Molecular Characterisation Of The Thioredoxins In The Parasitic Nematode Haemonchus contortus

Irene M. Sotirchos

PhD 2008

CERTIFICATE OF AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Production Note: Signature removed prior to publication. Irene Sotirchos.

ACKNOWLEDGEMENTS

I would like to acknowledge and thank my supervisor Dr. Mary Davey for her guidance, care and support. She always saw the best in me and did her best to make me see it too. To the members of Team Meat, David Witcombe, thank you for helping me get my project started. To Amanda Hudson and Catherine James, thank you for all your love and support, for the good times and for being there during the bad. In particular I would like to recognise the contribution of Amanda Hudson, for her assistance during her time as a research assistant and Catherine James, for her assistance with the quantitative real time studies.

Thank you to all the technical staff of IBID and the Biochemistry Department, UTS, for your valuable assistance. To all the students that I shared an office with, thanks for always making me laugh.

To my dear sweetheart, I did it!! Thank you for always being there for me, for your support, encouragement and for believing in me, even when I did not.

You are my world, ILUC xx

Finally, this work would not have been possible without the financial assistance of a scholarship from Meat and Livestock Australia and the Australian Wool Innovations.

iii

TABLE OF CONTENTS

ABSTRACT	vii
PUBLICATIONS AND PRESENTATIONS	ix
LIST OF ABBREVIATIONS	x
LIST OF FIGURES	xii
LIST OF TABLES	xv
CHAPTER ONE INTRODUCTION	1
1.1 HAEMONCHUS CONTORTUS	2
1.2 PARASITE CONTROL	2
1.3 DRUG RESISTANCE	3
1.4 OXIDANT THREATS	4
1.5 ANTIOXIDANT SYSTEMS	5
1.6 THE GLUTATHIONE SYSTEM	7
1.7 THE THIOREDOXIN SYSTEM	8
1.8 THIOREDOXIN REDUCTASE	11
1.8.1 The Mechanism For TrxR's Reducing Action	12
1.8.2 TrxR1	12
1.8.3 TrxR2	12
1.9 THIOREDOXIN	14
1.9.1 The Structure Of Thioredoxin	14
1.9.2 The Mechanism of Thioredoxin's Reducing Action	16
1.10 SUMMARY OF THE HUMAN THIOREDOXINS	16
1.10.1 Thioredoxin 1 (Cytoplasmic) WCGPC	18
1.10.2 Thioredoxin 2 (Mitochondrial) WCGPC	19
1.10.3 Thioredoxin-Like Protein (TXL) GCGPC	20
1.10.4 Nucleoredoxin (NXN) WCPPC	21
1.10.5 Thioredoxin Transmembrane Protein (TMX) WCPAC	22
1.11 PARASITIC ANTIOXIDNT SYSTEMS	22
1.11.1 Tryparedoxin	23
1.11.2 Plasmoredoxin	25
1 11 3 16 kDa Nematode Thioredoxin	25

1.12	THESIS OBJECTIVES	26
СНАР	PTER TWO MATERIALS AND METHODS	27
2.1	MATERIALS	. 27
2.1.	1 Chemical Reagents	. 28
2.1.	2 Biological Reagents	29
2.1.	3 Solutions and Growth Media	. 29
2.1.	4 PCR Primers	. 31
2.1.	5 DNA Cloning & Expression Vectors	.32
2.1.	6 Bacterial Strains For Transformations & Expression	32
2.1.	7 Animal Strains	32
2.2	METHODS	32
2.2.	1 Total RNA Extraction	. 32
2.2.	2 mRNA Extraction	. 33
2.2.	3 cDNA Preparation	34
2.2.	4 PCR Protocols	34
2.2.	5 DNA Methods	35
2.2.	6 Competent Cell Preparation	37
2.2.	7 Protein Expression	. 37
2.2.	8 Antibody Production	40
2.2.	9 ELISA	40
2.2.	10 H.contortus Extracts	. 41
2.2.	11 Purification of <i>H. contortus</i> and ovine cytosolic TrxR	41
2.2.	12 Enzyme Assays	41
2.2.	13 DNA Nicking Assay	43
СНАН	PTER THREE CHARACTERISATION OF HcTrx1 & HcTrx3	44
3.1	INTRODUCTION	. 45
3.2	THE THIOREDOXINS OF H.CONTORTUS	46
3.3	THE CLASSICAL THIOREDOXINS OF H.CONTORTUS	48
3.4	CHARACTERISATION OF <i>Hc</i> Trx1	51
3.5	THE 16 kDa THIOREDOXIN OF <i>H.CONTORTUS</i>	. 52
3.6	CHARACTERISATION OF <i>Hc</i> Trx3	55

3.7	CLONING AND EXPRESSION OF O.ARIES Trx1	. 57
3.8	CHARACTERISATION OF O.ARIES Trx1	57
3.9	ACTIVITY OF <i>Hc</i> Trx1 & <i>Hc</i> Trx3	60
3.10	NATIVE EXPRESSION & LOCALISATION OF <i>Hc</i> Trx1 & <i>Hc</i> Trx3.	72
3.11	DISCUSSION	78
СНА	PTER FOUR CHARACTERISATION OF <i>Hc</i> Trx2 & <i>Hc</i> Trx4	89
4.1	INTRODUCTION	. 90
4.2	CLONING & EXPRESSION OF <i>Hc</i> Trx2	90
4.3	CHARACTERISATION OF <i>Hc</i> Trx2	93
4.4	CLONING & EXPRESSION OF <i>Hc</i> Trx4	93
4.5	CHARACTERISATION OF <i>Hc</i> Trx4	97
4.6	ACTIVITY OF <i>Hc</i> Trx2 & <i>Hc</i> Trx4	98
4.7	EXPRESSION & LOCALISATION OF <i>Hc</i> Trx2 & <i>Hc</i> Trx4	105
4.8	DISCUSSION	. 109
СНА	PTER FIVE CHARACTERISATION OF <i>Hc</i> Trx5	118
5.1	INTRODUCTION	. 119
5.2	CLONING & EXPRESSION OF <i>Hc</i> Trx5	. 119
5.3	CHARACTERISATION OF <i>Hc</i> Trx5	122
5.4	ACTIVITY OF <i>Hc</i> Trx5	123
5.5	NATIVE EXPRESSION OF <i>Hc</i> Trx5	130
5.6	DISCUSSION	133
СНА	PTER SIX CONCLUSIONS & FUTURE DIRECTIONS	142
6.1	CONCLUSIONS	143
6.2	FUTURE DIRECTIONS	150
СНА	PTER SEVEN REFERENCES	. 153
APPI	ENDICES	. 167
App	pendix 1: Accession Numbers	168
App	pendix 2: Conserved Residues of Thioredoxin	. 169
Ann	pendix 3: Similarity of <i>H. contortus</i> Thioredoxins	. 170

ABSTRACT

Thioredoxins are a family of small proteins conserved through evolution, essential for cellular homeostasis. The 'classic' thioredoxin, identified in most species, is a 12 kDa protein with a Cys-Gly-Pro-Cys (CGPC) active site. The thioredoxin system, composed of thioredoxin, thioredoxin reductase and peroxiredoxin, is essential to protect cells from metabolically produced reactive oxygen. This and the diversification of this system through evolution identified it as a target for the control of many diseases, including parasitic infections. This work characterises the thioredoxins of *Haemonchus contortus*, a parasite with increasing economic impact on sheep and wool production in Australia. Five thioredoxin proteins were identified, expressed and characterised (*Hc*Trx1-5).

H. contortus contained the classic thioredoxin (HcTrx1), but the major thioredoxin was a 16 kDa protein (HcTrx3) with a Cys-Pro-Pro-Cys (CPPC) active site, which is related to tryparedoxin, a unique protein in Trypanosomes. Both proteins were expressed through the lifecycle and both had a similar ability to reduce the disulphide bonds of insulin compared to the classic thioredoxins in Escherichia coli and sheep. Both proteins were regenerated by thioredoxin reductase, but unlike the ovine thioredoxin, both were also able to reduce oxidised glutathione, directly reduce hydrogen peroxide and indirectly reduce hydrogen peroxide coupled with H.contortus peroxiredoxin.

Two thioredoxin-like proteins were identified with homology to thioredoxins reported in human cells, a 31 kDa protein with a CGPC classic active site (HcTrx2) and a 28 kDa protein with a Cys-Pro-Ala-Cys (CPAC) active site, a transmembrane domain and an endoplasmic reticulum localisation signal (HcTrx4). These had different activities to the classic HcTrx1 in that HcTrx2 could not directly reduce insulin, but could when coupled to thioredoxin reductase. In contrast, HcTrx4 could directly reduce insulin, but could not react with thioredoxin reductase. The results suggest that HcTrx4 is not a thioredoxin, but acts as a protein-disulphide isomerase (PDI). Other characterised PDIs, contain at least two active sites, in contrast to the one active site in the H.contortus protein.

*Hc*Trx5 is a 20 kDa protein with a unique active site Cys-Arg-Ser-Cys (CRSC). Although this active site has a charge change, *Hc*Trx5 was able to reduce insulin, be regenerated by thioredoxin reductase and react with *H.contortus* peroxiredoxin. However, *Hc*Trx5 was also regenerated by glutathione reductase coupled with glutathione, showing it had the activity of a glutaredoxin as well as a thioredoxin, an activity not reported for any thioredoxin.

This study characterised the thioredoxins of a parasitic nematode. The differences identified may provide new drug targets for the control of many tropical diseases for which drug resistance is emerging as a major problem. Preliminary investigations showed increased *H.contortus* thioredoxin expression in a drug resistant strain. *Hc*Trx1 was highly increased in ivermectin resistant parasites and may provide a marker of drug resistance.

JOURNAL PUBLICATIONS

<u>Irene M. Sotirchos</u>, Amanda L. Hudson, John Ellis, Mary W. Davey. Thioredoxins of a parasitic nematode: Comparing the 16- and 12-kilodalton thioredoxins. *Free Radical Biology and Medicine*: **44** (12): 2026-33.

PRESENTATIONS

- 1. Presentation at the Meat and Livestock Australia Workshop, I. Sotirchos* Sydney, Australia
 - 2004: The Thioredoxins of Haemonchus Contortus
 - 2005: Characterisation of Thioredoxins in Parasitic Nematodes
 - 2006: Molecular Characterisation Of Thiol Metabolism In Parasitic Nematodes.
 - 2007: Evolution and Activity of the Thioredoxins of Haemonchus Contortus.
- 2. I. Sotirchos*, David Witcombe, Mary Davey and John Ellis (2005) Characterisation of Thioredoxins in Parasitic Nematodes. Poster presentation at UTS Research Forum, Sydney, Australia.
- 3. Irene Sotirchos*, David Witcombe, John Ellis and Mary Davey (2005) Characterisation of Thioredoxin(s) in Parasitic Nematodes. Presentation at the World Association for the Advancement of Veterinary Parasitology Conference (WAAVP), Christchurch, New Zealand.
- 4. Irene Sotirchos*, David Witcombe, John Ellis and Mary Davey (2006) Characterisation of Thioredoxin(s) in Parasitic Nematodes. Poster presentation 4 at the International Congress of Paraitology Association Conference (ICOPA), Glasgow, Scotland.
- 5. Irene Sotirchos*, John Ellis and Mary Davey (2007) Evolution and Activity of the Thioredoxins of *Haemonchus Contortus*. Poster presentation at the Australian Society for Parasitology conference (ASP), Canberra, Australia.

LIST OF ABBREVIATIONS

ABBREVIATION FULL NAME

aa Amino acid

APS Ammonium persulphate

bp Base pairs

BCIP 5-Bromo- 4-chloro- 3-indolyphosphate

BSA Bovine Serum Albumin

cDNA Chromosomal deoxyribonucleic acid

Ce Caenorhabditis elegans

Cys Cysteine

DNA Deoxyribonucleic acid

dNTPs Deoxyribonucleotide triphosphate

DTNB 5,5'-Dithio-bis (2-nitrobenzoic acid)

DTT Dithiothreitol

Ec Esherichia coli

EDTA Ethylene diamine tetra acetic acid

ELISA Enzyme-Linked ImmunoSorbent Assay

EtBr Ethidium bromide

FAD Flavin-adenine dinucleotide

Fig Figure

g Centrifugal force (gravity)

GR Glutathione reductase

Grx Glutaredoxin

GSH Reduced glutathione

GSSG Oxidised glutathione

Hc Haemonchus contortus

HEDS 2 hydroxyethyldisulphide

hr Hour (s)

Hs Homo sapiens

IPTG Isopropylthiogalactopyranoside

kb Kilobases

kDa Kilodaltons

L1 First larval stage
L3 Third larval stage

LB Luria Bertani Broth

M Molar

Min Minute (s)

mRNA Messenger ribonucleic acid

MW Molecular weight

NADH Nicotinamide adenine dinucleotide

NADPH Nicotinamide adenine dinucleotide phosphate

NBT Nitro blue tetrazolium

NXN Nucleoredoxin

Oa Ovine aries

Oligo Oligonucleotide

ORF Open reading frame

PBS Phosphate buffered saline

PCR Polymerase chain reaction

pI Isoelectric point

Prx Peroxiredoxin

qPCR Quantitative real time polymerase chain reaction

QS Quackenbush

RACE Rapid amplification of cDNA ends

RNA Ribonucleic acid

S₂ Oxidised thiol

SDS Sodium dodecyl sulphate

SH₂ Reduced thiol

TBE Tris borate buffer with EDTA

tBOOH Tert-butyl hydroperoxide

TBS Tris buffered saline

TEMED Tetramethylethylenediamine

TFB Transformation buffer

TMX Transmembrane thioredoxin

Tris tris(hydroxymethyl)aminomethane

Trx Thioredoxin

TrxR Thioredoxin reductase

LIST OF FIGURES

CHAPTER	ONE INTRODUCTION	
----------------	------------------	--

Figure 1.1	Glutathione System	6
Figure 1.2	Thioredoxin System	9
Figure 1.3	Crystallised model of human Trx1	15
Figure 1.4	Tryparedoxin System	24
CHAPTER T	THREE CHARACTERISATION OF HcTrx1 & HcTrx3	
Figure 3.1	DNA sequence of <i>Hc</i> Trx1	.49
Figure 3.2	Cloning and expression of <i>Hc</i> Trx1	50
Figure 3.3	Cloning and expression of <i>Hc</i> Trx3	53
Figure 3.4	DNA sequence of <i>Hc</i> Trx3	.54
Figure 3.5	Phylogenetic relationships of <i>Hc</i> Trx1 and <i>Hc</i> Trx3	56
Figure 3.6	DNA sequence of O.aries Trx1	58
Figure 3.7	Cloning and expression of <i>O.aries</i> Trx1	59
Figure 3.8	Dithiothreitol-mediated insulin reduction by Hc Trx1 and Hc Trx3	61
Figure 3.9	Thioredoxin reductase-mediated insulin reduction by Hc Trx1 and Hc Trx3	62
Figure 3.10	Thioredoxin reductase-mediated insulin reduction by Hc Trx1 and Hc Trx3	65
Figure 3.11	Glutathione-linked activity of <i>Hc</i> Trx1 and <i>Hc</i> Trx3	67
Figure 3.12	Peroxidase-linked activity of <i>Hc</i> Trx1 and <i>Hc</i> Trx3	70
Figure 3.13	Protection of DNA by <i>Hc</i> Trx1 and <i>Hc</i> Trx3	71
Figure 3.14	Reactivity of <i>Hc</i> Trx1 and <i>Hc</i> Trx3 anti-serum against their respective antigens	

Figure 3.15	Cross-reactivity using anti- <i>Hc</i> Trx1 and anti- <i>Hc</i> Trx3 serum with <i>H.contortus</i> thioredoxins
Figure 3.16	Relative expression of <i>Hc</i> Trx1 and <i>Hc</i> Trx3 determined by quantitative real time PCR
Figure 3.17	Identification of <i>Hc</i> Trx1 in <i>H.contortus</i> extracts76
Figure 3.18	Identification of <i>Hc</i> Trx3 in <i>H.contortus</i> extracts76
Figure 3.19	Relative expression of <i>Hc</i> Trx1 and <i>Hc</i> Trx3 in ivermectin resistant <i>H.contortus</i> , determined by quantitative real time PCR
Figure 3.20	Schematic representations of small classic thioredoxin proteins from <i>H.contortus</i> , <i>C.elegans</i> and human
Figure 3.21	ClustalW alignment of the small classic thioredoxins of <i>H.contortus</i> , <i>C.elegans</i> , Human Trx1, Trx2 and <i>O.aries</i> Trx82
Figure 3.22	Schematic representations of nucleoredoxin and related proteins84
CHAPTER 4	CHARACTERISATION OF HcTrx2 AND HcTrx4
Figure 4.1	Cloning and expression of <i>Hc</i> Trx291
Figure 4.2	DNA sequence of <i>Hc</i> Trx292
Figure 4.3	Schematic representations of <i>Hc</i> Trx2 with <i>Ce</i> TXL and human TXL proteins
Figure 4.4	Cloning and expression of <i>Hc</i> Trx495
Figure 4.5	DNA sequence of <i>Hc</i> Trx496
Figure 4.6	Dithiothreitol-mediated insulin reduction assays by <i>Hc</i> Trx2 and <i>Hc</i> Trx499
Figure 4.7	Thioredoxin reductase-mediated insulin reduction endpoint assays by $Hc\text{Trx}2$ and $Hc\text{Trx}4$
Figure 4.8	Thioredoxin reductase-mediated insulin reduction by Hc Trx2100
Figure 4.9	Glutathione-linked activity of <i>Hc</i> Trx2102
Figure 4.10	Hydrogen peroxide reducing activity of <i>Hc</i> Trx2103
Figure 4.11	Tert-butyl Hydroxide reducing activity of <i>Hc</i> Trx2103
Figure 4.12	DNA protection by Hc Trx2 and Hc Trx4104

Figure 4.13	Reactivity of <i>Hc</i> Trx2 anti-serum
Figure 4.14	Identification of <i>Hc</i> Trx2 in <i>H.contortus</i> extracts
Figure 4.15	Relative expression of <i>Hc</i> Trx2 and <i>Hc</i> Trx4, determined by quantitative real time PCR
Figure 4.16	Schematic representations of <i>Hc</i> Trx4 with <i>Ce</i> TMX (<i>dpy-11</i>) and human TMX proteins
Figure 4.17	Phylogenetic relationships of <i>Hc</i> Trx2 and <i>Hc</i> Trx4117
CHAPTER 5	CHARACTERISATION OF HcTrx5
Figure 5.1	Cloning and expression of <i>Hc</i> Trx5
Figure 5.2	DNA sequence of <i>Hc</i> Trx5
Figure 5.3	Dithiothreitol-mediated insulin reduction by <i>Hc</i> Trx5
Figure 5.4	Thioredoxin reductase-mediated insulin reduction by <i>Hc</i> Trx5125
Figure 5.5	Activity of <i>Hc</i> Trx5 with the thioredoxin and glutathione system126
Figure 5.6	Glutathione-linked activity of <i>Hc</i> Trx5
Figure 5.7	Antioxidant activity of <i>Hc</i> Trx5129
Figure 5.8	Protection of DNA from free radicals by <i>Hc</i> Trx5131
Figure 5.9	Relative expression of <i>Hc</i> Trx5, determined by quantitative real time PCR
Figure 5.10	Sequence alignments of <i>Hc</i> Trx5 with related glutaredoxin and tryparedoxin proteins
Figure 5.11	Structural analysis of <i>Hc</i> Trx5 threaded onto resolved crystal structures of Trx1, tryparedoxin and glutaredoxin
Figure 5.12	Phylogeny of <i>Hc</i> Trx5 and thioredoxin-related proteins
Figure 5.13	Sequence alignment of <i>Hc</i> Trx5 with <i>Ce</i> Trx5 and the <i>A.thaliana</i> thioredoxin-like protein
Figure 5.14	Schematic representations of <i>Hc</i> Trx5, <i>Ce</i> Trx5, <i>A.thaliana</i> Trx and the <i>P.falciparum</i> plasmoredoxin

CHAPTER 6	CONCLUSIONS & FUTURE DIRECTIONS
Figure 6.1	The thioredoxin system of <i>H.contortus</i>
	LIST OF TABLES
CHAPTER 1	INTRODUCTION
Table 1.1	Summary of thioredoxin reductase active sites
Table 1.2	Brief summary of the human thioredoxin proteins17
CHAPTER 2	MATERIALS AND METHODS
Table 2.1	PCR Primers used throughout this study31
CHAPTER 3	CHARACTERISATION OF HcTrx1 AND HcTrx3
Table 3.1	Thioredoxin proteins identified in database searches
CHAPTER 4	CHARACTERISATION OF HcTrx2 AND HcTrx4
Table 4.1	Summary of TXL activities reported111
CHAPTER 5	CHARACTERISATION OF HcTrx5
Table 5.1	Glutathione Binding Sites135
CHAPTER 6	CONCLUSIONS & FUTURE DIRECTIONS
Table 6.1	Summary of characterised <i>H.contortus</i> thioredoxin activities and their substrates