader of her own hierarchy, matches the choice of i thereby
adding the 𝑁𝑥(𝑗; 𝜎) population to her own 𝑁𝑠(𝑗; 𝜎) successors for the large preemption reward.

Given 𝐵𝑁𝐿 ≥ 0 settings with λ′(µ) < 0 the population might tend to organize into multiple small conformity
groups. Also in contrast to 𝜆′(𝜇) ≥ 0, the connectivity structure of 𝑔 ∈ 𝐺 (𝑛) matters as does the particular i∈N
who is leader for possibly generating low 𝜇𝑦

𝑗 positions for middle distance followers.

5.2 Excessive Popularity

A penalty for excessive popularity, in the nature of Arthur (1994), can leave an “excess” desire for conformity
untapped, as illustrated in Example 6.

Example 6.
For 𝑔 ∈ 𝐺 (𝑛)), consider a linear increasing conformity reward for a population not in excess of 𝑛†. Leaving

in place 𝜓(𝜇) = 𝑟𝑒𝜇𝑒, let

𝜙(𝜇𝑐) =
⎧{
⎨{⎩

𝑟𝑐𝜇𝑐 for 𝜇𝑐 + 1 ≤ 𝑛†

0 otherwise
� (19)

with 𝑛/2 ≤ 𝑛† < 𝑛 − 2. For 𝐶(𝑛†; 𝜃) > 0, among the 𝑛 − 𝑛† excluded from an 𝑖𝐴-led tree, there remains
an untapped desire to conform. For illustrative purposes, consider a second tree with an equal number of
successors at each distance through the first 𝑛𝐵 − 1 successors so that for 𝑛𝐴 > 𝑛𝐵, the additional players are of
greater distance from 𝑖𝐴 than is the most distant follower of 𝑖𝐵. In order to have all 𝑛 − 𝑛† non-followers of 𝑖𝐴
form into a second 𝑖𝐵 structure, 𝜎 ∈ {𝐻∗(𝑖𝐴, 𝑖𝐵; 𝑔)|𝜇𝑠

𝐴 = 𝑛† − 1}, requires

𝐶(𝑛†; 𝜃) < 𝐸(𝑖𝐵; 𝜃) <
𝑚

𝑚 − 1
(1 −

1
𝑛 − 𝑛† − 1

+
𝜇𝛼(𝑗𝐵; 𝜎)
𝑛 − 𝑛† − 1

) ≤ 𝜃. (20)

Because there is no conformity reward when the two leaders match, the threshold on θ is higher than that
produced by the condition 𝐸(𝑖𝐵) ≥ 0. When this condition does not hold, there is no interior value to 0 < 𝜇𝑠

𝐵
that is an equilibrium.22

5.3 Sequential Play

5.3.1 Subgame Perfect Hierarchies

The single leader structure can also be supported as a subgame perfect equilibrium (SPE) in a game with σ estab-
lished through sequential moves. Typically, the first mover can establish herself as the leader and the remaining
population adopts the following strategy to best accommodate this reality, generating the same single-leader
Nash equilibrium structures produced by simultaneous play. There are instances, though, in which the first
mover does not end up as the leader in the equilibrium structure, as illustrated in Example 7 below. The inabil-
ity of player i to lead in a SPE indicates a susceptibility of the Nash equilibrium 𝜎 ∈ 𝐻∗(𝑖; 𝑔) to disruption by a
player whose deviation from Nash equilibrium play, in a cascade of best responses, would lead to a different
Nash equilibrium 𝜎 ′ ∈ 𝐻∗(𝑗; 𝑔) for 𝑗 ≠ 𝑖 favored by the original deviant player.

Example 7.
Figure 11 depicts three structures based on contact network g as presented in Figure 11a. Each member of

the population has two contacts. Structures {𝜎1} = 𝐻∗(𝑖; 𝑔) and 𝜎3 ∈ 𝐻∗(𝑗; 𝑔) are both Nash equilibria. Given i,
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j, x, 𝑠1, and 𝑠2 as the order of play, 𝜎3, rather than 𝜎1, is the SPE despite i’s first mover option to establish herself
as a leader. The best response to player i leading produces 𝜎2 ∈ ℎ∗

𝐿(𝑗, 𝜇𝑠(𝑗); 𝑔) in which both i and j lead but with
j attracting all of the followers. Two features present in 𝜎1 and g are essential to exclude it from the set of SPE.
First, player j has an advantage in attracting followers despite i moving first. Because 𝑠1 and 𝑠2 have no choice
but to follow j, j has the larger population of followers regardless of x’s decision regarding whom to follow. This
compels x to follow j. Second, the potential defector from the actions producing 𝜎1 must be motivated to defect
despite i’s lead as is true here with 𝜋(𝑗; 𝜎2) > 𝜋(𝑗; 𝜎1). The motivation in this example comes from player x.
Player x best responds by following j when both i and j lead.

Figure 11: An example for which a 𝜎1 ∈ 𝐻∗(𝑖; 𝑔) is not a subgame perfect equilibrium. The tree structures of 𝜎1 and 𝜎3

are both Nash equilibrium structures based on g. For moves in the order i, j, x, 𝑠1, then 𝑠2, only 𝜎3 is a SPE. The structure
𝜎2 reflects the best response by players x, 𝑠1, and 𝑠2 if faced with both i and j leading. The fact that j prefers 𝜎2 to 𝜎1 un-
dermines player i’s leadership when considering a cascade of best responses.

Similar to the best response cascade discussed in Heal and Kunreuther (2010), were the population to start
from 𝜎1, the cascade of best responses to the single deviation by player j transitions the population from 𝜎1 to 𝜎3.
A Nash equilibrium can be susceptible to a best response cascade that just as easily reverses in direction to return
to the original structure.23 This does not contribute to identifying the more “fragile” Nash equilibria prone to
transition to a more stable alternative Nash equilibrium. The SPE offers such a refinement for identifying fragile
Nash equilibria subseptable to irreversible best-response cascades.

5.3.2 Multiple Hierarchies as Subgame Perfect

Recall Example 5 illustrating a multiple hierarchy structure as a Nash equilibrium with a single follower in the
smaller hierarchy preferring the status quo in order to retain a distance advantage over the non-empty 𝑁𝑦(𝑗; 𝜎)
population. Refer to Figure 10. Reconsidered as a SPE, the same structure cannot be supported as an equilib-
rium. As the only conduit through which player 7 and the 𝑁𝑆(7, 𝜎) population can join 𝑁𝑆(1, 𝜎), player 9’s
switch to join the player 1-led tree enables the remainder of 𝑁𝑆(7, 𝜎) to also join in following 𝑁𝑆(1, 𝜎) in a
cascade of best responses. The process is facilitated by player 10 who prefers the i-led tree. Irregardless of the
order of play, player 10 imitates 9, allowing 9 to join the i-led hierachy. In addition to joining a larger hierarchy,
player 9 now also precedes player 7 and the entire former 𝑁𝑆(7, 𝜎) population for a higher reward than the
original 𝜎 ∈ 𝐻+(𝑖𝐴, 𝑖𝐵; 𝜎).

6 Conclusion

Katz (1957) identifies influence as being related to (1) a personification of certain values (who one is), (2) compe-
tence (what one knows), and (3) strategic social location (whom one knows). In the developed model, the lead-
er/follower social structure is supported by the population’s desire for conformity and influence such that a
leader finds support among followers without employing specialized skills. Depending on the relative strength
of these two desires, the social structure may produce full conformity or may support a central conforming pop-
ulation surrounded by unaffiliated autonomous decision-makers. Personal contacts provide scaffolding upon
which the population-established information pathways facilitate both informed decisions and channels with
which to exert influence. With the tacit support of the entire population, a leader identifies the choice for adop-
tion. The choice disseminates to, and through, followers via a network of imitations.

A preference for appearing influential means that the number of followers and whether multiple leaders can
be present in equilibrium depends on the tradeoff between following an existing leader or acting autonomously
in the presence of that leader. The parameter θ captures this tradeoff in the linear rewards model. Interestingly,
the term is relevant to the decisions of the population’s followers, not its leader(s). Everyone wants to be the
leader. It is the willing participation of the followers that makes the structure an equilibrium.
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Left unresolved in the current analysis is the process by which the coordinating Nash equilibrium structure
can emerge. The substantial coordination involved, confounded by the asymmetry of the equilibrium payoff,
makes the realization of an equilibrium structure in a single round of play highly unlikely. The analysis de-
veloped here rests on the possibility that coordination can emerge as the consequence of building consistency
in player relationships. Computational analysis points to processes by which the coordinating structure of the
static Nash equilibrium solution can emerge as the consequence of reactive path-dependent repeated play.
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Appendix

A Foundations

Formally, define

- ℎ(𝑖; 𝑔) = {𝜎|𝑖 ∈ 𝑁𝐿, 𝑁𝑆(𝑖; 𝜎) ≠ ∅} as the set of structures in which i leads;

- 𝐻(𝑖; 𝑔) = {𝜎|𝑁𝐿(𝜎) = {𝑖}, 𝑁𝑆(𝑖; 𝜎) = 𝑁\{𝑖}} as the set of structures in which i uniquely leads;

- ℎ𝐿(𝑖, 𝜇𝑠
𝑖 ; 𝑔) = {𝜎 ∈ ℎ(𝑖; 𝑔)|𝑁𝐿(𝜎) = 𝑁\𝑁𝑆(𝑖; 𝜎)} as the set of structures in which i has 𝜇𝑠

𝑖 followers and is the
unique leader;

- ℎ(𝑖𝐴, 𝑖𝐵; 𝑔) = {𝜎 ∈ ℎ(𝑖𝐴; 𝑔) ∩ ℎ(𝑖𝐵; 𝑔)} as the set of structures in which {𝑖𝐴, 𝑖𝐵} are leaders;

- 𝐻(𝑖𝐴, 𝑖𝐵; 𝑔) = {𝜎 ∈ ℎ(𝑖𝐴, 𝑖𝐵; 𝑔)|𝑁𝐿(𝜎) = {𝑖𝐴, 𝑖𝐵}} as the set of structures in which only {𝑖𝐴, 𝑖𝐵} lead and are
leaders;

- 𝑁𝑐(𝑖; 𝑎) = {𝑗 ∈ 𝑁\{𝑖}|𝑜𝑖 = 𝑜𝑗} as, for action profile a, the set of conforming adopters;

- 𝑁𝑒(𝑖; 𝑎) = {𝑗 ∈ 𝑁𝑐(𝑖; 𝑎)|𝑑𝑗 > 𝑑𝑖} as, for action profile a, the set of ensuing adopters;

- 𝑁𝑆(𝑖; 𝜎) = {𝑗 ∈ 𝑁|𝜎𝑗𝑖 = 1or 𝜎𝑗𝑗1 = … = 𝜎𝑗𝜏 𝑖 = 1} as, for structure σ, the set of players who are successors to i;

- 𝑁𝐿(𝜎) = {𝑗 ∈ 𝑁|𝜎𝑗𝑗 = 1} as, for structure σ, the set of players who lead;

- 𝑁𝑥(𝑗; 𝜎) = {𝑗𝑥 ∈ 𝑁𝑆(𝑖; 𝜎)|𝑑𝑥𝑖 ≤ 𝑑𝑗𝑖} as, for structure σ, the set of players who are as close or closer to leader i
as is j;

- 𝑁𝑦(𝑗; 𝜎) = {𝑗𝑦 ∈ 𝑁𝑆(𝑖; 𝜎)\𝑁𝑆(𝑗, 𝜎)|𝑑𝑦𝑖 > 𝑑𝑗𝑖} as, for structure σ, the set of players who are farther from leader
i than is j but not successor to j;

- 𝑁𝛼(𝑗ℎ; 𝜎) = {𝑗𝛼 ∈ 𝑁𝑆(𝑖−ℎ; 𝜎)|𝑑𝑗𝛼𝑖−ℎ
≤ 𝑑𝑗ℎ𝑖ℎ} as, for structure σ, the set of players who are as close or closer to

leader 𝑖−ℎ as is j to 𝑖ℎ;

- 𝑁𝛽(𝑗ℎ; 𝜎) = {𝑗𝛽 ∈ 𝑁𝑆(𝑖−ℎ; 𝜎)\𝑁𝑆(𝑗, 𝜎)|𝑑𝑗𝛽𝑖−ℎ
> 𝑑𝑗ℎ𝑖ℎ} as, for structure σ, the set of players who are farther from

leader 𝑖−ℎ than is j to 𝑖ℎ;

- 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎) = {𝑗|𝑁𝑑(𝑗; 𝑔) ∩ {𝑖𝐴, 𝑁𝑆(𝑖𝐴; 𝜎)} ≠ ∅, 𝑁𝑑(𝑗; 𝑔) ∩ (𝑖𝐵, 𝑁𝑆(𝑖𝐵; 𝜎)} ≠ ∅} as, for structure σ, the set of
players with potential links to members of both of the 𝑖𝐴-led tree and the 𝑖𝐵-led tree;
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and recognize that for 𝑔 ∈ 𝐺 (𝑛), 𝑁𝑑(𝑖ℎ; 𝑔) ∩ {𝑁𝑆(𝑖−ℎ; 𝜎), 𝑖−ℎ} = ∅ implies 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎) ∩ 𝑁𝑆(𝑖ℎ; 𝜎) ≠ ∅.
An (∗) on the set of structures indicates that all followers imitate the contact offering the shortest distance to

the leader, that is, 𝑎𝑗 = arg min
𝑁𝑑(𝑗;𝑔)

𝑑𝑗𝑖 ∀𝑗 ∈ 𝑁𝑠(𝑖; 𝜎). The sets ℎ∗
𝐿(𝑖; 𝑔) and ℎ∗(𝑖𝐴, 𝑖𝐵; 𝑔) have the additional condition

that the 𝑁𝑙(𝜎) population is at least as distant from the leader as is the most distant follower, measured on g,
𝑑𝑖𝑗 ≥ 𝑑𝑖 ̄𝑗(𝜇𝑠

𝑖ℎ
) for 𝑗 ∈ 𝑁𝑙(𝜎), ℎ = ∅, 𝐴, 𝐵.

Utility of Interactions

Individuals face a discrete choice in which they receive utility from the interaction between their own choice
and the choices of other members in the population. Let the 𝑚 × ̄𝑑 matrix 𝜔𝑖 denote the adoption of an op-
tion with element 𝑤𝑖,𝑜,𝑑 = 1 if player i adopts option 𝑜𝑖 ∈ 𝑂 at distance 𝑑𝑖 = 𝑑. Otherwise, 𝜔𝑖,𝑜,𝑑 = 0. Let
𝜔−𝑖 = (𝜔1, … , 𝜔𝑖−1, 𝜔𝑖+1, … , 𝜔𝑛) represent the choices of all agents other than i. Individual utility can be de-
fined broadly as the sum of three elements:

𝑉(𝜔𝑖) = 𝑢(𝜔𝑖) + 𝑆(𝜔𝑖, 𝜔−𝑖) + 𝜖(𝜔𝑖).

The current analysis considers only the social utility associated with a choice, 𝑆(𝜔𝑖, 𝜔−𝑖), setting the innate
preferences over the different options, 𝑢(𝜔𝑖), and the idiosyncratic random element of utility, 𝜖(𝜔𝑖), each to
zero.24

Let the 𝑛 × ̄𝑑 matrix Ω𝑖 denote the possession of an option with element Ω𝑖,𝑜,𝑑 = 1 when player i adopts
option 𝑜𝑖 ∈ 𝑂 at distance 𝑑𝑖 ≤ 𝑑. Otherwise, Ω𝑖,𝑜,𝑑 = 0. Let

𝜇𝑖 = ∑
𝑗≠𝑖

𝜔𝑗

and

𝜈𝑖 = ∑
𝑗≠𝑖

Ω𝑗

so that 𝜇𝑖 denotes the aggregate choice for each option over all distances and 𝜈𝑖 denotes the cumulative aggre-
gate choice at each distance.

The complementarities of the social choice depend only on the two measures of popularity,

𝜇𝑐
𝑖 = 1′𝜇′

𝑖𝜔𝑖1

and

𝜇𝑒
𝑖 = 𝜇𝑐

𝑖 − 1′𝜔𝑖𝜈′
𝑖𝜔𝑖1.

Let

𝑆(𝜔𝑖, 𝜇𝑐
𝑖 , 𝜇𝑒

𝑖 ) = 𝜙(𝜇𝑐
𝑖 ) + 𝜓(𝜇𝑒

𝑖 ),

then linearity with 𝜙(𝑥) = 𝑟𝑐𝑥 and 𝜓(𝑥) = 𝑟𝑒𝑥 produces constant cross partials

𝜕2𝑆(𝜔𝑖, 𝑢𝑐
𝑖 , 𝜇𝑒

𝑖 )
𝜕𝜔𝑖,𝑜,𝑑𝜕𝜇𝑖,𝑜,𝑑

= 𝑟𝑐 and
𝜕2𝑆(𝜔𝑖, 𝑢𝑐

𝑖 , 𝜇𝑒
𝑖 )

𝜕𝜔𝑖,𝑜,𝑑𝜕𝜈𝑖,𝑜,𝑑
= 𝑟𝑒, ∀𝑖, 𝑜, 𝑑

so that dependence across players is captured by the two constant coefficients.

B Propositions, Lemmas, and Proofs

Formal Statement and Proof of Proposition 1 and Corollary 1

Proposition 1.
For 𝜎 ∈ 𝐻 (𝑖; 𝑔), 𝜎 ′ ∈ ℎ−(𝑖, 𝜎; 𝑔), and 𝜆′(𝜇) ≥ 0, then 𝜋𝑁𝐿(𝑗, 𝜎) ≥ 𝜋𝑁𝐿(𝑗, 𝜎 ′) for all 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) if and only if

𝐵𝑁𝐿 ≥ 0.
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Proof.
Let 𝜎−𝑗 indicate the strategies of all players in 𝑁\ {𝑗}. For σ∈H(i;g), let 𝜎 ′ = 𝜎 ′

𝑗 × 𝜎−𝑗 and 𝜎 ′

𝑗𝑗 = 1 producing
𝜎 ′ ∈ ℎ−(𝑖, 𝜎; 𝑔). Let 𝜇ℎ

𝑗 = 𝜇ℎ(𝑗; 𝜎) = |𝑁ℎ(𝑗; 𝜎)| for ℎ = 𝑥, 𝑦, 𝑠 so that relational populations are identified
according to the structure σ. Recall 𝜙′(𝜇) > 0 and 𝜓′(𝜇) > 0. For player 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎),

𝜋(𝑗; 𝜎) = 𝜙(𝑛 − 1) + 𝜓(𝜇𝑦
𝑗 + 𝜇𝑠

𝑗 ).

When leading, uncertainty in the outcome of whether 𝑜𝑖 = 𝑜𝑗 generates uncertainty in j’s payoff. Expectations
are taken over the possible realization of 𝑜𝑖 and 𝑜𝑗 with

𝔼(𝜋(𝑗; 𝜎 ′)) = 1
𝑚(𝜙(𝑛 − 1) + 𝜓(𝜇𝑥

𝑗 + 𝜇𝑦
𝑗 + 𝜇𝑠

𝑗 )) + 𝑚−1
𝑚 (𝜙(𝜇𝑠

𝑗 ) + 𝜓(𝜇𝑠
𝑗 )). (21)

The condition 𝐴𝑁𝐿(𝑗; 𝜎) ≥ 0, derived from 𝔼(𝜋(𝑗; 𝜎) − 𝜋(𝑗; 𝜎 ′)) ≥ 0, ensures that player 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) prefers
her position as a follower of i over leading.

The condition 𝐵𝑁𝐿 ≥ 0 is equivalent to 𝐴( ̄𝑗; 𝜎) ≥ 0 for ̄𝑗 = argmax𝑗∈𝑁𝑆(𝑖;𝜎)𝑑𝑗𝑖. For ̄𝑗, 𝜇𝑦( ̄𝑗) = 𝜇𝑠( ̄𝑗) = 0, leaving
𝐴𝑁𝐿( ̄𝑗; 𝜎) = ((𝑚 − 1)/𝑚)𝜙(𝑛 − 1) − (1/𝑚)𝜓(𝑛 − 2) ≥ 0, or

𝐴𝑁𝐿( ̄𝑗; 𝜎) = 𝐴1 + 𝐴3(0) ≥ 0.

The first term is strictly positive. 𝐵𝑁𝐿 ≥ 0 implies 𝐴3(0) ≥ −𝐴1. For follower j, 𝐴𝑁𝐿(𝑗; 𝜎) is as defined in eq.
(5).

That 𝐴3(𝜇) ≥ −𝐴1 for all 𝜇 ∈ [0, 𝑛 − 2] is a necessary and sufficient condition for 𝐴(𝑗; 𝜎) ≥ 0 for all j. Given
𝐴( ̄𝑗; 𝜎) ≥ 0, a sufficient condition is that 𝐴3(𝜇) remain everywhere above a monotonic function passing through
𝐴3(0) and 𝐴3(𝑛 − 2). Observe,

𝐴3(𝜇) = 1
𝑚 ((𝑚 − 1)𝜙(𝑛 − 2) − 𝜓(𝑛 − 2) − ((𝑚 − 1)𝜙(𝜇) − 𝜓(𝜇)))

and

𝐴3(0) = 1
𝑚 ((𝑚 − 1)𝜙(𝑛 − 2) − 𝜓(𝑛 − 2)) .

Since 𝜆′(𝜇) ≥ 0 implies

𝜙(𝜇)
𝜓(𝜇) ≤ 𝜙(𝑛 − 2)

𝜓(𝑛 − 2) ,

for 𝜆′ (𝜇) < 0,

𝐴3(𝜇) = 𝐴3(0) − ((𝑚 − 1)𝜙(𝜇) − 𝜓(𝜇))
= 𝐴3(0) − ((𝑚 − 1) 𝜙(𝜇)

𝜓(𝜇) − 1) 𝜓(𝜇)

> 𝐴3(0) − ((𝑚 − 1) 𝜙(𝑛−2)
𝜓(𝑛−2) − 1) 𝜓(𝜇) = 𝐴0

3(𝜇).

𝐴0
3(𝜇) is an afine transformation of 𝜓 (𝜇)

𝐴0
3(𝜇) = 𝐴3(0) − ((𝑚 − 1)𝜙(𝑛 − 2) − 𝜓(𝑛 − 2)) 𝜓(𝜇)

𝜓(𝑛−2))

= 𝐴3(0) − (𝐴3(0)
𝜓(𝜇)

𝜓(𝑛−2))

= 𝐴3(0) (1− 𝜓(𝜇)
𝜓(𝑛−2)) .

Corollary 1.
For 𝜎 ∈ 𝐻 (𝑖; 𝑔), 𝜎 ′ = {ℎ−(𝑖, 𝜎; 𝑔)|𝜎 ′

𝑗𝑗 = 1}, and 𝐵𝑁𝐿 ≥ 0, if 𝜆′ (𝜇) < 0 then 𝜋𝑁𝐿(𝑗, 𝜎) < 𝜋𝑁𝐿(𝑗, 𝜎 ′) is possible for
some 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎)\{ ̄𝑗}.

Proof.
For 𝜆′ (𝜇) < 0 so that

𝜙(𝜇)
𝜓(𝜇) > 𝜙(𝑛 − 2)

𝜓(𝑛 − 2) ,

then 𝐴3(𝜇) < 𝐴0
3(𝜇). While 𝐴3(𝜇) ≥ −𝐴1 remains possible, it is no longer assured by 𝐴3(0) ≥ −𝐴1.
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Evaluation of Proposition 1 with Linear Payoff

Proof.
Let 𝜎−𝑗 indicate the strategies of all players in 𝑁\ {𝑗}. For 𝜎 ∈ 𝐻 (𝑖; 𝑔), let 𝜎 ′ = 𝜎 ′

𝑗 ×𝜎−𝑗 and 𝜎 ′

𝑗𝑗 = 1 producing
𝜎 ′ ∈ ℎ−(𝑖, 𝜎; 𝑔). Let 𝜇ℎ

𝑗 = 𝜇ℎ(𝑗; 𝜎) = |𝑁ℎ(𝑗; 𝜎)| for ℎ = 𝑥, 𝑦, 𝑠. For player 𝑗 ∈ 𝑁\ {𝑖},

𝔼(𝜋(𝑗; 𝜎)) = 𝑟𝑐(𝜇𝑥
𝑗 + 𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 + 1) + 𝑟𝑒(𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 ). (22)

The payoff to j when leading is uncertain due to the uncertainty in the outcome of whether 𝑜𝑖 = 𝑜𝑗.

𝔼(𝜋(𝑗; 𝜎 ′)) = 1
𝑚((𝑟𝑐 + 𝑟𝑒)(𝜇𝑥

𝑗 + 𝜇𝑦
𝑗 + 𝜇𝑠

𝑗 ) + 𝑟𝑐) + 𝑚−1
𝑚 (𝑟𝑐 + 𝑟𝑒)𝜇𝑠

𝑗 (23)

= (𝑟𝑐 + 𝑟𝑒)𝜇𝑠
𝑗 + 1

𝑚((𝑟𝑐 + 𝑟𝑒)(𝜇𝑥
𝑗 + 𝜇𝑦

𝑗 ) + 𝑟𝑐).

The condition 𝐴(𝑗; 𝜎) ≥ 0, derived from 𝔼(𝜋(𝑗; 𝜎) − 𝜋(𝑗; 𝜎 ′)) ≥ 0, ensures that player 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) prefers
her position as a follower of i over leading.

The first term of 𝐴 (𝑗; 𝜎) as expressed in eq. (8) is strictly positive. The coefficient on the second term is
also positive. For 𝜃 = (𝑚 − 1)𝑟𝑐/𝑟𝑒 > 1 the third coefficient is also positive making it a sufficient condition for
𝐴 (𝑗; 𝜎) > 0 for all j∈N\i. The necessary and sufficient condition ensuring 𝐴(𝑗; 𝜎) ≥ 0 for all j∈N\i sets a lower
threshold on θ, allowing the third term to be negative. For

(𝑚 − 1)𝑟𝑐 ≥ −((𝑚 − 1)𝑟𝑐 − 𝑟𝑒)(𝑛 − 2)

or equivalently, 𝜃 ≥ 1− 1
𝑛−1 , 𝐴 (𝑗; 𝜎) > 0 for all j since 𝜇𝑥(𝑗) ≤ 𝜇𝑥( ̄𝑗) = 𝑛 − 2 and 𝜇𝑦(𝑗) ≥ 𝜇𝑦( ̄𝑗) = 0.

Formal Statement of Lemma 1

Lemma 1.
For {𝜎, 𝜎 ′} ∈ 𝐻 (𝑖; 𝑔) with 𝜎−𝑗 = 𝜎 ′

−𝑗and{𝑎𝑗, 𝑎
′

𝑗} ∈ 𝑁𝑑(𝑗; 𝑔), then for𝜇𝑥(𝑗; 𝜎) ≤ 𝜇𝑥(𝑗; 𝜎 ′),

𝜋(𝑗; 𝜎)
⎧{
⎨{⎩

= 𝜋(𝑗; 𝜎 ′) if 𝜇𝑥(𝑗; 𝜎) = 𝜇𝑥(𝑗; 𝜎 ′),
> 𝜋(𝑗; 𝜎 ′) if 𝜇𝑥(𝑗; 𝜎) < 𝜇𝑥(𝑗; 𝜎 ′).

�

Formal Statement and Proof of Lemma 2

Lemma 2.
𝜎 ∈ ℎ′ (𝑖; 𝑔) is a necessary condition for 𝜎 ∈ ℎ (𝑖; 𝑔) to be a Nash equilibrium.

Proof.
For player i, leading dominates following since to choose one’s own successor as a predecessor pays zero.

From 𝜇𝑒(𝑗) = 𝜇𝑦
𝑗 + 𝜇𝑠

𝑗 and 𝜇𝑦
𝑗 + 𝜇𝑠

𝑗 = 𝜇𝑠
𝑖 − 𝜇𝑥

𝑗 , decreasing 𝜇𝑥
𝑗 increases 𝜋𝑁𝐿(𝑗; 𝜎) for any reward function that is

increasing in 𝜇𝑒. Among the following options, a player can do no better than to minimize 𝜇𝑥
𝑗 . A player who is not

minimizing 𝜇𝑥
𝑗 is not optimizing against her available following options. Thus, any structure 𝜎 ∈ ℎ (𝑖; 𝑔) \ℎ′ (𝑖; 𝑔)

cannot be a Nash equilibrium.

The 𝐵𝑁𝐿 ≥ 0 application of Lemma 2 is to 𝜎 ∈ 𝐻′ (𝑖; 𝑔). For 𝜎 ∈ 𝐻′ (𝑖; 𝑔) each player is optimizing from
the set of strategies that preserve 𝜎 ∈ 𝐻 (𝑖; 𝑔). Minimizing 𝜇𝑥

𝑗 is also a necessary attribute of ℎ∗
𝐿(𝑖, ̄𝑛; 𝑔) for

optimizing behavior under 𝐵𝑁𝐿 < 0.

Formal Statement and Proof of Proposition 2

Proposition 2.
Given 𝜆′(𝜇) ≥ 0, {𝐻′(𝑖; 𝑔)}𝑖∈𝑁 a set of equilibrium structures if and only if 𝐵 ≥ 0.
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DE GRUYTER Goldbaum

Proof.
From Proposition 1, given 𝐵𝑁𝐿 ≥ 0, every player 𝑗 ∈ 𝑁\ {𝑖} prefers any structure 𝜎 ∈ 𝐻 (𝑖; 𝑔) over the structure

produced by player j’s deviation to lead. In combination with Lemma 2, 𝐵𝑁𝐿 ≥ 0 implies that no follower in the population
can do better for herself than to minimize her 𝜇𝑥

𝑗 .

Corollary 2.
Given 𝜆′(𝜇) ≥ 0, {𝐻∗(𝑖; 𝑔)}𝑖∈𝑁 is a set of equilibrium structures if and only if 𝐵𝑁𝐿 ≥ 0.

Proof
𝐻∗(𝑖; 𝑔) ⊆ 𝐻′(𝑖; 𝑔) implies that for 𝜎 ∈ 𝐻 (𝑖; 𝑔) and 𝑎𝑗 ∈ 𝑁𝑑(𝑗; 𝑔), if 𝑎𝑗 = argmin𝑁𝑑(𝑗;𝑔)𝑑𝑗𝑖, then 𝑎𝑗 =

argmin𝑁𝑑(𝑗;𝑔)𝜇
𝑥
𝑗 . As further distinction between the strategies, structure 𝜎 ′ ∈ 𝐻′ (𝑖; 𝑔) if 𝜎 ′ ∈ 𝐻∗(𝑖; 𝑔) or if

𝜎 ′ = 𝜎−𝑗 × 𝜎 ′

𝑗 with 𝑎′

𝑗 = 𝑗′ where 𝜎 ∈ 𝐻′ (𝑖; 𝑔) and where 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) satisfies the following three properties:

1. There exists 𝑗′ ∈ 𝑁𝑑(𝑗, 𝑔) with 𝑑𝑗′𝑖 = 𝑑𝑗𝑖, indicating that j′ is equidistant to the leader as is j and that j has
the option to imitate j′,

2. 𝜇𝑦(𝑗; 𝜎) = 0, indicating that there are no successors to i of greater distance to i than j without also being a
successor to j, and

3. either 𝜇𝑠(𝑗; 𝜎) = 0 or 𝜇𝑠(𝑗; 𝜎) > 0 with successors 𝑁𝑆(𝑗; 𝜎) having no option to link to i but through j.

For {𝑗1, 𝑗2} ∈ 𝑁𝑑(𝑗; 𝑔) with 𝑑𝑗1𝑖 < 𝑑𝑗2𝑖, let 𝜎ℎ = 𝜎|𝜎𝑗𝑗ℎ = 1, ℎ = 1, 2, so that 𝜇𝑥(𝑗, 𝜎1) ≤ 𝜇𝑥(𝑗, 𝜎2). The
condition that allows 𝜇𝑥(𝑗, 𝜎1) = 𝜇𝑥(𝑗, 𝜎2) is 𝜇𝑦

𝑗 = 0. With 𝑗2 ∉ 𝑁𝑆(𝑗; 𝜎), 𝜇𝑦
𝑗 = 0 implies 𝑗2 ∈ 𝑁𝑥(𝑗; 𝜎) and

𝑑𝑗2𝑖 = 𝑑𝑗𝑖 = 𝑑𝑗1𝑖 + 1. For 𝜎1 ∈ 𝐻′(𝑖; 𝑔), a necessary and sufficient condition to have 𝜎2 ∈ 𝐻′(𝑖; 𝑔) is that for
all 𝑗𝑠 ∈ 𝑁𝑆(𝑗; 𝜎1), 𝑁𝑑(𝑗𝑠; 𝑔) ⊂ {𝑁𝑆(𝑗; 𝜎) ∪ {𝑗}}. The condition establishes that no successor of j has the option
to link to i without having the chain of links pass through j, a condition necessary to ensure that 𝜇𝑥(𝑗𝑠; 𝜎2) is
minimized for all 𝑗𝑠.

From 𝐻∗(𝑖; 𝑔) ⊆ 𝐻′(𝑖; 𝑔), 𝜎 ∈ 𝐻∗(𝑖; 𝑔) is an equilibrium if 𝐵𝑁𝐿 ≥ 0 and 𝜎 ∈ 𝐻∗(𝑖; 𝑔) is not an equilibrium if
𝐵𝑁𝐿 < 0.

Formal Statement and Proof of Proposition 3

Proposition 3.
For 𝐵 < 0 and 𝜎 ∈ ℎ𝐿(𝑖, 𝜇𝑠

𝑖 ; 𝑔), all 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎) prefer following i to leading and the remaining population, 𝑗 ∈
𝑁\{𝑖, 𝑁𝑆(𝑖; 𝜎)}, prefer leading to following i if and only if 𝜎 ∈ ℎ∗

𝐿(𝑖, ̄𝑛; 𝑔).

Proof.
Let 𝜇ℎ

𝑗 = 𝜇ℎ(𝑗; 𝜎) = |𝑁ℎ(𝑗; 𝜎)| for ℎ = 𝑥, 𝑦, 𝑠 and 𝜇𝑙 = 𝜇𝑙(𝜎) = |𝑁𝐿(𝜎)|. For 𝜎 ∈ ℎ𝐿(𝑖, 𝜇𝑠
𝑖 ; 𝑔), let 𝜎 ′ = 𝜎 ′

𝑗 × 𝜎−𝑗

and 𝜎 ′

𝑗𝑗 = 1, 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎). Uncertainty in the payoff to j when following stems from the uncertainty in whether
𝑜𝑖 = 𝑜𝑙 for each 𝑙 ∈ 𝑁𝐿(𝜎)\{𝑖} with,

𝔼(𝜋(𝑗; 𝜎)) = 𝑟𝑐(𝜇𝑥
𝑗 + 𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 + 1) + 𝑟𝑒(𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 ) + 1

𝑚𝑟𝑐(𝜇𝑙 − 1). (24)

The payoff to j when leading is uncertain due to the uncertainty in the outcome of whether 𝑜𝑗 = 𝑜𝑙 for each
𝑙 ∈ 𝑁𝐿(𝜎) with,

𝔼(𝜋(𝑗; 𝜎 ′)) = (𝑟𝑐 + 𝑟𝑒)𝜇𝑠
𝑗 + 1

𝑚(𝑟𝑐 + 𝑟𝑒)(𝜇𝑥
𝑗 + 𝜇𝑦

𝑗 ) + 1
𝑚𝑟𝑐(𝜇𝑙(𝜎)). (25)

𝔼(𝜋(𝑗; 𝜎) − 𝜋(𝑗; 𝜎 ′)) from eqs. (24) and (25) is the same as from eqs. (22) and (23) when expressed in
terms of 𝜇𝑥

𝑗 , 𝜇𝑦
𝑗 , and 𝜇𝑠

𝑗 as in eq. (8).25 The presence of a population of autonomous adopters does not al-
ter the condition 𝐴(𝑗; 𝜎) ≥ 0 for player j to prefer following to leading. Let ̄𝑗(𝜇𝑠

𝑖 ) = argmax𝑗∈𝑁𝑆(𝑖;𝜎)𝑑𝑗𝑖, then
𝜇𝑦( ̄𝑗(𝜇𝑠

𝑖 )) = 𝜇𝑠( ̄𝑗(𝜇𝑠
𝑖 )) = 0 and 𝜇𝑥( ̄𝑗(𝜇𝑠

𝑖 )) = 𝜇𝑠
𝑖 − 1 so that

𝐴( ̄𝑗(𝜇𝑠
𝑖 ); 𝜎) = 1

𝑚((𝑚 − 1)𝑟𝑐 + ((𝑚 − 1)𝑟𝑐 − 𝑟𝑒)(𝜇𝑠
𝑖 − 1)) (26)

and 𝐶(𝜇𝑠
𝑖 ; 𝜃) = 𝐴( ̄𝑗(𝜇𝑠

𝑖 ); 𝜎)𝑚/𝑟𝑒𝜇𝑠
𝑖 . With 𝐵 < 0, ((𝑚−1)𝑟𝑐 −𝑟𝑒) < 0 so that 𝐴( ̄𝑗(𝜇𝑠

𝑖 ); 𝜎) decreases as the size of
the tree increases. For 𝜇𝑠

𝑖 = 1, 𝐴( ̄𝑗(1), 𝜎) = (𝑚−1)𝑟𝑐 > 0 while 𝐵 < 0 means that for 𝜇𝑠
𝑖 = 𝑛−1, 𝐴( ̄𝑗(𝑛−1); 𝜎) < 0.
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For 𝑚 = 1, 𝐴(𝑗; 𝜎) = −𝑟𝑒𝜇𝑥
𝑗 < 0. For 𝑟𝑐 = 0, 𝐴(𝑗; 𝜎) = 𝑟𝑒((𝑚 − 1)𝜇𝑦

𝑗 − 𝜇𝑥
𝑗 ) so that the most distant follower,

with 𝐴( ̄𝑗(𝜇𝑠
𝑖 ); 𝜎) = −𝑟𝑒(𝜇𝑠

𝑖 − 1) ≤ 0, prefers to lead in the presence of other followers. Player ̄𝑗 is indifferent to
leading only when she is the only follower, 𝑚 = 1, and 𝑟𝑐 = 0. With a non-trivial choice (𝑚 < 1) and a preference
for conformity (𝑟𝑐 > 0), the equilibrium structure requires 𝜇𝑠

𝑖 ≥ 1.
The value of 𝜇𝑠

𝑖 that sets 𝐶(𝜇𝑠
𝑖 ; 𝜃) = 0 need not be an integer. There exists ̄𝑛 ∈ {floor(𝜇∗), ceil(𝜇∗)} such

that 𝐴(𝑗( ̄𝑛); 𝜎) ≥ 0 and 𝐴(𝑗( ̄𝑛 + 1); 𝜎) < 0. A structure 𝜎 ∈ ℎ𝐿(𝑖, ̄𝑛; 𝑔)\ℎ∗
𝐿(𝑖, ̄𝑛; 𝑔) cannot be an equilibrium

because either there are members of 𝑁𝑆(𝑖; 𝜎) able to improve their payoff by choosing a different predecessor
offering a shorter distance to i or there is a member of 𝑁𝐿(𝜎) able to improve her payoff by choosing to follow
a predecessor offering a shorter distance to i than the current ̄𝑗(𝜇𝑠

𝑖 ) player. For 𝜎 ∈ ℎ∗
𝐿(𝑖, ̄𝑛; 𝑔), no player is able

to improve her payoff through unilateral deviation while preserving a single-leader structure.

To extend Proposition 3 to the nonlinear reward setting of eq. (1), let 𝐴𝑙
𝑁𝐿 represent the expected payoff

differential for following over leading in the presence of a non-empty autonomous 𝑁𝐿(𝜎)\{𝑖} population. Then

𝐴𝑙
𝑁𝐿(𝑗; 𝜎) = 𝐴𝑁𝐿(𝑗; 𝜎) + 𝐴4(𝜇𝑠

𝑗 ).

𝐴4(𝜇𝑠
𝑗 ) is a term capturing the net following over leading expected contributions of the 𝑁𝐿(𝜎) population

for follower j. Because expectations are being taken over nonlinear functions, each possible outcome requires a
separate term in a large 𝑁𝐿(𝜎) population. As a simple illustration, consider a single autonomous adopter so
that 𝜇𝑙 = 2. Then,

𝐴4(𝜇𝑠
𝑗 ) = 𝑚 − 1

𝑚2 ((𝜙(𝜇𝑠
𝑖 + 1) − 𝜙(𝜇𝑠

𝑖 )) − (𝜙(𝜇𝑠
𝑗 + 1) − 𝜙(𝜇𝑠

𝑗 ))). (27)

Given leader i and follower j, let l identify the autonomous agent. The first inner parenthetical term of eq.
(27) captures the value to j of matching with l when already adopting the same alternative as i, either as a
follower of i or as a leader having also matched with i. The second inner parenthetical term is the value to j of
matching with l when not adopting the same alternative as i. Here, and in general with 𝜇𝑙 ≥ 3 as well, 𝐴4(𝜇𝑠

𝑗 )
is positive and decreasing in 𝜇𝑠

𝑗 for 𝜙″(𝜇) > 0, zero for 𝜙″(𝜇) = 0, and negative and increasing for 𝜙″(𝜇) < 0.
The condition 𝜙″(𝜇) ≤ 0 ensures that ̄𝑗 remains the marginal decision-maker since −𝐴4(𝜇𝑠

𝑗 ) is at its maximum
at 𝜇𝑠

𝑗 = 0.

Formal Statement and Proof of Proposition 4

Proposition 4.
{ℎ∗

𝐿(𝑖, 𝑛; 𝑔)}𝑖∈𝑁 is the set of equilibrium strategies if and only if B < 0.

Proof.
Let 𝜇𝑠

ℎ = 𝜇𝑠(𝑖ℎ). For 𝜎 ∈ ℎ∗(𝑖𝐴, 𝑖𝐵; 𝑔), let 𝜎 ′ = 𝜎−𝑗 × 𝜎 ′

𝑗 , with 𝜎 ′

𝑗𝑗 = 1, 𝑗 ∈ 𝑁𝑆(𝑖; 𝜎). For j, the expected payoff
for following and leading are, respectively,

𝔼(𝜋(𝑗; 𝜎)) = 𝑟𝑐(1 + 𝜇𝑥
𝑗 + 𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 ) + 𝑟𝑒(𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 ) (28)

+ 1
𝑚(𝑟𝑐(𝜇𝑙(𝜎) − 1 + 𝜇𝛼

𝑗 + 𝜇𝛽
𝑗 ) + 𝑟𝑒(𝜇𝛽

𝑗 )),

𝔼(𝜋(𝑗; 𝜎 ′)) = (𝑟𝑐 + 𝑟𝑒)𝜇𝑠
𝑗 (29)

+ 1
𝑚((𝑟𝑐 + 𝑟𝑒)(𝜇𝑥

𝑗 + 𝜇𝑦
𝑗 + 𝜇𝛼

𝑗 + 𝜇𝛽
𝑗 ) + 𝑟𝑐𝜇𝑙(𝜎)) (29)

where 𝜇ℎ
𝑗 = 𝜇ℎ(𝑗; 𝜎) = |𝑁ℎ(𝑗; 𝜎)| for ℎ = 𝑥, 𝑦, 𝑠, 𝛼, 𝛽 and 𝜇𝑙 = 𝜇𝑙(𝜎) = |𝑁𝐿(𝜎)|. Observe, for ℎ = 𝐴, 𝐵,

1 + 𝜇𝑥
𝑗 + 𝜇𝑦

𝑗 + 𝜇𝑠
𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝜇𝑠
ℎ

+ 𝜇𝛼
𝑗 + 𝜇𝛽

𝑗⏟
=𝜇𝑠

−ℎ

+ 𝜇𝑙 = 𝑛.

The condition 𝔼(𝜋(𝑗; 𝜎) − 𝜋(𝑗; 𝜎 ′)) ≥ 0 implies 𝐷(𝑗ℎ; 𝜎) ≥ 0 as reported in eq. (12). For the most distant
player(s) from 𝑖ℎ according to σ, 𝐸(𝑖ℎ; 𝜎) = 𝐷( ̄𝑗(𝜇𝑠

ℎ); 𝜎)/𝑟𝑒𝜇𝑠
ℎ. With 𝜇𝑦( ̄𝑗(𝜇𝑠

ℎ)) = 𝜇𝑠( ̄𝑗(𝜇𝑠
ℎ)) = 0, 𝜇𝑥( ̄𝑗(𝜇𝑠

ℎ)) = 𝜇𝑠
ℎ−1,
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and 𝜇𝛼( ̄𝑗(𝜇𝑠
ℎ)) ≥ 𝜇𝛼(𝑗ℎ) for all 𝑗ℎ ∈ 𝑁𝑆(𝑖ℎ; 𝜎), 𝐷( ̄𝑗(𝜇𝑠

ℎ); 𝜎) ≥ 0 implies 𝐷(𝑗ℎ; 𝜎) ≥ 0 for all 𝑗 ∈ 𝑁𝑆(𝑖ℎ; 𝜎), so that
𝐸(𝑖ℎ; 𝜎) ≥ 0 is necessary and sufficient to ensure 𝐷(𝑗ℎ; 𝜎) ≥ 0 holds for all 𝑗ℎ ∈ 𝑁𝑆(𝑖ℎ; 𝜎). Since

⎛⎜
⎝
1 +

𝜇𝛼
ℎ(𝑗𝜇𝑠

ℎ
) − 1

𝜇𝑠
ℎ

⎞⎟
⎠

≥ 1 > (1 −
1

𝑛 − 1
) ,

the condition 𝐸(𝑖ℎ; 𝜎) ≥ 0 violates 𝐵 > 0. For 𝜎 ∈ ℎ∗
𝐿(𝑖, ̄𝑛; 𝑔), no player is able to improve her payoff through

unilateral deviation.

To extend Proposition 4 to the nonlinear reward setting of eq. (1), let 𝐷𝑁𝐿 represent the expected payoff
differential for following over leading in the presence of a two leaders, 𝑖𝐴 and 𝑖𝐵. As reference for 𝑗ℎ ∈ 𝑁𝑆(𝑖ℎ; 𝜎),
let 𝜎 ′ ∈ ℎ𝐿(𝑖; 𝑔) have a tree under i that matches the tree structure under 𝑖ℎ according to σ and where all non-
members of 𝑁𝑆(𝑖ℎ; 𝜎) adopt autonomously (rather than following 𝑖−ℎ). For follower 𝑗ℎ,

𝐷𝑁𝐿(𝑗; 𝜎) = 𝐴𝑁𝐿(𝑗; 𝜎 ′) + 𝑚−1
𝑚2 𝐷1 + 1

𝑚2 𝐷2

𝐷1 = 𝜙(𝜇𝑠
ℎ + 𝜇𝑠

−ℎ + 1) − 𝜙(𝜇𝑠
ℎ) − (𝜙(𝜇𝑠

𝑗 + 𝜇𝑠
−ℎ + 1) − 𝜙(𝜇𝑠

𝑗 ))

𝐷2 = 𝜓(𝜇𝑦
𝑗 + 𝜇𝑧

𝑗 + 𝜇𝛽
𝑗 ) − 𝜓(𝜇𝑦

𝑗 + 𝜇𝑧
𝑗 )

−{𝑚−1
𝑚 (𝜓(𝜇𝑧

𝑗 + 𝜇𝑠
−ℎ) − 𝜓(𝜇𝑧

𝑗 )) + 1
𝑚(𝜓(𝜇𝑠

−ℎ + 𝜇𝑠
ℎ − 1) − 𝜓(𝜇𝑠

ℎ − 1))}

For j considering whether to lead or follow, 𝐷1 is the conformity contribution of joining the 𝑖−ℎ-led hierarchy
when already affiliated with the 𝑖ℎ-led hierarchy (as a follower or by independently matching) less conformity
contribution of joining the 𝑖−ℎ-led hierarchy when not affiliated with the 𝑖ℎ-led hierarchy. 𝐷2 is the ensuing
contribution of matching with the 𝑖−ℎ-led hierarchy as a follower of 𝑖ℎ less the expected ensuing contribution
of matching with the 𝑖−ℎ-led hierarchy when leading (made up of matching with just 𝑖−ℎ and matching with
both 𝑖−ℎ and 𝑖ℎ). ̄𝑗(𝜇𝑠

ℎ) remains the marginal decision-maker in the 𝑖ℎ-led hierarchy for 𝜆′(𝜇) ≥ 0 and 𝜙″(𝜇) ≤ 0
(conditions that combined to also require 𝜓″(𝜇) ≤ 0).

If linearized, 𝐷𝑁𝐿(𝑗; 𝜎) collapses to 𝐴(𝑗; 𝜎 ′) − 𝑟𝑒𝜇𝛼
𝑗 /𝑚 = 𝐷(𝑗; 𝜎).

Formal Statement and Proof of Proposition 5

Proposition 5.
For

𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔) = {𝜎 ∈ 𝐻∗(𝑖𝐴, 𝑖𝐵; 𝑔)}
such that 𝑁𝑑(𝑖ℎ; 𝑔) ∩ {𝑁𝑆(𝑖−ℎ; 𝜎), 𝑖−ℎ} = ∅,

𝐸(𝑖ℎ, 𝜇𝑠
ℎ, 𝜃, 𝜎) ⩾ 0,

𝐹ℎ(𝑗ℎ; 𝜃, 𝑚, 𝜎) ⩾ 0 for all 𝑗 ∈ 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎),

a structure 𝜎 ∈ 𝐻(𝑖𝐴, 𝑖𝐵; 𝑔) is a Nash equilibrium if and only if 𝜎 ∈ 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔). The set 𝐻+(𝑖𝐴, 𝑖𝐵; 𝑔) is feasibly
non-empty.

Proof.
For 𝜎 ∈ 𝐻(𝑖𝐴, 𝑖𝐵; 𝑔), without loss of generality, let 𝜇𝑠

𝐴 ≥ 𝜇𝑠
𝐵. With 𝑔 ∈ 𝐺 (𝑛), {𝑖ℎ ∪ 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎)} ∩ {𝑖−ℎ ∪

𝑁𝑆(𝑖−ℎ; 𝜎)}, ℎ = 𝐴, 𝐵 are both nonempty sets. The compliments, {𝑖ℎ, 𝑁𝑆(𝑖ℎ; 𝜎)}\𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵, 𝜎) for ℎ = 𝐴, 𝐵, can
be nonempty, indicating that possibly 𝑖ℎ and some 𝑗 ∈ 𝑁𝑆(𝑖ℎ; 𝜎) have no direct potential link to {𝑖−ℎ, 𝑁𝑆(𝑖−ℎ; 𝜎)}
with the current σ.

For player 𝑗ℎ ∈ 𝑁𝑆(𝑖ℎ; 𝜎), the expected payoff for remaining a follower in the 𝑖ℎ-led tree is 𝔼(𝜋ℎ(𝑗; 𝜎)) as
expressed in eq. (28). Let 𝜎 ′

ℎ→−ℎ = 𝜎−𝑗ℎ ×𝜎 ′

𝑗ℎ, with 𝑗ℎ ∈ 𝑁𝑆(𝑖−ℎ; 𝜎 ′

ℎ→−ℎ). That is, 𝜎 ′
ℎ→−ℎ ∈ 𝐻∗(𝑖𝐴, 𝑖𝐵; 𝑔) represents

the alternative to 𝜎 ∈ 𝐻∗(𝑖𝐴, 𝑖𝐵; 𝑔) based on a switch by player 𝑗ℎ ∈ 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎) ∩ 𝑁𝑆(𝑖ℎ; 𝜎) from the 𝑖ℎ-led
tree to the 𝑖−ℎ-led tree. Compute

𝔼(𝜋(𝑗ℎ; 𝜎) − 𝜋(𝑗ℎ; 𝜎 ′

ℎ→−ℎ)) = 1
𝑚((𝑚 − 1)𝑟𝑐(𝜇𝑠

ℎ − 𝜇𝑠
−ℎ − 1 − 𝜇𝑠(𝑗ℎ))

+𝑟𝑒(𝜇𝛽(𝑗ℎ) − 𝜇𝛽
−ℎ(𝑗ℎ) + 𝑚(𝜇𝑦(𝑗ℎ) − 𝜇𝑦

−ℎ(𝑗ℎ))).

The condition 𝐹𝐴 ≥ 0 of eq. (15) corresponds to 𝔼(𝜋(𝑗𝐴; 𝜎) − 𝜋(𝑗𝐴; 𝜎 ′

𝐴→𝐵)) ≥ 0 and the condition 𝐹𝐵 ≥ 0 of
eq. (16) corresponds to 𝔼(𝜋(𝑗𝐵; 𝜎) − 𝜋(𝑗𝐵; 𝜎 ′

𝐵→𝐴)) ≥ 0.
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For leader 𝑖ℎ, the condition 𝐹ℎ(𝑖ℎ) ≥ 0 reduces to

− ⎛⎜
⎝

𝜃 − ⎛⎜
⎝
1 −

1
𝜇𝑠

−ℎ + 1
⎞⎟
⎠

⎞⎟
⎠

≥ 0.

Since 𝜇𝑠
−ℎ ≤ (𝑛 − 2), 𝐵 ≥ 0 ensures that 𝐹ℎ(𝑖ℎ) ≤ 0 for both leaders. The condition holds at equality only

if 𝐵 = 0 and 𝜇𝑠
−ℎ = (𝑛 − 2), a condition that cannot hold for both leaders simultaneously. 𝐹ℎ(𝑗) > 0 for all

𝑗 ∈ 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎) is feasible.

C Examples

Multiple-Leader Structures

Two scenarios allow for a multiple leader structure in equilibrium with linear payoff functions. Both feature a
σ given 𝑔 ∈ 𝐺 (𝑛) such that a particular follower finds it advantageous and feasible to preserve the multiple
leader structure.

Example 4

Let 𝜇ℎ(𝑗) = 𝜇ℎ(𝑗; 𝜎) = |𝑁ℎ(𝑗; 𝜎)| for ℎ = 𝑥, 𝑦, 𝑠, 𝛼, 𝛽. For ℎ = 𝐴, 𝐵, let 𝜎 ′ = 𝜎−𝑗ℎ × 𝜎 ′

𝑗ℎ be the structure produced by
𝑗ℎ switching predecessors in order to become a member of the 𝑖−ℎ-led tree. The alternative structure identifies
populations 𝑁𝛽

−ℎ(𝑗ℎ) = 𝑁𝛽(𝑗ℎ; 𝜎 ′) and 𝑁𝑦
−ℎ(𝑗ℎ) = 𝑁𝑦(𝑗ℎ; 𝜎 ′). Let 𝜇𝛽

−ℎ(𝑗ℎ) = |𝑁𝛽
−ℎ(𝑗ℎ)| and 𝜇𝑦

−ℎ(𝑗ℎ) = |𝑁𝑦
−ℎ(𝑗ℎ)|.

The structure σ is as depicted in Figure 9. With 𝜇𝑦(𝑗𝐴) = 𝜇𝑠(𝑗𝐴) = 𝜇𝛽(𝑗𝐴) = 𝜇𝑦(𝑗𝐵) = 𝜇𝑠(𝑗𝐵) = 𝜇𝛽
𝐴(𝑗𝐵) = 0,

𝐹𝐴 ≥ 0 and 𝐹𝐵 > 0 of eqs. (17) and (18) jointly imply

𝜇𝛽
𝐵(𝑗𝐴)

𝜃 + 1 ≤ 𝑑𝜇 <
𝜇𝛽(𝑗𝐵) − 𝑚𝜇𝑦

𝐴(𝑗𝐵)
𝜃 − 1. (30)

The four key features needed of σ to satisfy eq. (30) are

1. 𝜇𝑠
𝐵 ≥ 1+ 𝜇𝛼(𝑗𝐵) + (𝑚𝜇𝑦

𝐴(𝑗𝐵) − (𝜃 − 1)𝜇𝛽(𝑗𝐵))/𝜃 indicating that 𝜇𝑠
𝐵 is larger than 𝜇𝑠

𝐴 excluding the 𝑁𝑆(𝑖𝐴; 𝜎)
followers at distance 𝑑𝑗𝐵,𝑖𝐵 + 1. Each member of the 𝑁𝑦

𝐴(𝑗𝐵) population requires m members of 𝑁𝑆(𝑖𝐵; 𝜎)
to keep 𝑗𝐵 in 𝑁𝑆(𝑖𝐵; 𝜎). 𝜃 = 1 is the minimum possible threshold on θ derived from 𝐸ℎ ≥ 0. The stronger
condition 𝜇𝑠

𝐵 ≥ 1 + 𝜇𝛼(𝑗𝐵) + 𝑚𝜇𝑦
𝐴(𝑗𝐵) ensures 𝐹𝐵 ≥ 0 over the entire feasible support for θ;

2. a concentration of the 𝑖𝐴-led population at the distance 𝑑𝑗𝐵,𝑖𝐵 +1 is sufficiently large to have 𝜇𝑠
𝐴 ≥ 𝜇𝑠

𝐵 despite
feature 1;

3. 𝑑𝑗𝐵,𝑖𝐴 ≥ 𝑑𝑗𝐵,𝑖𝐵 + 1; and

4. 𝑑𝑗𝐴,𝑖𝐵 = 𝑑𝑗𝐵,𝑖𝐵 + 1.

Figure 9 is an equilibrium structure satisfying eq. (30). Feature 1 requires a large 𝑁𝑥(𝑗𝐵; 𝜎) population based
on the sizes of the 𝑁𝛼(𝑗𝐵; 𝜎) and 𝑁𝑦

𝐴(𝑗𝐵; 𝜎) populations. The 𝑁𝛽(𝑗𝐵; 𝜎) population is sufficiently large to produce
𝜇𝑠

𝐴 ≥ 𝜇𝑠
𝐵 in accordance with feature 2. So that 𝑗𝐵 prefers the 𝑖𝐵-led tree, she cannot benefit from the 𝑁𝛽(𝑗𝐵; 𝜎)

population were she to switch, which is captured by feature 3. Feature 4 puts 𝑗𝐴 in a position where she fails
to share in 𝑗𝐵’s distance advantage over the β population from the 𝑖𝐵-led tree, thereby keeping 𝜇𝛽

𝐵(𝑗𝐴) small. By
feature 3, the β population exists within the distance range 𝑑𝑗𝐵,𝑖𝐵 +1 and 𝑑𝑗𝐵,𝑖𝐴 (inclusive) but feature 4 constrains
the population to have a distance of 𝑑𝑗𝐵,𝑖𝐵 + 1.

Example 5

The inequality 𝐹𝐵(𝑗𝐵) > 0 supports follower 𝑗𝐵 ∈ {𝑁𝑆(𝑖𝐵, 𝜎) ∩ 𝑁𝐴𝐵(𝑖𝐴, 𝑖𝐵; 𝜎)|𝜇𝑠
𝑗 = 0, 𝜇𝑦

𝑗 > 0} in her current
position, as illustrated in Example 5. The additional imposition of 𝜇𝑦

𝐴(𝑗𝐵) = 0 minimizes the attraction of the
𝑖𝐴-led tree to 𝑗𝐵 as it implies player 𝑗𝐵 must join the 𝑖𝐴-led tree at the maximum distance.
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Notes
1 Avant-garde art collector David Teiger quoted in Thornton (2009) (p.100).
2 Of Teiger, Thornton (2009) comments, “He enjoys being a player in the power game of art, particularly at this level where patronage
can have an impact on public consciousness” (p.100). Thornton also observes, “Unlike other industries, where buyers are anonymous and
interchangeable, here, artists’ reputations are enhanced or contaminated by the people who own their work” (p.88). Glazek (2014) profiles
a patron who promotes emerging artists among collectors with little knowledge of art. Unresolved in the piece is whether the artists had
no future among knowledgeable collectors or whether the artists’ career were poisoned by their affiliation with the patron.
3 “Making a big bet on something before anyone else really grasps it. That is what success has in common in energy and in equities,”
political strategist Tim Phillips as cited in Confessore, Cohen, and Yourish (2015).
4 Watts (2001) and Jackson and Watts (2002) offer useful literature reviews of works on social influence.
5 The definition of conformity provided by Deutsch and Gerard (1955), and employed extensively in the psychology literature, applies to
observed individual behavior in response to social influences present at the time of decision making. The current model allows that such
social influences are present even when the decision-maker only learns the conforming action after having acted. In such instances, the
desire for conformity still potentially shapes behavior, for example, by causing the decision-maker to attempt to anticipate the conforming
action or to proactively alter the decision making process to gain relevant information before committing to an action.
6 One of the examples offered in the Ali and Kartik (2012) observational learning model roughly maps to the present setting. Allowing that
political candidates value earlier contributors introduces a counterweight to the information advantage gained from delay. Freeing contrib-
utors to choose the timing of a contribution increases intrinsic uncertainty, particularly when contributions can be made simultaneously,
which prevents contributors from knowing the value of their contribution on subsequent decision-makers.
7 Random assignment captures the absence of prior coordination between players or the collection of probability mass on a single option.
The latter might arise as the consequence of being a focal point, for example. The same can be accomplished more formally with private
object labels.
8 The notion of time and distance are isomorphic when adoption disseminates at a rate of one unit of time per link.
9 Since payoffs depend on the popularity of the adopted option and the relative time to adoption, in practice the information should even-
tually become available to the players. A report on the popularity of each alternative broken down by time is sufficient. Such information
could be seen as emerging slowly over the network after all decisions have been made or as tabulated and published in a bulletin.
10 As a strategy, appearing influential is no substitute to being influential, recognized within the model once expectations are taken over
outcomes. Ex post coincidental conformity and early adoption can be just as satisfying or financially rewarding. Early acquisition of a
subsequently popular artist’s works benefits the coincidental collector financially just as much as it does the influential collector. The
coincidental collector may also benefit from social affirmation of the acquisition and reputation enhancement among outside observers not
aware of the paths of influence.
11 The linear model can also be re-expressed as a model imposing cost or penalty to late adoption rather than rewarding early adoption,
similar to the examples used in Brindisi, Çelen, and Hyndman (2014). Late adopters pay higher costs with payoffs 𝜋(𝑖; 𝜎) = 𝑏𝑐(𝜇𝑐

𝑖 ) −
𝑏𝑒(𝜇𝑐

𝑖 −𝜇𝑒
𝑖 ) where 𝑏𝑐 is the per member conformity payoff and 𝑏𝑒 is the cost associated with each player who acts concurrent or in advance

of player i on the same alternative. With 𝑏𝑐 = 𝑟𝑐 + 𝑟𝑒 and 𝑏𝑒 = 𝑟𝑒, the two scenarios are isomorphic.
12 The mixed strategy solution for this example has Pr𝑖(lead) = (1 + 𝑟𝑒)/( 3

2 + 𝑟𝑒). The value of the game in the mixed strategy solution is
𝑣 = (2 + 2𝑟𝑒)/(3 + 2𝑟𝑒). Since v < 1 for all 𝑟𝑒 ≥ 0, the value of the mixed strategy solution is always less than the follower’s payoff in the
pure strategy game.
13 The middle distance follower in a vertical structure benefits from the selfless act of the most distant follower choosing an indirect link to
the leader. A coordination failure in which player 2 follows 1 to produce Figure 2d for player 1’s benefit while player 1 follows 2 to produce
Figure 2e for player 2’s benefit results in the self-referencing loop of Figure 2b, the worst of all possible outcomes.
14 The possible 𝑁𝛼(𝑖; 𝜎) and 𝑁𝛽(𝑖; 𝜎) populations of followers in an alternate 𝑖𝐵-led tree seen in Figure 4 are introduced and developed
in Section 4.
15 That 𝐻∗(𝑖; 𝑔) ⊆ 𝐻′(𝑖; 𝑔) is established formally in support of Corollary 2 in Appendix B.
16 It is straightforward to extend Lemma 1 to structures with a unique leader, 𝜇𝑠

𝑖 followers, and 𝜇𝑙 = 𝑛 − 𝜇𝑠
𝑖 − 1 au-

tonomous adopters considered in Section 3.5. For  𝜋𝑁𝐿(𝑗; 𝜎) = 𝜙(𝜇𝑠
𝑖 ) + 𝜓(𝜇𝑦

𝑗 + 𝜇𝑠
𝑗 ) + ∑𝜇𝑙

𝜇=1(𝜙(𝜇𝑠
𝑖 + 𝜇) − 𝜙(𝜇𝑠

𝑖 ))𝑓 (𝜇), 𝑓 (𝜇) =
Pr(leader matches with 𝜇 autonomous adopters), only the middle term is effected by j’s decision about how to link to leader i.
17 Corollary 2 is consistent with Proposition 2. The corollary does not claim or imply that if 𝐵𝑁𝐿 ≥ 0 and σ is an equilibrium then
𝜎 ∈ 𝐻∗(𝑖; 𝑔), which would violate the Proposition 2 stipulation that 𝜎 ∈ 𝐻′(𝑖; 𝑔)\𝐻∗(𝑖; 𝑔) is also an equilibrium when 𝐵𝑁𝐿 ≥ 0.
18 While 𝜎′ ∈ 𝐻′(𝑖; 𝑔)\𝐻∗(𝑖; 𝑔) is socially preferred to 𝜎 ∈ 𝐻∗(𝑖; 𝑔), an argument in support of employing the strategy to minimize
𝑑𝑗 rather than being content to minimizing 𝜇𝑥

𝑗 includes the diminished position to exploit possible deviant behavior by other followers.
Additionally, minimizing 𝜇𝑥

𝑗 introduces a coordination problem if the option exists simultaneously for more than one follower, with the
worst case resulting in a self-referencing loop.
19 Linearity allows for aggregation in expectations over possible states. Curvature in the reward components means accounting for each
possible state separately, adding complexity to the equations without additional insight.
20 For any two {𝑗1, 𝑗2} ∉ 𝑁𝑆(𝑖𝐴; 𝜎), the ability to form such a hierarchy is not assured by the assumption of strong connectivity since it
may require the chain of links to pass through a member of 𝑁𝑆(𝑖𝐴; 𝜎).
21 If equal in size, to the switcher’s benefit, the act of switching makes the joined hierarchy larger, ex-post, to the departed hierarchy ex-ante.
22 For 𝜇𝑠

𝐵 < 𝑛 − 𝑛† − 1, the necessary condition to have the most distant successor of 𝑖𝐵 remain a follower is

𝜃 ≥
𝑚

𝑚 − 1
(1 + 𝜇𝛼(𝑗𝐵; 𝜎) − 1

𝜇𝑠
𝐵

) + (𝑚 − 2)𝑟𝑐
(𝑚 − 1)𝑟𝑒

( 𝑛 − 𝑛† − 1
𝜇𝑠

𝐵
− 1)

for which, with 𝜇𝛼(𝑗𝐵; 𝜎) ≥ 1 and 𝜇𝑠
𝐵 ≤ 𝑛 − 𝑛† − 1, the threshold on θ declines as 𝜇𝑠

𝐵 is increased.
23 As is trivially exemplified in the n = 2 example.
24 Also excluded from the utility function is a direct reward from early adoption. The coordination problem of interest is distinct from the
utility some people might receive simply by being the first to try new products.
25 Equation (7) is, naturally, the same except having replaced 𝜇𝑠

𝑖 − 1 with its value of 𝑛 − 2 for σ∈H(i;g).
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