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Abstract. Chronic pulmonary infections are the principal cause of morbidity and mortality in 

individuals with cystic fibrosis (CF). Due to the polymicrobial nature of these infections, the 

identification of the particular bacterial species responsible is an essential step in diagnosis and 

treatment. Current diagnostic procedures are time-consuming, and can also be expensive, 

invasive and unpleasant in the absence of spontaneously expectorated sputum. The 

development of a rapid, non-invasive methodology capable of diagnosing and monitoring 

early bacterial infection is desired. Future visions of real-time, in situ diagnosis via exhaled 

breath testing rely on the differentiation of bacteria based on their volatile metabolites. The 

objective of this proof-of-concept  study was to investigate whether a range of CF-associated 

bacterial species  (i.e. Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus 

influenzae, Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus 

milleri) could be differentiated based on their in vitro volatile metabolomic profiles. 

Headspace samples were collected using solid phase microextraction (SPME), analyzed using 

comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry 

(GC×GC-TOFMS) and evaluated using principal component analysis (PCA) in order to assess 

the multivariate structure of the data. Although it was not possible to effectively differentiate 

all six bacteria using this method, the results revealed that the presence of a particular pattern 

of VOCs (rather than a single VOC biomarker) is necessary for bacterial species identification. 

The particular pattern of VOCs was found to be dependent upon the bacterial growth phase 

(e.g. logarithmic vs. stationary) and sample storage conditions (e.g. short-term vs. long-term 

storage at -18 °C). Future studies of CF-associated bacteria and exhaled breath condensate will 

benefit from the approaches presented in this study and further facilitate the production of 

diagnostic tools for the early detection of bacterial lung infections.  
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1. Introduction 

 Cystic fibrosis (CF) is the most common lethal inherited disorder in the Caucasian 

population [1]. It is characterized by the accumulation of excessively thick, sticky mucus that blocks 

the airways and is associated with the increased prevalence of certain pathogenic bacteria. Persistent 

bacterial colonization in the lungs precedes recurrent pulmonary infections causing inflammation and 

irreversible lung damage, which often leads to respiratory failure and death. Some studies have 

suggested that early, aggressive antibiotic therapy may increase the chances of preventing or delaying 

chronic bacterial colonization [2–5]. Early detection of established colonization with pathogenic 

bacteria (such as Pseudomonas aeruginosa) is critical for CF patients because chronic respiratory 

infections are difficult to eradicate from CF-infected airways once acquired. 

 The detection of CF lung infections generally relies on culturing of pathogenic 

microbiological organisms from lower airway secretions [6]. As expectorated samples can be difficult 

to obtain in patients with negligible sputum production, particularly in children, alternative methods 

such as sputum induction [7] or bronchoalveolar lavage [8] are often required. These procedures are 

time-consuming, expensive, invasive and unpleasant, especially for young children and infants.  

 CF lungs can be colonized and infected by many different bacterial species (e.g. Haemophilus 

influenzae, Burkholderia cepacia complex, Pseudomonas aeruginosa, etc.) [1]. Identification of the 

specific pathogen allows for targeted antibiotic therapy, which reduces the likelihood for the 

development of antibiotic resistance, and improves bacterial eradication and clinical response [6]. The 

correct culture conditions are vital for bacterial identification [2], and may require several different 

selective growth media and several days for identification and antibiotic susceptibility testing. 

 For these reasons, a rapid non-invasive diagnostic technique to monitor bacterial infection in 

CF patients is highly desirable. Current focus in the literature is aimed at developing techniques for 

exhaled breath analysis [9–13]. Future visions involve real-time analysis of exhaled breath 

(e.g. bedside diagnosis using an electronic nose) [14–16], which could provide clinicians with 

immediate information, facilitating rapid diagnosis and treatment, in addition to therapeutic 

monitoring. The non-invasive nature of exhaled breath testing is also appealing for pediatric patients 

that may have difficulty producing sputum samples for microbiological culturing. However, before 

these objectives can be met, the first step in the development of an exhaled breath test for the 

diagnosis of respiratory infections is the identification of volatile organic compounds (VOCs) that: 

1) can be used as suitable pathogen-specific biomarkers [17,18];  and 2) may reflect alterations in 

growth characteristics in important bacterial populations. 

 A number of different analytical techniques have been reported throughout the literature for 

the detection and identification of VOCs produced by in vitro cultures of CF pathogens including: 

selected ion flow tube mass spectrometry (SIFT-MS) [17,19], proton transfer reaction mass 

spectrometry (PTR-MS) [20,21], ion mobility spectrometry (IMS) [22,23], gas chromatography-mass 
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spectrometry (GC-MS) [18,24,25] and more recently comprehensive two-dimensional gas 

chromatography – time-of-flight mass spectrometry (GC×GC-TOFMS) [26,27]. Although GC-MS is 

typically considered the gold standard amongst analytical methods in this field [18], it often suffers 

from insufficient peak capacity, limited sensitivity and restricted selectivity; this makes co-eluting 

peaks, chromatographic artefacts and dynamic range difficult to manage [28]. Multidimensional 

techniques, such as GC×GC-TOFMS, offer distinct advantages when faced with complex matrices 

that exhibit these issues. The benefits of GC×GC have been highlighted in many fields including: 

petroleum products [29,30], food and flavour [31,32], environmental studies [33], forensic science 

[28,34,35] and metabolomics [36,37]. In the first reported application of GC×GC-TOFMS for in vitro 

bacterial headspace characterization, Bean et al. identified 28 new VOCs that had not been previously 

reported for Pseudomonas aeruginosa [26]. This nearly doubled the list of previously published 

volatile metabolites for one of the most prevalent bacterial species associated with CF lung infections, 

demonstrating the wealth of information that can be gained by using GC×GC-TOFMS.  

 Many of the microbial species that can produce pulmonary infections in CF patients 

experience similar metabolic pathways; therefore, the challenge is determining whether CF-associated 

bacterial species can, in fact, be discriminated by their volatile metabolites [18]. Previous studies have 

attempted to identify species-specific volatile biomarkers for CF-associated pathogens; however, the 

number of bacterial species studied is often limited (e.g. n = 2) [24,25]. The principal objective of this 

proof-of-concept study was to investigate whether a range of bacterial species (n = 6) could be 

differentiated based on their volatile metabolomic profiles collected using headspace solid phase 

microextraction (HS-SPME) and analyzed by GC×GC-TOFMS. GC×GC-TOFMS was employed in 

order to expand the VOC profile available for characterization. The bacterial species investigated 

were chosen based on their association with CF lung infections [1,38–40]. The species examined 

included: Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus influenzae, 

Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus milleri. Because access 

to analytical instrumentation may be limited and samples often need to be stored prior to analysis, a 

secondary aim of this study was to investigate whether the volatile metabolomic profiles of the 

bacteria changed over time. To do this bacterial headspace samples were collected and analyzed after 

both short-term (i.e. 2 – 5 days) and long-term (i.e. 48 – 50 days) storage at -18 °C. Each bacterial 

species was also cultured under two distinct growth phase conditions (i.e. logarithmic and stationary) 

in order to examine the volatile metabolomic profiles produced during clearly contrasting metabolic 

states. 
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2. Materials and Methods 

2.1.  Bacterial Culturing 

 The bacterial isolates were stored at -80 °C in Luria broth, Lennox (LB-Lennox; 10 g 

tryptone, 5 g yeast extract, 5 g NaCl) with 10 – 15% glycerol. H. influenzae was subcultured onto 

chocolate agar plates while all other isolates were subcultured onto blood agar (Oxoid Blood Agar 

base No. 2, Basingstoke, Hampshire, England) containing 5% defibrinated horse blood. The agar 

plates were incubated aerobically at 37 °C overnight. S. pneumoniae and H. influenzae plates were 

incubated overnight at 37 °C with 5% CO2. Single colonies were taken from fresh culture plates 

grown overnight and inoculated into 5 mL of LB-Lennox or Brain Heart Infusion (BHI) broth inside 

sterilized 20 mL headspace vials, which were sealed airtight with a screw cap containing a 1.3 mm 

thick polytetrafluoroethylene/silicone septum (Sigma-Aldrich, Castle Hill, NSW, Australia). 

S. pneumoniae and H. influenzae were cultured in BHI broth while all other bacteria were grown in 

LB-Lennox. All strains were cultured at 37 °C with vigorous shaking (200 rpm) for 16 h in order to 

advance the development of samples of each bacterial species to the stationary phase of growth. After 

16 h of growth, bacterial cultures were cooled on ice. To obtain samples of each bacterial species in 

the logarithmic phase of growth, freshly grown cultures (prepared overnight as described above) were 

inoculated as 1:100 dilutions in 5 mL of LB-Lennox or BHI broth inside sterilized 20 mL headspace 

vials sealed airtight. All strains were then cultured at 37 °C for 5 h with vigorous shaking 

(approximately 220 rpm) before being cooled on ice. Following bacterial culturing, which was 

performed off-site, the samples were transported on ice to the laboratory where they were stored 

at -18°C prior to analysis.  

 Each bacterial species was prepared in quadruplicate during both logarithmic and stationary 

phases of growth. Two of the bacteria samples were stored for 2 – 5 days at -18 °C prior to HS-SPME 

VOC collection and GC×GC-TOFMS analysis (i.e. short-term storage), while the other two samples 

were stored for 48 – 50 days at -18 °C (i.e. long-term storage) prior to analysis, therefore resulting in 

duplicate bacteria samples per overall treatment. Duplicate samples of LB-Lennox and BHI broth 

controls (i.e. broth only) were also prepared under both logarithmic and stationary growth phase 

conditions for the purpose of determining background VOCs associated with the growth media. 

Similar to the bacteria samples, half of the LB-Lennox and BHI broth control samples were stored 

under short-term storage conditions while the other half were stored under long-term storage 

conditions; this resulted in one replicate LB-Lennox control and one replicate BHI broth control per 

overall treatment.  

 

2.2. HS-SPME VOC Collection 

 VOC collection was carried out via a previously optimized headspace sampling method 

(adapted from Bean et al. [26]) using a 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane 
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(DVB/CAR/PDMS) 24 Ga Stableflex SPME fibre and manual fibre holder (Supelco, Bellefonte, PA, 

USA). The fibre was initially conditioned for 60 min at 270 °C before first use, according to the 

manufacturer’s recommendations. Fibre reconditioning (5 min at 250 °C) was performed as necessary. 

A fibre blank was completed before sampling and after every 4 sample injections using the GC×GC-

TOFMS method described below.  

 Prior to VOC collection, the SPME fibre was pre-loaded with an internal standard. This was 

performed by exposing the SPME fibre to the headspace of 200 µL of a 100 ppm solution of 

bromobenzene (GC grade, Sigma-Aldrich), prepared in methanol (HPLC grade, Sigma-Aldrich) 

inside a sealed headspace vial, for 15 s at room temperature. The pre-loading of an internal standard 

onto a SPME fibre has previously been demonstrated to exhibit good reproducibility for volatile and 

semivolatile internal standard analytes [41]. Using this approach the internal standard vial may be 

reused for numerous analyses without exhibiting significant loss [41]. This technique has been 

previously optimized in our laboratory to provide a relative standard deviation of <15% in the internal 

standard peak area. In this study, the intraday precision ranged from 4.2 – 14.7%, with an interday 

precision of 12.2% for the overall trial. 

 The HS-SPME sampling method (adapted from Bean et al. [26]) included sample thawing, 

sample incubation and sample headspace extraction. Sample thawing was performed at 4 °C 

overnight. Prior to headspace extraction, the sample was incubated for 10 min at 50 °C in a dry bath 

heating block (Thermoline Scientific, Wetherill Park, NSW, Australia). Sample extraction was 

achieved by exposing the SPME fibre to the sample headspace for 10 min while the sample was 

maintained at 50 °C. The SPME fibre was thermally desorbed in the GC×GC inlet for 5 min at 

250 °C. 

 

2.3. GC×GC-TOFMS Analysis 

 Sample analysis was conducted on a Pegasus
®
 4D GC×GC-TOFMS system (LECO, Castle 

Hill, NSW, Australia) equipped with a liquid nitrogen cryogenic quad jet modulator. The column 

configuration consisted of a 30 m × 0.250 mm inner diameter (ID), 1.40 µm film thickness Rxi
®
-

624Sil MS column (Restek Corporation, Bellefonte, PA, USA) in the first dimension (
1
D) and a 2 m × 

0.250 mm ID, 0.50 µm film thickness Stabilwax
®
 column (Restek Corporation) in the second 

dimension (
2
D). The 

1
D and 

2
D columns were connected by a SilTite™ µ-Union (SGE Analytical 

Science, Wetherill Park, NSW, Australia).  

 The speed optimized flow [42] and optimal heating rate [43] were calculated in order to 

obtain optimal resolution in the 
1
D. High purity helium (BOC, Sydney, NSW, Australia) was used as 

the carrier gas with a constant flow rate of 2.0 mL/min. Sample introduction was performed using 

splitless injection with a 30 s purge time. The primary oven was programmed to begin at 40 °C (held 

for 0.20 min) and was increased to 230 °C (held for 0.80 min) at a rate of 10 °C/min. Relative to the 
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primary oven, the secondary oven was programmed to have a constant offset of +5 °C and the 

modulator a constant offset of +30 °C. A modulation period of 4 s was used with a 0.4 s hot pulse and 

1.6 s cooling time between stages. Mass spectra were collected from m/z 25 – 500 at a rate of 200 Hz 

with an acquisition delay of 120 s. A 200 V offset above the optimized detector voltage was used, the 

electron ionization energy was set at 70 eV and the ion source and MS transfer line were maintained 

at 200 °C and 250 °C, respectively. 

 

2.4. Data Processing 

 ChromaTOF
®
 (version 4.51.6.0; LECO) was used for data processing. The baseline was 

automatically smoothed by the software with an 80% offset. The 
1
D peak width was set at 20 s while 

the 
2
D peak width was set at 0.1 s. The minimum signal-to-noise ratio (S/N) for the base peak and sub-

peaks was set at 250 and 20, respectively. A minimum similarity match >800 to the 2011 National 

Institute of Standards and Technology (NIST) mass spectral library database was used for initial 

identification.  

 Peak identifications were supported with the use of 
1
D retention indices and retention time 

matching with chemical standards when possible using a standard test mixture containing a range of 

compounds covering several different compound classes (complete list of standards documented in 

Perrault et al. [44]). The 
1
D retention indices were calculated using the n-alkanes within the standard 

test mixture and a Retention Index Method created in ChromaTOF
®
. For analysis of the standards, the 

SPME fibre was exposed to 1 µL of a 100 ppm solution of the test mixture, prepared in carbon 

disulfide (≥99% anhydrous, Sigma-Aldrich) inside a sealed headspace vial, for 10 min at 50 °C in a 

dry bath heating block. The SPME fibre was then desorbed for analysis as previously described.  

 The Statistical Compare software feature in ChromaTOF
®
 was used for peak alignment. 

Samples were input into Statistical Compare and two approaches were taken to facilitate visualization 

by multivariate analysis. In the first approach (denoted approach A), the samples were processed in 

two separate files based on growth phase; within each of these files seven classes were created that 

included the control samples (i.e. media) as a single class (n = 4 samples) and one class for each 

individual bacterial species (n = 6 classes with n = 4 samples within each class). For approach A, 

analytes were only retained if found in 75% of the samples within a class. This approach was used to 

investigate the primary objective of the paper (i.e. to determine whether the six bacterial species could 

be differentiated based on their volatile metabolomic profiles). In a second approach (denoted 

approach B), the samples were input into a single file and separated into two classes: control (n = 8 

samples) and bacteria (n = 48 samples). For approach B, analytes were only retained if found in 24 

samples out of the 56 total samples or if found in 50% of the samples within a class. This approach 

was applied to see if any further information could be extracted from the data with the use of a two-

class model, conforming to the original design of Statistical Compare. 
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 For both approaches, the following settings applied. A S/N of 20 was used to search for peaks 

not found during the initial peak finding step. A mass spectral match >600 was required for peaks to 

be identified as the same compound across chromatograms during alignment. When analytes did not 

meet this mass spectral match threshold during alignment they were removed from the final 

compound list. To allow for retention time deviations between samples the maximum retention time 

differences specified in the 
1
D and 

2
D were 4 s (i.e. 1 modulation period) and 0.6 s, respectively. After 

alignment, the analyte peak areas (calculated using unique mass) were normalized using the 

bromobenzene internal standard peak area. A Fisher ratio (i.e. the ratio of between-class variance to 

within-class variance) was also calculated for each analyte using the Statistical Compare software 

feature. In the case where an analyte was absent from a class or only detected in a single sample in a 

class, the within-class variance could not be calculated (or was equal to 0) and a value of undefined 

was given for the Fisher ratio. Analytes with higher Fisher ratio values (or those labelled as 

“undefined”) indicated compounds that statistically differed in abundance between the defined 

classes.  

 Fisher ratio filtering was performed based on its success in previous applications for 

identifying class-distinguishing compounds [45–49]. Compounds with Fisher ratios above the critical 

value (Fcrit = 2.57 and 4.02 for approaches A and B, respectively), which includes those labelled as 

“undefined”, were exported as a *.csv file and imported into Microsoft Excel for the manual removal 

of chromatographic artefacts (i.e. column bleed and phthalates). The F-distribution was used to 

calculate Fcrit for each aligned Statistical Compare compound list. The Fcrit value is computed based 

on three approach-dependent criteria: the number of classes in the analysis, the degrees of freedom for 

each class and the significance level chosen ( = 0.05). Principal component analysis (PCA) was 

carried out in The Unscrambler
®
 X (version 10.3; CAMO Software, Oslo, Norway). Data pre-

processing steps performed in The Unscrambler
®
 X prior to PCA included mean centring, variance 

scaling and unit vector normalization. These pre-treatment steps have been previously demonstrated 

for multivariate VOC analyses [50,51]. Following PCA, each dataset was evaluated for outlying 

samples by means of the Hotelling’s T
2
 95% confidence limit. All data were verified to contain no 

outliers. 

 

3. Results and Discussion 

3.1. HS-SPME-GC×GC-TOFMS Results 

 During this study, headspace samples were collected from six different CF-associated 

bacterial species and two different growth media (i.e. controls) using HS-SPME and analyzed using 

GC×GC-TOFMS. Figure 1 displays GC×GC-TOFMS total ion current (TIC) contour plots of the BHI 

control broth and the two bacterial species cultured in BHI broth: H. influenzae and S. pneumoniae. 

GC×GC-TOFMS TIC contour plots of the LB-Lennox control broth and the bacterial species cultured 
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in LB-Lennox (i.e. P. aeruginosa, B. cenocepacia, S. maltophilia and S. milleri) are displayed in 

figure 2. A scale of 0 – 40% of the normalized signal intensity was used in figure 1 and figure 2 in 

order to assist with chromatographic visualization of trace components, as a result of the wide 

dynamic range detected. The contour plots displayed in figure 1 and figure 2 illustrate that 

chromatographic differences can be observed between: 1) the individual bacterial species; and 2) 

between the bacterial samples and the respective control samples.  

 With a TIC S/N greater than 250, an average of 397 peaks were detected in the control 

samples compared to an average of 472 peaks detected in the bacterial samples. This represents an 

order-of-magnitude increase in the number of VOCs detected using GC×GC-TOFMS when compared 

to the volatile profiles of CF-associated bacterial species obtained in vitro using traditional one-

dimensional GC-MS [18,24,25]. This is a direct result of the increased peak capacity, sensitivity and 

selectivity afforded by GC×GC-TOFMS. These benefits allowed co-eluting peaks, chromatographic 

artefacts and dynamic range to be more easily managed in this study, leading to an overall increase in 

peak detectability. This resulted in a more comprehensive volatile metabolomic profile of each 

sample, with each individual VOC having a higher likelihood of being detected and quantified 

accurately. Compounds detected before filtering included acids, alcohols, aldehydes, aliphatic 

hydrocarbons (i.e. alkanes, alkenes and alkynes), aromatic hydrocarbons, esters, ethers, functionalized 

benzenes (i.e. benzene ring with various N, O, or S heteroatomic functional groups), heteroaromatics 

(i.e. aromatic ring containing a N, O, or S heteroatom), ketones, sulfur-containing compounds, 

nitrogen-containing compounds, chromatographic artefacts (e.g. siloxanes, silanols, silanes and 

phthalates) and “other” compounds containing multiple functional groups. A similar range of chemical 

classes has previously been reported in the in vitro headspace analysis of P. aeruginosa by HS-SPME-

GC×GC-TOFMS [26]. Overall, the use of GC×GC-TOFMS in this study highlights the wealth of 

additional information that can be gained from this technique for volatile metabolomic profiling and 

the prospects for new advancements in future applications of disease monitoring. 
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Figure 1. GC×GC-TOFMS TIC contour plots of a) BHI control broth and those bacterial species cultured in 

BHI broth under stationary growth phase conditions and analyzed after short-term storage: b) H. influenzae and 

c) S. pneumoniae.  

 

 

Figure 2. GC×GC-TOFMS TIC contour plots of a) LB-Lennox control broth and those bacterial species 

cultured in LB-Lennox under stationary growth phase conditions and analyzed after short-term storage: 

b) P. aeruginosa, c) B. cenocepacia, d) S. maltophilia and e) S. milleri. 
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3.2. Bacterial Differentiation 

 In order to determine whether the six bacterial species could be differentiated based on their 

volatile metabolomic profiles, the chromatographic results were evaluated using principal component 

analysis (PCA). This allowed visualization of the multivariate structure of the data based on the 

volatile metabolomic profile as opposed to a univariate approach based on individual compounds. In 

order to examine the structure of the data related to bacterial differentiation, two separate PCA 

analyses were conducted whereby samples prepared under logarithmic and stationary growth phase 

conditions were evaluated as two separate datasets. Within each dataset the samples were separated 

into seven classes (i.e. six individual bacterial classes and one control class) for alignment and Fisher 

ratio filtering.  

 Using this method (designated as Statistical Compare approach A), analytes were only 

retained if found in 75% of the samples within a class, where the number of samples in each class was 

equal to four (i.e. two short-term storage samples and two long-term storage samples). This filtering 

method allowed for the identification of analytes that were detected in both short-term and long-term 

storage samples for a particular bacteria or control, which is important for laboratories that may need 

to store samples prior to analysis while waiting for analytical instrumentation to become available. 

Using Statistical Compare approach A, 324 compounds were retained after alignment for the samples 

cultured under logarithmic growth phase conditions. Of the 324 compounds, 38 analytes were 

identified that met all post-processing criteria (i.e. found to have a Fisher ratio above the 

Fcrit threshold of 2.57, sufficient spectral matching and not related to chromatographic artefacts). 

Hereafter the term “detected compounds” refers to the compounds that met these criteria and were 

used for PCA analysis. Similarly, for samples cultured under stationary growth phase conditions, 334 

compounds were initially retained after alignment using Statistical Compare approach A. After post-

processing procedures, 76 detected compounds remained that were used for PCA analysis. 

 The additional information gained through the use of GC×GC-TOFMS (compared to 

traditional GC-MS) in combination with complementary statistical software features allowed for the 

above described approach to be applied in order to select compounds of interest rather than relying on 

all compounds identified. The compounds of interest selected in this post-processing list should 

provide optimal discrimination when using PCA. 

 Figure 3 and figure 4 display the PCA scores and loadings plots produced for the detected 

compounds in both the logarithmic (figure 3(a) and figure 3(b), respectively) and stationary (figure 

4(a) and figure 4(b), respectively) growth phase analyses. Compound identifications corresponding to 

the numbers in the loadings plots can be found in Table S-1 (samples cultured under logarithmic 

growth phase conditions) and Table S-2 (samples cultured under stationary growth phase conditions) 

in the Supplementary Data. The explained variance observed for the principal component axes in 

figure 3 and figure 4 (i.e. 43% and 38%, respectively) is considered to be moderate. These values 
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were originally higher before data transformations (i.e. mean centring, variance scaling and unit 

vector normalization) were performed; however, data transformations and filtering reduced the 

amount of noise introduced into the overall dataset and therefore by performing these steps the 

resulting axis loadings were reduced. This is not a negative point but rather increases the ability to 

differentiate the samples based on the structure of the data. In addition, the more principal 

components considered, the larger the amount of variation that is taken into account. For this reason 

PC-3 was also investigated but was not found to provide any further differentiation between the 

bacterial species under logarithmic or stationary growth phase conditions. 

 

 

Figure 3. Principal component analysis using pre-processed GC×GC-TOFMS peak area data for compounds 

detected in logarithmic growth phase samples with Statistical Compare approach A: a) scores plot; b) loadings 

plot (list of compounds available in Table S-1 in the Supplementary Data). Closed symbols represent samples 

analyzed after short-term storage and open symbols represent samples analyzed after long-term storage. 

PA = P. aeruginosa; BC = B. cenocepacia; HI = H. influenzae; SMa = S. maltophilia; SP = S. pneumoniae; 

SMi = S. milleri; LB = Luria broth, Lennox; and BHI = Brain Heart Infusion broth. 

 

 

Figure 4. Principal component analysis using pre-processed GC×GC-TOFMS peak area data for compounds 

detected in stationary growth phase samples with Statistical Compare approach A: a) scores plot; b) loadings 

plot (list of compounds available in Table S-2 in the Supplementary Data). Closed symbols represent samples 

analyzed after short-term storage and open symbols represent samples analyzed after long-term storage. 

PA = P. aeruginosa; BC = B. cenocepacia; HI = H. influenzae; SMa = S. maltophilia; SP = S. pneumoniae; 

SMi = S. milleri; LB = Luria broth, Lennox; and BHI = Brain Heart Infusion broth. 

 

 Similar to the chromatographic profiles of the bacteria samples in figure 1 and figure 2, PCA 

allowed the visualization of varying degrees of differentiation and similarity between the volatile 

metabolomic profiles of the bacteria investigated. P. aeruginosa and B. cenocepacia produced similar 

volatile metabolomic profiles when prepared under both logarithmic and stationary growth phase 
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conditions. Under logarithmic growth phase conditions (figure 3(a) and figure 3(b)), P. aeruginosa 

and B. cenocepacia exhibited comparable concentrations of 2,4-dimethyl-heptane (13), 2-nonanone 

(34), 2-methyl-3-isopropylpyrazine (31), 2-methyl-furan (4), 1-decene (32) and mercaptoacetone (9) 

based on the available compound identification information (bracketed numbers following the 

compound names refer to the compound identification numbers in the corresponding loadings plot). 

However, under stationary growth phase conditions (figure 4(a) and figure 4(b)), the similarities in 

these bacterial species was attributed to a broader spectrum of compounds. S. pneumoniae and 

S. milleri also produced similar metabolic by-products to each other during both growth phases 

investigated. Under logarithmic conditions (figure 3(a) and figure 3(b)), S. pneumoniae and S. milleri 

exhibited comparable concentrations of acetic acid butyl ester (16) and 3-methyl-3-heptanol (22). 

Under stationary growth phase conditions (figure 4(a) and figure 4(b)), the similarities between S. 

pneumoniae and S. milleri were mainly attributed to the following VOCs: 1-ethylpropyl-benzene (67), 

3-methyl-butanal (16), 2-methyl-butanal (18), hexyl-benzene (69), 2,3-pentanedione (24) and 

α-methyl-benzeneacetaldehyde (63). During the logarithmic growth phase (figure 3(a) and figure 

3(b)), S. maltophilia generated a comparable VOC profile to two of the H. influenzae replicates with a 

similar concentration of L-leucine methyl ester (27); however, under stationary growth phase 

conditions (figure 4(a) and figure 4(b)), S. maltophilia produced similar VOCs (e.g. L-leucine methyl 

ester (57), 1-propanol (5), methyl thiolacetate (20), butyl 2-methylbutanoate (56), etc.) to 

P. aeruginosa and B. cenocepacia. H. influenzae produced a more variable VOC profile than the other 

bacteria under all conditions tested.  

 Under logarithmic growth phase conditions (figure 3(a)) the bacteria samples exhibited a 

higher degree of discrimination from the control samples in comparison with stationary growth phase 

conditions (figure 4(a)). There was also reduced variation between replicates for B. cenocepacia, S. 

pneumoniae and S. maltophilia under logarithmic growth phase conditions, which resulted in an 

increased overall discrimination between species.  

 Further investigation demonstrated that the variation observed within a single bacterial 

species (e.g. H. influenzae and S. maltophilia) was a result of the different storage conditions used 

(i.e. short-term vs. long-term storage). For example, the two H. influenzae replicates grouped on the 

left-side of the scores plot in figure 3(a) (closed symbols) were analyzed after short-term storage, 

while the two replicates grouped on the right-side of the plot (open symbols) were analyzed after 

long-term storage. Similar results were also found for the H. influenzae samples cultured under 

stationary growth phase conditions (figure 4(a)). 

 The two different growth media used herein (i.e. LB-Lennox and BHI broth) were selected for 

the optimal in vitro growth of the bacterial species investigated (i.e. LB-Lennox is poor for culturing 

S. pneumoniae and H. influenzae). It is of course expected that the use of different growth media may 

result in different volatile metabolomic profiles; unfortunately this is an unavoidable part of in vitro 
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analysis. Nevertheless, the use of two different growth media can be considered reflective of future in 

vivo samples (e.g. exhaled breath) where there is no media involved but there is a higher probability 

of biological variability (i.e. growth conditions) in the lung environment between patients. Despite the 

use of two different growth media, S. milleri (cultured using LB-Lennox) and S. pneumoniae (cultured 

using BHI broth), two bacteria belonging to the same genus, were still found to produce similar 

volatile metabolomic profiles as previously described. 

 When comparing all six of the CF-associated bacterial species it is apparent that the presence 

of a particular pattern of VOCs (rather than a single VOC biomarker) is necessary for bacterial 

species differentiation and identification. The particular pattern of VOCs also appears to be dependent 

upon the bacterial growth phase and sample storage conditions. Previous studies have claimed to 

identify species-specific biomarkers for CF-associated pathogens; however, the number of bacterial 

species studied is often limited (e.g. n = 2) [24,25]. Although it may be possible to effectively 

differentiate two or three bacterial species based on their respective VOC profiles 

(e.g. B. cenocepacia, S. maltophilia and S. pneumoniae in figure 3(a)), the results of this study 

highlight the importance of studying several different bacterial species with similar metabolic 

pathways when the objective is to identify species-specific biomarkers/VOC patterns. Increasing the 

number of replicates in the future and maintaining sample storage conditions, as discussed in the next 

section, may yield even greater differentiation between bacterial species. 

 

3.3. Storage Conditions 

 Statistical Compare was initially designed by LECO as an optional feature within 

ChromaTOF
®
 to help manage large sets of metabolomics data allowing for analyte alignment and the 

calculation of descriptive statistics. For this reason, Statistical Compare appears to be well-suited for 

two-class models (e.g. cancerous vs. non-cancerous samples or diabetic vs. non-diabetic samples). In 

an attempt to conform to the design of Statistical Compare, the data was further analyzed using a two-

class model (i.e. bacteria vs. control), which is referred to throughout as Statistical Compare approach 

B. With this approach, more stringent filtering rules were applied during alignment in an effort to 

better characterize the difference in the volatile metabolomic profiles collected after short-term (i.e. 2 

– 5 days) vs. long-term (i.e. 48 – 50 days) storage at -18 °C. 

 The volatile metabolomic profiles acquired from the samples analyzed after long-term storage 

were clearly more complex as noted in both the GC×GC-TOFMS TIC contour plots (figure 5) and in 

the number of VOCs detected (e.g. an average increase of approximately 200 VOCs compared to 

samples analyzed after short-term storage). Similar results have also been reported for the analysis of 

volatiles from blood samples analyzed periodically over 5 weeks after storage at room temperature 

(25 °C), under refrigeration (4.5 °C) and in a freezer (-18 °C), with VOC profiles becoming more 

complex with increasing storage length [52]. The variation observed in the volatile metabolomic 
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profiles as a result of the different storage periods could be due to contamination, sample degradation, 

residual bacterial activity (which may not be halted even when samples are frozen at -18 °C [53]), or a 

combination of such events. 

 

 

Figure 5. GC×GC-TOFMS TIC contour plots of H. influenzae cultured under logarithmic growth phase 

conditions and analyzed after a) short-term and b) long-term storage. 

 

 Overall, Statistical Compare approach B generated a list of 320 aligned peaks. Of these 320 

peaks, 25 detected compounds met the previously described post-processing criteria and were 

subsequently used for PCA analysis. Discrimination was observed between the samples analyzed after 

short-term storage compared with long-term storage using PCA as shown in the scores plots in 

figure 6(a). This discrimination can be attributed to the compounds identified in the loadings plot 

(figure 6(b)) which are listed in Table S-3 in the Supplementary Data. Overall, the first principal 

component (PC-1) accounted for 33% of the variation in the dataset. Discrimination occurred along 

this axis between the short-term and long-term storage conditions. The second principal component 

(PC-2) accounted for 16% of the variation in the dataset, and discrimination between the bacteria and 

controls was observed along this axis. 
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Figure 6. Principal component analysis using pre-processed GC×GC-TOFMS peak area data for compounds 

detected in analyzed samples using Statistical Compare approach B: a) scores plot of PC-1 and PC-2 

distinguishing storage length; b) loadings plot of PC-1 and PC-2; c) scores plot of PC-2 and PC-3 distinguishing 

growth phase; d) loadings plot of PC-2 and PC-3. Compound numbers in loadings plots correspond to the list of 

compounds in Table S-3 in the Supplementary Data. Log = logarithmic growth phase and stat = stationary 

growth phase. 

 

 Variation in storage conditions can clearly impact the number of VOCs detected in bacteria 

samples and the VOC profile reported. Studies that remove cells by centrifugation prior to volatile 

analysis may reduce some of the variation described above. Storage at lower temperatures (e.g. -70 

to -80 °C) could also further reduce or inhibit bacterial activity [53,54]. Regardless, as access to 

analytical instrumentation may be limited, future work should explicitly document sample storage 

conditions in order to prevent misrepresentation of the data and to allow for datasets within the 

literature to be appropriately compared. Standardizing the storage conditions of samples may also 

increase the ability to discriminate between bacterial species using multivariate statistics. 

 

3.4. Growth Phase 

 In vitro bacterial growth can be modeled by plotting the natural logarithm of the number of 

bacteria cells vs. incubation time, resulting in a growth curve with 4 distinct phases: lag phase, 

logarithmic (or exponential) phase, stationary phase and death phase [55]. During the lag phase the 

bacteria adapt to their new environment (e.g. following inoculation into fresh growth medium) and the 

cells begin to grow. Shortly after the bacteria adjust to their new growth conditions they enter the 

logarithmic phase where they reach their maximum growth rate. Continued exponential growth begins 

to exhaust essential nutrients and the formation of metabolic waste alters the conditions of the growth 

medium producing the horizontal linear portion of the growth curve referred to as the stationary 

phase. Eventual depletion of essential nutrients and accumulation of waste material leads to cell death.  
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 Since chronic respiratory infections are not easily eradicated from the CF lung once acquired, 

the ability to distinguish early-stage, acute infections from chronic infections may provide clinicians 

with additional information about the most appropriate treatment strategy. In this study, we compared 

logarithmic and stationary growth phases for each bacterial species as these provide clearly 

contrasting metabolic states. 

 The VOC profiles acquired of samples from stationary phase cultures were more complex 

than those samples from logarithmic phase cultures, with an average increase of approximately 40 

VOCs. When the third principal component (PC-3) was taken into consideration for the detected 

compounds obtained from Statistical Compare approach B, the logarithmic and stationary phases of 

growth could be differentiated based on their VOC profiles (figure 6(c)). Overall, PC-3 accounted for 

12% of the variation in the dataset, and discrimination between the growth phases was observed along 

this axis. This discrimination can be attributed to the compounds shown in the loadings plot 

(figure 6(d)) which are listed in Table S-3 in the Supplementary Data. In order to determine if the 

growth phases could be differentiated within an individual bacterial species, each species was 

analyzed independently by PCA using the 25 detected compounds isolated from Statistical Compare 

approach B. Using this approach, logarithmic and stationary phase metabolic profiles could be 

differentiated using PC-3 for P. aeruginosa, S. milleri and S. pneumoniae but not for B. cenocepacia, 

H. influenzae and S. maltophilia. Figure 7 demonstrates a representative PCA scores plot of PC-2 vs. 

PC-3 obtained for P. aeruginosa.  

 

 

Figure 7. Principal component analysis using pre-processed GC×GC-TOFMS peak area data for P. aeruginosa 

and LB-Lennox control samples using compounds detected with Statistical Compare approach B. Log = 

logarithmic growth phase and stat = stationary growth phase. 

 

4. Concluding Remarks 

 Previous studies considering only one or two bacterial species have claimed to identify 

species-specific biomarkers for CF-associated pathogens. The main objective of this study was to 

investigate whether six different CF-associated bacterial species could be differentiated based on their 

volatile metabolomic profiles collected and analyzed using HS-SPME-GC×GC-TOFMS. Although it 

was not possible to effectively differentiate all six bacteria using the methods outlined herein, this 



 
 

 
  Page 17 

study has demonstrated that a large subset of the bacterial volatome (i.e. VOC profile), rather than a 

single biomarker, is required for bacterial species identification.  

 Due to similarities in the metabolic pathways of CF-associated bacteria, it is important to 

investigate the broad range of bacteria that may be detected in the CF lung in order to accurately 

recognize and differentiate their volatomes. Expanding volatile metabolomic profiling to encompass 

additional bacterial species will aid in the development of in situ tools for diagnostic purposes which 

are capable of differentiating common bacterial species that could be present in the airways as a result 

of a variety of different lung infections worldwide such as tuberculosis. This study did not aim to 

identify species-specific biomarkers; however, the approaches used herein could be applied in future 

studies (with the use of high replicate datasets) for species-specific volatome discovery, including 

other more difficult situations/organisms (e.g. influenza virus). 

 Sample storage conditions are often not noted in published studies; however, this study has 

shown that storage length can alter the VOC profile and should be considered when reporting 

bacterial volatomes (or biomarkers). Although the growth phases could not be differentiated for all of 

the bacterial species investigated, the differentiation of all six bacteria was improved under 

logarithmic growth phase conditions compared with stationary growth phase conditions. This 

knowledge may be important when considering future diagnostic tools using exhaled breath analysis 

for the early detection and identification of acute pulmonary infections. 
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