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A PAIR HIDDEN MARKOV SUPPORT VECTOR MACHINE
FOR ALIGNMENT OF HUMAN ACTIONS

Names!

ABSTRACT

Alignment of human actions in videos is an important task
for applications such as action comparison and classifica-
tion. While well-established algorithms such as dynamic time
warping are available for this task, they still heavily rely on
basic linear cost models and heuristic parameter tuning. In
this paper we propose a novel framework that combines the
flexibility of the pair hidden Markov model (PHMM) with
the effective parameter training of the structural support vec-
tor machine (SSVM). The framework extends the scoring
function of SSVM to capture the similarity of two input se-
quences and introduces suitable feature and loss functions.
The proposed approach is evaluated against state-of-the-art
algorithms such as dynamic time warping (DTW) and canon-
ical time warping (CTW) on pairs of human actions from the
Weizmann and Olympic Sports datasets. The experimental
results show that the proposed approach is capable of achiev-
ing an accuracy improvement of over 7 percentage points over
the runner-up on both datasets.

Index Terms— sequence alignment, pair HMM, dynamic
time warping, structural SVM, loss functions.

1. INTRODUCTION

Sequence alignment is an important application in many re-
search domains such as speech recognition, computer vision
and bioinformatics. Its goal is to align the frames of two (or
more) sequences of measurements so as to maximise their lo-
cal similarity and facilitate the analysis of correspondences.
Typical alignment methods employ a cost model to account
for the “cost” of individual alignment operations and exploit
dynamic programming algorithms to provide minimum-cost
alignments. Dynamic time warping (DTW) is likely the most
well-known alignment algorithm [1]. While it had been orig-
inally proposed for the alignment of time series, it has later
found use in a number of other applications including gesture
recognition [2], speech processing [3] and classification of
genomic signals [4]. Over the years, many DTW extensions
have been proposed and state-of-the-art performance is held
by canonical time warping (CTW) [5] that leverages the use
of canonical correlation analysis (CCA) [6] to find the most
effective subspace for the alignment of the two sequences.
However, DTW and CTW likewise are limited to linear cost

models and do not provide explicit procedures for the train-
ing of the model’s parameters. An improved model for the
alignment of sequences is offered by the pair hidden Markov
model (pair HMM, or PHMM for short) that is, at the same
time, a variant of DTW and of a conventional HMM provid-
ing a full probabilistic treatment of the alignment problem [7].
PHMM is a generative sequential model that emits pairs of
measurements and allows for model training under maximum
likelihood or other estimation frameworks.

In this paper, we propose a novel alignment algorithm
that combines the features of a PHMM with the effective pa-
rameter estimation of the structural support vector machine
(SSVM) [8]. The new model - named pair hidden Markov
support vector machine (PHMM-SSVM) offers several ad-
vantages over conventional alignment algorithms including:
1) the ability to learn the cost model from any sets of su-
pervised or partially-supervised examples; 2) the use of a
maximum-margin training objective that has a proven repu-
tation for accurate prediction; (3) the flexibility of using any
loss functions of choice during training; and (4) the possi-
bility of using kernels to implement non-linear cost models.
Our main contributions are a set of dedicated feature and
loss functions that allow PHMM-SSVM to achieve remark-
able alignment accuracy. The proposed model has been tested
against DTW and CTW in a set of experiments on action
alignment over pairwise versions of the Weizmann dataset [9]
and the Olympic Sports dataset [10]. The experimental re-
sults show that the proposed approach is able to outperform
existing models in terms of alignment accuracy.

2. PROBABILISTIC SEQUENCE ALIGNMENT AND
MAXIMUM-MARGIN TRAINING

In the following, we describe the two main frameworks - the
pair hidden Markov model (PHMM) and the structural sup-
port vector machine (SSVM) - that form the basis for the pro-
posed integration.

2.1. Pair Hidden Markov Model

PHMM is a probabilistic model for pairwise sequence align-
ments. Given two sequences, s = {s1, ..., si, ..., sLs

} and
t = {t1, ..., tj , ..., tLt

}, their alignment can be intuitively de-
fined as a sequence of index pairs from the two sequences.



Fig. 1: PHMM state dia-
gram.

Table 1: Transition proba-
bilities table.

M S T
M 1− 2δ δ δ
S 1− ε ε 0
T 1− ε 0 ε

However, to simplify both notations and operations, the align-
ment is re-defined as a sequence of only three types of sym-
bols: M (“match”), S (“insert a gap on sequence s”) and T
(“insert a gap on sequence t”). The symbols have the follow-
ing meaning: assuming i and j to be the current indices over
sequences s and t, respectively, 1) symbol M pairs frames
si and tj and then increments both indices; 2) symbol S pairs
no frames and only increments index j; and, likewise, 3) sym-
bol T pairs no frames and only increments index i. As a toy
example, we show below a possible alignment for two short
sequences from character set {A,B,C,D}:

s = A B − C B D A D
t = A B D C B − A D
y = M M S M M T M M

(1)

In the above example, sequence y encodes the alignment,
with theM symbols showing the matched frames (e.g, s3 and
t4) and the S and T symbols accounting for the required gaps.
The length of the alignment is bounded between max(Ls, Lt)
and Ls + Lt.

In probability notation, a PHMM is a model for the joint
probability, p(s, t, y), of the two sequences and their align-
ment. Such a model can be used to infer an optimal alignment,
ȳ, for the two sequences as ȳ = argmaxy p(s, t, y). Like for
a conventional HMM, the joint probability of a PHMM fac-
torises into a set of transition and emission probabilities. The
transition probabilities are commonly defined as: (1) δ for
transitions from M to either S or T ; (2) ε for staying in S or
T ; (3) 1 − ε for transitions from either S or T to M . Note
that the model bars direct transitions from S to T and the vice
versa assuming that a pair of matched frames will always fol-
low a run of gaps. Figure 1 shows the state diagram of the
PHMM, while Table 1 shows the complete transition proba-
bilities table.

To complete the model, we also need to define the emis-
sion probabilities. To this aim, we note the probability of
emitting aligned pair (a, b) as pa,b and the probability of emit-
ting measurement a against a gap as qa. In the common case
of numerical measurements, both p and q will be multi-variate
likelihoods such as Gaussian distributions or mixture models.

Using a PHMM, the optimal alignment for a pair of se-
quences can be found via an equivalent Viterbi algorithm [11].

Its computational complexity,O(max(Ls, Lt)), is only linear
in the length of the sequences thus ensuring fast and efficient
alignments. The main steps of the algorithm are given be-
low, where the probability of reaching state ∗ = {M,S, T} at
indices i and j over s and t is noted as p∗(i, j).

Initialization: pM (1, 1) = pS(1, 1) = pT (1, 1) = p∗(0, j) =
p∗(i, 0) = 1.

Recurrence: i = 1, ..., Ls, j = 1, ..., Lt:

pM (i, j) = psi,tj max

 (1− 2δ) pM (i− 1, j − 1)
(1− ε) pS(i− 1, j − 1)
(1− ε) pT (i− 1, j − 1)

(2)

pS(i, j) = qsi max

{
δ pM (i− 1, j)
ε pS(i− 1, j)

(3)

pT (i, j) = qtj max

{
δ pM (i, j − 1)
ε pT (i, j − 1)

(4)

Termination:

p(s, t, y) = max(pM (Ls, Lt), p
S(Ls, Lt), p

T (Ls, Lt)) (5)

2.2. Structural SVM

Structural SVM is a powerful classifier that extends the notion
of maximum-margin classification to the case of structured
prediction. This case includes the classification of structures
such as sequences and graphs and problems such as alignment
and ranking. In the case of alignment, the problem is to learn
a scoring function, F (s, t, y), between input sequences s and
t and output alignment y based on training samples of input-
output pairs. The scoring function typically takes the form of
a linear discriminant, F (s, t, y) = w>ψ(s, t, y), that can be
extended to non-linear mappings by the use of kernels. To
learn an accurate alignment predictor, the training objective
ensures that, for every training sample, the scoring function
assigns its ground-truth alignment with a score higher than
that of any other alignments by an appropriate margin.

The challenge with structural SVM is that the number of
possible alignments for a given sequence pair is exponential
in their length. This in turn leads to a highly-constrained
learning objective that proves computationally infeasible even
for relatively short sequences. However, Tsochantaridis et al.
in [8] have shown that a very close approximation to the so-
lution of SSVM can be obtained by using only a polynomial
(i.e., easily feasible) number of constraints, and Joachims et
al. in [12] have shown that this approach can also be used for
the sequence alignment problem. Given a supervised training
set of sequence pairs and alignments, (si, ti, yi), i = 1 . . . N ,
the relaxed objective can be written as:



argmin
w,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi s.t.

w>ψ(si, ti, yi)− w>ψ(si, ti, y) ≥ ∆(yi, y)− ξi,
i = 1 . . . N, ∀y ∈ W

(6)

Like for a conventional SVM, objective (6) aims to strike
a balance between the prediction error over the training set
(
∑N
i=1 ξ

i) and a regulariser (‖w‖2). The constraints ensure
that the score assigned to the ground-truth alignment, yi, is
higher than that assigned to any other alignment y stored in a
working set,W , by margin ∆(yi, y). At its turn, ∆(yi, y) is a
loss function that can be arbitrarily chosen to quantify the in-
accuracy of incorrect alignments. The working set,W , is pop-
ulated using a constraint-violation approach that ensures that
the solution for the relaxed objective (6) is “epsilon-close” to
the solution of the complete objective. More details are pro-
vided in Section 3.3.

3. THE PROPOSED INTEGRATION: PHMM-SSVM

The integration of the PHMM in the SSVM framework
(PHMM-SSWM hereafter) can be obtained by simply setting
the PHMM’s joint probability as:

p(s, t, y) ∝ exp(w>ψ(s, t, y)) (7)

This restricts the emission probabilities to belong to the
exponential family of distributions, which is however a very
broad and encompassing family (Gaussian, Gamma, chi-
squared etc). In addition, the assumption does not require
the distribution to be normalised and therefore the w parame-
ters can be chosen from a larger domain. Lastly, a non-linear
parametrisation can be easily obtained by using kernels.

3.1. Parameter Vector and Feature Function

In the structural SVM framework, the score for a sample
(s, t, y) is obtained from the product of a parameter vector, w,
and a feature function, ψ, that provides a re-mapping of the
given measurements and labels. As a common assumption,
the score is assumed to be a decomposable function (a sum)
over the individual labels of the assignment, yk, k = 1 . . . |y|.
The parameter vector contains two sections: transition param-
eters wtr and emission parameters wem. The transition pa-
rameters are a (partial) 3 × 3 matrix indexed by labels yk−1
and yk (transitions between symbols S → T and T → S are
not allowed). As emission feature, we simply consider the
absolute difference of measurements si and tj in matching
states; therefore, the emission parameters are a vector with
the same dimensionality as the individual measurements, i.e.
wem, si, tj ∈ RD. Logically, wem should be assigned nega-
tive values during training so that more dissimilar measure-
ments receive lower scores; however, we do not impose a

negativity constraint on these parameters. With these assump-
tions, the score can be re-written as:

w>ψ(s, t, y) =

|y|∑
k=1

wtryk−1,yk
+ wem>|si − tj |I[yk = M ]

wtr0,∗ = 0; I[yk = M ] : i++, j++;

I[yk = S] : j++; I[yk = T ] : i++

(8)

where I is the indicator function and indices i and j, ini-
tially set to 1, are post-incremented according to the value of
label yk.

3.2. Loss Functions

The common way to measure the inaccuracy of a predicted
alignment is by use of a Hamming distance between the
ground-truth alignment, y, and the prediction, ȳ. This func-
tion is often referred to as Q-loss function in the alignment
literature and noted as ∆Q(y, ȳ) [13]. The Q-loss is decom-
posable over the individual operations in the alignments as
∆Q(y, ȳ) = 1 −

∑|y|
k=1 δ(yk, ȳk). At its turn, δ(yk, ȳk) re-

turns 1/N (N : number of frame matches in the ground truth)
when a ground-truth match is correctly predicted and 0 other-
wise. In practice, we compute the loss by explicitly unfolding
all the frame indices over sequences s and t in both the ground
truth and the predicted alignment.

Another useful loss function is the Q4-loss: this is a more
lenient loss function that counts a match as correct even if the
indices of the matching frames in the prediction are shifted by
±2 compared to those in the ground truth. In the experiments,
we report results in terms of bothQ-loss andQ4-loss. In addi-
tion, during the annotation of the training set we annotate the
ground-truth alignment only for some “key” frames that we
can match with high confidence (e.g., apex phases of move-
ments). The loss is measured only against such key-frame
matches.

3.3. Most-Violated Constraints

In learning a structural SVM model for alignments, one
should ensure that the ground-truth alignments receive scores
higher than all other, possible alignments. However, the num-
ber of possible alignments is exponential in the length of the
input sequences, leading to an unmanageable number of con-
straints even for sequences of relatively short length. The so-
lution proposed by [8, 12] is a relaxed problem (6) that only
considers the sub-set of the “most-violated constraints”, i.e.
the constraints that set the value of penalty ξi for each sam-
ple, i = 1 . . . N . The solution is proven to be ε-close to that of
the fully-constrained problem, where ε is a small constant (set
to 0.01 in our experiments) that can be made arbitrary smaller



at the cost of only a polynomial increase in the number of it-
erations of the solver. The most-violated constraint for each
sample is identified from a re-writing of the constraints:

w>ψ(si, ti, yi)− w>ψ(si, ti, y) ≥ ∆(yi, y)− ξi ∀y
→ ξi ≥ −w>ψ(si, ti, yi) + w>ψ(si, ti, y) + ∆(yi, y) ∀y
→ y∗i = argmax

y
(w>ψ(si, ti, y) + ∆(yi, y))

(9)

As (9) shows, the alignment y∗i setting the value of
penalty ξi can be found by a modified version of the infer-
ence, known as “loss-augmented” inference since it adds up
the loss function to the score. Given that the loss function
is decomposable frame-by-frame, the efficient Viterbi algo-
rithm can also be used for this maximisation. Algorithm 1
shows the main steps of the learning procedure.

Algorithm 1: Learning algorithm: main steps.

Input : Measurement sequences si, ti and
ground-truth alignment yi, i = 1 . . . N ;
parameter ε

1 W = Ø, w = 0, ξ = 0
2 repeat
3 foreach i = 1 . . . N do
4 y∗i ← argmaxy(w>ψ(s, t, y) + ∆(yi, y));
5 if ξi = [w>(ψ(si, ti, y∗i)− ψ(si, ti, yi)) +

∆(yi, y∗i)] > ξprevi + ε then
6 W ←W ∪ y∗i;
7 end
8 end
9 (w, ξ) = argminw,ξ

1
2 ‖w‖

2
+ C

∑N
i=1 ξ

i s.t. W;
10 until ξ unchanged;

Output: Model w

4. EXPERIMENTS

The following experiments evaluate the proposed PHMM-
SSVM model in the temporal alignment of action videos
against DTW [1] and a state-of-the-art algorithm, CTW [5].
In the first experiment, we compare the performance in align-
ing the “jump” action from different subjects of the Weiz-
mann dataset [9]. In the second experiment, we compare
the “clean-and-jerk” action performed by 11 subjects from
the challenging Olympic Sports dataset [10]. For the SSVM
training, we have set parameters C to 10 and ε to 0.01, with
no noticeable sensitivity. Results are reported in terms of both
Q-loss and Q4-loss (see section 3.2).

4.1. Weizmann Dataset

The Weizmann dataset contains ten actions performed by nine
actors. While it has been long saturated in terms of action

1 - Q-loss (%) 1 - Q4-loss (%)
PHMM-SSVM 68.6% 98.0%

DTW 41.2% 72.6%
CTW 60.8% 96.1%

Table 2: Alignment accuracy for action “jump” in the Weiz-
mann dataset.

recognition accuracy, according to [5] it is still probing for
testing alignment accuracy. In this experiment, we follow [5]
and first subtract the background from the videos and then
process the resulting frames by the Euclidean distance trans-
form [14], preserving 99% of the energy by retaining the top
416 principal components. As test data, we have formed
13 video pairs from action “jump” selecting different subject
pairs and annotating their key-frames manually. We have then
randomly picked 6 as training set and the others as test set, yet
ensuring that the subjects pairs in the test set did not appear
in the training.

Table 2 reports the alignment accuracy on the test set as
the one-complement of theQ andQ4 losses. The table clearly
shows that PHMM-SSVM achieves higher accuracy in terms
of Q-loss than both DTW (27.4 percentage points) and CTW
(7.8 percentage points). Since the Q4-loss is more lenient, its
accuracy is generally higher for all algorithms: however, the
proposed PHMM-SSVM still achieves the highest accuracy
and the ranking is unvaried.

4.2. Olympic Sports Dataset

The Olympic Sports dataset is a more challenging dataset of
real sport videos from YouTube. In this dataset, we chose ac-
tion “clean-and-jerk” (a specialty of weightlifting) since the
manual alignment of its key-frames is relatively certain. We
created 55 pairs of ground-truth alignments and split them
into 27 pairs for training and 28 for test. As measurements,
we computed dense feature descriptors for each frame of the
video sequences usig Laptev’s STIP extractor [15]. We then
computed a bag-of-words for each frame with 1, 000 bins us-
ing the VLFeat library [16]. Note that the specific choice of
features is not the focus of this paper.

Table 3 reports the alignment accuracy on the test set.
Again, the table clearly shows that PHMM-SSVM achieves
higher accuracy in terms of Q-loss than both DTW (13.1
percentage points) and CTW (7.6 percentage points). While
the Q4-loss tends to reduce these differences, PHMM-SSVM
still achieves the highest accuracy in terms of Q4-loss and
the ranking is again unvaried. Figure 2 shows an example
of the ground-truth and predicted alignments: a) the top two
rows show six manually-matched key-frames from the two
sequences. The frames from the first sequence are used as
“template” and those from the second represent the ground-
truth alignment; b) the third row shows the alignment pre-



Fig. 2: Example of ground-truth and predicted alignments from the Olympic Sports dataset: top two rows): six matched
key-frames from two clean-and-jerk sequences. The first row is used as template and the frames of the second row show
the ground-truth alignment; third row): alignment predicted by the proposed PHMM-SSVM; bottom two rows): alignments
predicted by CTW and DTW. The superimposed ellipses and rectangles visually highlight the alignment errors.



1 - Q-loss (%) 1 - Q4-loss (%)
PHMM-SSVM 50.0% 74.2%

DTW 36.9% 69.6%
CTW 42.4% 70.5%

Table 3: Alignment accuracy for action “clean-and-jerk” in
the Olympic Sports dataset.

dicted by the proposed PHMM-SSVM; and c) the bottom two
rows show the alignments predicted by CTW and DTW, re-
spectively. The superimposed ellipses and rectangles visu-
ally highlight the alignment errors. This figure shows that
the alignment predicted by PHMM-SSVM only mildly dif-
fers from the ground truth and is more accurate than those
returned by DTW and CTW.

5. CONCLUSION

In this paper, we have presented a novel approach for se-
quence alignment and showed its effectiveness in aligning
human actions in videos. The proposed method - named pair
hidden Markov support vector machine (PHMM-SSVM) - in-
tegrates the probabilistic formulation of the pair HMM with
the effective parameter training of structural SVM. The pro-
posed integration includes dedicated feature and loss func-
tions suitable to achieve accurate alignments. Experimental
results over two probing video datasets show that PHMM-
SSVM achieves higher accuracy than both a standard dy-
namic programming solution (DTW) and a state-of-the-art
algorithm (CTW), with improvements over the runner-up of
more than 7 percentage points. In addition, while in this
work we have used the proposed model for aligning actions in
videos, there are no standing limitations to its general use in
any other domain. In the near future, we plan to extend our ap-
proach to semi-supervised settings with limited ground-truth
annotation.
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