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Abstract 

The objective of this paper is to localize damage in a single or multiple state at early stages of development 

based on the principles of symbolic dynamics. Symbolic Time Series Analysis (STSA) of noise-contaminated 

responses is used for feature extraction to detect and localize a gradually evolving deterioration in the structure 

according to the changes in the statistical behavior of symbol sequences. Basically, in STSA, statistical features 

of the symbol sequence can be used to describe the dynamic status of the system. Symbolic dynamics has some 

useful characteristics making it highly demanded for implementation in real-time observation application such 

as structural health monitoring. First, it significantly reduces the dimension of information and provides 

information-rich representation of the underlying data. Second, symbolic dynamics and the set of statistical 

measures built upon it represent a solid framework to address the main challenges of the analysis of non-

stationary time data. Finally, STSA often allows capturing the main features of the underlying system while 

alleviating the effects of harmful noise. The method presented in this paper consists of four primary steps: (i) 

acquisition of the time series data; (ii) creating the symbol space to produce symbol sequences based on the 

wavelet transformed version of time series data; (iii) developing the symbol probability vectors to achieve 

anomaly measures; (iv) localizing damage based on any sudden variation in anomaly measure of different 

locations. The method was applied on a flexural beam and a 2-D planar truss bridge subjected to varying 

Gaussian excitation in presence of 2% white noise to examine the efficiency and limitations of the method. 

Simulation results under various damage conditions confirmed the efficiency of the proposed approach for 

localization of gradually evolving deterioration in the structure, however, for the future work the method needs 

to be verified by experimental data. 
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1. Introduction 

 

Early detection of structural damage in infrastructures is crucial to avoid life and economic losses 

due to catastrophic failures. In this regard, structural health monitoring (SHM) evaluates the integrity 

of a structure by observing its dynamic responses by an array of sensors over time to determine the 

current health state of the structure. One of the major obstacles facing SHM is the analysis of huge 

amount of data that is produced. Therefore, it is important to obtain more compact representation of 

the data with no significant loss of information. On this point, feature extraction as a data transform 

technique can be applied to transform the input data into a set of features to reduce the dimension of 

information and provide information-rich representation of the underlying data.  

Conventional vibration-based feature extraction methods are separated into two categories; the first 

group includes methods utilizing Fourier analysis to extract damage-indicative features such as 

Frequency Response Functions (FRF) and modal parameters (natural frequencies, mode shapes, 

modal damping) [1, 2]. Fourier analysis is sufficient once the system’s behavior is stationary (the 

system’s statistical parameters are constant). If the statistical properties of the system under study vary 

over time, consistent comparison of the system will not be possible. On this point, the second category 

is comprised of methods dealing with non-stationary signals with frequency-time analysis approach 

such as Short Time Fourier Transform (STFT) [3, 4], wavelet analysis [5-7] and Hilbert-Huang 

Transformation (HHT) [8, 9].  

 

Recently, several new statistical based feature extraction approaches have been proposed for structural 

health monitoring. Statistical pattern recognition methods such as Principal Component Analysis 

(PCA) [10-13], Independent Component Analysis (ICA) [14-16] and neural network-based techniques 

are regarded as useful methods for feature extraction of time-series data [17-20].  

 

Traditional feature extraction methods are inadequate in characterization of high-dimensional and 

non-linear systems. A novel scheme of symbolic dynamics has recently been introduced for feature 

extraction of time series data in several applications [21]. Symbolic dynamics studies long term 

evolution of dynamical systems with preserving and highlighting key features of the history which is 

useful for SHM to detect any gradually evolving deterioration in the structure [22]. In a recent study 

the performance of STSA has been shown to be superior to that of several pattern classification 

techniques such as principal component analysis (PCA), artificial neural networks (ANN) and kernel 

regression analysis (KRA), in terms of early detection of changes and computation efficiency [23]. 

 

In STSA, basically, there is no prior assumption about the nature of the system under study as the 

method can be applied for deterministic or stochastic, linear or non-linear systems. In symbolic time 

series analysis, the behavior of a system, linear or non-linear, deterministic or stochastic is represented 

via symbols in a constructed space.  The underlying concept in the technique is to describe the raw 

time-series measurements with a corresponding sequence of symbols. Symbolization is treated as a 

transform from state space into symbol space which significantly reduces numerical computations in 

the subsequent analysis while retaining important information, which is vital for real-time monitoring 

applications. One of the effectiveness accompanying the technique is that symbolic encoding applied 

to times series data often improves signal-to-noise ratio, hence, feature extraction by conducting this 

approach is less sensitive to measurement noise [24-28].  

 

In this study, symbolic dynamics of time series data has been developed and analyzed to detect and 

localize a gradually evolving change in a system. In section 2, first a background on the topic of 

STSA will be presented followed by the damage localization algorithm in section 3. The feasibility of 

the proposed method on localization of damage is examined via extensive numerical simulations with 

various damage conditions in section 4. The numerical simulation consists of a flexural beam and a 2-

D planar truss bridge subjected to gradual deterioration. Section 5 concludes the work and suggests 

some future works.  

 

 

http://en.wikipedia.org/wiki/Independent_component_analysis
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2. A background on Symbolic Time Series Analysis (STSA) 

Symbolic dynamics is application of information theory to dynamical systems. It is a powerful data 

analysis and data transform technique for studying behavior of continuously varying dynamical 

systems which considerably reduces the dimension of the problem. A central step in the technique is 

to discretize the raw time-series measurements into a corresponding sequence of symbols. The idea is 

to partition the range of original observations into a finite number of cells (subsets or partitions) called 

generating partitions. Each partition is associated with one distinct symbol and then the original time 

data is uniquely mapped into symbol space based on the range in which each value in the 

measurement lies. After creating the symbol sequence, the statistical pattern of the symbol sequence is 

investigated to evaluate the behavior of the dynamical system and also to detect any possible change 

in the system parameters. One great advantage accompanying the technique lies in the fact that the 

efficiency of numerical computation is considerably increased over what it would be for the original 

data; this is particularly beneficial for real-time monitoring.  

 

STSA allows capturing the main features of the underlying system while alleviating the effects of 

harmful noise. The effectiveness of STSA in noisy condition has been demonstrated in several 

research [25-28]. The results of research presented in [25], show that compared to artificial neural 

network-based method (ANN) and support vector machine-based method (SVM), STSA-based 

approach provides more robust damage indices in presence of measurement noise. In another 

research, it has been indicated that symbolization can reduce sensitivity to measurement noise [26]. In 

a different study, it has been shown that symbolization can directly enhance signal-to-noise ratios 

[27].  

 

A major issue in the analysis of time series data is that many time-series analysis approaches assume 

that the observed process is stationary. When the system statistical properties changes over time, the 

system is non-stationary and consistent comparison of the system status is not possible. Non-

stationarity is common in the structures subjected to moving load or ambient excitation as ambient 

load often produces non-stationary behavior [29, 30].  Successful application of symbolic analysis to 

study non-stationary systems has been reported in several research [31-33]. Symbolic descriptions of 

the dynamics of non-stationary Electroencephalography (EEG) signals has been employed to detect 

changes associated with the stimuli [31]. In another study, symbolic time series analysis has been used 

to evaluate heart-rate dynamics using heartbeat time series which is highly non-stationary process 

[32]. Symbolic dynamics and the set of statistical measures built upon it represent a solid framework 

to address the main challenges of the analysis of non-stationary time data. 

 

Based on the above discussion, symbolic dynamics is a methodology with low computational cost, 

high robustness against certain level of noise and capable of evaluating non-stationary dynamical 

systems. These characteristics are highly demanded for implementation in real-time observation 

application such as structural health monitoring. 

 

Assume a real-valued time series data 
TNTxxxX  }]{},..,{},[{ 21

 obtained from a set of observations 

of an unknown dynamical system. X  represents the evolution of the system’s dynamics over time; 

1
}{

Ntx , ]:1[ Tt  
is dated observed vector with length N describing the statues of the system at stage 

or date t  of these measurements, T

Nt Nxxxxx )}(),...,2(),(),({}{ 1   ;   is the time 

delay and   refers to the starting point; N is the dimension of the measurement. 

 

Let   be the state space of this varying dynamical system that consists of all possible values of the 

observed time series. In order to obtain a symbolic representation of X , the state space of the 

underlying system is partitioned into a finite number of subsets S ,...,, 21  that satisfies the 

followings, 
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where refers to each subset in symbol space;   represents the whole space and S  is the number of 

partitions. Based on Eq. 1, there is no overlap between two adjacent subsets and they are mutually 

exclusive. In addition, the subsets are exhaustive and they cover the entire of the state space. Each 

subset in the state space is assigned to a symbol alphabet that labels that region. Having constructed 

the symbol space, each measurement point of }{ tx  is transformed into a symbol by mapping from 

state space to symbol space .:   Therefore the sequence of data in }{ tx is described by string 

of N symbols including i , . ],:1[ NSSi   The corresponding symbols are the simplified 

abstraction of the original complex systems.  

 

As an example, suppose a time series 140}{ tx with dimension 40N  which varies between -4 and 8; 

A symbol space can be created in a way that uniformly is partitioned into three symbols, 3S  as 

follows, (Fig.1): 
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According to this symbol space, 401}{ tx is uniquely mapped to the following symbol sequence with 

length 40, [ACBBAABAABBBBAABABBBBBCAABBACBBAAAAABABB]. 
 

 
Figure 1. Illustration of mapping from state space to symbol space 

 

It is apparent that the way of discretization of the state space as well as the number of alphabet size 

have crucial impact on characteristics of the coded or symbolic representation. The choice of alphabet 

size depends on specific problem, noise level and also the available computation power. A large 

alphabet may be noise-sensitive while a small alphabet could miss the details of signal dynamics. One 

way to statistically characterize the obtained symbol sequence is to use Shannon entropy which was 

first introduced by Claude E. Shannon in 1948 [34]. Shannon entropy is a measure of the complexity 

and uncertainty of the system under study. The more orderly the system is, the lower will be the 

entropy, and vice versa. Shannon entropy for a given symbol sequence can be approximated 

according to Eq. 3, by calculating the probability of occurrence of each symbol, )( ip  .  )( ip  can be 

obtained by counting the number of each symbol i  , ]:1[ Si  that is found in the sequence divided 

by the length of the sequence.
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where ,0)1( H  
since in the case of just one partition ( 1S ) the probability of occurrence of that 

single symbol will be one.  

And in the case of 0ip ,  
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Zero probability for a symbol, 0)( ip   shows that particular symbol is not observed in the symbol 

sequence. On the other hand, once the symbols are equally distributed in a sequence                              

( jipp ji  ),()(  ) maximum entropy is obtained.  

 

In the symbol sequence obtained in Fig.1, the probability of occurrence of symbols are respectively,
 

40/17)( 1 p  , 40/20)( 2 p
 
and 40/3)( 3 p .  

 

It can be seen that Shannon entropy is maximized when probabilities are equally distributed and it is 

minimized once all the probability is concentrated in just one component and other components do not 

exist in the observation. Higher Shannon entropy indicates there is no way to predict the outcome of 

the symbol sequences which is refereed to more randomness. 

As seen in Eq. 3, Shannon entropy is a function of alphabet size, S . Higher number of partitions, S , 

corresponds to retaining the most detailed information of the original measurement such as noise 

which leads to redundancy and more computational effort. On the contrary, lower number of subsets 

might lead to loss of information embedded in time series data.  

A key issue in partitioning the state space is to make a proper decision on alphabet size, S . This issue 

can be resolved based on the concept of dynamic entropy [35]. Dynamic entropy can be approximated 

by the Shannon entropy excess associated with addition of one symbol size, 1 SS  as follows,  

 

)()1()( SHSHSh   (5) 

Large number of partitions ( NS  ) produces smaller dynamic entropy and results in more 

computational effort on subsequent analysis since there is no considerable reduction in dimension of 

the original system. On the other hand, small alphabet size corresponds to large dynamic entropy 

which might not be appropriate due to loss of information. Therefore, a proper selection of number of 

partitions is a trade-off between efficiency and accuracy.  

3. Damage Localization Based on Symbolic Time Series Approach 

This section presents application of STSA in damage localization which includes four major steps 

explained in the following parts.  

Suppose a gradually time varying system is under observation at T+1 dates or stages as

)1(210 }]{},..,{},{},[{  TN

j

T

jjjj xxxxX . 
jX contains all measured signals in this period of observation 

obtained from j-th sensor. }{ j

tx is a vector of N elements describing the state of the structure in j-th 

sensor, ]:1[ Mj  at date t, ]:0[ Tt . 10 }{ N

jx  represents the nominal state of the system in j-th 

sensor location which can be referred to the first set of observations in the system under monitoring. It 

should be noted that the nominal state is not necessarily the healthy state of the structure.  

As an example, if we monitor the integrity of a structure by using 20 sensors over a month by daily 

observations (31 days and one observation per day); therefore, parameters M  (number of sensors) 
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and T (number of observations) are, respectively, 20 and 31. }{ j

tx is the observed response in one of 

the sensors ( ]20:1[ j ) during this period ]31:1[t . The observed signal has a length of N elements, 

let’s say starting observation at 10:00 AM until 10:05 AM with time delay 0.01 sec, therefore, 

N=30,000. 

Totally, there is an array of M sensors recording the response of the structure over time. In order to 

analyze this huge amount of data, T(dates)   M(sensors)   N(length of the observed signal in each 

sensor), STSA has been conducted to reduce the dimension of information and extract useful features 

suitable for damage localization paradigm.  

3.1. Reconstruct the time series data by employing discrete wavelet transform (DWT) 

In “real-life” applications and field test experiments, measured data are always susceptible to 

contamination by measurement noise.  Noise can significantly affect the damage characterization 

results in structural health monitoring (SHM) applications and leads to unreliable and false prediction 

of structural damage. Hence, to achieve more consistent damage characterization results it is 

necessary to improve signal to noise ratio (SNR) of measured signals. Application of wavelet 

transform in noise mitigation has been repeatedly demonstrated in the literature [36-40].  

 

In DWT, filters of different cut-off frequencies are used to analyses the signal. The procedure starts 

with level one decomposition by passing a half-band low-pass and high-pass filters through the signal. 

The decomposition process can be mathematically described by convolution operation as  

 

Where g and h are, respectively, associated with high-pass and low-pass filters.  

The output of low-pass filter is then passed through the same low-pass and high-pass filters for further 

decompositions. The decomposition process can be iterated, with successive approximations (low 

frequency components) being decomposed in turn.  

If decomposition is continued to level J, then the DWT of the original signal is obtained by 

concatenating all the coefficients starting from the last level of decomposition as, 

Where 
jA and

jD , respectively, represent the approximation and detail coefficients at level j. DWT at 

level J, filters the signal to low and high frequency portions with the bandwidth dictated by J.  

Having conducted wavelet decomposition, the denoising operation can be performed by recovering 

the detail wavelet coefficients. Therefore, detail coefficients with small magnitude can be considered 

as pure noise and be set to zero.  In this regard, each coefficient is compared with a predefined 

threshold value to decide whether it constitutes a desirable part of the signal or not. As a result, 

appropriate selection of the threshold value is a crucial decision in this technique. If the threshold is 

too small or too large, then the procedure tends to over-fit or to under-fit the data. In this study soft 

threshold approach was utilized as follows, 

 

 

where  , d ,   are, respectively, threshold value, original detail coefficient and recovered (modified) 

detail coefficient. In this study, threshold value was determined based on universal threshold approach 

[41] as, 
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where N is the number of data in the signal as explained earlier. 

 

The denoising procedure ends with reconstructing the signal from sub-bands with smaller bandwidths 

by taking inverse discrete wavelet transform (IDWT). In this step, the recovered signal is constructed 

based on the original approximation coefficients of level J and the modified detail coefficients of 

levels from 1 to J. 

In this study, time series data have been denoised based on the procedure explained in this section to 

reduce unwanted noisy part of the signal and produce more consistent damage localization results.  

3.2. Partitioning the state space based on maximum entropy  

In the previous section, recovered version of time series data was generated, 1}{ N

j

ty ; where 
 1}{ N

j

ty
 

denotes recovered version of the observed signal 1}{ N

j

tx  in  j-th sensor location, ]:1[ Mj  at date t, 

]:0[ Tt . Then, the normalized signal 1}~{ N

j

ty can be easily obtained as follows: 

where 
j

t and j

t are respectively, the mean value and standard deviation of }{ j

ty . This 

transformation constitutes a unit free measure and makes the data more comparable which is 

beneficial in damage localization procedure.  

Therefore, )1(210 }]~{},...,~{},~{},~[{  TN

j

T

jjjj yyyyY  will be employed in the subsequent analysis. 

The damage localization procedure is followed by generating symbol sequences of data. As 

mentioned earlier in section 2, in order to generate the symbol sequences, first the symbol space 

should be created. Totally, there are M sensor locations and therefore, M distinct symbol spaces will 

be generated.  

In this regard, two main decisions should be made: first, the alphabet size and second, the way of 

partitioning for each symbol space. These decisions are made based on the nominal state of the j-th 

sensor location, }~{ 0

jy
 
and after creating the symbol space for that particular location, it remains 

invariant as a basis to generate the symbol sequences of the following observations ]:1[ Tt for that 

particular location. It is clear that for two different sensor locations, ji   different symbol spaces are 

acquired according to their nominal states, }~{ 0

iy  
and }~{ 0

jy . It is worth mentioning that the nominal 

state is not necessarily the healthy state of the structure and it only refers to the state of the structure at 

the first stage of monitoring. 

In this study, partitioning of symbol space is performed based on maximum entropy approach. In this 

scheme, sparsity and distribution of data is considered as a key factor to generate the partitions. It 

means that highly-dense regions in terms of information are partitioned finer and sparse regions are 

devoted fewer partitions; to illustrate this fact, an example is examined.  

Suppose for arbitrary sensor location j, the partitioning of symbol space is created based on }~{ 0

jy with 

jS  partitions, as ,1 ,...2 and .
jS }~{ 0

jy is a vector with length N whose elements vary between 
min

0 }~{ jy  

and
max

0 }~{ jy .  

Nlog2  (9) 
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Partitioning of the symbol space can be carried out based on either uniform entropy approach or 

maximum entropy approach. In the first approach, the space is divided to equal-sized partitions as,  

while in the second approach, partitions are not equal-sized. In the maximum entropy approach, first, 

the elements of }~{ 0

jy are ordered from lesser to greater; therefore, the sorted vector, }~{ 0

jy  starts with 

min
0 }~{ jy and ends with

max
0 }~{ jy . Then the arranged vector is divided to 

jSN / sections, each of them 

makes one partition of the space as follows, 

where ]/[~
0 j

j SNy denotes the thSN j )/( element in vector }~{ 0

jy .  

Fig. 2 compares the symbol space for j-th sensor location, j obtained by these two approaches; 

Fig.2 (a) and Fig.2 (b) respectively, illustrate symbol space based on uniform entropy and maximum 

entropy. As expected, the second approach, maximum entropy, devotes more partitions to 

information-rich areas, unlike the first technique in which the partitions are equal-sized. In the first 

approach, we see that the probability of symbols is not the same, as the number of data in each 

partition is different with one another; while the symbol sequence generated by the second approach 

provides equally distributed probabilities at nominal state. This is interestingly attractive since by 

comparing the symbol probabilities of future observations ]:1[ Tt  
with the nominal state, it is 

possible to monitor any variation in the system. Therefore, the symbol sequence generated based on 

this symbol space will be better indicator of any evolving damage in the structure and will be used in 

this study.  

(a) (b) 
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Figure 2. Space partitioning based on, (a) uniform entropy, (b) maximum entropy. 
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3.3. Selection of alphabet size  

 

The size of alphabet for j-th sensor location, jS is another issue to be determined.  In this study, the 

same alphabet size is considered for all sensor locations, ., jiSSS ji 
 
This is because, in the 

monitoring process, the state of each location is compared with other locations in a statistical sense by 

comparing anomaly measures of different locations. In order to compare the statistical behavior of 

two distinct locations, it is evident that the probabilities should be of the same length to make this 

comparison possible.  

The selection of alphabet size can be done in a straightforward way based on dynamic entropy of 

symbol sequence in the nominal state and prescribed threshold value according to Eq. 5. As 

mentioned earlier, in this work, partitioning is done based on maximum entropy approach; therefore, 

in the nominal state, the probabilities of symbols for two different symbols 
m and 

n are the same

nmpp nm   ),()(  , therefore Eq. 3 can be rewritten as 







Si
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The procedure of selecting alphabet size starts with 2S  and then Shannon entropy excess is 

calculated with the addition of one symbol size 12S  as follows, 

As illustrated by Eq. 14, by increasing 32: S , the Shannon entropy excess will be 0.4055 .  If the 

procedure continues for 43S , a less dynamic entropy is obtained, 0.2877 . Therefore, by 

increasing alphabet size dynamic entropy reduces to zero as 0.hNS   This operation keeps 

until dynamic entropy is less than a predefined threshold value.  

3.4. Developing the anomaly measures for damage localization 

The procedure of damage localization so far consisted of reconstructing the noisy data of time series 

signals and generating the symbol space for each sensor location based on its nominal state. 

According to these foundations, at each stage of measurement ]:1[ Tt and for each sensor location

]:1[ Mj , the symbol sequences are generated. Therefore, there will be MT  symbol sequences 

each with length of N.  

For each symbol sequence, the probability of symbols, )( k

j

tp  , is found by the number of occurrence 

of that specific symbol divided by the length of the sequence, N. ]:1[),( Skp k

j

t  refers to the 

number of occurrence of symbol k in the symbol sequence obtained for  j-th sensor at stage t. On this 

point, probability vector 
j

tP
 
is defined as a vector containing the probabilities of all symbols in  j-th 

sensor at date t as follows, 
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As expected the probability vector for any arbitrary location at t=0, nominal state, will be, 

Comparing probability vectors at time t, 
j

tP  with its nominal state, 
j

0P  leads to assess any possible 

change in the system behavior in j-th location. To make this comparison feasible, anomaly measure is 

defined as, 

Anomaly measure is a scalar value representing the farness of the system from its nominal state. The 

more the anomaly measure is, the less closeness is between current state and the nominal state of the 

system; which is an indicator of damage presence in the structure.  

The last step of damage localization is to compare the anomaly measures of different locations to 

detect any sudden variation which corresponds to damage. Let’s say at date t the anomaly measures 

for M sensor locations are obtained and compared together. At damage location, it is expected to get 

abrupt change in anomaly measure since the statistical behavior of this location is the most deviated 

from its nominal state amongst all other locations. This idea gives a hint that if the anomaly measures 

are developed in different locations, at damage location, higher anomaly is obtained; therefore, 

damage localization index at stage t is defined as: 

:Mj A j

tt 1  ,  max   
(18) 

t  refers to the location of maximum anomaly measure amongst all measured points at stage t which 

corresponds to the location of damage. 

In summary, the presented damage localization technique includes the following steps: 

1. Denoise time series data by employing DWT. 

2. Generate the symbol space for each sensor location according to the nominal state. 

3. Generate the symbol sequences, probability vectors and anomaly measures. 

4. Localize damage by comparing the anomaly measures of different measured points. 

As will be illustrated, the proposed damage localization method is robust in presence of noise 

influences which leads to more consistent damage localization results in real-life applications.  

 

4. Application 

The damage localization test derived in this paper is applied on two numerical examples to evaluate 

the feasibility and effectiveness of the method; (1) a flexural beam and (2) a 2-D planar truss 

structure. Damage localization scheme was performed considering different damage conditions in 

presence of practical uncertainties such as noise and incompleteness of measured data.  
 

 

4.1. A Flexural Beam 

In the first demonstration, a rectangular steel beam with dimensions 2000 mm × 40 mm × 40 mm and 

material properties GPaE 200 , 3/7800 mkg and Poisson ratio = 0.3 is considered. Since the 

aspect ratio of the beam is 1/50, hence, the behavior of the beam can be modeled, with reasonable 
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accuracy, by Euler–Bernoulli beam theory. The FE model of the structure was developed with the 

help of an in-house finite element (FE) code implemented in Matlab. The beam is discretized by 20 

linear beam finite elements with two lateral and rotational degrees of freedom at each node. Two 

different boundary conditions, fixed-free (C-F) and two-fixed-end (C-C) supports, are considered as 

shown, respectively, in Fig.3 (a) and Fig.3 (b). Rayleigh damping was adopted for constructing the 

damping matrix.  
(a) 

 
 

(b) 

 
Figure 3. Illustration of the flexural beam with different boundary conditions, (a) fixed-free beam (C-F), (b) two-fixed-end beam (C-C). 

 

The beam is assumed to be a time-variant mechanical system subjected to gradual stiffness 

degradation at particular element locations which is simulated by introducing Elastic modulus 

reduction. It is commonly accepted that for the vast majority of the structures, stiffness decay due to 

damage evolution process can be modelled by a scheme shown in Fig. 4 (a), [42-45] . As exhibited, in 

the initial stages, deterioration occures in an approximately linear and slight fashion follwed by abrupt 

and rapid reduction in the stiffness which consequently results in failure.  Based on this figure, dE  

(Elastic modulus of the damaged element) starts with 00GPa2  which corresponds to the nominal 

state, in this situation is also equivalent with the healthy state, and over 30 stages, it approaches to 

zero. Fig. 4 (b) indicates the corresponding change in the Elastic modulus at each stage compared to 

the nominal stage. As expected, an increasing trend is obtained, starting with 0% change in the Elastic 

modulus at stage 1 and ending with 100% change in the Elastic modulus at stage 30. 

 

 
Figure 4. Deterioration history, (a) Elastic Modulus of the damaged element, (b) The change in the Elastic Modulus compared to the 

nominal state (%). 
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Figure 5. Gaussian excitation 

The structure is subjected to Gaussian stationary white noise excitation as shown in Fig. 5. The 

location of input excitation is assumed to be at free end for the C-F case study and at mid-span for the 

C-C case study.  

The time series responses were extracted at each nodal point by introducing state-space vector. At 

each stage of monitoring, ]30:0[t , first, the equation of motion is updated based on the current 

value of dE  and then is solved by employing discretization technique to obtain time histories of all 

discretized points during 10 seconds with time step of 0.1 millisecond. To evaluate the robustness of 

the method to the changes in the excitation, the input Gaussian excitation is not kept constant and a 

new random excitation is generated at each stage of monitoring, ]30:0[t ; it is worth mentioning 

that only the distribution (normal) and the amplitude of the random excitation are kept unchanged. 

 

In order to examine the robustness of the damage localization method in presence of noise influences, 

the deterministic time responses, }{x , obtained from the previous step, were polluted with 2% white 

random noise with zero mean value as follows, 

where }{ j

tx is the deterministic time response in j-th sensor at stage t. )x( j

t }{ is the standard 

deviation of the clean response and )(tR  generates randomly distributed data with distribution 

prescribed. e  indicates the percentage of noise. 

Having obtained the time series responses at all nodal points (20 locations for the C-F beam and 19 

locations for the C-C beam), damage localization process starts with reconstructing the time series 

data by employing DWT. For this implementation, first the mother wavelet (window function), should 

be selected. Amongst the well-known mother wavelets, Daubechies wavelet is the most commonly 

used and has gained more popularity due to its useful properties. They are widely used in the field of 

noise-suppression [46-49]. Daubechies wavelets are a family of orthogonal wavelets and have higher 

order than any other wavelets. Due to compact support and orthogonally, they are capable of 

describing the details of the problem conveniently and accurately as well as making discrete wavelet 

transform practicable. In this work, Daubechies wavelet with order 5 has been employed as a mother 

to perform DWT up to the fifth level to obtain wavelet coefficients. Matlab command “wden” has 

been employed to denoise the signals with respect to aforementioned window. Universal threshold 

approach with soft thresholding has been used to recover the noisy signal. Having denoised the 

signals, time series data are normalized according to Eq.10 to obtain }~{ j

ty . For each measured point, 

the symbol space was generated based on descriptions in section 3.2 and 3.3. Based on our 

investigations, it was found that the size of alphabet 4 is appropriate and is considered for all 

measured locations. After creating the symbol sequences, the probability vectors and anomaly 

measures were developed according to section 3.4.  
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4.1.1. Damage detection  

The effect of damage on anomaly measure was investigated by using only one sensor. A deterioration 

was introduced in element 20 in the C-F beam and the anomaly measure was obtained during 30 

stages at a sensor located between element 1 and 2, Fig. 6. Element 20 was deliberately selected for 

this investigation as damage in this element has the lowest impact on the global stiffness of the 

structure compared to other elements. Also, the choice of measurement point is because it is located in 

the most distant position from the damage.  

As seen in Fig.6, anomaly measure has been plotted only for stages 1 to 24 since after stage 25 the 

change in the anomaly measure is significant and the early part of the graph, stages 1 to 24, is almost 

invisible. Based on Fig.6, an increasing trend in the anomaly measure is obtained after stage 13. Stage 

13 corresponds to less than 5% stiffness reduction in the element (See Fig.4 (b)). As deterioration 

evolves, higher values of anomaly measure are obtained which means the system is getting far from 

its nominal state. The more the anomaly measure is, the less closeness is between the current state and 

the nominal state; which is an indicator of damage presence.  

Based on this demonstration, the proposed method can reliably detect gradually evolving deterioration 

in the structure with small severity (5%) by using only one sensor. The other interesting point is that 

the method is robust to changes in the excitation. As said earlier, at each stage of deterioration, the 

response of the structure is obtained under a newly generated random excitation. 

 
Figure 6. The impact of deterioration in element 20 on anomaly measure at sensor located between elements 1 and 2 

 

4.1.2. Damage localization results 

  

Several damage cases were investigated for C-F and C-C beams which are tabulated briefly in Table 

1: For the C-F beam, six different damage cases are considered: (i) single state damage in element 3 

(close to the fixed-end), (ii) single state damage in element 11 (close to mid-span), (iii) single state 

damage in element 18 (close to the free end), (iv) multiple state damage in elements 3 and 11, (v) 

multiple state damage in elements 3 and 18, and (vi) multiple state damage in elements 11 and 18.  

 

For the C-C beam, four different damage cases are considered: (i) single state damage in element 11 

(close to mid-span); (ii) single state damage in element 17 (close to the fixed-end); (iii) multiple state 

damage in elements 11 and 17, (iv) multiple state damage in elements 3 and 17.  

 
Table 1. Introduced damage cases for the flexural beam 

 

Damage cases C-F beam C-C beam 

Single state damage 

Element 3 

Element 11 

Element 18 

Element 11 

Element 17 

Multiple state damage 

Elements 3 and 11 

Elements 3 and 18 

Elements 11 and 18 

Elements 11 and 17 

Elements 3 and 17 
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The damage localization results are presented in Fig.7 and Fig.8, respectively, for the C-F and C-C 

beams. These results are based on the observed responses at all nodal points (20 sensors for the C-F 

beam and 19 sensors for the C-C beam).  
(a) (b) 

 
 

(c) (d) 

  
(e) (f) 

  
Figure 7. Damage localization results for the C-F beam, (a) single state damage in element 3, (b) single state damage in 

element 11, (c) single state damage in element 18, (d) multiple state damage in elements 3 and 11 (e) multiple state damage 

in elements 3 and 18, (f) multiple state damage in elements 11 and 18. 
(a) (b) 

  
(c) (d) 
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Figure 8. Damage localization results for the C-C beam, (a) single state damage in element 11, (b) single state damage in 

element 17, (c) multiple state damage in elements 11 and 17, (e) multiple state damage in elements 3 and 17. 
 

 
Figure 9. The impact of deterioration on the first natural frequency in the C-F beam. 

 

Before investigating the damage localization results, presented in Fig.7 and Fig.8, first, the impact of 

deterioration in different locations on the first natural frequency was investigated for the C-F beam 

and the result is presented in Fig.9.  

 

Three pre-defined damage cases, (See Table 1), (i) single state damage in element 3, (ii) single state 

damage in element 11 and (iii) single state damage in element 18 are considered. As shown in Fig.9, 

as deterioration develops the change in the first natural frequency compared to the baseline state 

increases. The interesting point lies in the fact that the sensitivity of the change in the first natural 

frequency increases as damage location moves toward the fixed end since damage close to the fixed-

end has higher negative impact on the global stiffness of the beam. As depicted, the same severity of 

the single state damage in elements 3, 11 and 18, respectively, causes 3.72%, 0.77% and 0.01% 

changes in the first natural frequency compared to the baseline state at stage 25. Based on this 

observation, it is expected that higher damage indices is obtained for damages which have higher 

adverse effect on the global stiffness of the structure.  Therefore, for damages with the same severity, 

but different locations, we expect that different damage indices are obtained.  

 

With this background, now, let’s analyze the damage localization results presented in Fig. 7 and Fig. 

8. As can be seen in Fig.7, in the C-F beam, in all damage cases, single or multiple state, the location 

of damages can be successfully identified without any false prediction. Moreover, by investigating the 

damage indices obtained for different damage cases in the C-F beam, it can be realized that higher 

damage indices correspond to more sensitive damage locations. The obtained damage indices for 

single state damage at elements 3, 11 and 18 are respectively 0.5235, 0.5108 and 0.5076 (See Fig.7 

(a), Fig.7 (b) and Fig.7 (c)); it confirms our previous statement that the sensitivity of damage index is 

higher once damage is closer to the fixed-end. The same conclusion can be attained once multiple 

damage cases are investigated. In all multiple damage cases, the damage that is closer to the fixed end 

has higher damage index compared to the damage that is closer to the free end. 
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In the case of C-C beam, again, the location of all damages can be accurately identified. But, it seems 

a false alarm appears in element 9 in two damage cases: single state damage in element 11, Fig.8 (a) 

and multiple state damage in elements 11 and 17, Fig. 8 (c); however, the damage index obtained for 

element 9 is much smaller compared to the damage indices obtained for real damages. 

 

By investigating Fig.8, it can also be realized that the sensitivity of damage index to the damage close 

to the mid-span (element 11) is slightly higher than the damage close to the fixed end (element 17); 

obtained damage indices for single state damage in elements 11 and 17 are respectively, 0.5159 and 

0.5141 (See Fig.8 (a) and Fig.8 (b)). The same finding can be obtained from multiple state damage 

case shown in Fig.8 (c) which attributes higher damage index to the damage close to the mid-span 

rather damage close to the fixed end.   

 

Base on this investigation, it can be concluded that the proposed method not only can identify the 

location of damages in single or multiple states but also in the case of damages with the same severity 

attributes higher damage indices for more sensitive ones.  

4.1.3. Damage localization results using 10 sensors 

Damage localization results presented in the previous section was based on measurement at all nodal 

points. In this section, the number of sensors is reduced to half and only measurements from 10 nodal 

points (sensors located at even points: 2, 4, 6, …, 20 ) are taken into account.  

The damage localization procedure was performed for both cases and the results for the C-F case are 

presented in Fig.10. According to the presented results in Fig.10, it can be seen that the damage index 

gets its maximum value at the sensor location which is the closest one to the damage location; for 

single state damage at elements 3, 11 and 18, sensors 4, 12 and 18, respectively, show the maximum 

damage indices; these sensors are located in the immediate neighborhood of the damaged element, 

(see Fig.10 (a), Fig.10 (b) and Fig.10 (c)). Based on this observation, it can be concluded that the 

maximum damage index corresponds to the sensor located in the neighborhood of the damage and 

with distance from the damage area the damage index decays very quickly. However it should be 

mentioned that for satisfactory evaluation of damage location it is necessary to distribute sufficient 

sensors along the structure. 
(a) (b) 

  
(c) (d) 

  

(e) (f) 

2 4 6 8 10 12 14 16 18 20
0.5

0.501

0.502

0.503

0.504

0.505

0.506

0.507

0.508

Location (Element Number)

A
n
o
m

a
ly

 M
e
a
s
u
re

2 4 6 8 10 12 14 16 18 20
0.5

0.5005

0.501

0.5015

0.502

0.5025

0.503

0.5035

0.504

0.5045

Location (Element Number)

A
n
o
m

a
ly

 M
e
a
s
u
re

2 4 6 8 10 12 14 16 18 20
0.5

0.5005

0.501

0.5015

0.502

0.5025

0.503

0.5035

Location (Element Number)

A
n
o
m

a
ly

 M
e
a
s
u
re

2 4 6 8 10 12 14 16 18 20
0.5

0.505

0.51

0.515

Location (Element Number)

A
n
o
m

a
ly

 M
e
a
s
u
re



17 

 

  
 

Figure 10. Damage localization results for the C-F beam using 10 sensors, (a) single state damage in element 3, (b) single 

state damage in element 11, (c) single state damage in element 18, (d) multiple state damage in elements 3 and 11 (e) 

multiple state damage in elements 3 and 18, (f) multiple state damage in elements 11 and 18. 
 

4.2. A Truss Structure 

In the second demonstration, the damage identification strategy is applied on a planar truss bridge to 

illustrate the applicability of the proposed approach. The truss model has 14 nodal points (underlined 

numbers), 25 truss elements (bold numbers) and 25 nodal dofs as shown in Fig.11.  

Values for the material and geometric properties are as follows: the elastic modulus GPaE 200 ; the 

cross-sectional area of all elements =0.01 m
2
; the length of all horizontal and vertical members = 1 m; 

the length of the inclined members = 1.41 m; and the mass density 3/7800 mkg .  

 

 
Figure 11. A 2-D planar truss bridge 

 

This type of structure is subjected to vibration caused by the passing traffic or wind; hence, it is 

reasonable to assume the structure is under ambient excitation to collect structural responses for 

locating damage. It is supposed that the structure is subjected to random Gaussian excitation 

synchronously exerted at all generalized coordinates. The response of the structure is recorded both in 

x and y directions at all nodal points.  

 

A total of 10 damage cases were designed considering damage in horizontal, vertical and diagonal 

members in single or multiple states (See Table 2). Damage was simulated by gradual decreasing of 

the member Elastic modulus; the same trend presented in Fig.4 (a) was considered for stiffness 

deterioration. 

At each stage of deterioration, a new random excitation (it should be noted again that the maximum 

amplitude and the distribution of the excitation are kept constant at all stages) is generated and the 

time response of the structure is extracted at all dofs by introducing state space vector. At each stage 

of monitoring, ]30:0[t , the deterministic time series of strain at element j, }{ j

t  , ]25:1[j  
is 

developed according to the recorded nodal displacements as: 

where, a and b  are nodal points of member j ; 1}{ N

a

tu and 1}{ N

a

tv are respectively, deterministic 

recorded time responses at node number a , at stage t,  in x and y directions. L  and   respectively, 

indicate the length of the member and its orientation.  
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The same polluting (2% random noise) and denoising procedure, explained earlier in section 4.1, is 

applied on simulated }{ j

t . For each member, the symbol space was generated and then the damage 

localization procedure was performed by developing anomaly measures of different elements. By 

comparing the anomaly measures of different members, it is possible to identify the location of 

damage. 

Table 2. Introduced damage cases for the truss structure 

 

 Single state damage Multiple state damage 

Damage cases 

 

Element 24 

Element 7 

Element 8 

Element 11 

Element 16 

Element 22 

Elements 7 and 8 

Elements 11 and 16 

Elements 13 and 19 

Elements 14 and 22 

 

The damage localization results are, respectively, presented in Fig.12 and Fig.13 for single state and 

multiple state damages. In all considered damage scenarios the maximum value of anomaly measure 

corresponds to the damaged location. By investigating Fig.12, it can be seen that in some graphs a 

false peak appears in an undamaged element; however, the magnitude of the false alarm is much 

smaller than the damage index corresponds to the damaged element. The interesting point lies in the 

fact that the obtained false alarms correspond to undamaged elements which are in the neighboring of 

damaged elements. For instance, in Fig.12 (b) false alarm is in undamaged element 19 which is 

located in adjacent of damaged element 7; the same finding can be seen in Fig.12 (f) where the false 

peak happens in undamaged element 15 which is in neighboring of damaged element 22.  

 

In the case of multiple state damage, Fig.13, all the damage cases can be reliably localized. Again, in 

some graphs a false peak appears which corresponds to undamaged element located in the 

neighboring of one of the real damages. For example, in Fig.13 (a), false peak is in undamaged 

element 13 which is exactly in the vicinity of damaged element 8. As before, the damage index value 

which corresponds to the false peak is much smaller than the damage index related to the real damage. 
 

Based on the obtained results, it can be seen that the location of deterioration can be accurately 

identified either in single or multiple state. Also, the findings demonstrate that the method is robust to 

the changes in the ambient excitation. As mentioned earlier, at each stage of deterioration the response 

of the structure is obtained under a new ambient excitation.  
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(e)  (f) 

  
Figure 12. Damage localization results for single state damage at different locations, (a) damage in element 24, (b) damage 

in element 7, (c) damage in element 8, (d) damage in element 11, (e) damage in element 16, (f) damage in element 22. 

 

(a) (b) 

  

(c) (d) 

  

Figure 13. Damage localization results for multiple state damage at different locations, (a) damage in elements 7 and 8 (b) 

damage in elements 11 and 16, (c) damage in elements 13 and 19, (d) damage in elements 14 and 22. 
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5. Conclusions 

 

In the presented work, a new damage localization method was presented based on symbolic 

dynamics of time series data to detect and localize a gradually evolving deterioration in the system. 

Symbolic dynamics has some appealing features making it highly demanded for implementation in 

real-time observation application such as structural health monitoring. First, it significantly 

reduces the dimension of information and increase the efficiency of computations. Second, 

symbolic dynamics and the set of statistical measures built upon it represent a solid framework to 

address the main challenges of the analysis of non-stationary time data. Finally, STSA allows 

capturing the main features of the underlying system while alleviating the effects of harmful noise.  

The underlying concept behind the method is that the raw time-series measurements are uniquely 

mapped into a sequence of symbols and then statistical features of the symbols are used to describe 

the dynamic status of the system. The method does not need any prior knowledge of the structure’s 

healthy state and the response of the structure in the current state can be used as the nominal state. 

The performance of the method was examined on a flexural beam and also a 2-D planar truss 

bridge subjected to varying Gaussian excitation in presence of 2% white noise in single and 

multiple damage states. Simulation results under various damage conditions confirmed the 

efficiency of the proposed approach for localization of gradually evolving deteriorations in the 

structure. In addition, the robustness of the method to the changes in the ambient excitation was 

demonstrated.  

 

The authors would like to propose some suggestions for the future works: 

 

1. First, the method needs to be verified by experimental data. The main challenge of the 

experiment is to create quantifiable gradual deterioration in the structure; in this regard, 

employing gradually added mass or using cyclic testing can be some alternatives.   

 

2. In the presented work, only damage detection and localization schemes were studied but 

the authors believe that the method is capable of quantifying the damage. As explained 

earlier, for damages with the same severity but different locations, the method attributes 

different damage indices to the damages. This fact can be used for damage quantification 

as by knowing the damage location the damage index can be correlated to the damage 

severity by developing some geometry-dependent functions. 
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Table 1. Introduced damage cases for the flexural beam 

 

Damage cases C-F beam C-C beam 

Single state damage 

Element 3 

Element 11 

Element 18 

Element 11 

Element 17 

Multiple state damage 

Elements 3 and 11 

Elements 3 and 18 

Elements 11 and 18 

Elements 11 and 17 

Elements 3 and 17 

 

 

 

 
Table 2. Introduced damage cases for the truss structure 

 

 Single state damage Multiple state damage 

Damage cases 

 

Element 24 

Element 7 

Element 8 

Element 11 

Element 16 

Element 22 

Elements 7 and 8 

Elements 11 and 16 

Elements 13 and 19 

Elements 14 and 22 

 


