CALCULATING GLOBAL ENERGY SECTOR JOBS: 2015 METHODOLOGY UPDATE

For Greenpeace International

Draft Report

Authors:

Jay Rutovitz, Elsa Dominish, Jenni Downes

Disclaimer

While all due care and attention has been taken to establish the accuracy of the material published, UTS/ISF and the authors disclaim liability for any loss that may arise from any person acting in reliance upon the contents of this document.

Acknowledgements

We would like to thank, Fiona Berry, Matthew Daly and Sven Teske for their assistance with this research.

Citation

Institute for Sustainable Futures

© UTS 2015
CONTENTS

CONTENTS .. II
LIST OF TABLES AND FIGURES ... III
ABBREVIATIONS .. IV
1 INTRODUCTION .. 1
2 METHODOLOGY OVERVIEW .. 2
 2.1 Limitations ... 4
3 EMPLOYMENT FACTORS ... 5
 3.1 Regional employment factors ... 8
 3.2 Coal fuel supply employment factors .. 9
 3.3 Gas fuel supply employment factors .. 12
4 HEAT SECTOR METHODOLOGY AND EMPLOYMENT FACTORS 13
5 REGIONAL ADJUSTMENT FACTORS .. 15
6 ADJUSTMENT FOR LEARNING RATES – DECLINE FACTORS ... 18
7 COAL TRADE ... 19
8 GAS TRADE ... 21
9 EMPLOYMENT IN ENERGY SECTOR MANUFACTURING ... 23
APPENDIX 1 EMPLOYMENT FACTORS USED IN 2010 AND 2012 24
APPENDIX 2 WIND EMPLOYMENT FACTORS – ADDITIONAL INFORMATION 26
APPENDIX 3 SOLAR PV EMPLOYMENT FACTORS – ADDITIONAL INFORMATION 28
APPENDIX 4 SOLAR THERMAL EMPLOYMENT FACTORS – ADDITIONAL INFORMATION 30
APPENDIX 5 HYDRO EMPLOYMENT FACTORS – ADDITIONAL INFORMATION 33
APPENDIX 6 NUCLEAR EMPLOYMENT FACTORS – ADDITIONAL INFORMATION 35
APPENDIX 7 COAL EMPLOYMENT – PRODUCTIVITY PROJECTION 36
REFERENCES ... 39
List of Tables and Figures

Figure 1: Calculation of Energy Supply Jobs: Overview ... 3

Table 1 OECD Employment Factors Used in the 2015 Global Analysis 5
Table 2 Regional Employment Factors Other Than Coal Fuel .. 8
Table 3 Employment Factors Used for Coal Fuel Supply .. 10
Table 4 Gas Fuel Employment Factors .. 12
Table 5 Range of Employment Factors for Solar Heat Supply 14
Table 6 Regional Multipliers to be Applied to Employment Factors 15
Table 7 Numbers of Countries with Labour Productivity Data 16
Table 8 Regional Labour Productivity Compared to OECD Labour Productivity 17
Table 9 Employment Factor Decline from 2015 – 2030 by Technology 18
Table 10 Proportion of Coal Imports: Reference and [R]Evolution Scenarios 19
Table 11 Proportional Allocation of World Trade: Reference and [R]Evolution Scenarios .. 20
Table 12 Net Inter-regional Hard Coal Trade, 2012 – 2030, Reference Scenario (PJ) 20
Table 13 Regional Production of Coal, 2012–2030, Coal Importing Countries (PJ) 20
Table 14 Proportion of Gas Imports: Reference and [R]Evolution Scenarios 21
Table 15 Net Inter-regional Gas Trade, 2009 – 2035, New Policies Scenario (PJ) 22
Table 16 Regional Production of Gas, 2009 – 2035, IEA New Policies Scenario (PJ) 22
Table 17 Proportion of Local Renewable Energy Manufacturing and Import / Export, All Regions .. 23
Table 18 Employment Factors Used in the 2010 Analysis ... 24
Table 19 Employment Factors Used in the 2012 Analysis ... 25
Table 20 Historic and Projected Productivity for Coal Mining in China 36
Table 21 Historic and Projected Productivity for Coal Mining in India 37
Table 22 Historic and Projected Productivity for Coal Mining in Russia 38
Abbreviations

BCM Billion Cubic Metres
CMI Construction, Manufacturing And Installation
CSP/ CST Concentrating Solar Power / Concentrating Solar Thermal
DTI Department of Trade and Industry (UK)
EIA Energy Information Administration (USA)
EPIA European Photovoltaic Industry Association
EREC European Renewable Energy Council
ESTELA European Solar Thermal Electricity Association
EWEA European Wind Energy Association
FTE Full Time Equivalent
GDP Gross Domestic Product
GEA Geothermal Energy Association
GPI Greenpeace International
GW Gigawatt
GWh Gigawatt hour
GW$_{th}$ Gigawatt thermal
IEA International Energy Agency
ILO International Labour Organisation
IRENA International Renewable Energy Association
ISF Institute for Sustainable Futures
KILM Key Indicators of the Labour Market
kW Kilowatt
kW$_{th}$ Kilowatt thermal
kWh Kilowatt hour
MW Megawatt
MW$_{th}$ Megawatt thermal
MWh Megawatt hour
MTCE Million Tons Coal Equivalent (this is unit of energy rather than weight, equal to 29.3 GJ. It is)
NREL National Renewable Energy Laboratories (US)
NPP Nuclear Power Plant
O&M Operations and Maintenance
OECD Organisation for Economic Co-operation and Development
PV Photovoltaic
REN21 Renewables Global Status Report
TCE Tonnes of coal equivalent (this is unit of energy rather than weight, and standardises between different grades of coal)
t/p/yr Tons Per Person Per Year
TWh Terawatt hour
UNDP United Nations Development Programme
1 Introduction

The Institute for Sustainable Futures (ISF) at the University of Technology Sydney analysed the employment effects of the Energy [R]evolution global scenarios in 2009 and 2012 (Greenpeace International and European Renewable Energy Council 2009; Teske et al. 2012) and published methodology reports in 2009, 2010 and 2012 (Rutovitz & Atherton 2009; Rutovitz & Usher 2010; Rutovitz & Harris 2012a).

For the 2015 Energy [R]evolution study (Teske et al. 2015), ISF has once again completed the employment analysis. Employment factors have been updated wherever possible, as well as other factors such as regional multipliers. Employment data has been obtained for a significantly higher proportion of world coal and gas extraction than in previous analyses.

For this study only direct employment to 2030 is included. Direct jobs are those in the primary industry sector and include jobs in fuel production, manufacturing, construction, and operations and maintenance. Indirect jobs generally include jobs in secondary industries which supply the primary industry sector, which may include, for example, catering and accommodation, while induced jobs are those resulting from spending wages earned in the primary industries. Indirect and induced jobs are usually calculated using input-output modelling. The inclusion of indirect jobs would typically increase job numbers by 50 – 100%, while the inclusion of both indirect and induced jobs could increase job numbers by 100 – 350% (for example Blanco & Rodrigues, 2009; Bournakis, Cuttica, Mueller, & Hewings, 2005; National Renewable Energy Laboratory, 2010a, 2010b, 2011a; Tourkolias & Mirasgedis, 2011). As in 2012, energy efficiency jobs have not been included in the calculations.

No energy efficiency job calculations are included, as it is beyond the scope of the project to develop a new methodology to calculate these jobs. The Energy [R]evolution scenarios show decline in the primary energy demand of 34% relative to the Reference scenario. The methodology used in 2009 to estimate energy efficiency jobs relied on the relative difference in stationary energy, which is no longer an indicator of energy efficiency because of the role of electric vehicles in the Energy [R]evolution scenarios. The 2015 Energy [R]evolution scenarios show an increase in electricity generation of 2% by 2030 relative to the Reference scenario, despite the significant decline in primary energy. This masks the "real" reduction in stationary energy from the Reference to the [R]evolution scenarios, which could create substantial numbers of jobs.
2 Methodology overview

The methodology used for the 2015 study was first developed for the 2009 Energy [R]evolution study which analysed global and regional employment effects. A fuller discussion of the regional adjustment factors and technology decline factors used in the 2009 study may be found in Energy sector jobs to 2030, a global analysis (Rutovitz and Atherton, 2009).

The Energy [R]evolution contains two scenarios, namely:

2. A low carbon scenario which is referred to as the Energy [R]evolution scenario.

These scenarios are inputs to the employment modelling. Employment is projected for each of the ten IEA world regions for both scenarios at 2020, 2025 and 2030 by using a series of employment multipliers and the projections for energy use and capacity.

Only direct employment is included, namely jobs in construction, manufacturing, operations and maintenance, and fuel supply associated with electricity generation and direct heat provision.

Inputs for energy generation and demand for each scenario include:

- The amount of electrical and heating capacity that will be installed each year for each technology;
- The primary energy demand for coal, gas, and biomass fuels in the electricity and heating sectors;
- The amount of electricity generated per year from nuclear, oil, and diesel.

Inputs for each technology include:

- ‘Employment factors’, or the number of jobs per unit of capacity, separated into manufacturing, construction, operation and maintenance, and per unit of primary energy for fuel supply;
- For the 2020, 2025 and 2030 calculations, a ‘decline factor’ for each technology and region which reduces the employment factors by a certain percentage per year to reflect the employment per unit reduction as technology efficiencies improve.

Inputs for each region include:

- The percentage of local manufacturing and domestic fuel production in each region, in order to calculate the number of manufacturing and fuel production jobs in the region;
- The percentage of world trade which originates in each region for coal and gas fuels, and renewable traded components;
- A ‘regional job multiplier’, which indicates how labour-intensive economic activity is in that region compared to the OECD. This is used to adjust OECD employment factors where local data is not available.
- A set of ‘decline factors’ for each technology, based on the projected costs for that region in the Reference Scenario.
The electrical capacity increase and energy use figures from each scenario are multiplied by the employment factors for each of the technologies, and then adjusted for regional labour intensity and the proportion of fuel or manufacturing occurring locally to give the number of energy sector jobs. The calculation is summarised in Figure 1.

Figure 1: Calculation of Energy Supply Jobs: Overview

<table>
<thead>
<tr>
<th>Category</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing (for local use)</td>
<td>$\text{MW installed per year in region} \times \text{Manufacturing employment factor} \times \text{Regional job multiplier for year} \times % \text{local manufacturing}$</td>
</tr>
<tr>
<td>Manufacturing (for export)</td>
<td>$\text{MW exported per year} \times \text{Manufacturing employment factor} \times \text{Regional job multiplier for year}$</td>
</tr>
<tr>
<td>Construction</td>
<td>$\text{MW installed per year} \times \text{Construction employment factor} \times \text{Regional job multiplier for year}$</td>
</tr>
<tr>
<td>Operation and Maintenance</td>
<td>$\text{Cumulative capacity} \times \text{O&M employment factor} \times \text{Regional job multiplier for year}$</td>
</tr>
<tr>
<td>Fuel supply (nuclear)</td>
<td>$\text{Electricity generation} \times \text{Fuel employment factor} \times \text{Regional job multiplier for year}$</td>
</tr>
<tr>
<td>Fuel supply (coal, gas and biomass)</td>
<td>$\text{Primary energy demand plus exports} \times \text{Fuel employment factor (always regional for coal)} \times \text{Regional job multiplier for year} \times % \text{of local production}$</td>
</tr>
<tr>
<td>Heat supply</td>
<td>$\text{MW installed per year} \times \text{Employment factor for heat} \times \text{Regional job multiplier for year}$</td>
</tr>
</tbody>
</table>

Jobs in region

$\text{Jobs in region} = \text{Manufacturing} + \text{Construction} + \text{Operation and maintenance (O&M)} + \text{Fuel} + \text{Heat}$

Employment factors at 2020 or 2030

$\text{Employment factors at 2020 or 2030} = \text{2015 employment factor} \times \text{Technology decline factor}^{\text{(number of years after 2015)}}$
2.1 Limitations

Employment numbers for the 2015 study are indicative only, as a large number of assumptions are required to make calculations. Quantitative data on present employment based on actual surveys is difficult to obtain, so it is not possible to calibrate the methodology against time series data, or even against current data in many regions. However, within the limits of data availability, the figures presented are indicative of electricity sector employment levels under the two scenarios. However, there are some significant areas of employment which are not included:

- **Replacement**: generating plant require periodic replacement, which has not been included in the analysis. The replacement schedule is approximately twenty years for wind and PV (the renewable technologies which would be most affected owing to their greater penetration), and forty years for coal. However, it is very uncertain what the relative employment creation of replacing generating equipment would be compared to building new capacity. Inclusion of replacement is likely to increase renewable energy jobs proportionately more than coal and gas jobs over the analysis period, as the replacement cycle is somewhat shorter.

- **Energy efficiency**: as noted in Section 1, no estimate is made of energy efficiency jobs, which could be significantly higher in the Energy [R]evolution scenarios than in the Reference case as there is a relative reduction of 21% in primary energy demand by 2030.

- **Jobs in heat supply**: only a partial estimate is made, as biomass, gas, and coal jobs in this sector include only fuel supply jobs where heat is supplied directly (that is, not via a combined heat and power plant), while jobs in heat from geothermal and solar collectors primarily include manufacturing and installation. Insufficient data meant it was not possible to include a comprehensive assessment for this sector.
3 Employment factors

The employment factors used in the 2015 global analysis are shown in Table 1 below, with the main source given in the notes. Appendix 1 documents the factors used in the previous analysis, and further detail is provided on specific technologies in Appendices 2-6.

Table 1 OECD employment factors used in the 2015 global analysis

<table>
<thead>
<tr>
<th>Technology</th>
<th>Construction times</th>
<th>Construction/Installation</th>
<th>Manufacturing</th>
<th>Operations & Maintenance</th>
<th>Fuel – PRIMARY Energy Demand</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>5</td>
<td>11.2</td>
<td>5.4</td>
<td>0.14</td>
<td>Regional</td>
<td>Note 1</td>
</tr>
<tr>
<td>Gas</td>
<td>2</td>
<td>1.3</td>
<td>0.93</td>
<td>0.14</td>
<td>Regional</td>
<td>Note 2</td>
</tr>
<tr>
<td>Nuclear</td>
<td>10</td>
<td>11.8</td>
<td>1.3</td>
<td>0.6</td>
<td>0.001 jobs/GWh final demand</td>
<td>Note 3</td>
</tr>
<tr>
<td>Biomass</td>
<td>2</td>
<td>14.0</td>
<td>2.9</td>
<td>1.5</td>
<td>29.9</td>
<td>Note 4</td>
</tr>
<tr>
<td>Hydro-large</td>
<td>2</td>
<td>7.4</td>
<td>3.5</td>
<td>0.2</td>
<td></td>
<td>Note 5</td>
</tr>
<tr>
<td>Hydro-small</td>
<td>2</td>
<td>15.8</td>
<td>10.9</td>
<td>4.9</td>
<td></td>
<td>Note 6</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>2</td>
<td>3.2</td>
<td>4.7</td>
<td>0.3</td>
<td></td>
<td>Note 7</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>4</td>
<td>8.0</td>
<td>15.6</td>
<td>0.2</td>
<td></td>
<td>Note 8</td>
</tr>
<tr>
<td>Solar Photovoltaics</td>
<td>1</td>
<td>13.0</td>
<td>6.7</td>
<td>0.7</td>
<td></td>
<td>Note 9</td>
</tr>
<tr>
<td>Geothermal</td>
<td>2</td>
<td>6.8</td>
<td>3.9</td>
<td>0.4</td>
<td></td>
<td>Note 10</td>
</tr>
<tr>
<td>Solar thermal</td>
<td>2</td>
<td>8.0</td>
<td>4.0</td>
<td>0.6</td>
<td></td>
<td>Note 11</td>
</tr>
<tr>
<td>Ocean</td>
<td>2</td>
<td>10.2</td>
<td>10.2</td>
<td>0.6</td>
<td></td>
<td>Note 12</td>
</tr>
<tr>
<td>Geothermal - heat</td>
<td></td>
<td>6.9 jobs/ MW (construction and manufacturing)</td>
<td></td>
<td></td>
<td></td>
<td>Note 13</td>
</tr>
<tr>
<td>Solar - heat</td>
<td></td>
<td>8.4 jobs/ MW (construction and manufacturing)</td>
<td></td>
<td></td>
<td></td>
<td>Note 14</td>
</tr>
<tr>
<td>Nuclear decommission</td>
<td></td>
<td>0.95 jobs per MW decommissioned</td>
<td></td>
<td></td>
<td></td>
<td>Note 15</td>
</tr>
<tr>
<td>Combined heat and power</td>
<td></td>
<td>CHP technologies use the factor for the technology, i.e. coal, gas, biomass, geothermal etc, increased by a factor of 1.5 for O&M only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil and diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Construction & installation times for regional coal plants.
Note 2: Two phases of construction and installation for gas.
Note 3: Nuclear decommissioning uses 5 jobs per MW decommissioned.
Note 4: Biomass uses an energy factor.
Note 5: Hydro-electric use the previous year’s factors.
Note 6: Hydro-electric small only.
Note 7: Onshore wind farms use the previous year’s factors.
Note 8: Offshore wind farms use the previous year’s factors.
Note 9: Solar photovoltaics use the previous year’s factors.
Note 10: Geothermal use the previous year’s factors.
Note 11: Solar thermal use the previous year’s factors.
Note 12: Ocean use the previous year’s factors.
Note 13: Geothermal heat use the previous year’s factors.
Note 14: Solar heat use the previous year’s factors.
Note 15: Nuclear decommissioning use the previous year’s factors.
Notes on employment factors

1. **Coal**
 Construction, manufacturing and operations and maintenance factors are from the JEDI model (National Renewable Energy Laboratory 2014a)
 Regional factors are used for coal fuel employment (see below, Section 3.2).

2. **Gas, oil and diesel**
 Installation and O&M average figures are from 2-4 studies and own research (see Section 3.3 for details). Manufacturing data is from the JEDI model (National Renewable Energy Laboratory 2014c). Regional factors are used for gas fuel supply for OECD North America, OECD Europe, OECD Pacific, China, Africa and Eastern Europe/Eurasia and the remaining regions use the weighted average of these.

3. **Nuclear**
 The construction factor is the weighted average of two studies from the UK and one from France (Cogent Sector Skills Council 2010; Cogent Sector Skills Council 2011a; Rutovitz & Razain 2013a). The manufacturing factor is the average of the two UK reports, while the O&M factor is the weighted average of 89GW from all three studies and ISF research for South Korea and Switzerland (Rutovitz & Harris 2012b; Rutovitz & Mikhailovich 2013b). The fuel factor is from Rutovitz & Harris 2012a.

4. **Bioenergy**
 Employment factors for construction, manufacturing and O&M are unchanged from the 2012 analysis. The factors use the average values of studies from Greece, the UK, Spain, USA, and one Europe wide study (Kjaer 2006; Thornley 2006; Thornley et al. 2008; Tourkolas & Mirasgedis 2011; Moreno & López 2008; Thornley et al. 2009). Fuel employment per PJ primary energy is derived from seven studies, all in Europe, including one new study from Netherlands (Domac et al. 2005; Hillring 2002; Thornley 2006; Upham & Speakman 2007; Valente et al. 2011; Kjaer 2006; Rutovitz & Mikhailovich 2013a). There is considerable variation between different estimates of biomass fuel employment, reflecting both practices in different countries and the considerable variation in biomass feed stocks.

5. **Hydro - large**
 Employment factors for construction, manufacturing and O&M are an average of 2-6 studies from South Korea, Japan, the US, New Zealand, France and Switzerland. For more details see Appendix 5.

6. **Hydro - small**
 Employment factors for construction, manufacturing and O&M are an average of 3-5 studies from Spain, Greece, Netherlands and the US. For more details see Appendix 5.

7. **Wind - onshore**
 Construction and O&M factors are from the average of 6-7 studies and ISF research from UK, Australia, Greece, Germany, New Zealand and the USA. The manufacturing factor is derived using the employment per MW in turbine manufacture at Vestas in 2014 (National Renewable Energy Laboratory 2015a), adjusted for total manufacturing using the ratio used by the EWEA (European Wind Energy Association 2009), as done in previous reports. For details see Appendix 2.

8. **Wind - offshore**
 All factors are an average of a German report (Price Waterhouse Coopers 2012) and the JEDI model (National Renewable Energy Laboratory 2014e). For details see Appendix 2.
9. **Solar PV**
The employment factors for PV increased from the 2012 analysis, after a significant decrease between 2010 and 2012. The installation factor is the average of eight estimates in Germany, Netherlands, Spain, Greece and the US. The manufacturing factor is taken from module production from the four largest global solar PV companies' annual reports (Trina Solar 2014; Yingli Green Energy 2014; Canadian Solar 2014; JinkoSolar 2013). Balance of system (BOS) is calculated from the cost ratio of BOS to modules in the JEDI model (National Renewable Energy Laboratory 2014f). The O&M factor is an average of six factors from Germany, Spain and the US. See Appendix 4 for details of the different estimates.

10. **Geothermal**
The factors are unchanged from the 2012 analysis. The construction and O&M factors are the weighted averages from employment data reported for thirteen power stations totalling 1050 MW in the US, Canada, Greece and Australia (some of them hypothetical). The manufacturing factor is derived from a US study (Geothermal Energy Association 2010). See Rutovitz & Harris 2012a for details.

11. **Solar thermal power**
Construction and O&M jobs are derived from a weighted average of 31 reported power plants (2570 MW) in the US, Spain, and France. Manufacturing using the same factor as the 2010 report (European Renewable Energy Council, 2008), as the data collected above does not include manufacturing employment. See Appendix 4 for details.

12. **Ocean**
An average of four studies are used to calculate installation, manufacturing and O&M, with projected manufacturing and construction employment divided equally between the categories (ACIL Tasman 2009; ECONorthwest 2009; Mcgrath et al. 2009; SQW Consulting 2009; Fanning et al. 2014; National Renewable Energy Laboratory 2014d; Batten & Bahaj 2007).

13. **Geothermal and heat pumps**
One overall factor is used for jobs per MW installed, from a US study (Battocletti & Glassley 2012).

14. **Solar thermal heating**
One overall factor is used for jobs per MW installed. The global figure is derived from the IEA heating and cooling program report (Mauthner et al. 2015). Local factors are used for OECD Europe, India and China (see Table 2 and Table 5 for more details).

15. **Nuclear decommissioning**
The employment factors are unchanged from the 2012 analysis. The weighted average decommissioning employment over the first 20 years is derived from one UK study and two German studies (Cogent Sector Skills Council, 2009, 2011b; Wuppertal Institute for Climate Environment and Energy, 2007). See (Rutovitz & Harris 2012a) for more details.
3.1 Regional employment factors

Regional employment factors are used where possible, and coal employment uses a regional employment factor in nearly all cases. Region specific factors are:

- **OECD Americas**: factors for coal fuel supply, gas fuel supply, solar PV, wind – offshore and solar thermal power.
- **OECD Europe**: factors for coal fuel supply, gas fuel supply, wind-offshore, solar thermal power and solar thermal heating.
- **OECD Pacific**: factors for coal fuel supply and gas fuel supply.
- **India**: factors for coal fuel supply and solar thermal heating.
- **China**: factors for coal fuel supply, gas fuel supply and solar thermal heating.
- **Africa**: factors for coal fuel supply, gas fuel supply and biomass fuel supply.
- **Eastern Europe/Eurasia**: factors for coal fuel supply and gas fuel supply.
- **Latin America**: factors for coal fuel supply, nuclear, biomass fuel supply, hydro (small and large) and wind – onshore.
- **Developing Asia**: factors for coal fuel supply.

The regional factors used are shown in Table 2. Where regional factors are not available, a regional adjustment factor is used for non-OECD regions.

Table 2 Regional employment factors other than coal fuel

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Job Years/MW</th>
<th>Jobs/MW</th>
<th>Jobs/PJ</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>19.6</td>
<td>1.15</td>
<td></td>
<td>Note 1</td>
</tr>
<tr>
<td>Biomass</td>
<td>387.3</td>
<td></td>
<td></td>
<td>Note 2</td>
</tr>
<tr>
<td>Hydro-large</td>
<td>81.1</td>
<td></td>
<td></td>
<td>Note 2</td>
</tr>
<tr>
<td>Wind-onshore</td>
<td>6.7</td>
<td>3.4</td>
<td>0.6</td>
<td>Note 1</td>
</tr>
<tr>
<td>Wind-offshore OECD North America</td>
<td>8.9</td>
<td>20.5</td>
<td>0.09</td>
<td>Note 4</td>
</tr>
<tr>
<td>Wind-offshore OECD Europe</td>
<td>7.1</td>
<td>10.7</td>
<td>0.2</td>
<td>Note 4</td>
</tr>
<tr>
<td>Solar PV OECD North America</td>
<td>16.7</td>
<td>12.4</td>
<td>0.6</td>
<td>Note 5</td>
</tr>
<tr>
<td>Solar Thermal power OECD average</td>
<td>8.0</td>
<td>4.0</td>
<td>0.6</td>
<td>Note 6</td>
</tr>
<tr>
<td>Solar Thermal power OECD Americas</td>
<td>5.3</td>
<td>0.4</td>
<td></td>
<td>Note 6</td>
</tr>
<tr>
<td>Solar Thermal power OECD Europe</td>
<td>12.2</td>
<td>1.0</td>
<td></td>
<td>Note 6</td>
</tr>
<tr>
<td>SOLAR THERMAL: HEAT World average</td>
<td>8.4</td>
<td></td>
<td></td>
<td>Note 7</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>15.1</td>
<td></td>
<td></td>
<td>Note 7</td>
</tr>
<tr>
<td>China</td>
<td>17.1</td>
<td></td>
<td></td>
<td>Note 7</td>
</tr>
<tr>
<td>India</td>
<td>19.5</td>
<td></td>
<td></td>
<td>Note 7</td>
</tr>
</tbody>
</table>

Note 1: Nuclear job years/MW for Latin America.

Note 2: Biomass job years/MW for Africa.

Note 3: Hydro-large job years/MW for Latin America.

Note 4: Wind-offshore job years/MW for OECD North America.

Note 5: Solar PV OECD North America job years/MW.

Note 6: Solar Thermal power OECD average job years/MW.

Note 7: SOLAR THERMAL: HEAT World average job years/MW (construction & manufacturing).
Notes on regional employment factors

1. The Latin America factor for nuclear and large hydro is based on the ISF jobs study for Brazil (Rutovitz 2013).

3. The Latin America factors are based on a Brazilian study which used company interviews to estimate jobs per MW. We use the average value for steel and concrete towers for manufacturing and construction (Simas & Pacca 2015).

4. The OECD North America factor for wind-offshore is based on the JEDI model (National Renewable Energy Laboratory 2014e) and the OECD Europe factor is based on a German study (Price Waterhouse Coopers 2012).

6. The OECD average for solar thermal is the weighted average for 2570 MW in Spain, France and the US. The OECD America figure includes US data (1512 MW) and the OECD Europe figure includes European data (1057 MW). See Appendix 6 for details.

7. The OECD Europe factor is an average of four studies: a Europe wide study (European Solar Thermal Industry Federation 2011), a Netherlands study (Rutovitz & Mikhailovich 2013a), a Switzerland study (Nathani et al. 2013) and a Germany study (total employment from a national report (Federal Ministry for the Environment Nature Conservation and Nuclear Safety 2011), split by electricity and heat by value from an IRENA report (International Renewable Energy Agency 2011)) . The figure for India is from Indian government data (Ministry of New & Renewable Energy & Confederation of Indian Industry 2010). The figure for China is derived from the employment figures from CENREC 2013 data, quoted in the 2015 IRENA report (Ferroukhi et al. 2015) and capacity from the IEA heating and cooling program report (Mauthner et al. 2015) . See Table 6 for further details.

3.2 Coal fuel supply employment factors

Employment factors are derived for each region for coal mining, because coal is currently dominant in the global energy supply, and employment per tonne varies enormously. In Australia and the US, for example, coal is extracted at an average of more than 8,000 tonnes per person per year, while in Europe the average coal miner is responsible for less than 1,000 tonnes per year.

The employment factors and adjustments used for coal in this report are shown in Table 3.

The calculation of the employment factors draws on data from national statistics and company reports, combined with coal production figures from the BP Statistical Review of World Energy, or as stated in the notes to Table 3 below. Data was collected for as many major coal producing countries as possible accounting for 90% of world coal production. The Middle East was the only region with no employment data.
The average PJ per tonne of coal for each region is calculated from BP Statistical Review of World Energy 2015, using data from the country and regional coal production statistics (in million tons of oil equivalent).

China, Russia and India have relatively low productivity at present, with 600-700 tons of coal per worker per year, but annual increases in productivity are very high. The changes in productivity over the last 7 to 15 years were used to derive an average annual improvement, which has been used to adjust the employment factors for likely future increases in productivity over the study period. The derivation of the productivity improvements in China, India, and Eastern Europe/Eurasia is explained in Appendix 7.

Table 3: Employment factors used for coal fuel supply

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>Employment factor</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Jobs per PJ</td>
<td>Tons/ person/ year (coal equivalent)</td>
</tr>
<tr>
<td>World average</td>
<td></td>
<td>39.7</td>
<td>875</td>
</tr>
<tr>
<td>OECD North America</td>
<td>2013</td>
<td>3.8</td>
<td>8,900</td>
</tr>
<tr>
<td>OECD Pacific</td>
<td>2014</td>
<td>4.1</td>
<td>8,380</td>
</tr>
<tr>
<td>Developing Asia</td>
<td>2012-13</td>
<td>6.1</td>
<td>5,600</td>
</tr>
<tr>
<td>Africa</td>
<td>2013</td>
<td>14.4</td>
<td>2,370</td>
</tr>
<tr>
<td>Latin America</td>
<td>2013</td>
<td>15.4</td>
<td>2,200</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>2013</td>
<td>40.1</td>
<td>850</td>
</tr>
<tr>
<td>India</td>
<td>2013-14</td>
<td>48.3</td>
<td>700</td>
</tr>
<tr>
<td>Eastern Europe/Eurasia</td>
<td>2013</td>
<td>51.1</td>
<td>670</td>
</tr>
<tr>
<td>China</td>
<td>2012</td>
<td>56.1</td>
<td>600</td>
</tr>
<tr>
<td>Middle east</td>
<td></td>
<td>Used world average as no employment data available</td>
<td></td>
</tr>
</tbody>
</table>
Notes on coal employment factors

1. **World average:**
 Weighted average of below factors

2. **OECD North America:**

3. **OECD Pacific:**

4. **Developing Asia:**
 2012-13 data for Indonesia derived from employment and production data from 5 companies corresponding to 38% of Indonesian production (PT Adaro Indonesia 2013; PT Kaltim Prima Coal 2013; PT Berau Coal Energy Tbk 2013; PT Kaltim Prima Coal 2012; PT Indo Tambangraya Megah (ITM) 2014; PT Bukit Asam (Persero) Tbk 2014; PT Indo Tambangraya Megah (ITM) 2013), converted to PJ using production from BP Statistical Review of World Energy 2015 (BP 2015).

5. **Africa:**

6. **Latin America:**
 2013 data for Colombia derived from employment and production data from company information corresponding to 39% of Colombian production (Cerrejon 2015), converted to PJ using production from BP Statistical Review of World Energy 2015 (BP 2015).

7. **OECD Europe:**
 2013 data for Poland, Germany, Czech Republic, and Turkey from Eurocoal statistics using primary production of saleable coal. Data corresponds to 88% of OECD Europe production (Euracoal 2012; Euracoal 2013b; Euracoal 2013a; Euracoal 2013c).

8. **India:**

9. **Eastern Europe/Eurasia:**
 2013 data for Ukraine from Eurocoal statistics (Euracoal 2013d) and Russia from report on Coal Mining Sector (Emerging Markets Insight 2013). Data corresponds to 68% of OECD Europe production.

10. **China:**
3.3 **Gas fuel supply employment factors**

Gas fuel employment factors per PJ have been included for most regions in the world, as shown in Table 4. In most cases employment data is from national statistics, using the statistical classification for oil and gas extraction, and converting to jobs per PJ using the total production of oil and gas from the BP Statistical Review of World Energy 2015 (BP 2015).

Table 4 Gas fuel employment factors

<table>
<thead>
<tr>
<th>Region</th>
<th>Jobs / PJ</th>
<th>Notes/ Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>World average</td>
<td>15.1</td>
<td>Weighted average of below factors</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>8.6</td>
<td>Weighted average of Italy, Netherlands and Norway</td>
</tr>
<tr>
<td>Italy</td>
<td>14.3</td>
<td>Italy factor for 2012 from ENI Annual Report (Eni 2012)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>4.4</td>
<td>Netherlands factor for 2009 from Rutovitz & Mikhailovich 2013b.</td>
</tr>
<tr>
<td>Norway</td>
<td>9.8</td>
<td>Average of factors for 2011-2013, derived from employment figures from (Thoen & Johannessen 2011) and production from BP Statistical Review of World Energy 2015 (BP 2015)</td>
</tr>
<tr>
<td>OECD Pacific</td>
<td>7.9</td>
<td>Weighted average of Australia and New Zealand</td>
</tr>
<tr>
<td>Australia</td>
<td>8.4</td>
<td>2014 factor derived from average full-time employment in oil and gas extraction for four quarters of 2014 (Australian Bureau of Statistics 2015) and production from BP Statistical Review of World Energy 2015 (BP 2015)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>3.2</td>
<td>2012 factor derived from employment data (Department of Labour - New Zealand Government 2010) and production statistics (Ministry of Business Innovation and Employment 2012)</td>
</tr>
<tr>
<td>Africa</td>
<td>7.4</td>
<td>2010 Factor derived from employment and production data from the state-owned company Sonatrach (Sonatrach 2010)</td>
</tr>
<tr>
<td>Eastern Europe/Eurasia</td>
<td>17.9</td>
<td>Weighted average of Romania and Russia</td>
</tr>
<tr>
<td>Romania</td>
<td>61.6</td>
<td>Average of factors from 2009-2011 (PETROM 2011)</td>
</tr>
<tr>
<td>Russia</td>
<td>17.2</td>
<td>Average of factors from 2009-2011 (Zubov 2012)</td>
</tr>
<tr>
<td>India, Latin America, Developing Asia and Middle east</td>
<td></td>
<td>Used world average as insufficient employment data available</td>
</tr>
</tbody>
</table>
4 Heat sector methodology and employment factors

The 2015 employment analysis includes a partial estimate of jobs in the heating sector.

The heat sector includes combined heat and power (CHP), district heating systems, direct process heat used in industry and direct space and water heating by end users (mainly relatively small scale residential and commercial systems).

Fossil fuel heating includes coal, oil, gas, and diesel, while renewable heat includes biomass, solar thermal, geothermal, and heat pump systems. Both renewable and fossil fuel heating may be delivered via any of the systems listed above. Employment in this sector includes fuel jobs (for biomass and fossil fuels), and installation, operation and maintenance, and manufacturing jobs for all types of heating systems.

All the fuel jobs in gas, coal, and biomass are captured via the primary energy demand for that fuel. Thus whether the fuel is used for electricity generation or direct heat supply, or a combined system, the job calculation and job factor is the same. The regional employment factors for coal are shown in Table 3, for gas in Table 4, while the biomass global factor is in Table 1.

Jobs in installation, manufacturing and operations and maintenance are calculated for all CHP systems, regardless of whether geothermal, solar thermal, or fossil fuel are used, as these are included in any case for the electricity sector. However, jobs in installation and maintenance of process heat equipment from fossil fuel and biomass are not included.

Jobs in installation of solar, geothermal and heat pumps for heat provision are included under “heat”. Where the heat supply is via a CHP system, those jobs are included under the CHP for the relevant technology. Where heat supply is direct, without CHP, jobs are calculated from the increase in solar or geothermal collector capacity each year.

In the reporting of jobs by industry sector (manufacturing and construction), solar thermal heat jobs are allocated as follows: 25% to manufacturing and 75% to construction, while geothermal and heat pump employment is allocated 43% to manufacturing and 57% to construction. Jobs are not allocated to O&M, as O&M jobs in the heat sector are unlikely to be captured in this analysis.

Solar thermal

There was an estimated capacity of 55 GW of solar heating installed worldwide in 2013. Total employment in the sector was estimated as 469,000 jobs (Mauthner et al. 2015). This has been used for the global employment factor used in this analysis of 8.4 jobs per MW installed. This is higher than the factor of 7.4 jobs per MW installed derived from the same source data for the 2011 analysis. This estimate includes all employment i.e. manufacturing, operations and maintenance and installation.

Table 5 shows the range of employment factors derived for solar heating; it should be noted that most of them are considerably higher than the one used.

Regional data has been used where it is clearly identified as such and comes from a large capacity estimate. Thus the analysis for OECD Europe, India, and China use local figures.
Table 5 Range of employment factors for solar heat supply

<table>
<thead>
<tr>
<th>Region</th>
<th>Year</th>
<th>New in 2015</th>
<th>Job years/ MW\textsubscript{th}</th>
<th>Job years/ collector area (m2)</th>
<th>Notes/ Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>2010</td>
<td></td>
<td>13.0</td>
<td>0.009</td>
<td>European Solar Thermal Industry Federation (2011)</td>
</tr>
<tr>
<td>Germany</td>
<td>2010</td>
<td></td>
<td>13.79</td>
<td>0.010</td>
<td>Total employment in the solar thermal sector from a national report (Federal Ministry for the Environment Nature Conservation and Nuclear Safety 2011), split by electricity and heat by value from IRENA report (International Renewable Energy Agency 2011), and the increase in capacity from European Solar Thermal Industry Federation (2011)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2010</td>
<td>Y</td>
<td>15.8</td>
<td></td>
<td>Nathani et al. 2013</td>
</tr>
<tr>
<td>India</td>
<td>2010</td>
<td></td>
<td>19.48</td>
<td>0.014</td>
<td>From Ministry of New & Renewable Energy & Confederation of Indian Industry (2010)</td>
</tr>
<tr>
<td>China</td>
<td>2013</td>
<td>Y</td>
<td>17.1</td>
<td></td>
<td>Employment figures from CENREC 2013 data, quoted in the 2015 IRENA report (Ferroukhi et al. 2015) and capacity from the report Solar Heat Worldwide (Mauthner et al. 2015)</td>
</tr>
</tbody>
</table>

A conversion factor of 0.7 kW\textsubscript{th} per m2 has been used, from International Energy Agency Solar Heating and Cooling Program (2011), page 5.

Geothermal and heat pumps

Geothermal and heat pumps cover a wide range of technologies, including ground source and air sourced heat pumps. A single factor for installation, manufacturing, and operations and maintenance has been derived from information presented to the International Ground Source Heat Pump Association Conference (Battocletti & Glassley 2012).
5 Regional adjustment factors

The available employment factors are for OECD countries or regions, and need adjustment for differing stages of economic development. Broadly, the lower the cost of labour in a country, the greater the number of workers that will be employed to produce a unit of any particular output, be it manufacturing, construction or agriculture. This is because when labour costs are low, labour is relatively affordable compared to mechanised means of production. Low average labour costs are closely associated with low GDP per capita, a key indicator of economic development.

This means that changes to levels of production in any given sector of the economy are likely to have a greater impact on jobs in developing countries than in developed countries. Ideally, employment factors would be derived for both developed and developing countries. In practice, data for developing countries is extremely limited. Instead the derived OECD employment factors are multiplied by a proxy regional adjustment factor. It is important to derive these job multipliers from a relatively complete data set with global coverage. The best available proxy factor is average labour productivity, measured as GDP (or value added) per worker.

Job multipliers are expected to change over the study period (2015 to 2030), as the differences in labour productivity alter with regional economic growth. Fortunately regional economic growth is a key input to the energy scenarios, as it is the major determinant of projected changes in energy consumption. We therefore use the projected change in GDP per capita derived from GDP growth and population growth figures from 2014 World Energy Outlook (IEA 2014) to adjust the regional job multipliers for non-OECD regions over time.

The factors shown in Table 6 are applied to OECD employment factors when no local employment factor is available.

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Africa</td>
<td>5.7</td>
<td>5.4</td>
<td>4.5</td>
</tr>
<tr>
<td>China</td>
<td>2.6</td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Eastern Europe/Eurasia</td>
<td>6.0</td>
<td>5.0</td>
<td>3.6</td>
</tr>
<tr>
<td>India</td>
<td>6.9</td>
<td>5.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Latin America</td>
<td>3.4</td>
<td>3.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Middle East</td>
<td>1.4</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>2.4</td>
<td>2.3</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Note: Growth rates in labour productivity are taken as growth rate in GDP per capita, derived from IEA World Energy Outlook (2014).
Derivation of regional adjustment factors

A regional labour productivity value was calculated for each of the ten analysis regions, primarily using data from the 8th Edition of the Key Indicators of the Labour Market (KILM) database (International Labour Organization 2014), with the most recent data coming from 2012. This database holds data for economy-wide average labour productivity, calculated as average GDP per engaged worker. Additional data on GDP and employment numbers was sourced from the World Development Indicators (World Bank 2015c), and The World FactBook (Central Intelligency Agency (CIA) n.d.).

Countries were grouped according to the Energy [R]evolution regions, and labour productivity data for each country was used to calculate weighted average productivity for the region, with weighting proportional to the total workforce.

Table 7 Numbers of countries with labour productivity data

<table>
<thead>
<tr>
<th>Region</th>
<th>In energy scenarios for this study</th>
<th>With data available on labour productivity</th>
<th>Overall</th>
<th>agricultural</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD Americas</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>OECD Europe</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>OECD Asia-Oceania</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Africa¹</td>
<td>55</td>
<td>26</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>China²,³</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>31</td>
<td>21</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>44</td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Middle East</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Eastern Europe/Eurasia</td>
<td>25</td>
<td>21</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>203</td>
<td>138</td>
<td>131</td>
<td></td>
</tr>
</tbody>
</table>

A total of 203 countries are included in the energy projections for the year 2015. Data on labour productivity was available for 138 countries, and for both labour productivity and agricultural labour productivity for 131 countries, as shown in Table 7. While some regions have relatively few countries represented, those with data tend to be the larger energy users within the region.

The KILM data does not contain forecasts. Instead, a proxy was used, namely growth in GDP per capita. This was applied to the 2015 regional labour productivity data to calculate average labour productivity in 2020, 2025 and 2030 for each region. GDP per capita growth was then derived for each of the 10 regions using projected GDP and population growth estimates from the World Energy Outlook (International Energy Agency 2014). These economic assumptions are key inputs to the IEA World Energy Outlook modelling and both the Energy [R]evolution and Reference scenarios.

In the job projections, three sets of productivity data were generated for whole of economy for agricultural, forestry and fisheries workers only, and a third set for whole of economy excluding agricultural, forestry and fisheries.

² Includes Hong Kong

³ GDP PPP data in 2011 international dollars converted using information from McCarthy 2013.
In developing regions, the value for average GDP production per agricultural worker is considerably lower than the value for the rest of the economy. When agricultural value added is included, it lowers the economy wide labour productivity figure, and therefore increases the job multiplier between developed and developing countries. However, agricultural productivity may not be relevant to the majority of energy technologies, other than bioenergy fuel employment.

It is not possible to disaggregate labour productivity in KILM data, so whole of economy labour productivity was adjusted using the relationship between whole of economy and whole of economy excluding agriculture. Agricultural labour productivity was derived using data on Agriculture contribution to GDP from the World Bank (2015a), or where this was not available from the CIA World Fact book, divided by total jobs in agriculture from the World Bank (2015b) or the KILM database (International Labour Organization 2014, Table 4a).

Productivity data for each region and time period is compared to the OECD region in Table 8 below, where OECD is presented as 1.0 and all other regions as a ratio to OECD. Regional job multipliers are obtained from the ratios in Table 8, such that if productivity or value added per worker is 0.5 times the OECD value, we assume that job creation in that region would be twice as high. The resulting multipliers are also presented in Table 6.

Table 8 Regional labour productivity compared to OECD labour productivity

<table>
<thead>
<tr>
<th>Whole economy [1]</th>
<th>Whole economy excluding agriculture</th>
<th>Ratio to OECD</th>
<th>Factor used to exclude agriculture [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP per worker 2012 (2005 international $ at PPP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World</td>
<td>25,600</td>
<td>136,200</td>
<td>0.73</td>
</tr>
<tr>
<td>OECD</td>
<td>68,500</td>
<td>187,600</td>
<td>1.00</td>
</tr>
<tr>
<td>OECD Americas</td>
<td>75,900</td>
<td>200,000</td>
<td>1.07</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>64,600</td>
<td>182,800</td>
<td>0.97</td>
</tr>
<tr>
<td>OECD Asia-Oceania</td>
<td>63,000</td>
<td>162,200</td>
<td>0.86</td>
</tr>
<tr>
<td>Africa</td>
<td>9,300</td>
<td>32,000</td>
<td>0.17</td>
</tr>
<tr>
<td>China⁴</td>
<td>17,000</td>
<td>62,100</td>
<td>0.33</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>9,500</td>
<td>28,000</td>
<td>0.15</td>
</tr>
<tr>
<td>India</td>
<td>8,800</td>
<td>24,600</td>
<td>0.13</td>
</tr>
<tr>
<td>Latin America</td>
<td>21,200</td>
<td>55,200</td>
<td>0.29</td>
</tr>
<tr>
<td>Middle East</td>
<td>41,100</td>
<td>131,900</td>
<td>0.70</td>
</tr>
<tr>
<td>Eastern Europe/ Eurasia</td>
<td>25,400</td>
<td>75,900</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Note 1 Labour productivity (defined as average GDP per worker) from KILM (8th Ed).

Note 2 The factor used to exclude agriculture is the ratio between ‘whole economy’ labour productivity and ‘whole economy excluding agriculture’ productivity.

⁴ Includes China and Hong Kong.
6 Adjustment for learning rates – decline factors

Employment factors are adjusted to take into account the reduction in employment per unit of electrical capacity as technologies and production techniques mature. The learning rates assumed have a significant effect on the outcome of the analysis.

An annual decline factor is derived for each region from the cost data used in the Energy [R]evolution modelling.

The overall decline in employment per MW is given for each region in Table 9 below. So, for example, in Africa the employment factor for offshore wind is expected to decline by 22% by 2030.

The factor for nuclear decommissioning has been taken as the average decline across all other technologies.

Table 9 Employment factor decline from 2015 – 2030 by technology

<table>
<thead>
<tr>
<th>Technology</th>
<th>OECD North America</th>
<th>OECD Europe</th>
<th>OECD Pacific</th>
<th>Latin America</th>
<th>China</th>
<th>India</th>
<th>Africa</th>
<th>Middle East</th>
<th>Eastern Europe/Eurasia</th>
<th>Developing Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-5%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lignite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-25%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gas</td>
<td>6%</td>
<td>6%</td>
<td>7%</td>
<td>5%</td>
<td>4%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>-</td>
</tr>
<tr>
<td>Oil</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>-</td>
</tr>
<tr>
<td>Diesel</td>
<td>-</td>
</tr>
<tr>
<td>Nuclear</td>
<td>5%</td>
<td>16%</td>
<td>-13%</td>
<td>-35%</td>
<td>-27%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Biomass</td>
<td>4%</td>
<td>5%</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>5%</td>
<td>3%</td>
<td>3%</td>
<td>-</td>
</tr>
<tr>
<td>Hydro-large</td>
<td>0%</td>
<td>-6%</td>
<td>0%</td>
<td>-7%</td>
<td>-3%</td>
<td>-6%</td>
<td>-1%</td>
<td>-7%</td>
<td>-3%</td>
<td>-6%</td>
</tr>
<tr>
<td>Hydro-small</td>
<td>0%</td>
<td>-6%</td>
<td>0%</td>
<td>-7%</td>
<td>-3%</td>
<td>-6%</td>
<td>-1%</td>
<td>-7%</td>
<td>-3%</td>
<td>-6%</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>6%</td>
<td>5%</td>
<td>7%</td>
<td>5%</td>
<td>3%</td>
<td>3%</td>
<td>6%</td>
<td>5%</td>
<td>5%</td>
<td>3%</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>25%</td>
<td>23%</td>
<td>24%</td>
<td>23%</td>
<td>23%</td>
<td>22%</td>
<td>23%</td>
<td>23%</td>
<td>23%</td>
<td>-</td>
</tr>
<tr>
<td>PV</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
<td>41%</td>
<td>-</td>
</tr>
<tr>
<td>Geothermal power</td>
<td>48%</td>
<td>48%</td>
<td>48%</td>
<td>48%</td>
<td>48%</td>
<td>48%</td>
<td>48%</td>
<td>48%</td>
<td>48%</td>
<td>-</td>
</tr>
<tr>
<td>Solar thermal power</td>
<td>9%</td>
<td>17%</td>
<td>9%</td>
<td>12%</td>
<td>10%</td>
<td>10%</td>
<td>14%</td>
<td>12%</td>
<td>9%</td>
<td>10%</td>
</tr>
<tr>
<td>Ocean</td>
<td>33%</td>
<td>32%</td>
<td>32%</td>
<td>31%</td>
<td>31%</td>
<td>31%</td>
<td>31%</td>
<td>31%</td>
<td>32%</td>
<td>31%</td>
</tr>
<tr>
<td>Coal CHP</td>
<td>4%</td>
<td>5%</td>
<td>4%</td>
<td>4%</td>
<td>2%</td>
<td>4%</td>
<td>5%</td>
<td>4%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Lignite CHP</td>
<td>-</td>
</tr>
<tr>
<td>Gas CHP</td>
<td>-</td>
<td>-</td>
<td>35%</td>
<td>36%</td>
<td>-</td>
<td>36%</td>
<td>36%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oil CHP</td>
<td>33%</td>
<td>33%</td>
<td>27%</td>
<td>29%</td>
<td>33%</td>
<td>33%</td>
<td>29%</td>
<td>29%</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>Biomass CHP</td>
<td>-</td>
<td>-</td>
<td>29%</td>
<td>30%</td>
<td>-65%</td>
<td>-25%</td>
<td>-30%</td>
<td>30%</td>
<td>-25%</td>
<td>-</td>
</tr>
<tr>
<td>Geothermal CHP</td>
<td>6%</td>
<td>6%</td>
<td>1%</td>
<td>2%</td>
<td>6%</td>
<td>6%</td>
<td>2%</td>
<td>2%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td>Hydrogen CHP</td>
<td>-</td>
</tr>
<tr>
<td>Geothermal - heat</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>6%</td>
<td>8%</td>
<td>5%</td>
</tr>
<tr>
<td>Solar - heat</td>
<td>6%</td>
</tr>
</tbody>
</table>
7 Coal trade

Jobs in coal supply are allocated taking international trade into account. The Reference case is the Current Policies scenario from the World Energy Outlook 2014 (International Energy Agency 2014). Only detailed projections for international coal trade and coal production are included in the New Policies scenario, so are been adjusted upwards according to the difference in coal production between the New Policies and Current Policies projections. The adjusted projections are shown in Table 12 and Table 13.

The proportion of coal imports calculated for the Reference and [R]evolution scenarios for each region are shown in Table 10. The proportion of imports in the Reference scenario is calculated from the PJ imported divided by the total PJ consumed (the actual scale of imports are shown in Table 12, and domestic production in Table 13). It is assumed that coal production in coal importing regions is constant between the Current Policies and New Policies scenarios, and that the increase in coal production in the Current Policies scenario is met from coal exporting regions.

Table 10 Proportion of coal imports: Reference and [R]evolution scenarios

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD North America</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Latin America</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>46%</td>
<td>49%</td>
<td>54%</td>
<td>60%</td>
<td>43%</td>
<td>54%</td>
<td>39%</td>
<td>0%</td>
</tr>
<tr>
<td>Africa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Middle East</td>
<td>75%</td>
<td>80%</td>
<td>84%</td>
<td>87%</td>
<td>71%</td>
<td>83%</td>
<td>88%</td>
<td>95%</td>
</tr>
<tr>
<td>Eastern Europe/Eurasia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>India</td>
<td>14%</td>
<td>14%</td>
<td>14%</td>
<td>12%</td>
<td>12%</td>
<td>14%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>-</td>
<td>14%</td>
<td>31%</td>
<td>-</td>
<td>-</td>
<td>14%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>China</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
<td>3%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OECD Pacific</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The proportion of coal imports in the [R]evolution scenario is calculated by first adjusting the amount of coal consumed according to the ratio of coal use in the Reference scenario to coal use in the [R]evolution scenario. This is subtracted from the regional coal production for the relevant year to identify net import regions. Potential domestic coal production is assumed to be constant between the Reference and the [R]evolution scenarios, so coal is only assumed to be imported if the adjusted consumption is more than production. The revised figure for imports is divided by the coal production plus imports to determine the percentage imported.

The total amount of exports in each scenario is determined by applying the proportion of imports (shown in Table 10) to the PJ of primary coal demand in each region. The proportional share of world trade assigned to each region is assumed to stay constant, and is assigned to export regions according to the proportion of net inter-regional trade belonging to each region in the IEA projections (shown in Table 12). The percentage of net inter-regional trade sourced from each exporting region is shown in Table 11.
Table 11 Proportional allocation of world trade: Reference and [R]evolution scenarios

<table>
<thead>
<tr>
<th>Region</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD Americas</td>
<td>26%</td>
<td>25%</td>
<td>19%</td>
<td>14%</td>
</tr>
<tr>
<td>Latin America</td>
<td>14%</td>
<td>16%</td>
<td>16%</td>
<td>14%</td>
</tr>
<tr>
<td>Africa</td>
<td>16%</td>
<td>18%</td>
<td>17%</td>
<td>15%</td>
</tr>
<tr>
<td>Eurasia/ E Europe</td>
<td>25%</td>
<td>29%</td>
<td>29%</td>
<td>22%</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>16%</td>
<td>11%</td>
<td>20%</td>
<td>35%</td>
</tr>
<tr>
<td>OECD Oceania</td>
<td>3%</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 12 Net Inter-regional hard coal trade, 2012 – 2030, reference scenario (PJ)
Negative values = imports, positive values = exports. MTCE converted to PJ.

<table>
<thead>
<tr>
<th>Region</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD</td>
<td>-2,843</td>
<td>-2,179</td>
<td>-1,074</td>
<td>1,493</td>
<td>4,059</td>
</tr>
<tr>
<td>OECD Americas</td>
<td>3,048</td>
<td>2,912</td>
<td>2,684</td>
<td>2,744</td>
<td>2,805</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>-6,243</td>
<td>-6,389</td>
<td>-6,632</td>
<td>-6,227</td>
<td>-5,823</td>
</tr>
<tr>
<td>OECD Oceania</td>
<td>322</td>
<td>1,279</td>
<td>2,874</td>
<td>4,966</td>
<td>7,059</td>
</tr>
<tr>
<td>Eastern Europe/ Eurasia</td>
<td>2,901</td>
<td>3,365</td>
<td>4,137</td>
<td>4,299</td>
<td>4,462</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>1,876</td>
<td>3,811</td>
<td>3,812</td>
<td>3,813</td>
<td>3,814</td>
</tr>
<tr>
<td>China</td>
<td>-2,579</td>
<td>-2,654</td>
<td>-2,779</td>
<td>-2,920</td>
<td>-3,061</td>
</tr>
<tr>
<td>India</td>
<td>-1,788</td>
<td>-1,840</td>
<td>-1,926</td>
<td>-2,024</td>
<td>-2,122</td>
</tr>
<tr>
<td>Middle East</td>
<td>-88</td>
<td>-114</td>
<td>-158</td>
<td>-175</td>
<td>-193</td>
</tr>
<tr>
<td>Africa</td>
<td>1,934</td>
<td>2,097</td>
<td>2,368</td>
<td>2,650</td>
<td>2,932</td>
</tr>
<tr>
<td>Latin America</td>
<td>1,671</td>
<td>1,897</td>
<td>2,274</td>
<td>2,541</td>
<td>2,808</td>
</tr>
<tr>
<td>World</td>
<td>29,953</td>
<td>32,777</td>
<td>37,485</td>
<td>41,713</td>
<td>45,940</td>
</tr>
</tbody>
</table>

Derived from WEO 2014 Table 5.4 Inter-regional hard coal net trade by country in the New Policies Scenario. MTCE converted to PJ and increased according to the ratio of inter-regional trade in the New Policies and Current policies scenarios (Table 5.1, page 174). Linear interpolation is used between specified years.

Table 13 Regional production of coal, 2012–2030, coal importing countries (PJ)

<table>
<thead>
<tr>
<th>Region</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD</td>
<td>39,888</td>
<td>39,701</td>
<td>39,390</td>
<td>37,294</td>
<td>35,199</td>
<td>35,082</td>
</tr>
<tr>
<td>Europe</td>
<td>7,210</td>
<td>6,638</td>
<td>5,686</td>
<td>4,763</td>
<td>3,839</td>
<td>3,458</td>
</tr>
<tr>
<td>China</td>
<td>78,985</td>
<td>80,722</td>
<td>83,616</td>
<td>84,671</td>
<td>85,726</td>
<td>80,275</td>
</tr>
<tr>
<td>India</td>
<td>10,903</td>
<td>11,397</td>
<td>12,221</td>
<td>13,584</td>
<td>14,947</td>
<td>17,262</td>
</tr>
<tr>
<td>Middle East</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>13,804</td>
<td>15,002</td>
<td>16,999</td>
<td>18,464</td>
<td>19,929</td>
<td>19,929</td>
</tr>
</tbody>
</table>

From WEO 2014, Table 5.3 Coal production by region in the New Policies Scenario. P183 (MTCE converted to PJ). Linear interpolation is used between specified years.
8 Gas trade

Jobs in gas supply have been allocated after taking international trade into account. The projected volumes of international trade and world gas production in the Reference scenario are derived from the New Policies scenario in the World Energy Outlook 2014 (International Energy Agency 2011), and are shown in Table 15 and Table 16. These have not been adjusted to reflect the fact that the Reference case uses the Current Policies Scenario, as primary demand for gas is only 4% higher in the Current Policies scenario.

The proportion of gas imports in the Reference and [R]evolution scenarios are shown in Table 14. These are calculated for the Reference scenario from the PJ imported divided by the total consumed (i.e. gas production plus gas imports).

The proportion of gas imports in the [R]evolution scenario is calculated by first adjusting the amount of gas consumed according to the ratio of gas use in the Reference scenario to gas use in the [R]evolution scenario. The revised figure for consumption is divided by the gas production to determine the proportion of imports in the [R]evolution scenario. Potential gas production is assumed to be constant between the two scenarios in gas importing regions, so the proportion imported increases in the [R]evolution scenario in some cases.

The proportion of domestic gas production is used to calculate a value for PJ of gas imports for each region. This is assigned to export regions according to the proportion of total inter regional trade belonging to each region in the IEA Reference scenario shown in Table 15, with the assumption that export regions will increase production in response to demand.

Table 14 Proportion of gas imports: Reference and [R]evolution scenarios

<table>
<thead>
<tr>
<th>Region</th>
<th>REFERENCE</th>
<th>[R]EVOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD Americas</td>
<td>1%</td>
<td>-</td>
</tr>
<tr>
<td>Latin America</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>31%</td>
<td>32%</td>
</tr>
<tr>
<td>Africa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Middle East</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eurasia/ E Europe</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>India</td>
<td>24%</td>
<td>25%</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>China</td>
<td>21%</td>
<td>24%</td>
</tr>
<tr>
<td>OECD Oceania</td>
<td>21%</td>
<td>24%</td>
</tr>
</tbody>
</table>
Table 15 Net Inter-regional gas trade, 2009 – 2035, New Policies scenario (PJ)

Negative values = imports, positive values = exports.

<table>
<thead>
<tr>
<th>Region</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD Americas</td>
<td>-611</td>
<td>-1,132</td>
<td>-2,001</td>
<td>-153</td>
</tr>
<tr>
<td>Latin America</td>
<td>603</td>
<td>419</td>
<td>113</td>
<td>-377</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>-8,633</td>
<td>-9,105</td>
<td>-9,892</td>
<td>-12,743</td>
</tr>
<tr>
<td>Africa</td>
<td>3,506</td>
<td>3,119</td>
<td>2,474</td>
<td>3,054</td>
</tr>
<tr>
<td>Middle East</td>
<td>4,713</td>
<td>4,022</td>
<td>2,870</td>
<td>2,337</td>
</tr>
<tr>
<td>Eurasia/ E Europe</td>
<td>6,824</td>
<td>7,048</td>
<td>7,422</td>
<td>8,709</td>
</tr>
<tr>
<td>India</td>
<td>-641</td>
<td>-941</td>
<td>-1,442</td>
<td>-2,714</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>1,810</td>
<td>1,403</td>
<td>726</td>
<td>-302</td>
</tr>
<tr>
<td>China</td>
<td>-1,546</td>
<td>-3,285</td>
<td>-6,183</td>
<td>-9,576</td>
</tr>
<tr>
<td>OECD Oceania</td>
<td>-5,806</td>
<td>-5,166</td>
<td>-4,100</td>
<td>-1,885</td>
</tr>
</tbody>
</table>

Derived from Net inter-regional trade (PJ), derived from Table 4.5 Natural gas production by region in the New Policies Scenario (bcm) Page 149 WEO 2014 and Table 4.2 Natural gas demand by region in the New Policies Scenario (bcm)

Table 16 Regional production of gas, 2009 – 2035, IEA new policies scenario (PJ)

<table>
<thead>
<tr>
<th>Region</th>
<th>2012</th>
<th>2015</th>
<th>2020</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>OECD Americas</td>
<td>33,807</td>
<td>35,970</td>
<td>39,575</td>
<td>44,618</td>
</tr>
<tr>
<td>Latin America</td>
<td>6,484</td>
<td>6,824</td>
<td>7,389</td>
<td>10,066</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>10,481</td>
<td>10,127</td>
<td>9,538</td>
<td>8,483</td>
</tr>
<tr>
<td>Africa</td>
<td>8,030</td>
<td>8,355</td>
<td>8,897</td>
<td>13,120</td>
</tr>
<tr>
<td>Middle East</td>
<td>19,943</td>
<td>20,551</td>
<td>21,564</td>
<td>28,124</td>
</tr>
<tr>
<td>Eurasia/ E Europe</td>
<td>32,912</td>
<td>33,548</td>
<td>34,609</td>
<td>38,793</td>
</tr>
<tr>
<td>India</td>
<td>1,508</td>
<td>1,649</td>
<td>1,885</td>
<td>3,129</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>10,405</td>
<td>10,829</td>
<td>11,536</td>
<td>12,554</td>
</tr>
<tr>
<td>China</td>
<td>4,034</td>
<td>4,939</td>
<td>6,447</td>
<td>10,028</td>
</tr>
<tr>
<td>OECD Oceania</td>
<td>2,413</td>
<td>3,402</td>
<td>5,052</td>
<td>6,032</td>
</tr>
</tbody>
</table>
9 Employment in energy sector manufacturing

The proportion of renewable energy manufacturing that occurs within each region varies around the world. In order to calculate employment for this study, percentages have been assigned in each region for 2010, 2020, and 2030. These are shown in Table 17.

It is assumed that all manufacturing for fossil fuel, biomass, hydro and nuclear technologies occurs within the region.

Local renewable energy manufacturing percentages vary from 100% manufacturing within Europe and China for each period, to 30% of manufacturing occurring within Africa in 2010, rising to 50% by 2030. These percentages are applied to all renewable technologies except biomass and hydro, and to the Reference and [R]evolution scenarios.

Where equipment is imported, it is allocated among exporting regions as shown in Table 17. Import and export percentages and current export regions are set according to current practice.

Table 17 Proportion of local renewable energy manufacturing and import / export, all regions

<table>
<thead>
<tr>
<th>Region where renewable energy equipment is imported from</th>
<th>Proportion of renewable energy manufacturing within the region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OECD Europe</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>OECD Europe</td>
<td>100% 100% 100%</td>
</tr>
<tr>
<td>OECD Americas</td>
<td>70% 100% 100%</td>
</tr>
<tr>
<td>OECD Asia-Oceania</td>
<td>50% 60% 60%</td>
</tr>
<tr>
<td>Non-OECD Asia</td>
<td>30% 50% 70%</td>
</tr>
<tr>
<td>India</td>
<td>80% 100% 100%</td>
</tr>
<tr>
<td>China</td>
<td>100% 100% 100%</td>
</tr>
<tr>
<td>Africa</td>
<td>30% 30% 50%</td>
</tr>
<tr>
<td>Latin America</td>
<td>50% 70% 100%</td>
</tr>
<tr>
<td>Middle East</td>
<td>30% 30% 30%</td>
</tr>
<tr>
<td>Eastern Europe/Eurasia</td>
<td>30% 50% 70%</td>
</tr>
</tbody>
</table>

Note: These percentages are applied to wind, solar PV, solar thermal power, geothermal power, and ocean (wave and tidal) technologies.
Appendix 1 Employment factors used in 2010 and 2012

Table 18 Employment factors used in the 2010 analysis

<table>
<thead>
<tr>
<th>FUEL</th>
<th>Construction times</th>
<th>Construction/Installation</th>
<th>Manufacturing</th>
<th>Operations & Maintenance</th>
<th>Jobs/GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Years (Years/MW)</td>
<td>Job Years/MW</td>
<td>Jobs/MW</td>
<td></td>
<td>Jobs/MW</td>
</tr>
<tr>
<td>Coal</td>
<td>5</td>
<td>6.2</td>
<td>1.5</td>
<td>0.1</td>
<td>Regional</td>
</tr>
<tr>
<td>Gas, oil and diesel</td>
<td>2</td>
<td>1.40</td>
<td>0.07</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>Nuclear</td>
<td>10</td>
<td>14.4</td>
<td>1.6</td>
<td>0.3</td>
<td>0.001</td>
</tr>
<tr>
<td>Biomass</td>
<td>2</td>
<td>3.9</td>
<td>0.4</td>
<td>3.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Hydro</td>
<td>2</td>
<td>10.8</td>
<td>0.5</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>2</td>
<td>2.5</td>
<td>12.5</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>PV</td>
<td>1</td>
<td>29.0</td>
<td>9.3</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Geothermal</td>
<td>2</td>
<td>3.1</td>
<td>3.3</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>Solar thermal</td>
<td>2</td>
<td>6.0</td>
<td>4.0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Ocean</td>
<td>2</td>
<td>9.0</td>
<td>1.0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>CHP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Combined heat and power technologies use the factor for the fuel type, i.e. coal, gas, biomass, geothermal etc increased by a factor of 1.3. Construction times are not increased.

Note that fuel jobs are expressed in jobs per GWh electricity, not in jobs per PJ primary energy.

Further details can be found in Rutovitz & Usher 2010.
Table 19 Employment factors used in the 2012 analysis

<table>
<thead>
<tr>
<th>Fuel – PRIMARY Energy Demand</th>
<th>Job years/ MW</th>
<th>Jobs/MW</th>
<th>Jobs/PJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal</td>
<td>5</td>
<td>7.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Gas</td>
<td>2</td>
<td>1.7</td>
<td>1.0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>10</td>
<td>14</td>
<td>1.3</td>
</tr>
<tr>
<td>Biomass</td>
<td>2</td>
<td>14</td>
<td>2.9</td>
</tr>
<tr>
<td>Hydro-large</td>
<td>2</td>
<td>6.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Hydro-small</td>
<td>2</td>
<td>15</td>
<td>5.5</td>
</tr>
<tr>
<td>Wind onshore</td>
<td>2</td>
<td>2.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Wind offshore</td>
<td>4</td>
<td>7.1</td>
<td>11</td>
</tr>
<tr>
<td>PV</td>
<td>1</td>
<td>11</td>
<td>6.9</td>
</tr>
<tr>
<td>Geothermal</td>
<td>2</td>
<td>6.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Solar thermal</td>
<td>2</td>
<td>8.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Ocean</td>
<td>2</td>
<td>9.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Geothermal - heat</td>
<td>3.0 jobs/ MW (construction and manufacturing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar - heat</td>
<td>7.4 jobs/ MW (construction and manufacturing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear decommissioning</td>
<td>0.95 jobs per MW decommissioned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined heat and power</td>
<td>CHP technologies use the factor for the technology, i.e. coal, gas, biomass, geothermal etc increased by a factor of 1.5 for O&M only.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil and diesel</td>
<td>Employment factors for gas are used</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further details can be found in Rutovitz & Harris 2012a.
Appendix 2 Wind employment factors – additional information

ONSHORE WIND

<table>
<thead>
<tr>
<th>Report</th>
<th>Construction</th>
<th>Manufacturing</th>
<th>O&M Jobs/MW</th>
<th>Notes and data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 analysis</td>
<td>2.5</td>
<td>12.5</td>
<td>0.4</td>
<td>European Wind Energy Association (2009)</td>
</tr>
<tr>
<td>Current report</td>
<td>3.2</td>
<td>4.7</td>
<td>0.3</td>
<td>Construction and O&M from the average of 6-7 studies below. Turbine manufacturing Vestas 2014 scaled to all manufacturing using EWEA (2009) ratio of turbine to total manufacturing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region/country</th>
<th>Year</th>
<th>New in 2015</th>
<th>Construction</th>
<th>Manufacturing</th>
<th>O&M Jobs/MW</th>
<th>Notes and data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>2010</td>
<td></td>
<td>1.12</td>
<td></td>
<td>0.36</td>
<td>16% of 6000 FTE's are in direct employment in construction in UK large onshore wind; estimated annual increase of 860 in 2009. 21% of 6000 FTE's are in O&M, UK installed capacity April 2010 3.5GW (Renewable UK, 2011 page 8).</td>
</tr>
<tr>
<td>Australia</td>
<td>2010</td>
<td></td>
<td>2.5</td>
<td></td>
<td>0.16</td>
<td>Rutovitz, J., Ison, N., Langham, E. and Paddon, M. (2011)</td>
</tr>
<tr>
<td>Greece</td>
<td>2011</td>
<td></td>
<td>6.1</td>
<td>(2.7)</td>
<td>0.4</td>
<td>From Tourkolas & Mirasgedis, (2011) Table 3 and Table 8</td>
</tr>
<tr>
<td>Germany</td>
<td>2011</td>
<td>Y</td>
<td></td>
<td></td>
<td>0.64</td>
<td>Employment from O’Sullivan et al and installed capacity from German Federal Ministry of Economic affairs and Energy</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2012</td>
<td>Y</td>
<td>2.6</td>
<td></td>
<td>0.15</td>
<td>Leung-Wai, J. & Generosa, A. (2012)</td>
</tr>
<tr>
<td>US</td>
<td>2014</td>
<td>Y</td>
<td>1.0</td>
<td>(9.1)</td>
<td>0.1</td>
<td>JEDI model (National Renewable Energy Laboratory 2015b)</td>
</tr>
<tr>
<td>US</td>
<td>2014</td>
<td>Y</td>
<td>6.0</td>
<td></td>
<td>0.4</td>
<td>From IO model based on JEDI & other data (Comings et al. 2014)</td>
</tr>
</tbody>
</table>
OFFSHORE WIND

<table>
<thead>
<tr>
<th>Report</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Notes and data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 analysis</td>
<td>4.8</td>
<td>24.0</td>
<td>0.4</td>
<td>European Wind Energy Association (2009)</td>
</tr>
<tr>
<td>2012 analysis</td>
<td>7.1</td>
<td>10.7</td>
<td>0.2</td>
<td>Price Waterhouse Coopers (2012)</td>
</tr>
<tr>
<td>Current report</td>
<td>8.0</td>
<td>15.6</td>
<td>0.2</td>
<td>Average of 2 studies below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region/ country</th>
<th>Year</th>
<th>New in 2015</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Notes and data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>2014</td>
<td>Y</td>
<td>8.9</td>
<td>20.5</td>
<td>0.09</td>
<td>JEDI model (National Renewable Energy Laboratory 2014e)</td>
</tr>
<tr>
<td>Germany</td>
<td>2012</td>
<td></td>
<td>7.1</td>
<td>10.7</td>
<td>0.2</td>
<td>Price Waterhouse Coopers (2012)</td>
</tr>
</tbody>
</table>
Appendix 3 Solar PV employment factors – additional information

<table>
<thead>
<tr>
<th>Region/country</th>
<th>Year</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Notes and data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global EPIA estimate</td>
<td>2011</td>
<td>23.0</td>
<td>7.0</td>
<td></td>
<td>Global average of 30 jobs for construction, manufacturing and installation from European Photovoltaic Industry Association and Greenpeace (2011) page 70, split between manufacturing and installation using the EPIA 2008 ratio (European Photovoltaic Industry Association and Greenpeace 2008)</td>
</tr>
<tr>
<td>2010 analysis</td>
<td>2010</td>
<td>29.0</td>
<td>9.3</td>
<td>0.4</td>
<td>Derived from European Photovoltaic Industry Association and Greenpeace (2008)</td>
</tr>
<tr>
<td>2012 analysis</td>
<td>2012</td>
<td>10.9</td>
<td>6.9</td>
<td>0.3</td>
<td>Average of 6-8 factors</td>
</tr>
<tr>
<td>Current report</td>
<td></td>
<td>13.0</td>
<td>6.5</td>
<td>0.7</td>
<td>Construction average of 8 factors listed below. Manufacturing from module production from four of the largest global companies annual reports; balance of system calculated from cost ratio of BOS to modules in the NREL Jedi model 2014. O&M average of 6 factors listed below.</td>
</tr>
<tr>
<td>Germany</td>
<td>2007, 2008</td>
<td>10.7</td>
<td></td>
<td></td>
<td>One company, total installation 3.09 MW Reisinger Sonnenstrom: http://www.reisinger-sonnenstrom.de/menu/01-sonnenstrom-team.htm</td>
</tr>
<tr>
<td>US</td>
<td>2009</td>
<td></td>
<td></td>
<td>0.5</td>
<td>Local direct employment estimated to be generated by a 75 MW solar PV project in Kittitas County in the United States (The World Bank, 2011, page 29)</td>
</tr>
<tr>
<td>Germany</td>
<td>2009</td>
<td></td>
<td></td>
<td>0.2</td>
<td>Derived from Mulenhoff (2010)</td>
</tr>
<tr>
<td>Germany</td>
<td>2009</td>
<td>12.6</td>
<td></td>
<td></td>
<td>Based on country total annual increase of 2000 MW and Kunz (2010)</td>
</tr>
<tr>
<td>South Korea</td>
<td>2010</td>
<td></td>
<td>(3.1)</td>
<td></td>
<td>Employment figures for total country manufacturing (Korea Energy Management Corporation (KEMCO) & New and Renewable Energy Center (NREC) 2012)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2010</td>
<td>12.6</td>
<td></td>
<td></td>
<td>National reporting of employment from Statistics Netherlands (2010)</td>
</tr>
<tr>
<td>Greece</td>
<td>2011</td>
<td>11.2</td>
<td>(6.0)</td>
<td></td>
<td>From Tourkoliias & Mirasgedis, (2011) Table 3 and Table 8</td>
</tr>
<tr>
<td>Germany</td>
<td>2011</td>
<td></td>
<td></td>
<td>0.3</td>
<td>Employment from O’Sullivan et al and installed capacity from German Federal Ministry of Economic Affairs and Energy</td>
</tr>
<tr>
<td>US</td>
<td>2011,</td>
<td></td>
<td>(15.1)</td>
<td></td>
<td>Calculation based on average of 2011 an 2012 data from EIA Solar</td>
</tr>
<tr>
<td>Region/country</td>
<td>Year</td>
<td>Construction Person years/MW</td>
<td>Manufacturing Person years/MW</td>
<td>O&M Jobs/ MW</td>
<td>Notes and data source</td>
</tr>
<tr>
<td>----------------</td>
<td>------</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>--------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td>photovoltaic cell/module manufacturing activities (2012)</td>
</tr>
<tr>
<td>US</td>
<td>2014</td>
<td>18</td>
<td>(9.8)</td>
<td>0.2</td>
<td>JEDI model (National Renewable Energy Laboratory 2010a)</td>
</tr>
<tr>
<td>US</td>
<td>2014</td>
<td>21</td>
<td></td>
<td>1.2</td>
<td>Average of small and large PV From IO model based on JEDI and other data (Comings et al. 2014)</td>
</tr>
<tr>
<td>Global</td>
<td>2014</td>
<td></td>
<td>6.5</td>
<td></td>
<td>Module production factor calculated from four largest global companies annual reports (does not include inverters or BOS) (Trina Solar 2014; Yingli Green Energy 2014; Canadian Solar 2014; JinkoSolar 2013); balance of system calculated from cost ratio of BOS to modules in the JEDI model (National Renewable Energy Laboratory 2014f)</td>
</tr>
</tbody>
</table>
Appendix 4 Solar thermal employment factors – additional information

<table>
<thead>
<tr>
<th>Report</th>
<th>Construction Person yrs /MW</th>
<th>O&M Jobs/ MW</th>
<th>Construction period Years</th>
<th>MW</th>
<th>Notes and data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 analysis</td>
<td>6.0</td>
<td>0.3</td>
<td></td>
<td></td>
<td>Weighted average of 19 reported power plants (3223 MW) in the US, Spain, and Australia</td>
</tr>
<tr>
<td>2012 analysis</td>
<td>8.9</td>
<td>0.5</td>
<td>2.0</td>
<td>3223</td>
<td></td>
</tr>
<tr>
<td>Europe 2012</td>
<td>14.7</td>
<td>1.0</td>
<td>2.0</td>
<td>951</td>
<td>Weighted average of 10 reported power plants (951 MW) in the US, Spain, and Australia</td>
</tr>
<tr>
<td>(weighted average)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2012</td>
<td>5.3</td>
<td>0.4</td>
<td></td>
<td>1512</td>
<td>Weighted average of 8 reported power plants (1512 MW) in the US, Spain, and Australia</td>
</tr>
<tr>
<td>(weighted average)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current report</td>
<td>8.0</td>
<td>0.6</td>
<td></td>
<td>2570</td>
<td>Weighted average of 31 reported power plants (2570 MW) below</td>
</tr>
<tr>
<td>Europe 2015</td>
<td>12.2</td>
<td>1.0</td>
<td></td>
<td>1057</td>
<td>Weighted average of 22 reported power plants in Spain, and 1 in France (1057 MW)</td>
</tr>
<tr>
<td>(weighted average)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2015</td>
<td>5.3</td>
<td>0.4</td>
<td></td>
<td>1512</td>
<td>Weighted average of 8 reported power plants (1512 MW)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region/country Year</th>
<th>New in 2015</th>
<th>Construction Person yrs /MW</th>
<th>O&M Jobs/ MW</th>
<th>Construction period Years</th>
<th>MW</th>
<th>Notes and data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain 2009</td>
<td></td>
<td>8.0</td>
<td>1.2</td>
<td>2.5</td>
<td>50</td>
<td>EL REBOSO II 50-MW Solar Thermal Power Plant (El Reboso II), Sevilla (La Puebla del Río)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=49</td>
</tr>
<tr>
<td>Spain 2009</td>
<td></td>
<td>12.0</td>
<td>0.8</td>
<td></td>
<td>49.9</td>
<td>Helios I (Helios I), Arenas de San Juan, Villarta de San Juan, Puerto Lápice (Ciudad Real)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=47</td>
</tr>
<tr>
<td>Spain 2010</td>
<td></td>
<td>15.1</td>
<td>0.8</td>
<td></td>
<td>532</td>
<td>Protermo Solar & Deloitte, 2011, Figure 10 p.32; Figure 41 p.78</td>
</tr>
<tr>
<td>Spain 2010</td>
<td></td>
<td>7.0</td>
<td>0.6</td>
<td>1.5</td>
<td>50</td>
<td>Alvarado I, (Badajoz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=5</td>
</tr>
<tr>
<td>Spain 2010</td>
<td></td>
<td>18.0</td>
<td>0.9</td>
<td></td>
<td>50</td>
<td>Arcosol 50 (Valle 1), San José del Valle (Cádiz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=12</td>
</tr>
<tr>
<td>Spain 2010</td>
<td></td>
<td>19.0</td>
<td>0.9</td>
<td>2.0</td>
<td>50</td>
<td>Central Solar Termoelectrica La Florida (La Florida), Badajoz (Badajoz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=12</td>
</tr>
<tr>
<td>Spain 2010</td>
<td></td>
<td>19.0</td>
<td>0.9</td>
<td>2.0</td>
<td>50</td>
<td>Ibersol Ciudad Real (Puertollano)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=27</td>
</tr>
<tr>
<td>Spain 2011</td>
<td></td>
<td>12.0</td>
<td>0.8</td>
<td>2.5</td>
<td>50</td>
<td>Aldiere (Granada)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=3</td>
</tr>
<tr>
<td>Region/country</td>
<td>Year</td>
<td>New in 2015</td>
<td>Construction</td>
<td>O&M</td>
<td>Construction period</td>
<td>MW</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----</td>
<td>---------------------</td>
<td>----</td>
</tr>
<tr>
<td>Spain</td>
<td>2011</td>
<td>Y</td>
<td>12.0</td>
<td>0.8</td>
<td>0.5</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2011</td>
<td>Y</td>
<td>12.0</td>
<td>1.2</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2011</td>
<td>Y</td>
<td>10.0</td>
<td>1.2</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2011</td>
<td>Y</td>
<td>10.0</td>
<td>0.8</td>
<td>2.5</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2011</td>
<td>Y</td>
<td>7.0</td>
<td>0.6</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2011</td>
<td>Y</td>
<td>18.0</td>
<td>0.8</td>
<td>2.5</td>
<td>49.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td>Y</td>
<td>10.0</td>
<td>1.0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td>Y</td>
<td>10.0</td>
<td>1.0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td>Y</td>
<td>10.0</td>
<td>1.0</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td>Y</td>
<td>12.0</td>
<td>1.2</td>
<td>1.8</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td>Y</td>
<td>6.0</td>
<td>0.8</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td>Y</td>
<td>12.0</td>
<td>0.9</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td>Y</td>
<td>12.0</td>
<td>0.9</td>
<td>2.1</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2012</td>
<td>Y</td>
<td>9.0</td>
<td>0.8</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>2013</td>
<td>Y</td>
<td>14.0</td>
<td>1.7</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>2015</td>
<td>Y</td>
<td>12.5</td>
<td>1.0</td>
<td>1.9</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>2009</td>
<td></td>
<td>1.4</td>
<td>0.6</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region/country</td>
<td>Year</td>
<td>New in 2015</td>
<td>Construction</td>
<td>O&M</td>
<td>Construction</td>
<td>MW</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----</td>
<td>--------------</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Person yrs /MW</td>
<td>Jobs/ MW</td>
<td>period</td>
<td>Years</td>
<td>Solana Generating Station (Solana)</td>
</tr>
<tr>
<td>US</td>
<td>2010</td>
<td>5.4</td>
<td>0.3</td>
<td>2.0</td>
<td>280</td>
<td>Solana</td>
</tr>
<tr>
<td>US</td>
<td>2011</td>
<td>13.6</td>
<td>1.8</td>
<td>1.5</td>
<td>110</td>
<td>Crescent Dunes</td>
</tr>
<tr>
<td>US</td>
<td>2011</td>
<td>4.8</td>
<td>0.3</td>
<td>2.2</td>
<td>250</td>
<td>Abengoa Mojave</td>
</tr>
<tr>
<td>US</td>
<td>2011</td>
<td>4.3</td>
<td>0.2</td>
<td>4.0</td>
<td>250</td>
<td>Genesis Solar</td>
</tr>
<tr>
<td>US</td>
<td>2011</td>
<td>4.8</td>
<td>0.2</td>
<td>3.0</td>
<td>392</td>
<td>Ivanpah Solar Electric</td>
</tr>
<tr>
<td>US</td>
<td>2011</td>
<td>4.7</td>
<td>0.4</td>
<td>1.5</td>
<td>75</td>
<td>Nevada Solar One</td>
</tr>
<tr>
<td>US</td>
<td>2011</td>
<td>3.0</td>
<td>0.3</td>
<td>2.5</td>
<td>150</td>
<td>Boulder City, Nevada</td>
</tr>
</tbody>
</table>

Note 1: Manufacturing employment uses the same factor as the 2012 report, 4 jobs in manufacturing per MW (European Renewable Energy Council, 2008, page 16)

Note 2: An additional project in France (Augustin Fresnel 1, Targassonne (Pyreneans)) was excluded as it is a prototype.
Appendix 5 Hydro employment factors – additional information

LARGE HYDRO

<table>
<thead>
<tr>
<th>Report</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Notes and data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 analysis</td>
<td>10.8</td>
<td>0.5</td>
<td>0.2</td>
<td>(Pembina Institute 2004)</td>
</tr>
<tr>
<td>2012 analysis</td>
<td>6.0</td>
<td>1.5</td>
<td>0.3</td>
<td>Construction and manufacturing from Navigant Consulting. (2009). O&M average of data from South Korea, Japan, South Africa (Institute research) and Navigant Consulting (2009)</td>
</tr>
<tr>
<td>Current report</td>
<td>7.4</td>
<td>3.5</td>
<td>0.2</td>
<td>Average of 2 - 6 studies listed below</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region/ country</th>
<th>Year/ New in 2015</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Notes and data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>2009</td>
<td>6.0</td>
<td>1.5</td>
<td>0.14</td>
<td>Using mid-range of estimates for new facilities in existing dams. (Navigant Consulting 2009)</td>
</tr>
<tr>
<td>South Korea</td>
<td>2010</td>
<td></td>
<td></td>
<td>0.62</td>
<td>(Rutovitz & Harris 2012b)</td>
</tr>
<tr>
<td>Japan</td>
<td>2010</td>
<td></td>
<td></td>
<td>0.11</td>
<td>(Rutovitz & Ison 2011)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2010 Y</td>
<td>3.3</td>
<td></td>
<td>0.16</td>
<td>(Meridian Energy Limited 2010)</td>
</tr>
<tr>
<td>France</td>
<td>2012 Y</td>
<td></td>
<td></td>
<td>0.16</td>
<td>(Rutovitz & Razain 2013b)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2013 Y</td>
<td></td>
<td></td>
<td>0.2</td>
<td>(Rutovitz & Mikhailovich 2013b)</td>
</tr>
<tr>
<td>US</td>
<td>2014 Y</td>
<td>12.9</td>
<td>5.5</td>
<td>0.02</td>
<td>(National Renewable Energy Laboratory 2014b)</td>
</tr>
</tbody>
</table>
SMALL HYDRO

<table>
<thead>
<tr>
<th>Report</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Notes and data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 analysis</td>
<td>10.8</td>
<td>0.5</td>
<td>0.2</td>
<td>(Pembina Institute 2004)</td>
</tr>
<tr>
<td>2012 analysis</td>
<td>15.0</td>
<td>2.4</td>
<td>0.0</td>
<td>Average of 3-4 studies from Canada, Spain and the US</td>
</tr>
<tr>
<td>Current report</td>
<td>15.7</td>
<td>5.8</td>
<td>5.8</td>
<td>Average of 3-5 studies listed below</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region/ Country</th>
<th>Year</th>
<th>New in 2015</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Notes and data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>2008</td>
<td></td>
<td>18.6</td>
<td>1.4</td>
<td></td>
<td>(Moreno & López 2008)</td>
</tr>
<tr>
<td>US</td>
<td>2009</td>
<td></td>
<td>29.5</td>
<td>10.0</td>
<td>2.5</td>
<td>Using mid-range of estimates for Micro hydro from (Navigant Consulting 2009)</td>
</tr>
<tr>
<td>Greece</td>
<td>2011</td>
<td></td>
<td>13.3</td>
<td>1.3</td>
<td>16.7</td>
<td>Direct employment in manufacturing, from a detailed I/O study for Greece, using Greece's 2005 IO table. Figure is calculated by taking: Table 3 (construction figure assuming all first level expenditure is domestic) minus Table 8 (assumes main elements of necessary equipment for development of the various RES projects will be purchased outside Greece). (Tourkolas & Mirasgedis 2011)</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2012</td>
<td>Y</td>
<td></td>
<td>2.7</td>
<td></td>
<td>(Vuik et al. 2012)</td>
</tr>
<tr>
<td>US</td>
<td>2014</td>
<td>Y</td>
<td>1.7</td>
<td>21.4</td>
<td>1.1</td>
<td>(National Renewable Energy Laboratory 2014d)</td>
</tr>
</tbody>
</table>
Appendix 6 Nuclear employment factors – additional information

<table>
<thead>
<tr>
<th>Report</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Fuel jobs/GWh final demand</th>
<th>Notes and data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 analysis</td>
<td>14.4</td>
<td>1.6</td>
<td>0.3</td>
<td></td>
<td>(Pembina Institute 2004)</td>
</tr>
<tr>
<td>2012 analysis</td>
<td>13.7</td>
<td>1.3</td>
<td>0.3</td>
<td>0.001</td>
<td>Weighted average of 2 – 3 studies from US and UK</td>
</tr>
<tr>
<td>Current report</td>
<td>11.8</td>
<td>1.3</td>
<td>0.60</td>
<td>0.001</td>
<td>Weighted average of 2 - 5 studies listed below. Fuel from (Rutovitz & Harris 2012a)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region/ country</th>
<th>Year</th>
<th>New in 2015</th>
<th>Construction Person years/MW</th>
<th>Manufacturing Person years/MW</th>
<th>O&M Jobs/ MW</th>
<th>Notes and data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Korea</td>
<td>2010</td>
<td></td>
<td>12.2</td>
<td>1.1</td>
<td>0.26</td>
<td>(Cogent Sector Skills Council 2010)</td>
</tr>
<tr>
<td>UK</td>
<td>2010</td>
<td></td>
<td>14.6</td>
<td>1.4</td>
<td>0.21</td>
<td>(Cogent Sector Skills Council 2011a)</td>
</tr>
<tr>
<td>France</td>
<td>2011</td>
<td>Y</td>
<td>11.6</td>
<td></td>
<td>0.71</td>
<td>(Rutovitz & Razain 2013a)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2013</td>
<td>Y</td>
<td></td>
<td></td>
<td>0.51</td>
<td>(Rutovitz & Mikhailovich 2013b)</td>
</tr>
</tbody>
</table>
Appendix 7 Coal employment – productivity projection

Productivity projection for coal mining – China

The current trend in productivity improvement has been extrapolated to productivity in 2015, 2020, and 2030. This gives the following productivity increases, which have been used in calculations of employment in coal fuel supply for China:

- **2012-2015** – annual productivity improvement of 13%
- **2015-2020** – annual productivity improvement of 6%
- **2020-2030** – annual productivity improvement of 6%

Table 20 Historic and projected productivity for coal mining in China

<table>
<thead>
<tr>
<th>YEAR</th>
<th>PRODUCTION</th>
<th>EMPLOYMENT</th>
<th>Tons per person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Million tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>1636</td>
<td>4,284,856</td>
<td>382</td>
</tr>
<tr>
<td>2007</td>
<td>1929</td>
<td>4,597,000</td>
<td>420</td>
</tr>
<tr>
<td>2008</td>
<td>2076</td>
<td>4,741,000</td>
<td>438</td>
</tr>
<tr>
<td>2009</td>
<td>2197</td>
<td>5,003,000</td>
<td>439</td>
</tr>
<tr>
<td>2010</td>
<td>2279</td>
<td>5,110,000</td>
<td>446</td>
</tr>
<tr>
<td>2011</td>
<td>2924</td>
<td>5,311,000</td>
<td>551</td>
</tr>
<tr>
<td>2012</td>
<td>2675</td>
<td>4,399,000</td>
<td>608</td>
</tr>
<tr>
<td>PROJECTION FROM 2005 – 2011 TREND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td>910</td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td>1,239</td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td>2,296</td>
</tr>
</tbody>
</table>

![Coal mining productivity - China](image)
Productivity projection for coal mining – India

The table and graph below shows the historic productivity and projection for coal mining in India. Data is from the Indian Ministry for Coal 2014.

The current trend in productivity improvement has been extrapolated to productivity in 2015, 2020, and 2030. This gives the following productivity increases, which have been used in calculations of employment in coal fuel supply for India:

- **2010-2015** – annual productivity improvement of 5%
- **2015-2020** – annual productivity improvement of 5.3%
- **2020-2030** – annual productivity improvement of 5.3%

Table 21 Historic and projected productivity for coal mining in India

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Tons per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>164</td>
</tr>
<tr>
<td>1984</td>
<td>246</td>
</tr>
<tr>
<td>1994</td>
<td>461</td>
</tr>
<tr>
<td>2004</td>
<td>563</td>
</tr>
<tr>
<td>2007</td>
<td>822</td>
</tr>
<tr>
<td>2009</td>
<td>1042</td>
</tr>
<tr>
<td>2010</td>
<td>995</td>
</tr>
<tr>
<td>2014</td>
<td>1309</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJECTION FROM TREND</th>
<th>Tons per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>1270</td>
</tr>
<tr>
<td>2020</td>
<td>1641</td>
</tr>
<tr>
<td>2030</td>
<td>2741</td>
</tr>
</tbody>
</table>

![Graph](image.png)
Productivity projection for coal mining – Russia

The current trend in productivity improvement has been extrapolated to productivity in 2015, 2020, and 2030. This gives the following productivity increases, which have been used in calculations of employment in coal fuel supply for Eurasia/ Eastern Europe:

- **2010-2015** – annual productivity improvement of 10%
- **2015-2020** – annual productivity improvement of 10%
- **2020-2030** – annual productivity improvement of 10%

Table 22 Historic and projected productivity for coal mining in Russia

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Tons per person</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>237</td>
</tr>
<tr>
<td>1997</td>
<td>306</td>
</tr>
<tr>
<td>1999</td>
<td>449</td>
</tr>
<tr>
<td>2001</td>
<td>563</td>
</tr>
<tr>
<td>2003</td>
<td>648</td>
</tr>
<tr>
<td>2005</td>
<td>726</td>
</tr>
<tr>
<td>2008</td>
<td>1151</td>
</tr>
<tr>
<td>2009</td>
<td>1174</td>
</tr>
<tr>
<td>2011</td>
<td>1350</td>
</tr>
<tr>
<td>2012</td>
<td>1439</td>
</tr>
<tr>
<td>2015</td>
<td>2241</td>
</tr>
<tr>
<td>2020</td>
<td>3828</td>
</tr>
<tr>
<td>2030</td>
<td>11172</td>
</tr>
</tbody>
</table>

![Russian productivity - tonnes coal per person per year (MTCE)](chart)

The productivity projection for coal mining in Russia can be represented by the equation:

\[y = 236.4e^{0.1071x} \]

with \(R^2 = 0.9799 \).

![Chart showing productivity from 1995 to 2012](chart)
References

Cogent Sector Skills Council, 2011a. Future skills for the nuclear industry in North Wales, Warrington, UK.

Cogent Sector Skills Council, 2011b. Nuclear skill level, skills needs and demand factsheet and tables, Warrington, UK.

Emerging Markets Insight, 2013. Coal Mining Sector Russia, New York, USA.

International Labour Organization, 2014. Key Indicators of the Labour Market (KILM) 8th ed..

PT Adaro Indonesia, 2013. *2012-13 Sustainability report*.

PT Indo Tambangraya Megah (ITM), 2014. *2014 Annual report*.

Calculating global energy sector jobs: 2015 methodology update 41

World Bank, 2015a. Agriculture, value added (% of GDP). In *World Development Indicators.*

