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An Approach to Base Placement for Effective Collaboration of Multiple
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Abstract— There are many benefits for the deployment of
multiple autonomous industrial robots to carry out a task,
particularly if the robots act in a highly collaborative manner.
Collaboration can be possible when each robot is able to
autonomously explore the environment, localize itself, create
a map of the environment and communicate with other robots.
This paper presents an approach to the modeling of the collab-
oration problem of multiple robots determining optimal base
positions and orientations in an environment by considering the
team objectives and the information shared amongst the robots.
It is assumed that the robots can communicate so as to share
information on the environment, their operation status and
their capabilities. The approach has been applied to a team of
robots that are required to perform complete surface coverage
tasks such as grit-blasting and spray painting in unstructured
environments. Case studies of such applications are presented
to demonstrate the effectiveness of the approach.

I. INTRODUCTION

Industrial robots are used to perform dirty, hazardous and
repetitive works [1], which are preferably not carried out
by humans. Making an industrial robot autonomous and
mobile means achieving greater flexibility and traversability,
and hence further helps the recent shift of paradigm from
mass production to customized production [1]. By deploying
an Autonomous Industrial Robot (AIR) in an unstructured
environment, the goal can be to improve the productivity
of the intended task and/or to reduce human exposure to
potential health hazards. The environment in which the AIR
operates can be complex and subject to change prior to each
new deployment of the AIR. Various applications can make
use of AIRs, examples include grit-blasting, spray-painting,
hazardous material handling, pick-and-place of objects and
providing lifting or grasping support for human operators.

In order for an AIR to perform a task autonomously, it
is required to have enough intelligence to complete each
component of the task individually. For example, an au-
tonomous grit-blasting robot [2] that is used to remove rust
and other debris from steel surfaces, performs tasks such as
exploration and mapping [3], surface-type identification [4],
surface segmentation [5], and collision-free motion planning
[6] without any involvements of a human operator.

Making use of multiple AIRs can further improve produc-
tivity and capacity of the team to carry out the intended
task. When the AIRs are performing any part of the in-
tended task, such as finding appropriate base placements

This work is supported by SABRE Autonomous Solutions Pty Ltd and
the Centre for Autonomous Systems (CAS) at the University of Technology
Sydney, Australia.

1 Authors are from the Centre for Autonomous Systems (CAS) at the
University of Technology Sydney, Australia.

or partitioning surface areas [7] for fair workload division,
effective collaboration between the AIRs becomes crucial so
as to achieve the team objectives such as minimal overall
completion time of the task. In order for collaboration to
take place effectively, an appropriate control architecture
needs to be devised for the AIRs. The most commonly used
control architectures [8] associated with multi-robot systems
are centralized, decentralized, hierarchical, and hybrid. The
decentralized approach is favored in many applications since
each robot is only concerned about its local environment
and does not take responsibility for the control of the other
robots [8]. Moreover, to achieve the team objectives, effective
communication needs to be employed between the robots to
share environment and state information.

Appropriate base placement of the AIRs enables efficient
collaboration amongst the AIRs. Mitsi et al. [9] developed an
optimization based method that combines genetic algorithm,
quasi Newton algorithm and constraints handling methods
to find the optimal placement of a single manipulator by
considering discrete end-effector positions. Vosniakos et al.
[10] presented an approach that uses genetic algorithm and
considers maximizing manipulability of a single manipulator
to deal with the high accuracy required for the milling appli-
cation. For better evaluation in finding the base placements
of the AIRs, it has been shown to be important to incorporate
performance measures such as the task-dependent index
[11]. An approach is presented in this paper that extends
the current works to be applicable to multiple autonomous
industrial robots and that can deal with the problem of
time deficiency when considering applications that require
complete surface coverage such as grit-blasting and spray
painting. The approach is also capable of optimizing multiple
team objectives, some of which can be related to enhancing
the performance of the manipulators attached to the robots,
e.g. manipulability measure and torque.

The presented base placement optimization approach can
be applied to a range of applications that benefit from the
utilization of multiple AIRs. The approach considers a decen-
tralized architecture where each AIR is able to individually
explore and create a partial map of the environment, localize
itself within the map and determine an appropriate base
placement by using the team objectives and the information
shared amongst the team of AIRs. It is reasonable to assume
that the AIRs can communicate and share information on
the environment, their operation status and their capabilities.
It needs to be noted that the approach is not limited to the
decentralized architecture, and small modifications can make
the approach applicable to other control architectures.



The remainder of this paper is organized as follows.
Section II defines the problem. Section III presents the
proposed approach and the model for effective collaboration
of multiple AIRs by means of base placement optimization,
and Section IV presents test results using data collected
from a test rig representing a steel bridge maintenance site,
and results of a simulated scenario where three robots and
three objects are considered. Finally, Section V provides
concluding remarks and future work.

II. PROBLEM STATEMENT

When an AIR is capable of environmental awareness,
localization and mapping, situation awareness, and real time
motion planning and collision avoidance, the AIR will be
able to operate in unstructured, complex and dynamic envi-
ronments, such as the autonomous grit-blasting robots [2], [3]
currently operating in the Sydney Harbour Bridge for bridge
maintenance. Generally, in industrial applications such as
parts assembly, utilizing a team of robot agents can help to
reduce the process cycle time and can expand the capacity
of the robots to carry out a task [12].

Two examples of applications where multiple AIRs can be
used are shown in Fig. 1. Grit-blasting application is shown
in Fig. 1a where three AIRs are collaborating to remove
rust or other debris from all surfaces of three different and
separated objects. The second example application is shown
in Fig. 1b where two AIRs are collaborating to move an
object vertically (e.g. a flat plate) while keeping the object
horizontal.

When multiple AIRs are used in such applications, each
should determine an appropriate base placement both within
the environment and relative to the other AIRs. Ideally, the
appropriate base placement of each AIR is decided by the
AIR. The AIRs communicate with each other and share
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(a) Three AIRs performing grit-blasting

(b) Two AIRs lifting an object

Fig. 1: Two example applications

information on the environment and their capabilities, current
position and operation status. Therefore, all the AIRs will
have the same knowledge of the environment including the
global frame. The objective of the AIR team, e.g. minimum
makespan or completion time to cover the surfaces of the
object (Fig. 1a), or moving the plate while keeping it in
the horizontal by applying appropriate lifting force (Fig.
1b), is known to every AIR, and the AIR team will col-
laborate to achieve the objectives. Having considered the
aforementioned requirements, each AIR will then conduct
the optimization to select an appropriate base location and
orientation prior to executing the intended task.

III. MODELLING AND APPROACH
The process for effective collaboration of multiple AIRs by

means of Base Placement Optimization (BPO), i.e. finding
appropriate base position and orientation for each AIR is
summarized in the flowchart shown in Fig. 2.

The first component shown in the flowchart is exploration
for mapping [3], [4] and localization [13], which are au-
tonomously conducted by each AIR prior to the BPO. As a
result, each AIR is able to obtain partial information about
the environment based on its capabilities and location. The
AIRs can be mobile (mounted on a mobile platform) when
carrying out the aforementioned tasks; however, for better
operation, stability and accuracy in applications such as grit-
blasting and spray painting, their base is assumed to be fixed
during the task execution. The AIRs are then expected to
be able to communicate effectively and share environment
information (component 2 of the flowchart) in order for each
AIR to have a complete map of the environment. Component
2 also requires the AIRs to share status information, such as
their location in the environment, and information about their
capabilities, such as speed, properties of the tool attached
to the end-effector and their workspace coverage. The team
objectives, which are specific to the intended task, are to be
known by all AIRs. Component 3 of the flowchart is for each
AIR to carry out the optimization and then select the best
solution (component 4).
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Fig. 2: Flowchart of the process for effective collaboration
of multiple AIRs



A. Design Variables

Due to the large number of possible base placements
for the AIRs in an environment, the presented approach
considers discretizing the search space. Discretization of the
search space may produce lower quality results; however
in many applications compromising quality in favor of
computation time is acceptable if the results are within a
predefined threshold. Depending on the application, discrete
base positions can be generated using coarse discretization
of the search space and then further refined if predefined
requirements, such as coverage, are not met.

Fig. 3 shows an example where an AIR considers generat-
ing a set of discrete base positions, Bi = {bi1,bi2, . . . ,bimi} on
the feasible surface of the environment and around the three
objects, based on its capabilities and workspace coverage,
where i is the AIR index and mi is the total number of
discrete base positions for the ith AIR. From the original set
of discrete base positions, each AIR should then determine
a subset of discrete base positions, (BFBP)i ⊂ Bi, that have
a higher likelihood of producing optimal results. These base
positions will henceforth be referred to as the Favored Base
Positions (FBPs). Determining the FBPs is dependent on the
application, the team objectives and the AIRs capabilities.
For example, distance checking between each of the discrete
base positions and the obstacles or the target surface can
be used to prevent some of the discrete base positions from
becoming candidates when they are deemed too close to the
environment (shown in Fig. 3 as blue crossed points) or are
anticipated to have low coverage (red filled points in Fig. 3).
For each FBP, discrete base orientations are also evaluated
and the orientation that provides the best result (i.e. best
coverage) is selected.

Given (BFBP)i = {βi1,βi2, . . . ,βi(nF )i}, (nF)i 6 mi, the de-
sign variables are Zi j ∈ {0,1}, 1 6 i 6 n, 1 6 j 6 (nF)i with

constraints
(nF )i

∑
j=1

Zi j = 1 for each 1 6 i 6 n. Here Zi j = 1

means that the base position βi j ∈ (BFBP)i is selected for the
ith AIR. Therefore, for the n deployed AIRs, the ultimate
goal is to select n base placements that will meet the team
objectives by maximizing the design objective functions in
the optimization model.

= All base positions

= FBPs

Fig. 3: Discrete base positions and Favored Base Positions
(FBPs) of an AIR

B. Design Objectives

AIRs may perform tasks that require the end-effector to act
in three different ways: (1) follow predefined and fixed paths
during the task execution regardless of the base placement of
the AIRs (e.g. paths generated on all surfaces of an object for
complete surface coverage in grit blasting or spray painting
applications), (2) follow paths that need to be regenerated
for each new base placement of the AIRs (e.g. generating
shortest path in pick-and-place tasks), and (3) remain fixed
during the task execution (e.g. grasping a heavy object so
a human can perform drilling or welding operations). With
these tasks in mind, the main objectives can be formulated.
Note that trajectory planning from the current pose of an
AIR to the start point of the path is not considered in this
work.

Fig. 4 shows two AIRs performing the complete sur-
face coverage task of grit-blasting by controlling their end-
effectors to follow pre-generated paths created on all surfaces
of the I-beam. Discrete points, Oi = {oi1,oi2, . . . ,oiy} are also
generated on the end-effector paths of each AIR (shown
in Fig. 4 as connected blue/asterisk markers) where y is
the total number of discrete points on the paths of the ith
AIR. It can be assumed that for each AIR and at each
FBP, the end-effector paths can be generated or predefined if
required for the application. In order for an AIR to be able
to cover the whole path, it needs to find feasible AIR poses
P f

i = {p f
i1, p f

i2, . . . , p f
iy} associated with all discrete points in

Oi. In order for an AIR pose pi j to be considered a feasible
pose p f

i j, the AIR pose needs to be collision-free and have
an acceptable end-effector orientation and position relative
to the point oi j where j is the index of the discrete point on
the path of the ith AIR.

1) Objective 1 - Maximize Reachability / Coverage: This
objective is to maximize the number of points along the paths
of the n AIRs that can be reached with feasible AIR poses.
The higher the proportion of points that can be reached
with feasible AIR poses, to the total number of discrete
points along a path, equates to a higher likelihood of an
acceptable trajectory being found during the task execution.

oij

AIR Pose pij

Fig. 4: Feasible poses of two AIRs performing the grit-
blasting complete surface coverage task



This objective is to minimize

f1 =
n

∑
i=1

1−
S f

i

ST
i

(1)

where S f
i is the number of points that can be reached with

feasible poses of the ith AIR, and ST
i is the total number of

discrete points in the set Oi along the paths of the ith AIR.
2) Objective 2 - Minimize Makespan: This objective is to

minimize the makespan, i.e. to minimize the overall comple-
tion time of the intended task. This objective is particularly
important in industrial applications since it aims to reduce
the process cycle time. This objective is to minimize

f2 = max{t1, . . . , tn} (2)

where ti is the completion time of the ith AIR, which can be
calculated based on the end-effector speed of the AIR and
the time it takes for the AIR to cover all paths associated
with it.

3) Objective 3 - Maximize Manipulability Measure: A
commonly used performance metric is the manipulability
measure, which was first introduced by Yoshikawa [14], and
can help obtain a measure for a manipulator or a manipulator
pose corresponding to a certain point in the workspace. Thus,
this objective is to maximize the manipulability measure of
all the AIRs, i.e. to minimize

f3 =
n

∑
i=1

1−

S f
i

∑
j=1

W (p f
i j)

ST
i

(3)

where

W (p f
i j) =

√
det
(

J(p f
i j)JT(p f

i j)
)

(4)

is the manipulability measure (a value from 0 to 1), J
is the Jacobian corresponding to the ith AIR pose p f

i j =
[θ1,θ2, . . . ,θnk ], j is the discrete point index and θ1 to θnk
are the joint angles.

4) Objective 4 - Minimize Torque: Another important
measure for the AIRs is the total torque experienced by
the joints of each AIR during the task execution. Let p f

i j
be a feasible pose corresponding to the ith AIR and the jth
discrete point oi j. The maximum torque ratio for the pose p f

i j
is the largest torque ratio from all the joints (actuators) of
the AIR. This objective is to minimize the sum of maximum
torque ratios of the AIR that experiences the most amount
of torque. Thus, to minimize

f4 = max
i


S f

i
∑
j=1

max
k

∣∣∣∣ τik(p f
i j ,Fi)

τ
cap
ik

∣∣∣∣
ST

i

 (5)

where τik is the torque experienced by joint k(k = 1,2, . . . ,nk)
of the ith AIR due to the end-effector force Fi and the
gravitational forces at pose p f

i j. τ
cap
ik is the torque capacity of

kth joint of the ith AIR and nk is the total number of joints
of the ith AIR.

C. Design Constraints

1) Constraint 1- Distance Between Any Two AIRs: The
distance between any two AIRs should be greater than a
predefined threshold, δ1. This threshold will prevent the
AIRs from being in close proximity to each other and thus,
reduce the risk of collision between the AIRs, and avoid any
negative effect on the maneuverability of the AIRs during the
task execution. δ1 can be determined based on the workspace
of the AIRs. For example, if the AIRs are identical and their
workspace boundary can be approximated as a sphere, then
δ1 can be the distance from the base of the AIR to the
boundary of the AIR’s workspace. The first constraint that
needs to be met is

‖(βAIR)i− (βAIR)k‖> δ1 (6)

∀i,k : i= 1, . . . ,n,k = 1, . . . ,n, i 6= k where (βAIR)i and (βAIR)k
are the base positions of the ith and kth AIRs, respectively,
and n is the total number of AIRs.

The distance between any AIR and the closest point in
the environment has already been considered when selecting
FBPs for each AIR, and is not necessary to be considered
as an additional constraint.

IV. CASE STUDIES AND SIMULATIONS

A. Case Study 1- Two AIRs Applied in a Steel Bridge
Maintenance Environment

In this case study, the grit blasting application is consid-
ered. As shown in Fig. 5a, two 6DOF AIRs are deployed
to carry out grit-blasting on a test-rig replicating a section
of a steel bridge structure. Each AIR is equipped with a
nozzle and a sensor on the end-effector. The aggregate of the
grit-blasting paths performed by the AIRs needs to result in
complete grit-blasting coverage of all targeted surfaces in the
environment. During the task execution, for a discrete point
oi j on the pre-generated paths, the nozzle of an AIR is to be
oriented and positioned within an acceptable range relative
to oi j so as to allow the blasting stream exiting the nozzle to
aim at and follow the path within an allowable deviation. The
data collected from the sensors of the AIRs are used to create
the simulated scenario as shown in Fig. 5b. In the simulation,
the blue disks are all the discrete points, Oi(i = 1,2, . . . ,n)
and are used to represent the surfaces. The size of the disks
and the overlap between two adjacent disks are dependent
on factors such as the AIRs end-effector speed and nozzle
properties. In this simulation, the AIRs are considered to be
identical and hence, all disks representing the surfaces are
the same size for both AIRs. A total of 4130 disks are used
to represent the surfaces.

The circles generated on the floor shown in Fig. 6 are
all the discrete base positions created by both AIRs. In the
figure, the crossed circles represent discarded base positions
due to their proximity to obstacles/objects. The red filled
circles represent discarded base positions due to their low
coverage of the object, which were determined by obtaining
an estimate on the number of targets that can be covered
at each of the FBPs, through simple distance calculations



to find the targets that fall inside the workspace boundary
of the AIRs. The remaining 30 unfilled circles are the
good candidates (FBPs). The spacing and the method for
creating the discrete base positions depend largely on the
application. For the particular application being considered,
it was empirically found that the discrete base positions are
best to be spaced at 0.3 meters from each other.

An exhaustive search was considered for this case study
for the following reasons: (1) a small number of AIRs are
used, (2) the number of FBPs is relatively small, and (3) for
the particular AIRs used, no orientation about the vertical
axis needs to be considered for base placement since the
first joint of the AIRs can do a full rotation about the
vertical axis. However, if certain conditions such as a large
number of FBPs or an increased number of AIRs cause
large computation time, then an appropriate multiobjective
optimization algorithm should be used [15].

The first step is for each AIR to evaluate its performance
against the team objectives at each of its FBPs prior to the op-
timization. The computation time for evaluating the 30 FBPs
shown in Fig. 6 is 14.5 minutes using Matlab. The evaluation
information obtained by each AIR is then exchanged between
the AIRs, however since the AIRs are the same, then the
evaluation is the same. After evaluating performance at each
FBP, an exhaustive search was carried out and it took 5.5
seconds using Matlab. The same objectives and constraint
functions as those outlined in Section III are used. Since
uniform coverage of the surface is required, then the end-
effector speed is constant, and hence the completion time t
in (2) is calculated as ti = liv−1

i where vi is the end-effector
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Fig. 5: Real and simulated scenario for case study 1

speed of the ith AIR, and li is the length of the paths that
the ith AIR needs to cover. The threshold δ1 used in (6) is
set to 1 meter.

The best solution from the exhaustive search is shown
in Fig. 6 where the AIRs are a good distance away from
both the environment and each other. Using a lookup table,
the AIRs were able to collectively find acceptable poses for
3760 of the 4130 discrete points (blue disks) representing the
surfaces. It needs to be noted that some points, such as those
at the back of the roof and the I-Beam, can not be reached by
any of the AIRs regardless of the base placements selected.

In order for an AIR to find a feasible pose p f
i j for the

discrete point oi j, a lookup table can be used, which maybe
time efficient since the aim is not finding a feasible trajectory
for the task execution. To generate the lookup table, the
workspace of an AIR can be decomposed into a number
of 3D grids, where each 3D grid is associated with many
discrete AIR poses. The AIR poses associated with each
3D grid can be grouped based on the similarity of their
end-effector poses. The AIR poses in each group can then
be sorted based on manipulability measure, torque or other
performance measures used in the team objectives. To find
a feasible pose for oi j, the poses in the relevant group of
the 3D grid associated with oi j are checked in the sorted
order and the first collision-free pose is selected. Quadtrees,
octrees or similar hierarchical data structures [16] can be
used to perform fast searches so as to acquire the relevant
data, e.g. to find the 3D grid index which oi j belongs to.

In this case study, the workspace of the AIR is decom-
posed into 262144 3D grids with each grid containing 67
groups of AIR poses. The AIR poses are grouped based on
the similarity of their end-effector poses. Depending on the
region of the AIRs workspace in which the 3D grid is in,
e.g. dexterous or non-dexterous workspace [17], the number
of poses associated with each 3D grid can be different. The
number of poses in each group of a 3D grid are chosen to
be anywhere from zero (meaning the 3D grid can not be
reached with the required end-effectors’ orientation) up to a
maximum number of three hundred when the 3D grid is in
the full dexterous workspace of the AIR.

= All base positions

= FBPs

Fig. 6: Placement of the AIRs based on the final solution



Since multiple objectives are considered, then the Pareto
front can be obtained [15]. Selection of the final solution
from the Pareto front depends on the application. For the
particular application being considered, since the top priority
is to achieve maximum coverage then from the solutions
of the exhaustive search, a small subset of solutions with
the highest coverage is firstly chosen. Given that the next
priority is to minimize the makespan, a further subset is
chosen (from the original subset of solutions) based on the
lowest makespan. The final solution can be selected from
the second subset based on (a) the manipulability measure
to help with maneuverability of the AIRs during the task
execution, or (b) the lowest torque if the conditions of the
AIRs’ joints are critical. In the presented case study, the
weighted average of torque and manipulability measure is
used to select the final solution.

B. Case Study 2- Three AIRs Grit Blasting Three Objects

A total of three AIRs are considered to grit-blast the three
objects shown in Fig. 3, which are separated from each other.
The same type of AIRs, settings, and parameters as those
mentioned in the first case study are once again used. The
final solution shown in Fig. 7 is selected based on the same
selection strategy mentioned in the first case study.

The computation time to evaluate the performance of all
33 FBPs is 3 minutes and to carry out the exhaustive search
is 4.9 minutes using Matlab. It is clear that as the number of
AIRs increase, an exhaustive search becomes inefficient and
a multiobjective optimization algorithm, such those outlined
in [15], is preferable. The AIRs were able to collectively
find acceptable poses for all 664 discrete points (black disks)
representing the surfaces of all three objects.

V. CONCLUSION AND FUTURE WORK

This paper presented an approach that optimizes the col-
laboration of multiple Autonomous Industrial Robots (AIRs)
by finding appropriate base placements for the AIRs prior
to executing the intended task. A mathematical model was
developed by taking into account the capabilities of all AIRs,
the shared environment information and robots’ operation
status to find an appropriate base placement that will improve
the team objectives such as minimal makespan and maximum

= All base positions

= FBPs

Fig. 7: Placement of the AIRs based on the final solution

coverage. A set of objective and constraint functions are used
in the optimization model. Two case studies were presented
to demonstrate the effectiveness of the approach for complex
applications that require complete surface coverage such as
grit-blasting.

Future work will be to extend the presented approach to
help with selecting multiple base placements for each of the
deployed AIRs, considering that the bases of the AIRs will
need to be repositioned any number of times in order to
complete the whole task or series of tasks.
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